1
|
Hsu CY, Ismaeel GL, Kadhim O, Hadi ZD, Alubiady MHS, Alasheqi MQ, Ali MS, Ramadan MF, Al-Abdeen SHZ, Muzammil K, Balasim HM, Alawady AH. Beyond the brain: Reelin's emerging role in cancer pathways. Pathol Res Pract 2025; 269:155901. [PMID: 40068281 DOI: 10.1016/j.prp.2025.155901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/02/2025] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
The glycoprotein Reelin is essential for neuronal migration during embryonic development and is involved in various cellular processes. It interacts with specific lipoprotein receptors to regulate neuronal migration and synaptic plasticity. Recent research has expanded our understanding of Reelin's functions, revealing its involvement in processes such as cell proliferation, activation, migration, platelet aggregation, and vascular development. Reelin's influence extends beyond neurodevelopment, with abnormal expression observed in several cancer types. This suggests a potential connection between Reelin dysregulation and tumor formation. Altered Reelin levels correlate with increased tumor aggressiveness, metastatic potential, and poor patient outcomes. In cancer, Reelin affects key cellular processes including proliferation, migration, and invasion. Evidence indicates that Reelin modulates important signaling pathways like PI3K/Akt and MAPK, contributing to the development of cancer hallmarks. Its interactions with integrins and matrix metalloproteinases imply a role in shaping the tumor microenvironment, thereby influencing cancer progression. These findings highlight Reelin's dual significance in neurodevelopment and cancer biology. Further investigation into Reelin's complex functions could lead to new diagnostic tools and therapeutic approaches, potentially advancing cancer treatment through targeted research on its signaling mechanisms. This review provides a condensed overview of Reelin's multifaceted roles in both neurodevelopment and cancer.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA
| | - Ghufran Lutfi Ismaeel
- Department of Pharmacology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | - Oras Kadhim
- Department of Anesthesia Techniques, Al-Manara College For Medical Sciences, Maysan, Iraq
| | - Zaid Dahnoon Hadi
- Department of Anesthesia Techniques, Al-Noor University College, Nineveh, Iraq
| | | | | | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia.
| | - Halah Majeed Balasim
- Department of Medical Laboratory Technologies, Al Rafidain University College, Bagdad, Iraq
| | - Ahmed Hussien Alawady
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Carrillo MN, Pérez HA, Armando LL, Spence JD, Muñoz SE, Garcia NH. Determination of subclinical atherosclerosis by total plaque area in patients with diabetes and hypertension. Fam Pract 2025; 42:cmaf010. [PMID: 40105123 DOI: 10.1093/fampra/cmaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND/OBJECTIVE the determination of the carotid total plaque area (TPA) is an indicator of subclinical atherosclerosis and a useful tool in early cardiovascular prevention. Classically, diabetes has been considered the most atherogenic disease, even more so than hypertension, but the incidence of stroke and heart attack is higher in patients with hypertension than in patients with diabetes alone. Therefore, in this study, we compared hypertension and diabetes with regard to the burden of atherosclerosis. METHODS a cross-sectional observational study was carried out on adults (n = 606). Those with a history of a cardiovascular event were excluded. RESULTS median age was 65 years (IQR 17), 58.6% women. People with diabetes and hypertension had the highest TPA (β exponent: 1.64; 95% CI 1.20-2.26), followed by people with hypertension alone (β exponent: 1.39; 95% CI 1.05-1.86), while people with diabetes alone had no differences (P = .379) with respect to the control group. CONCLUSION This cross-sectional study, though limited, emphasizes the need for larger prospective studies to validate the clinical significance of these findings and highlights the importance of routine monitoring of subclinical atherosclerosis in hypertensive patients to assess the effectiveness of preventive therapy.
Collapse
Affiliation(s)
- Mariana N Carrillo
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) CONICET-UNC, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
- Escuela de Nutrición, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | - Hernán A Pérez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, 5004 Córdoba, Argentina
| | - Luis L Armando
- Department of Preventive Medicine, Blossom DMO, X5000 Córdoba, Argentina
| | - J David Spence
- Division of Neurology and Clinical Pharmacology, Stroke Prevention & Atherosclerosis Research Centre, Robarts Research Institute, Western University, London, ON N6G 2V4, Canada
| | - Sonia E Muñoz
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) CONICET-UNC, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
| | - Nestor H Garcia
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) CONICET-UNC, Universidad Nacional de Córdoba, 5016 Córdoba, Argentina
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4921, United States
| |
Collapse
|
3
|
Chu T, Wang Y, Wang S, Li J, Li Z, Wei Z, Li J, Bian Y. Kaempferol regulating macrophage foaming and atherosclerosis through Piezo1-mediated MAPK/NF-κB and Nrf2/HO-1 signaling pathway. J Adv Res 2024:S2090-1232(24)00535-6. [PMID: 39561922 DOI: 10.1016/j.jare.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Antioxidants represented by kaempferol have been shown to be effective against atherosclerosis (AS). However, the underlying mechanisms still remain unclear. OBJECTIVES The aim of this research was to reveal the mechanism of kaempferol regarding the treatment of AS and accumulation of foam cell. METHODS We explored the contribution of kaempferol to the levels of inflammatory factors, scavenger receptor CD36, mitochondrial membrane potential, ROS, MAPK/NF-κB, Nrf2/HO-1, Ca2+ and Piezo1 levels in RAW264.7 macrophages exposed to ox-LDL. In addition, to explore whether kaempferol inhibits ox-LDL-induced foamy macrophage through Piezo1, we extracted macrophages from Piezo1 macrophage-specific knockout (Piezo1ΔLysM) mice. For further validation, ApoE-/- and Piezo1 macrophage-specific knockout mice (Piezo1ΔLysM/ ApoE-/-) were generated. RESULTS The results showed that kaempferol notably suppressed inflammatory response, CD36 expression, mitochondrial membrane potential elevation, ROS production, MAPK/NF-κB expression, Ca2+ influx, and increased Nrf2/HO-1 levels in RAW264.7. In addition, depletion of macrophage Piezo1 also effectively reduced lipid droplet deposition, inflammatory factor expression, oxidative damage, MAPK/NF-κB, Ca2+ influx, and increased Nrf2/HO-1 expression in mouse BMDMs, and the results were still consistent after kaempferol treatment. In vivo studies have shown that kaempferol significantly reduces atherosclerotic plaque formation. However, the beneficial effect of kaempferol was attenuated in Piezo1 depletion mice. CONCLUSIONS These results collectively provide compelling evidence that kaempferol regulates CD36-mediated mitochondrial ROS production by inhibiting the Piezo1 channels and Ca2+ influx, and then regulates the downstream pathways of NF-κB/MAPK and HO-1/Nrf2, inhibiting to the formation of foam cells. In conclusion, this study revealed a potential mechanism by which the natural antioxidant kaempferol prevents foamy macrophage.
Collapse
Affiliation(s)
- Tianjiao Chu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yuman Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China
| | - Shihao Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China
| | - Jinze Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China
| | - Zheng Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China
| | - Zihao Wei
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China
| | - Jing Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China.
| | - Yifei Bian
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, PR China.
| |
Collapse
|
4
|
Li ZZ, Liu M, He XH, Liu ZD, Xiao ZX, Qian H, Qi YF, Wang CC. Th17/Treg balance and macrophage polarization ratio in lower extremity arteriosclerosis obliterans. Asian Pac J Trop Biomed 2024; 14:127-136. [DOI: 10.4103/apjtb.apjtb_782_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/20/2024] [Indexed: 01/12/2025] Open
Abstract
Objective:
To explore the balance of peripheral blood T helper 17 cells/regulatory T cell (Th17/Treg) ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans (ASO).
Methods:
A rat model of lower extremity ASO was established, and blood samples from patients with lower extremity ASO before and after surgery were obtained. ELISA was used to detect interleukin 6 (IL-6), IL-10, and IL-17. Real-time RCR and Western blot analyses were used to detect Foxp3, IL-6, IL-10, and IL-17 expression. Moreover, flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio.
Results:
Compared with the control group, the iliac artery wall of ASO rats showed significant hyperplasia, and the concentrations of cholesterol and triglyceride were significantly increased (P<0.01), indicating the successful establishment of ASO. Moreover, the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased (P<0.05), while the IL-10 level was significantly decreased (P<0.05). In addition to increased IL-6 and IL-17 levels, the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group. The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased (P<0.05). These alternations were also observed in ASO patients. After endovascular surgery (such as percutaneous transluminal angioplasty and arterial stenting), all these changes were significantly improved (P<0.05).
Conclusions:
The Th17/Treg and M1/M2 ratios were significantly increased in ASO, and surgery can effectively improve the balance of Th17/Treg, and reduce the ratio of M1/M2, and the expression of inflammatory factors.
Collapse
Affiliation(s)
- Zhen-Zhen Li
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, China
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Min Liu
- Department of Physical Examination, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Xiong-Hui He
- Department of Gastrointestinal Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Zhen-Dong Liu
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Zhan-Xiang Xiao
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Hao Qian
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - You-Fei Qi
- Department of Vascular Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, 570311, China
| | - Cun-Chuan Wang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, China
| |
Collapse
|
5
|
Shin JJ, Park J, Shin HS, Arab I, Suk K, Lee WH. Roles of lncRNAs in NF-κB-Mediated Macrophage Inflammation and Their Implications in the Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:2670. [PMID: 38473915 DOI: 10.3390/ijms25052670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past century, molecular biology's focus has transitioned from proteins to DNA, and now to RNA. Once considered merely a genetic information carrier, RNA is now recognized as both a vital element in early cellular life and a regulator in complex organisms. Long noncoding RNAs (lncRNAs), which are over 200 bases long but do not code for proteins, play roles in gene expression regulation and signal transduction by inducing epigenetic changes or interacting with various proteins and RNAs. These interactions exhibit a range of functions in various cell types, including macrophages. Notably, some macrophage lncRNAs influence the activation of NF-κB, a crucial transcription factor governing immune and inflammatory responses. Macrophage NF-κB is instrumental in the progression of various pathological conditions including sepsis, atherosclerosis, cancer, autoimmune disorders, and hypersensitivity. It orchestrates gene expression related to immune responses, inflammation, cell survival, and proliferation. Consequently, its malfunction is a key contributor to the onset and development of these diseases. This review aims to summarize the function of lncRNAs in regulating NF-κB activity in macrophage activation and inflammation, with a particular emphasis on their relevance to human diseases and their potential as therapeutic targets. The insights gained from studies on macrophage lncRNAs, as discussed in this review, could provide valuable knowledge for the development of treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyeung-Seob Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Coronelli MM, Coppi F, Mattioli AV. Inflammation, atherosclerosis and hypertension: the impact of depression and stress on their complex relationship. Future Cardiol 2024; 20:27-33. [PMID: 38127553 DOI: 10.2217/fca-2023-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
This future perspective analyzes the complex relationship between inflammation and atherosclerosis and arterial hypertension. The involvement of inflammation in atherosclerosis has led to research therapies that target inflammation to prevent or treat cardiovascular disease. This aspect has recently been included in the treatment management of residual cardiovascular risk. The recent pandemic has exacerbated cardiovascular risk both through an increase in unhealthy lifestyle behaviors and through the reduction of cardiovascular screening. What actions to take? Primary prevention campaigns for healthy subjects with specific attention to young people.
Collapse
Affiliation(s)
| | - Francesca Coppi
- Department of Medical & Surgical Sciences for Children & Adults, University of Modena & Reggio Emilia, Modena, 41100, Italy
| | - Anna Vittoria Mattioli
- Department of Medical & Surgical Sciences for Children & Adults, University of Modena & Reggio Emilia, Modena, 41100, Italy
| |
Collapse
|
7
|
Wang W, Li H, Shi Y, Zhou J, Khan GJ, Zhu J, Liu F, Duan H, Li L, Zhai K. Targeted intervention of natural medicinal active ingredients and traditional Chinese medicine on epigenetic modification: Possible strategies for prevention and treatment of atherosclerosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155139. [PMID: 37863003 DOI: 10.1016/j.phymed.2023.155139] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Atherosclerosis is a deadly consequence of cardiovascular disease and has very high mortality rate worldwide. The epigenetic modifications can regulate the pervasiveness and progression of atherosclerosis through its involvement in regulation of inflammation, oxidative stress, lipid metabolism and several other factors. Specific non-coding RNAs, DNA methylation, and histone modifications are key regulatory factors of atherosclerosis. Natural products from traditional Chinese medicine have shown promising therapeutic potential against atherosclerosis by means of regulating the expression of specific genes, stabilizing arterial plaques and protecting vascular endothelial cells. OBJECTIVE Our study is focusing to explore the pathophysiology and probability of traditional Chinese medicine and natural medicinal active ingredients to treat atherosclerosis. METHODS Comprehensive literature review was conducted using PubMed, Web of Science, Google Scholar and China National Knowledge Infrastructure with a core focus on natural medicinal active ingredients and traditional Chinese medicine prying in epigenetic modification related to atherosclerosis. RESULTS Accumulated evidence demonstrated that natural medicinal active ingredients and traditional Chinese medicine have been widely studied as substances that can regulate epigenetic modification. They can participate in the occurrence and development of atherosclerosis through inflammation, oxidative stress, lipid metabolism, cell proliferation and migration, macrophage polarization and autophagy respectively. CONCLUSION The function of natural medicinal active ingredients and traditional Chinese medicine in regulating epigenetic modification may provide a new potential strategy for the prevention and treatment of atherosclerosis. However, more extensive research is essential to determine the potential of these natural medicinal active ingredients to treat atherosclerosis because of least clinical data.
Collapse
Affiliation(s)
- Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Han Li
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ying Shi
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jing Zhou
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Ghulam Jilany Khan
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, University of Central Punjab, Lahore 54000, Pakistan
| | - Juan Zhu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Fawang Liu
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, Anhui 230012, China
| | - Hong Duan
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Lili Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Kefeng Zhai
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, China.
| |
Collapse
|
8
|
Feng X, Du M, Li S, Zhang Y, Ding J, Wang J, Wang Y, Liu P. Hydroxysafflor yellow A regulates lymphangiogenesis and inflammation via the inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to reduce atherosclerosis in ApoE-/- mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154684. [PMID: 36738477 DOI: 10.1016/j.phymed.2023.154684] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Macrophage-mediated inflammatory infiltration and pathological lymphangiogenesis around atherosclerotic plaques are newly highlighted treatment targets of atherosclerosis. Although the effect of Hydroxysafflor yellow A(HSYA) on atherosclerosis was clear, few studies focus on the regulation of HSYA on such mechanisms. PURPOSE This study aimed to uncover the key site of HSYA on improving atherosclerosis by regulating macrophage-induced inflammation and lymphangiogenesis. STUDY DESIGN This study was designed to explore the new mechanism of HSYA on alleviating atherosclerosis in vitro and in vivo. METHODS We determined the expression of vascular endothelial growth factor C(VEGF-C) in Raw264.7 cells and high-fat diet fed ApoE knockout (ApoE-/-) mice. Raw264.7 cells were treated with HSYA under the stimulation of LPS and ox-LDL. HFD induced ApoE-/- mice were given different concentrations of HSYA-saline solution by tail vein injection and ATV-saline suspension by gavage. C57/B6j mice fed with chow diet were used for the control group. H&E, oil red O and immunofluorescence staining analysis were used for visualizing the pathological changes. The biological impact of HSYA was evaluated by body weight, lipid metabolism, inflammation levels, and corresponding function indexes of kidney and liver. RT-qPCR and western blot methods were conducted to determine the expression of the inflammation and lymphangiogenesis factors. Molecular docking and microscale thermophoresis analysis were used to verify the combination of HSYA and PI3K. RESULTS In vivo, HSYA reduced the plaque formation, hepatic steatosis and inflammation-related lymphangiogenesis (IAL). It also changed the serum levels of inflammation (VEGF-C, TNF-α, IL-6, VCAM1, MCP1), lipid indexes (LDL, CHOL, TRIG) and relevant lymphangiogenesis (VEGF-C and LYVE-1) and inflammation (VCAM-1 and IL-6) signals in the aorta. In vitro, HSYA regulated Akt/mTOR and NF-κB activation by the inhibition of PI3K in macrophages. CONCLUSION HSYA affects inflammation and inflammation-associated lymphangiogenesis via suppressing PI3K to affect AKT/mTOR and NF-B pathway activation in macrophages, showing a comprehensive protective effect on atherosclerosis.
Collapse
Affiliation(s)
- Xiaoteng Feng
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Du
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sijin Li
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ding
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiarou Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiru Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Shen L, Chen W, Ding J, Shu G, Chen M, Zhao Z, Xia S, Ji J. The role of metabolic reprogramming of oxygen-induced macrophages in the dynamic changes of atherosclerotic plaques. FASEB J 2023; 37:e22791. [PMID: 36723768 DOI: 10.1096/fj.202201486r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 02/02/2023]
Abstract
Atherosclerosis (As) is a chronic vascular inflammatory disease. Macrophages are the most important immune cells in atherosclerotic plaques, and the phenotype of plaque macrophages shifts dynamically to adapt to changes in the plaque microenvironment. The aerobic microenvironment of early atherosclerotic plaques promotes the transformation of M2/alternatively activated macrophages mainly through oxidative phosphorylation; the anoxic microenvironment of advanced atherosclerotic plaques mainly promotes the formation of M1/classically activated macrophages through anaerobic glycolysis; and the adventitia angiogenesis of aged atherosclerotic plaques leads to an increase in the proportion of M2/M1 macrophages. Therefore, this review deeply elucidates the dynamic change mechanism of plaque macrophages and the regulation of plaque oxygen content and immune metabolism to find new targets for the treatment of As.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Weiyue Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Gaofeng Shu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Shuiwei Xia
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China.,Department of Interventional Radiology, Clinical College of the Affiliated Central Hospital of Lishui University, Lishui, China
| |
Collapse
|
10
|
Navashenaq JG, Shabgah AG, Banach M, Jamialahmadi T, Penson PE, Johnston TP, Sahebkar A. The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Semin Cancer Biol 2022; 86:951-959. [PMID: 34600095 DOI: 10.1016/j.semcancer.2021.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is the fourth most common cause of cancer-linked deaths in the world. Gastric tumor cells have biological characteristics such as rapid proliferation, high invasiveness, and drug resistance, which result in recurrence and poor survival. Helicobacter pylori (H. pylori) has been proposed as a first-class carcinogen for gastric cancer according to the 1994 world health organization (WHO) classification. One of the important mechanisms by which H. pylori affects the gastric environment and promotes carcinogenesis is triggering inflammation. H. pylori induces an inflammatory response and a plethora of different signal transduction processes, leading to gastric mucosal disturbance, chronic gastritis, and a multi-step complex pathway that initiates carcinogenesis. It seems undeniable that the interaction between various cell types, including immune cells, gastric epithelium, glands, and stem cells, is vital for the progression and development of carcinogenesis concerning H. pylori. The interactions of H. pylori with surrounding cells play a key role in cancer progression. In this review, we discuss the interplay between H. pylori and tumor-supportive cells, including mesenchymal stem cells (MSCs), cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid derived-suppressor cells (MDSCs) in gastric cancer. It is hoped that clarifying the specific mechanisms for 'cross-talk' between H. pylori and these cells will provide promising strategies for developing new treatments.
Collapse
Affiliation(s)
| | | | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Roles of CCR10/CCL27-CCL28 axis in tumour development: mechanisms, diagnostic and therapeutic approaches, and perspectives. Expert Rev Mol Med 2022; 24:e37. [PMID: 36155126 DOI: 10.1017/erm.2022.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cancer is now one of the major causes of death across the globe. The imbalance of cytokine and chemokine secretion has been reported to be involved in cancer development. Meanwhile, CC chemokines have received considerable interest in cancer research. CCR10, as the latest identified CC chemokine receptor (CCR), has been implicated in the recruitment and infiltration of immune cells, especially lymphocytes, into epithelia such as skin via ligation to two ligands, CCL27 and CCL28. Other than homoeostatic function, several mechanisms have been shown to dysregulate CCR10/CCL27-CCL28 expression in the tumour microenvironment. As such, these receptors and ligands mediate T-cell trafficking in the tumour microenvironment. Depending on the types of lymphocytes recruited, CCR10/CCL27-CCL28 interaction has been shown to play conflicting roles in cancer development. If they were T helper and cytotoxic T cells and natural killer cells, the role of this axis would be tumour-suppressive. In contrast, if CCR10/CCL27-CCL28 recruited regulatory T cells, cancer-associated fibroblasts or myeloid-derived suppressor cells, it would lead to tumour progression. In addition to the trafficking of lymphocytes and immune cells, CCR10 also leads to the migration of tumour cells or endothelial cells (called angiogenesis and lymphangiogenesis) to promote tumour metastasis. Furthermore, CCR10 signalling triggers tumour-promoting signalling such as PI3K/AKT and mitogen-activated protein kinase/extracellular signal-regulated kinase, resulting in tumour cell growth. Since CCR10/CCL27-CCL28 is dysregulated in the tumour tissues, it is suggested that analysis and measurement of them might predict tumour development. Finally, it is hoped using therapeutic approaches based on this axis might increase our knowledge to overcome tumour progression.
Collapse
|
12
|
Gowhari Shabgah A, Jadidi-Niaragh F, Ebrahimzadeh F, Mohammadi H, Askari E, Pahlavani N, Malekahmadi M, Ebrahimi Nik M, Gholizadeh Navashenaq J. A comprehensive review of chemokine CXC17 (VCC1) in cancer, infection, and inflammation. Cell Biol Int 2022; 46:1557-1570. [PMID: 35811438 DOI: 10.1002/cbin.11846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 01/05/2023]
Abstract
A crucial component of the immune system are chemokiness. Chemokine's dysregulation has been linked to a number of pathological diseases. Recently, CXCL17, a chemokine belonging to the CXC subfamily, was identified. With regard to a number of physiological conditions and disorders, CXCL17 either has homeostatic or pathogenic effects. Some research suggests that CXCL17 is an orphan ligand, despite the fact that G protein-coupled receptor (GPR) 35 has been suggested as a possible receptor for CXCL17. Since CXCL17 is primarily secreted by mucosal epithelia, such as those in the digestive and respiratory tracts, under physiological circumstances, this chemokine is referred to as a mucosal chemokine. Macrophages and monocytes are the cells that express GPR35 and hence react to CXCL17. In homeostatic conditions, this chemokine has anti-inflammatory, antibacterial, and chemotactic properties. CXCL17 promotes angiogenesis, metastasis, and cell proliferation in pathologic circumstances like malignancies. However, other studies suggest that CXCL17 may have anti-tumor properties. Additionally, studies have shown that CXCL17 may have a role in conditions such as idiopathic pulmonary fibrosis, multiple sclerosis, asthma, and systemic sclerosis. Additionally, deregulation of CXCL17 in some diseases may serve as a biomarker for diagnosis and prognosis. Clarifying the underlying mechanism of CXCL17's activity in homeostatic and pathological situations may thus increase our understanding of its role and hold promise for the development of novel treatment strategies.
Collapse
Affiliation(s)
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Mohammadi
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.,Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Elham Askari
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naseh Pahlavani
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahsa Malekahmadi
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
13
|
Abbasifard M, Kandelouei T, Aslani S, Razi B, Imani D, Fasihi M, Cicero FG, Sahebkar A. Effect of statins on the plasma/serum levels of inflammatory markers in patients with cardiovascular disease; a systematic review and meta-analysis of randomized clinical trials. Inflammopharmacology 2022; 30:369-383. [PMID: 35165809 DOI: 10.1007/s10787-022-00926-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND The anti-inflammatory properties of statins have been suggested by several researches. However, clinical trials have reported incongruous findings regarding the effect of statins on the levels of inflammatory markers other than high-sensitive C-reactive protein. Therefore, a systematic review and meta-analysis of randomized clinical trials were conducted to illuminate the effect of statins on serum levels of TNF-α, MCP-1, VCAM1, and IL-6 in patients with cardiovascular diseases (CVDs). METHODS To find eligible studies, a systematic literature search of the main databases were conducted up to July 2021. The calculation of the effect sizes was conducted by standardized mean difference (SMD) and 95% confidence intervals (CI). RESULTS The pooled analyses revealed that statins significantly reduced the TNF-α concentration (SMD = - 0.99 pg/mL; 95% CI - 1.43 to - 0.55 pg/mL; P < 0.001). Regarding dosage, high intensity (SMD = - 0.65 pg/mL; 95% CI - 1.19 to - 0.10, P = 0.02) and moderate/low (SMD = - 1.16 pg/mL; 95% CI - 1.84 to - 0.47, P = 0.001) intensity statins significantly decreased TNF-α levels. Moderate/low intensity statins administration in < 10 weeks treatment duration decreased serum level of TNF-α (SMD = - 0.91 pg/mL; 95% CI - 1.38 to - 0.44, P < 0.001). Lipophilic statins with high intensity dosage significantly decreased level of TNF-α (SMD = - 0.73 pg/mL; 95% CI - 1.43 to - 0.03, P = 0.04). Statins did not change serum levels of MCP-1, VCAM1, and IL-6 in CVD patients. CONCLUSIONS The analyses indicated that statins have beneficial effects in decreasing serum levels of TNF-α in patients with CVDs.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, School of Medicine, Ali Ibn Abi Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Tahmineh Kandelouei
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Razi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Enghelab Av., 14117, Tehran, Iran
| | - Mahdieh Fasihi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Enghelab Av., 14117, Tehran, Iran
| | - F G Cicero
- IRCCS Policlinico S. Orsola-Malpighi, Hypertension and Cardiovascular Risk Factors Research Unit, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology and Nanotechnology, Faculty of Medicine, The University of Western Australia, Perth, Australia.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, P.O. Box: 91779-48564, Mashhad, Iran.
| |
Collapse
|
14
|
Ngcobo SR, Nkambule BB, Nyambuya TM, Mokgalaboni K, Ntsethe A, Mxinwa V, Ziqubu K, Ntamo Y, Nyawo TA, Dludla PV. Activated monocytes as a therapeutic target to attenuate vascular inflammation and lower cardiovascular disease-risk in patients with type 2 diabetes: A systematic review of preclinical and clinical studies. Biomed Pharmacother 2022; 146:112579. [PMID: 35062054 DOI: 10.1016/j.biopha.2021.112579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Low grade inflammation is associated with the progression of atherosclerosis. Patients with type 2 diabetes (T2D) have altered cholesterol levels, which are targeted by free radicals to promote lipid peroxidation. Elevated levels of monocyte-associated cytokines such as interleukin (IL)-6, monocyte chemoattractant protein 1 (MCP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and tumor necrosis factor-alpha (TNF-α), subsequently drive endothelial tissue injury. In fact, the levels of circulating platelet-monocyte aggregates in patients with T2D is a robust marker for atherosclerosis and a cardiovascular disease (CVD)-risk factor. To identify eligible studies, we searched the major online databases using PubMed and Google Scholar. The cumulative evidence synthesized in the current review suggests that, traditional therapies which include thiazolidinediones, statins and some calcium channel blockers can be useful in the primary prevention of atherosclerosis by inhibiting the formation of monocyte-derived microparticles, and pro-inflammatory cytokines such as IL-6, TNF-α, MCP-1, and NF-κB in patients with T2D. Future studies are needed to ascertain whether the combination of dietary interventions and glucose or lipid lowering agents can provide an enhanced cardioprotection in patients with T2D.
Collapse
Affiliation(s)
- Siphamandla R Ngcobo
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | - Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Aviwe Ntsethe
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Vuyolwethu Mxinwa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Thembeka A Nyawo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Centre for Cardiometabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
15
|
Chen XN, Ge QH, Zhao YX, Guo XC, Zhang JP. Effect of Si-Miao-Yong-An decoction on the differentiation of monocytes, macrophages, and regulatory T cells in ApoE -/- mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114178. [PMID: 33945857 DOI: 10.1016/j.jep.2021.114178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Miao-Yong-An decoction (SMYAD) is a renowned traditional Chinese medicinal formula. SMYAD was originally recorded in the "Shi Shi Mi Lu", which was edited by medical scientist Chen Shi'duo during the Qing Dynasty. SMYAD has been traditionally used to treat thromboangiitis obliterans. At present, it is mainly used in clinical applications and research of cardiovascular diseases. AIM OF THE STUDY To explore the effects of SMYAD on the pathological changes of atherosclerosis (AS) and the differentiation of monocytes, macrophages, and regulatory T (Treg) cells in apolipoprotein E knockout (ApoE-/-) mice. MATERIALS AND METHODS Eight C57BL/6J mice, which were fed with normal diet for 16 weeks, were used as control group. Forty ApoE-/- mice were randomly divided into model group, atorvastatin group, SMYAD low-dose (SMYAD-LD) group, SMYAD medium-dose (SMYAD-MD) group, and SMYAD high-dose (SMYAD-HD) group. ApoE-/- mice were fed with western diet (WD) for 8 weeks, and the drugs were continuously administered for 8 weeks. The levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were measured by the esterase method. Morphological changes of the aortic sinus in mice were observed by hematoxylin-eosin (HE) staining, the lipid infiltration of the aorta and aortic sinus were observed by oil red O staining, and the spleen index was calculated. The proportion of Ly6Chigh and Ly6Clow monocyte subsets, macrophages, and their M1 phenotype, as well as Treg cells in spleen were measured by flow cytometry. The expressions of cluster of differentiation 36 (CD36), scavenger receptor A1 (SRA1), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), F4/80, and fork head frame protein 3 (FOXP3) in aortic sinus were assessed by immunohistochemical staining. The serum levels of oxidized low density lipoprotein (ox-LDL), interleukin-1β (IL-1β), IL-18, transforming growth factor-β (TGF-β), and IL-10 were measured by enzyme-linked immunosorbent assays (ELISA). RESULTS Compared with the model group, the level of serum TC and LDL-C decreased in the SMYAD group, the pathological changes of aortic sinus decreased, and lipid infiltration of aorta and aortic sinus also decreased. These decreases were accompanied by a significant downregulation of CD36, SRA1, and LOX-1. Furthermore, the proportions of Ly6Chigh pro-inflammatory monocyte subsets, macrophages, and their M1 phenotypes in spleen decreased significantly, while the proportion of Treg cells increased. In addition, while the expression of F4/80 decreased, the expression of FOXP3 increased in the aorta sinus. The levels of serum pro-inflammatory factors IL-1β and IL-18 decreased. CONCLUSIONS SMYAD can improve the pathological changes associated with AS and can inhibit lipid deposition in ApoE-/- mice induced by WD diet. The likely mechanism is the inhibition of the differentiation and recruitment of monocytes and macrophages, the promotion of the differentiation and recruitment of Treg cells, as well as the reduction of the secretion of pro-inflammatory factors.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/genetics
- CD36 Antigens/metabolism
- Calcium-Binding Proteins/metabolism
- Carrier Proteins/metabolism
- Cell Differentiation/drug effects
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Cytokines/blood
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Forkhead Transcription Factors/metabolism
- Lipoproteins, LDL/blood
- Macrophages/drug effects
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Monocytes/drug effects
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Receptors, G-Protein-Coupled/metabolism
- Scavenger Receptors, Class E/metabolism
- Spleen/drug effects
- Spleen/metabolism
- T-Lymphocytes, Regulatory/drug effects
- Triglycerides/blood
- Mice
Collapse
Affiliation(s)
- Xin-Nong Chen
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi-Hui Ge
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi-Xuan Zhao
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao-Chen Guo
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun-Ping Zhang
- Department of Cardiology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
16
|
Zhang JY, Chen QQ, Li J, Zhang L, Qi LW. Neuraminidase 1 and its Inhibitors from Chinese Herbal Medicines: An Emerging Role for Cardiovascular Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:843-862. [PMID: 33827385 DOI: 10.1142/s0192415x21500403] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuraminidase, also known as sialidase, is ubiquitous in animals and microorganisms. It is predominantly distributed in the cell membrane, cytoplasmic vesicles, and lysosomes. Neuraminidase generally recognizes the sialic acid glycosidic bonds at the ends of glycoproteins or glycolipids and enzymatically removes sialic acid. There are four types of neuraminidases, named as Neu1, Neu2, Neu3, and Neu4. Among them, Neu1 is the most abundant in mammals. Recent studies have revealed the involvement of Neu1 in several diseases, including cardiovascular diseases, diabetes, cancers, and neurological disorders. In this review, we center the attention to the role of Neu1 in cardiovascular diseases, including atherosclerosis, ischemic myocardial injury, cerebrovascular disease, congenital heart disease, and pulmonary embolism. We also summarize inhibitors from Chinese herbal medicines (CHMs) in inhibiting virus neuraminidase or human Neu1. Many Chinese herbs and Chinese herb preparations, such as Lonicerae Japonicae Flos, Scutellariae Radix, Yupingfeng San, and Huanglian Jiedu Decoction, have neuraminidase inhibitory activity. We hope to highlight the emerging role of Neu1 in humans and potentially titillate interest for further studies in this area.
Collapse
Affiliation(s)
- Jun-Yuan Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian-Qian Chen
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jia Li
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China.,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
17
|
Shabgah AG, Salmaninejad A, Thangavelu L, Alexander M, Yumashev AV, Goleij P, Hedayati-Moghadam M, Mohammadi H, Ahmadi M, Navashenaq JG. The role of non-coding genome in the behavior of infiltrated myeloid-derived suppressor cells in tumor microenvironment; a perspective and state-of-the-art in cancer targeted therapy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 161:17-26. [PMID: 33259833 DOI: 10.1016/j.pbiomolbio.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
Cancer is one of the healthcare problems that affect many communities around the world. Many factors contribute to cancer development. Besides, these factors are counted as the main impediment in cancer immunotherapy. Myeloid-derived suppressor cells (MDSCs) are one of these impediments. MDSCs inhibit the immune responses through various mechanisms such as inhibitory cytokine release and nitric oxide metabolite production. Several factors are involved in forming these cells, including tumor secreted cytokine and chemokines, transcription factors, and non-coding RNA. In the meantime, micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the vital gene regulatory elements that affect gene expression. In this study, we are going to discuss the role of miRNAs and lncRNAs in MDSCs development in a cancer situation. It is hoped that miRNA and lncRNAs targeting may prevent the growth and development of these inhibitory cells in the cancer environment.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- School of Medicine, Bam University of Medical Sciences, Bam, Iran; Student Research Committee, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Alexei Valerievich Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Pouya Goleij
- Sana Institute of Higher Education, Faculty of Biology, Department of Genetics, Sari, Iran
| | | | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid Gholizadeh Navashenaq
- Student Research Committee, Bam University of Medical Sciences, Bam, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.
| |
Collapse
|
18
|
Xin T, Lu C, Zhang J, Wen J, Yan S, Li C, Zhang F, Zhang J. Oxidized LDL Disrupts Metabolism and Inhibits Macrophage Survival by Activating a miR-9/Drp1/Mitochondrial Fission Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8848930. [PMID: 33204400 PMCID: PMC7655251 DOI: 10.1155/2020/8848930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/04/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction is associated with macrophage damage, but the role of mitochondrial fission in macrophage cholesterol metabolism is not fully understood. In this study, we explored the influences of miR-9 and mitochondrial fission on macrophage viability and cholesterol metabolism. Macrophages were incubated with oxidized low-density lipoprotein (ox-LDL) in vitro, after which mitochondrial fission, cell viability, and cholesterol metabolism were examined using qPCR, ELISAs, and immunofluorescence. ox-LDL treatment significantly increased Drp1-associated mitochondrial fission. Transfection of Drp1 siRNA significantly reduced cell death, attenuated oxidative stress, and inhibited inflammatory responses in ox-LDL-treated macrophages. Interestingly, inhibition of Drp1-related mitochondrial fission also improved cholesterol metabolism by balancing the transcription of cholesterol influx/efflux enzymes. We also found that miR-9 was downregulated in ox-LDL-treated macrophages, and administration of a miR-9 mimic decreased Drp1 transcription and mitochondrial fission, as well as its effects. These results indicate that signaling via the novel miR-9/Drp1/mitochondrial fission axis is a key determinant of macrophage viability and cholesterol metabolism.
Collapse
Affiliation(s)
- Ting Xin
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jing Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jiaxin Wen
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Shuangbin Yan
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Chao Li
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Feng Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| | - Jin Zhang
- Department of Cardiology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
19
|
Emodin in atherosclerosis prevention: Pharmacological actions and therapeutic potential. Eur J Pharmacol 2020; 890:173617. [PMID: 33010303 DOI: 10.1016/j.ejphar.2020.173617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/12/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic plaque formation, destabilization and eventual rupture leads to the acute cardiovascular events including myocardial infarction and stroke. Emodin (PubChem CID#3220), (1,3,8-trihydroxy-6-methylanthracene-9,10-dione) is a pharmacologically bioactive constituent isolated from the traditional Chinese medicinal herb Radix rhizoma Rhei. This molecule has anti-oxidant, anti-inflammatory, anti-proliferative, anti-apoptotic and lipid-modulating effects. Experimental studies have demonstrated that emodin attenuates and stabilizes atherosclerotic plaques. In this mini-review, we provide a summary of the pharmacological actions of emodin in regulating vascular function and atherosclerosis, highlighting the therapeutic potential of this phytochemical in patients with cardiovascular disease.
Collapse
|
20
|
Wang C, Yang W, Liang X, Song W, Lin J, Sun Y, Guan X. MicroRNA-761 modulates foam cell formation and inflammation through autophagy in the progression of atherosclerosis. Mol Cell Biochem 2020; 474:135-146. [PMID: 32772311 DOI: 10.1007/s11010-020-03839-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023]
Abstract
Macrophage-derived foam cells formation is the initial stage of atherosclerosis, and lipid-laden macrophage accumulation is also considered as the symbol of unstable plaque. Autophagy is a subcellular process responsible for the degradation of damaged organelles and aggregated proteins in cells (Grootaert in Oxid Med Cell Longev: 7687083, 2018). Macrophage autophagy plays an important role in atherosclerosis under various stress conditions, and microRNAs are involved in this complicated process. The present study was programmed to explore the effects of microRNA-761 on macrophage-derived foam cell formation, focusing on the role of autophagy in this pathological process. The differentiated human THP-1 macrophages were used in the study. THP-1-derived macrophages were treated with miR-761 mimics or inhibitors and cultured with oxidized low-density lipoprotein to mimic the lipid-rich environment in blood vessel. The expression of miR-761 and mRNA levels of IL-1β and IL-18 were analyzed by quantitative real-time PCR. The effect of miR-761 on autophagy was evaluated by the protein levels of Beclin1, p62/SQSTM1, microtubule-associated protein light chain 3, mammalian target of rapamycin (mTOR), and unc-51-like autophagy activating kinase 1 (ULK1), determined by immunoblot and autophagic flux detected by fluorescent staining. The secretion of IL-1β and IL-18 was tested by enzyme-linked immunosorbent reaction kit. Lipid accumulation in foam cells was detected by oil red "O" staining. We demonstrated that miR-761 was able to repress foam cell formation and reduce the production of atherogenic inflammatory cytokines IL-1β and IL-18 in an autophagy-dependent manner in atherosclerosis, possibly via mTOR-ULK1 signaling pathway. In summary, we described an athero-protective function of miR-761 in macrophages incubated with excess ox-LDL and identified an important novel modulator of mTOR signaling and autophagy in macrophage-derived foam cells. This finding may provide a potential target for the prevention and early treatment in high-risk group of atherosclerosis.
Collapse
Affiliation(s)
- Chao Wang
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wei Yang
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xiaofei Liang
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Wei Song
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Jing Lin
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Yan Sun
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Xiuru Guan
- Department of Laboratory Diagnostics, First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, NanGang, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
21
|
Sun Z, Li L, Zhang L, Yan J, Shao C, Bao Z, Liu J, Li Y, Zhou M, Hou L, Jing L, Pang Q, Geng Y, Mao X, Gu W, Wang Z. Macrophage galectin-3 enhances intimal translocation of vascular calcification in diabetes mellitus. Am J Physiol Heart Circ Physiol 2020; 318:H1068-H1079. [PMID: 32216615 DOI: 10.1152/ajpheart.00690.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical risks and prognosis of diabetic vascular intimal calcification (VIC) and medial calcification (VMC) are different. This study aims to investigate the mechanism of VIC/VMC translocation. Anterior tibial arteries were collected from patients with diabetic foot amputation. The patients were then divided into VIC and VMC groups. There were plaques in all anterior tibial arteries, while the enrichment of galectin-3 in arterial plaques in the VIC group was significantly higher than that in the VMC group. Furthermore, a macrophage/vascular smooth muscle cell (VSMC) coculture system was constructed. VSMC-derived extracellular vesicles (EVs) was labeled with fluorescent probe. After macrophages were pretreated with recombinant galectin-3 protein, the migration of VSMC-derived EVs and VSMC-derived calcification was more pronounced. And anti-galectin-3 antibody can inhibit this process of EVs and calcification translocation. Then, lentivirus (LV)-treated bone marrow cells (BMCs) were transplanted into apolipoprotein E-deficient (ApoE-/-) mice, and a diabetic atherosclerosis mouse model was constructed. After 15 wk of high-fat diet, ApoE-/- mice transplanted with LV-shgalectin-3 BMCs exhibited medial calcification and a concentrated distribution of EVs in the media. In conclusion, upregulation of galectin-3 in macrophages promotes the migration of VSMC-derived EVs to the intima and induces diabetic vascular intimal calcification.NEW & NOTEWORTHY The clinical risk and prognosis of vascular intimal and medial calcification are different. Macrophage galectin-3 regulates the migration of vascular smooth muscle cell-derived extracellular vesicles and mediates diabetic vascular intimal/medial calcification translocation. This study may provide insights into the early intervention in diabetic vascular calcification.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lina Hou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Gu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
22
|
Zhang Y, Hu M, Tang YY, Zhang B, Han YY, Huang ZY, Chen C, Li G. Levetiracetam inhibits THP-1 monocyte chemotaxis and adhesion via the synaptic vesicle 2A. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30329-6. [PMID: 32067739 DOI: 10.1016/j.bbrc.2020.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
Abstract
Long-term therapy with older antiepileptic drugs (AEDs), but not levetiracetam (LEV), may increase the risk of atherosclerosis (AS), suggesting that LEV may have a potential anti-AS effect. The synaptic vesicle 2A (SV2A) is known to the specific binding site of LEV. Numerous studies have documented that SV2A is a membrane protein specifically expressed in nervous system. Interestingly, our previous research showed that SV2A also existed in human CD8+ T lymphocytes. Therefore, we hypothesized that LEV was associated with decreased risk of AS by regulating monocytes chemotaxis and adhesion. We showed that SV2A protein were detected in THP-1 human monocytic leukemia cells. LEV (300 μM) inhibited the chemotaxis and adhesion of THP-1 cells after transfection with plasmids expressing SV2AWT, but not SV2AR383Q which was a known functional mutation site of human SV2A. Furthermore, RT-PCR and western blot analysis demonstrated that LEV (300 μM) decreased the expression level of chemokine-related receptors (CX3CL1, CCR1, CCR2, and CCR5),and reduced levels of phosphorylated AKT (p-AKT) in THP-1 cells with SV2AWT expressing plasmids. Taken together, these findings indicated that LEV has an inhibitory effect on THP-1 monocyte adhesion and chemotaxis, suggesting that SV2A may serve as a novel therapeutic target to prevent AS.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Min Hu
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Yue-Yu Tang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Bei Zhang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Yin-Yin Han
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Zheng-Yu Huang
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Chen Chen
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China
| | - Gang Li
- Department of Neurology, East Hospital, Tongji University School of Medicine, Tongji University School of Medicine, China.
| |
Collapse
|
23
|
Carbone F, Montecucco F. Inflammatory Targets for Preventing Atherothrombotic Events: An Update. Curr Pharm Des 2019; 25:3097. [PMID: 31722653 DOI: 10.2174/138161282529191007154601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine Department of Internal Medicine University of Genoa, 6 viale Benedetto XV 16132 Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi 16132 Genoa, Italy
| |
Collapse
|