1
|
Zai CC, Dimick MK, Young LT, Kennedy JL, Goldstein BI. Polygenic risk scores in relation to suicidality among youth with or at risk for bipolar disorder. J Affect Disord 2025; 375:44-48. [PMID: 39800071 DOI: 10.1016/j.jad.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
PURPOSE The risk of suicide among individuals with bipolar disorder (BD) is among the highest of all psychiatric disorders. The etiology of suicidality is complex and multifactorial, with genetic factors playing a prominent role according to twin-, family-, and molecular genetic studies. This study examines polygenic risk scores from adult studies in relation to suicidality in youth with or at risk for BD. METHODS Primary analyses examined the association of polygenic risk scores for suicide attempt, based on adult genome-wide association study data, with suicidal ideation, self-harm, and suicide attempt in 232 youth (mean age 16.7 years), including 125 with, and 107 at high-risk for, BD. We also tested polygenic risk scores for risk tolerance, schizophrenia, major depressive disorder, BD, and attention-deficit hyperactivity disorder in secondary analyses. RESULTS Polygenic risk scores for suicide attempt were not significantly associated with suicidal ideation, self-harm, or suicide attempt. Higher polygenic risk scores for major depressive disorder were nominally associated with increased risk of suicidal ideation in the overall sample (beta = 0.36, se(beta) = 0.16, p = 0.017), controlling for covariates. IMPLICATIONS Our finding that polygenic risk for depression is associated with suicidal ideation converges with prior findings in youth and adults. While present findings are constrained by sample size, they underscore the importance of undertaking genome-wide association studies in youth, rather than relying solely on prior adult genome-wide association studies.
Collapse
Affiliation(s)
- Clement C Zai
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Canada; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - L Trevor Young
- Department of Psychiatry, University of Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Canada; Pharmacology and Toxicology, University of Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; Pharmacology and Toxicology, University of Toronto, Canada.
| |
Collapse
|
2
|
Jin L, Wu L, Zhang J, Jia W, Zhou H, Jiang S, Jiang P, Li Y, Li Y. Quantitative analysis of literature on diagnostic biomarkers of Schizophrenia: revealing research hotspots and future prospects. BMC Psychiatry 2025; 25:186. [PMID: 40025442 PMCID: PMC11872302 DOI: 10.1186/s12888-025-06644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a complex mental disorder characterized by a wide range of symptoms and cognitive impairments. The search for reliable biomarkers for SCZ has gained increasing attention in recent years, as they hold the potential to improve early diagnosis and intervention strategies. To understand the research trends and collaborations in this field, a comprehensive Bibliometric analysis of SCZ and biomarkers research was conducted. METHODS A systematic search of the Web of Science Core Collection was performed to retrieve relevant articles published from January 2000 to July 2023. The search focused on SCZ and biomarkers. Bibliometric tools, including CiteSpace, VOSviewer, and R package Bibliometrix, were utilized to perform data extraction, quantitative analysis, and visualization. RESULTS The search focused on SCZ and biomarkers, and a total of 2935 articles were included in the analysis. The analysis revealed a gradual increase in the number of publications related to SCZ and biomarkers over the years, indicating a growing research focus in this area. Collaboration and research activity were found to be concentrated in the United States and Western European countries. Among the top ten most active journals, "Schizophrenia Research" emerged as the journal with the highest number of publications and citations related to SCZ and biomarkers. Recent studies published in this journal have highlighted the potential use of facial expressions as a diagnostic biomarker for SCZ, suggesting that facial expression analysis using big data may hold promise for future diagnosis and interventions. Furthermore, the analysis of key research keywords identified inflammatory factors, DNA methylation changes, and glutamate alterations as potential biomarkers for SCZ diagnosis. CONCLUSION This Bibliometric analysis provides valuable insights into the current state of research on SCZ and biomarkers. The identification of reliable biomarkers for SCZ could have significant implications for early diagnosis and interventions, potentially leading to improved outcomes for individuals affected by this challenging mental disorder. Further research and collaborations in this field are encouraged to advance our understanding of SCZ and enhance diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Liuyin Jin
- The Second People'S Hospital of Lishui, Lishui, China
| | - Linman Wu
- Nanchong Mental Health Center of Sichuan Province, Nanchong, China
| | - Jing Zhang
- The Second People'S Hospital of Lishui, Lishui, China
| | - Wenxin Jia
- The Second People'S Hospital of Lishui, Lishui, China
| | - Han Zhou
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Shulan Jiang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Pengju Jiang
- The Second People'S Hospital of Lishui, Lishui, China
| | - Yingfang Li
- The Second People'S Hospital of Lishui, Lishui, China
| | - Yang Li
- The Second People'S Hospital of Lishui, Lishui, China.
| |
Collapse
|
3
|
Cuozzo AM, Peeters LD, Ahmed CD, Wills LJ, Gass JT, Brown RW. Investigation of the Roles of the Adenosine A(2A) and Metabotropic Glutamate Receptor Type 5 (mGlu5) Receptors in Prepulse Inhibition and CREB Signaling in a Heritable Rodent Model of Psychosis. Cells 2025; 14:182. [PMID: 39936973 PMCID: PMC11817787 DOI: 10.3390/cells14030182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
The metabotropic glutamate receptor type 5 (mGlu5) and adenosine A(2A) receptor form a mutually inhibitory heteromer with the dopamine D2 receptor, where the activation of either mGlu5 or A(2A) leads to reduced D2 signaling. This study investigated whether a mGlu5-positive allosteric modulator (PAM) or an A(2A) agonist treatment could mitigate sensorimotor gating deficits and alter cyclic AMP response element-binding protein (CREB) levels in a rodent neonatal quinpirole (NQ) model of psychosis. F0 Sprague-Dawley rats were treated with neonatal saline or quinpirole (1 mg/kg) from postnatal day 1 to 21 and bred to produce an F1 generation. F1 offspring underwent prepulse inhibition (PPI) testing from postnatal day 44 to 48 to assess sensorimotor gating. The rats were treated with mGlu5 PAM 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB) or A(2A) agonist CGS21680. Rats with at least one NQ-treated parent showed PPI deficits, which were alleviated by both CDPPB and CGS21680. Sex differences were noted across groups, with CGS21680 showing greater efficacy than CDPPB. Additionally, CREB levels were elevated in the nucleus accumbens (NAc), and both CDPPB and CGS21680 reduced CREB expression to control levels. These findings suggest that targeting the adenosinergic and glutamatergic systems alleviates sensorimotor gating deficits and abnormal CREB signaling, both of which are associated with psychosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Russell W. Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; (A.M.C.); (C.D.A.)
| |
Collapse
|
4
|
Sager REH, North HF, Weissleder C, Clearwater MS, Walker AK, Fullerton JM, Webster MJ, Shannon Weickert C. Divergent changes in complement pathway gene expression in schizophrenia and bipolar disorder: Links to inflammation and neurogenesis in the subependymal zone. Schizophr Res 2025; 275:25-34. [PMID: 39616737 DOI: 10.1016/j.schres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 01/23/2025]
Abstract
Deficits in neurogenesis markers in the subependymal zone (SEZ) are associated with elevated inflammation in schizophrenia and bipolar disorder. However, the extent to which complement factors are also changed in the SEZ of these major psychiatric disorders and their impact on neurogenesis remains poorly understood. We extracted RNA from the SEZ of 93 brains, including controls (n = 32), schizophrenia (n = 32), and bipolar disorder (n = 29) cases. Quantitative RT-PCR measured 13 complement transcripts encoding initiators, convertases, effectors or inhibitors. Differences in abundance were analysed by diagnosis and inflammatory subgroups (high- or low-inflammation), which were previously defined by SEZ cytokine and inflammation marker expression. Complement mRNAs C1QA (p = 0.011), C1QB (p < 0.001), C1R (p = 0.027), and Factor B (p = 0.025) were increased in high-inflammation schizophrenia versus low-inflammation controls. Conversely, high-inflammation bipolar cases had decreased C1QC (p = 0.011) and C3 (p = 0.003). Complement mRNAs C1R (SCZ, p = 0.010; BD, p = 0.047), C1S (SCZ, p = 0.026; BD, p = 0.017), and Factor B (BD, p = 0.025) were decreased in low-inflammation schizophrenia and bipolar subgroups versus low-inflammation controls. Complement inhibitors varied by subgroup: Factor H was increased in high-inflammation schizophrenia (p < 0.001), and CD59 in high-inflammation bipolar disorder (p = 0.020). Complement activator and inhibitor mRNAs were positively correlated with quiescent neural stem cell marker GFAPD (q < 0.05) but negatively with immature neuron markers DLX6-AS1 (q < 0.05) and DCX (q < 0.05). These findings suggest altered complement cascade expression in the SEZ in high- and low-inflammation schizophrenia and bipolar disorder, with opposite directional changes suggesting distinct molecular pathology. Complement activation may promote stem cell quiescence and reduce differentiation or survival of newborn neurons.
Collapse
Affiliation(s)
- Rachel E H Sager
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hayley F North
- Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Christin Weissleder
- Mechanism and therapy for genetic brain diseases, Institut Imagine, Paris, France
| | - Misaki S Clearwater
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Adam K Walker
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, NSW, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Maree J Webster
- Stanley Medical Research Institute, 9800 Medical Center Drive, Rockville, MD, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; Neuroscience Research Australia, Randwick, NSW, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Smyrnis A, Theleritis C, Ferentinos P, Smyrnis N. Psychotic relapse prediction via biomarker monitoring: a systematic review. Front Psychiatry 2024; 15:1463974. [PMID: 39691789 PMCID: PMC11650710 DOI: 10.3389/fpsyt.2024.1463974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/23/2024] [Indexed: 12/19/2024] Open
Abstract
Background Associating temporal variation of biomarkers with the onset of psychotic relapse could help demystify the pathogenesis of psychosis as a pathological brain state, while allowing for timely intervention, thus ameliorating clinical outcome. In this systematic review, we evaluated the predictive accuracy of a broad spectrum of biomarkers for psychotic relapse. We also underline methodological concerns, focusing on the value of prospective studies for relapse onset estimation. Methods Following the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines, a list of search strings related to biomarkers and relapse was assimilated and run against the PubMed and Scopus databases, yielding a total of 808 unique records. After exclusion of studies related to the distinction of patients from controls or treatment effects, the 42 remaining studies were divided into 5 groups, based on the type of biomarker used as a predictor: the genetic biomarker subgroup (n = 4, or 9%), the blood-based biomarker subgroup (n = 15, or 36%), the neuroimaging biomarker subgroup (n = 10, or 24%), the cognitive-behavioral biomarker subgroup (n = 5, or 12%) and the wearables biomarker subgroup (n = 8, or 19%). Results In the first 4 groups, several factors were found to correlate with the state of relapse, such as the genetic risk profile, Interleukin-6, Vitamin D or panels consisting of multiple markers (blood-based), ventricular volume, grey matter volume in the right hippocampus, various functional connectivity metrics (neuroimaging), working memory and executive function (cognition). In the wearables group, machine learning models were trained based on features such as heart rate, acceleration, and geolocation, which were measured continuously. While the achieved predictive accuracy differed compared to chance, its power was moderate (max reported AUC = 0.77). Discussion The first 4 groups revealed risk factors, but cross-sectional designs or sparse sampling in prospective studies did not allow for relapse onset estimations. Studies involving wearables provide more concrete predictions of relapse but utilized markers such as geolocation do not advance pathophysiological understanding. A combination of the two approaches is warranted to fully understand and predict relapse.
Collapse
Affiliation(s)
- Alexandros Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
| | - Christos Theleritis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
| | - Panagiotis Ferentinos
- 2Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
| | - Nikolaos Smyrnis
- Laboratory of Cognitive Neuroscience and Sensorimotor Control, University Mental Health, Neurosciences and Precision Medicine Research Institute “COSTAS STEFANIS”, Athens, Greece
- 2Psychiatry Department, National and Kapodistrian University of Athens, Medical School, University General Hospital “ATTIKON”, Athens, Greece
| |
Collapse
|
6
|
Borkent J, Ioannou M, Neijzen D, Haarman BCM, Sommer IEC. Probiotic Formulation for Patients With Bipolar or Schizophrenia Spectrum Disorder: A Double-Blind, Randomized Placebo-Controlled Trial. Schizophr Bull 2024:sbae188. [PMID: 39504580 DOI: 10.1093/schbul/sbae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Probiotic augmentation offers a promising treatment for bipolar disorder (BD) and schizophrenia spectrum disorder (SSD). By targeting microbiome deviations, they may improve both gut and brain health. STUDY DESIGN In this double-blind, randomized, placebo-controlled trial with the multi-strain probiotic formulation Ecologic BARRIER, we aimed to improve psychiatric and cognitive symptoms, intestinal permeability, and gastrointestinal symptoms in patients with BD or SSD. A total of 131 patients were randomized 1:1 to receive either the probiotic supplement (n = 67) or a placebo (n = 64) for 3 months, in addition to treatment-as-usual. The primary outcomes were symptom severity assessed by the Brief Psychiatric Rating Scale and cognitive functioning by the Brief Assessment of Cognition in Schizophrenia. STUDY RESULTS No significant effect of probiotics was observed on psychiatric symptoms, but borderline significant improvement was observed in the cognition category of verbal memory (Linear Mixed Model (LMM) 0.33; adjusted P = .059). Probiotics beneficially affected markers of intestinal permeability and inflammation, including zonulin (LMMserum = -18.40; adjusted P = .002; LMMfecal = -10.47; adjusted P = .014) and alpha-1 antitrypsin (LMM 9.26; adjusted P = .025). Indigestion complaints significantly decreased in male participants in the probiotics group (LMM = -0.70; adjusted P = .010). Adverse events were similar between groups. CONCLUSIONS Our study observed significant advantages of probiotics for gut health in BD and SSD, with excellent safety and tolerability. A borderline effect on verbal memory was also indicated. These results underscore the need for further research into microbiome-targeted interventions for patients with complex brain disorders.
Collapse
Affiliation(s)
- Jenny Borkent
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Magdalini Ioannou
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Dorien Neijzen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
7
|
Jiang X, Zai CC, Dimick MK, Kennedy JL, Young LT, Birmaher B, Goldstein BI. Psychiatric Polygenic Risk Scores Across Youth With Bipolar Disorder, Youth at High Risk for Bipolar Disorder, and Controls. J Am Acad Child Adolesc Psychiatry 2024; 63:1149-1157. [PMID: 38340895 DOI: 10.1016/j.jaac.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/23/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE There is a pronounced gap in knowledge regarding polygenic underpinnings of youth bipolar disorder (BD). This study aimed to compare polygenic risk scores (PRSs) in youth with BD, youth at high clinical and/or familial risk for BD (HR), and controls. METHOD Participants were 344 youths of European ancestry (13-20 years old), including 136 youths with BD, 121 HR youths, and 87 controls. PRSs for BD, schizophrenia, major depressive disorder, and attention-deficit/hyperactivity disorder were constructed using independent genome-wide summary statistics from adult cohorts. Multinomial logistic regression was used to examine the association between each PRS and diagnostic status (BD vs HR vs controls). All genetic analyses controlled for age, sex, and 2 genetic principal components. RESULTS The BD group showed significantly higher BD-PRS than the control group (odds ratio = 1.54, 95% CI = 1.13-2.10, p = .006), with the HR group numerically intermediate. BD-PRS explained 7.9% of phenotypic variance. PRSs for schizophrenia, major depressive disorder, and attention-deficit/hyperactivity disorder were not significantly different among groups. In the BD group, BD-PRS did not significantly differ in relation to BD subtype, age of onset, psychosis, or family history of BD. CONCLUSION BD-PRS derived from adult genome-wide summary statistics is elevated in youth with BD. Absence of significant between-group differences in PRSs for other psychiatric disorders supports the specificity of BD-PRS in youth. These findings add to the biological validation of BD in youth and could have implications for early identification and diagnosis. To enhance clinical utility, future genome-wide association studies that focus specifically on early-onset BD are warranted, as are studies integrating additional genetic and environmental factors. PLAIN LANGUAGE SUMMARY Polygenic risk scores estimate an individual's genetic susceptibility to develop a disorder, such as bipolar disorder (BD). In this study, the authors constructed polygenic risk scores from previous adult studies. Youth with BD had elevated polygenic risk scores for BD compared to youth without bipolar disorder. Youth at high risk for BD had intermediate polygenic risk scores. To evaluate the specificity of polygenic risk scores for BD, the authors estimated risk scores for other mental health disorders including schizophrenia, major depressive disorder, and attention-deficit/hyperactivity disorder. These other polygenic risk scores did not differ between youth with and without BD. These findings support the biological validation of BD in youth, with potential implications for early identification and diagnosis. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented sexual and/or gender groups in science. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science. We actively worked to promote sex and gender balance in our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; University of Toronto, Toronto, Ontario, Canada; Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Mikaela K Dimick
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
| | - James L Kennedy
- University of Toronto, Toronto, Ontario, Canada; Tanenbaum Centre for Pharmacogenetics, Psychiatric Neurogenetics Section, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - L Trevor Young
- University of Toronto, Toronto, Ontario, Canada; Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Boris Birmaher
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada; University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Ni P, Ma Y, Chung S. Mitochondrial dysfunction in psychiatric disorders. Schizophr Res 2024; 273:62-77. [PMID: 36175250 DOI: 10.1016/j.schres.2022.08.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
Psychiatric disorders are a heterogeneous group of mental disorders with abnormal mental or behavioral patterns, which severely distress or disable affected individuals and can have a grave socioeconomic burden. Growing evidence indicates that mitochondrial function plays an important role in developing psychiatric disorders. This review discusses the neuropsychiatric consequences of mitochondrial abnormalities in both animal models and patients. We also discuss recent studies associated with compromised mitochondrial function in various psychiatric disorders, such as schizophrenia (SCZ), major depressive disorder (MD), and bipolar disorders (BD). These studies employ various approaches including postmortem studies, imaging studies, genetic studies, and induced pluripotent stem cells (iPSCs) studies. We also summarize the evidence from animal models and clinical trials to support mitochondrial function as a potential therapeutic target to treat various psychiatric disorders. This review will contribute to furthering our understanding of the metabolic etiology of various psychiatric disorders, and help guide the development of optimal therapies.
Collapse
Affiliation(s)
- Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.
| | - Yao Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
9
|
Ioannou M, Borkent J, Andreu-Sánchez S, Wu J, Fu J, Sommer IEC, Haarman BCM. Reproducible gut microbial signatures in bipolar and schizophrenia spectrum disorders: A metagenome-wide study. Brain Behav Immun 2024; 121:165-175. [PMID: 39032544 DOI: 10.1016/j.bbi.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/30/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Numerous studies report gut microbiome variations in bipolar disorder (BD) and schizophrenia spectrum disorders (SSD) compared to healthy individuals, though, there is limited consensus on which specific bacteria are associated with these disorders. METHODS In this study, we performed a comprehensive metagenomic shotgun sequencing analysis in 103 Dutch patients with BD/SSD and 128 healthy controls matched for age, sex, body mass index and income, while accounting for diet quality, transit time and technical confounders. To assess the replicability of the findings, we used two validation cohorts (total n = 203), including participants from a distinct population with a different metagenomic isolation protocol. RESULTS The gut microbiome of the patients had a significantly different β-diversity, but not α-diversity nor neuroactive potential compared to healthy controls. Initially, twenty-six bacterial taxa were identified as differentially abundant in patients. Among these, the previously reported genera Lachnoclostridium and Eggerthella were replicated in the validation cohorts. Employing the CoDaCoRe learning algorithm, we identified two bacterial balances specific to BD/SSD, which demonstrated an area under the receiver operating characteristic curve (AUC) of 0.77 in the test dataset. These balances were replicated in the validation cohorts and showed a positive association with the severity of psychiatric symptoms and antipsychotic use. Last, we showed a positive association between the relative abundance of Klebsiella and Klebsiella pneumoniae with antipsychotic use and between the Anaeromassilibacillus and lithium use. CONCLUSIONS Our findings suggest that microbial balances could be a reproducible method for identifying BD/SSD-specific microbial signatures, with potential diagnostic and prognostic applications. Notably, Lachnoclostridium and Eggerthella emerge as frequently occurring bacteria in BD/SSD. Last, our study reaffirms the previously established link between Klebsiella and antipsychotic medication use and identifies a novel association between Anaeromassilibacillus and lithium use.
Collapse
Affiliation(s)
- Magdalini Ioannou
- University of Groningen and University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands; University of Groningen and University Medical Center Groningen, Department of Biomedical Sciences, Groningen, the Netherlands.
| | - Jenny Borkent
- University of Groningen and University Medical Center Groningen, Department of Biomedical Sciences, Groningen, the Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands; University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, the Netherlands
| | - Jiafei Wu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands
| | - Jingyuan Fu
- University of Groningen and University Medical Center Groningen, Department of Genetics, Groningen, the Netherlands; University of Groningen and University Medical Center Groningen, Department of Pediatrics, Groningen, the Netherlands
| | - Iris E C Sommer
- University of Groningen and University Medical Center Groningen, Department of Biomedical Sciences, Groningen, the Netherlands
| | - Bartholomeus C M Haarman
- University of Groningen and University Medical Center Groningen, Department of Psychiatry, Groningen, the Netherlands
| |
Collapse
|
10
|
Poortman SR, Setiaman N, Barendse MEA, Schnack HG, Hillegers MHJ, van Haren NEM. Non-linear development of brain morphometry in child and adolescent offspring of individuals with bipolar disorder or schizophrenia. Eur Neuropsychopharmacol 2024; 87:56-66. [PMID: 39084058 DOI: 10.1016/j.euroneuro.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at increased risk of developing psychopathology. Structural brain alterations have been found in child and adolescent offspring of patients with bipolar disorder and schizophrenia, but the developmental trajectories of brain anatomy in this high-familial-risk population are still unclear. 300 T1-weighted scans were obtained of 187 offspring of at least one parent diagnosed with bipolar disorder (n=80) or schizophrenia (n=53) and offspring of parents without severe mental illness (n=54). The age range was 8 to 23 years old; 113 offspring underwent two scans. Global brain measures and regional cortical thickness and surface area were computed. A generalized additive mixed model was used to capture non-linear age trajectories. Offspring of parents with schizophrenia had smaller total brain volume than offspring of parents with bipolar disorder (d=-0.20, p=0.004) and control offspring (d=-0.22, p=0.005) and lower mean cortical thickness than control offspring (d=-0.23, p<0.001). Offspring of parents with schizophrenia showed differential age trajectories of mean cortical thickness and cerebral white matter volume compared with control offspring (both p's=0.003). Regionally, offspring of parents with schizophrenia had a significantly different trajectory of cortical thickness in the middle temporal gyrus versus control offspring (p<0.001) and bipolar disorder offspring (p=0.001), which was no longer significant after correcting for mean cortical thickness. These findings suggest that particularly familial high risk of schizophrenia is related to reductions and deviating developmental trajectories of global brain structure measures, which were not driven by specific regions.
Collapse
Affiliation(s)
- Simon R Poortman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands.
| | - Nikita Setiaman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Marjolein E A Barendse
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Hugo G Schnack
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Manon H J Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
11
|
Calabró M, Drago A, Crisafulli C. Genetic underpinnings of YMRS and MADRS scores variations in a bipolar sample. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01878-w. [PMID: 39313733 DOI: 10.1007/s00406-024-01878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Bipolar disorder (BPD) affects approximately 2% of the global population. Its clinical course is highly variable and current treatments are not always effective for all patients. Genetic factors play a significant role in BPD and its treatment, although the genetic background appear to be highly heterogeneous. Polygenic risk scores (PRS) are a powerful tool for risk assessment, yet using all genomic data may introduce confounding factors. Focusing on specific genetic clusters PRS (gcPRS) may mitigate this issue. This study aims to assess a neural network model's efficacy in predicting response to treatment (RtT) in BPD individuals using PRS calculated from specific gcPRS and other variables. 1538 individuals from STEP-BD (age 41.39 ± 12.66, 59.17% female) were analyzed. gcPRS were calculated from a Genome-wide association study (GWAS) with clinical covariates and a molecular pathway analysis (MPA) based on drugs interaction networks. A neural network was trained using gcPRS and clinical variables to predict RtT. Ten biological networks were identified through MPA, with gcPRS derived from risk variants within corresponding gene groups. However, the model did not show significant accuracy in predicting RtT in BPD individuals. RtT in BPD is influenced by multiple factors. This study attempted a comprehensive approach integrating clinical and biological data to predict RtT. However, the model did not achieve significant accuracy, possibly due to limitations such as sample size, disorder complexity, and population heterogeneity. This data highlights the challenge of developing personalized treatments for BPD and the necessity for further research in this area.
Collapse
Affiliation(s)
- Marco Calabró
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Antonio Drago
- Unit for Psychiatric Research, Psychiatry, Aalborg University Hospital, DK-9100, Aalborg, Denmark
| | - Concetta Crisafulli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125, Messina, Italy.
| |
Collapse
|
12
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. Neuroimage Clin 2024; 43:103657. [PMID: 39208481 PMCID: PMC11401179 DOI: 10.1016/j.nicl.2024.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state functional magnetic resonance imaging (rs-fMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. METHODS rs-fMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron emission tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. RESULTS Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta-power. Exploratory analyses revealed a close statistical relationship between LEN and positive symptom severity in patients. CONCLUSION Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs.
Collapse
Affiliation(s)
- Fabian Hirsch
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany.
| | - Ângelo Bumanglag
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Yifei Zhang
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| | - Afra Wohlschlaeger
- Department of Diagnostic and Interventional Neuroradiology, Klinikum R.d.Isar, Technical University Munich, Ismaninger Str. 22, Munich 81675, Germany
| |
Collapse
|
13
|
Kong L, Chen Y, Shen Y, Zhang D, Wei C, Lai J, Hu S. Progress and Implications from Genetic Studies of Bipolar Disorder. Neurosci Bull 2024; 40:1160-1172. [PMID: 38206551 PMCID: PMC11306703 DOI: 10.1007/s12264-023-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 01/12/2024] Open
Abstract
With the advancements in gene sequencing technologies, including genome-wide association studies, polygenetic risk scores, and high-throughput sequencing, there has been a tremendous advantage in mapping a detailed blueprint for the genetic model of bipolar disorder (BD). To date, intriguing genetic clues have been identified to explain the development of BD, as well as the genetic association that might be applied for the development of susceptibility prediction and pharmacogenetic intervention. Risk genes of BD, such as CACNA1C, ANK3, TRANK1, and CLOCK, have been found to be involved in various pathophysiological processes correlated with BD. Although the specific roles of these genes have yet to be determined, genetic research on BD will help improve the prevention, therapeutics, and prognosis in clinical practice. The latest preclinical and clinical studies, and reviews of the genetics of BD, are analyzed in this review, aiming to summarize the progress in this intriguing field and to provide perspectives for individualized, precise, and effective clinical practice.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yiqing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuting Shen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Wei
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China.
- Brain Research Institute of Zhejiang University, Hangzhou, 310003, China.
- Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, 310003, China.
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
14
|
Tang C, Huang W, Tan Y, Liu Y, Zheng G, Li B, Chen W, Yang Y, Xu G, Li X, Xu C, Xie G, Liang J. Comparison of cognitive performance in first-episode drug-naïve schizophrenia, bipolar II disorder, and major depressive disorder patients after treatment. BMC Psychiatry 2024; 24:434. [PMID: 38862969 PMCID: PMC11165791 DOI: 10.1186/s12888-024-05897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Cognitive impairment is a recognized fundamental deficit in individuals diagnosed with schizophrenia (SZ), bipolar II disorder (BD II), and major depressive disorder (MDD), among other psychiatric disorders. However, limited research has compared cognitive function among first-episode drug-naïve individuals with SZ, BD II, or MDD. METHODS This study aimed to address this gap by assessing the cognitive performance of 235 participants (40 healthy controls, 58 SZ patients, 72 BD II patients, and 65 MDD patients) using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) before and after 12 weeks of treatment in SZ, BD II, and MDD patients. To clarify, the healthy controls only underwent RBANS testing at baseline, whereas the patient groups were assessed before and after treatment. The severity of symptoms in SZ patients was measured using the Positive and Negative Syndrome Scale (PANSS), and depression in BD II and MDD patients was assessed using the Hamilton Depression Scale-24 items (HAMD-24 items). RESULTS Two hundred participants completed the 12-week treatment period, with 35 participants dropping out due to various reasons. This group included 49 SZ patients, 58 BD II patients, and 53 MDD patients. Among SZ patients, significant improvements in immediate and delayed memory were observed after 12 weeks of treatment compared to their initial scores. Similarly, BD II patients showed significant improvement in immediate and delayed memory following treatment. However, there were no significant differences in RBANS scores for MDD patients after 12 weeks of treatment. CONCLUSIONS In conclusion, the findings of this study suggest that individuals with BD II and SZ may share similar deficits in cognitive domains. It is important to note that standardized clinical treatment may have varying degrees of effectiveness in improving cognitive function in patients with BD II and SZ, which could potentially alleviate cognitive dysfunction.
Collapse
Affiliation(s)
- Chaohua Tang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wei Huang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Yukang Tan
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Yiliang Liu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guangen Zheng
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Bin Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Yu Yang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guohong Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
- Key Laboratory of Ethnomedicine of Ministry of Education, Center On Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
15
|
Hirsch F, Bumanglag Â, Zhang Y, Wohlschlaeger A. Diverging functional connectivity timescales: Capturing distinct aspects of cognitive performance in early psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.07.24306932. [PMID: 38766002 PMCID: PMC11100938 DOI: 10.1101/2024.05.07.24306932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background Psychosis spectrum disorders (PSDs) are marked by cognitive impairments, the neurobiological correlates of which remain poorly understood. Here, we investigate the entropy of time-varying functional connectivity (TVFC) patterns from resting-state fMRI (rfMRI) as potential biomarker for cognitive performance in PSDs. By combining our results with multimodal reference data, we hope to generate new insights into the mechanisms underlying cognitive dysfunction in PSDs. We hypothesized that low-entropy TVFC patterns (LEN) would be more behaviorally informative than high-entropy TVFC patterns (HEN), especially for tasks that require extensive integration across diverse cognitive subdomains. Methods rfMRI and behavioral data from 97 patients in the early phases of psychosis and 53 controls were analyzed. Positron-Emission Tomography (PET) and magnetoencephalography (MEG) data were taken from a public repository (Hansen et al., 2022). Multivariate analyses were conducted to examine relationships between TVFC patterns at multiple spatial scales and cognitive performance in patients. Results Compared to HEN, LEN explained significantly more cognitive variance on average in PSD patients, driven by superior encoding of information on psychometrically more integrated tasks. HEN better captured information in specific subdomains of executive functioning. Nodal HEN-LEN transitions were spatially aligned with neurobiological gradients reflecting monoaminergic transporter densities and MEG beta power. Exploratory analyses revealed a close statistical relationship between LEN and positive PSD symptoms. Conclusion Our entropy-based analysis of TVFC patterns dissociates distinct aspects of cognition in PSDs. By linking topographies of neurotransmission and oscillatory dynamics with cognitive performance, it enhances our understanding of the mechanisms underlying cognitive deficits in PSDs. CRediT Authorship Contribution Statement Fabian Hirsch: Conceptualization, Methodology, Software, Formal analysis, Writing - Original Draft, Writing - Review & Editing, Visualization; Ângelo Bumanglag: Methodology, Software, Formal analysis, Writing - Review & Editing; Yifei Zhang: Methodology, Software, Formal analysis, Writing - Review & Editing; Afra Wohlschlaeger: Methodology, Writing - Review & Editing, Supervision, Project administration.
Collapse
|
16
|
Phalnikar K, Srividya M, Mythri SV, Vasavi NS, Ganguly A, Kumar A, S P, Kalia K, Mishra SS, Dhanya SK, Paul P, Holla B, Ganesh S, Reddy PC, Sud R, Viswanath B, Muralidharan B. Altered neuroepithelial morphogenesis and migration defects in iPSC-derived cerebral organoids and 2D neural stem cells in familial bipolar disorder. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae007. [PMID: 38638145 PMCID: PMC11024480 DOI: 10.1093/oons/kvae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Bipolar disorder (BD) is a severe mental illness that can result from neurodevelopmental aberrations, particularly in familial BD, which may include causative genetic variants. In the present study, we derived cortical organoids from BD patients and healthy (control) individuals from a clinically dense family in the Indian population. Our data reveal that the patient organoids show neurodevelopmental anomalies, including organisational, proliferation and migration defects. The BD organoids show a reduction in both the number of neuroepithelial buds/cortical rosettes and the ventricular zone size. Additionally, patient organoids show a lower number of SOX2-positive and EdU-positive cycling progenitors, suggesting a progenitor proliferation defect. Further, the patient neurons show abnormal positioning in the ventricular/intermediate zone of the neuroepithelial bud. Transcriptomic analysis of control and patient organoids supports our cellular topology data and reveals dysregulation of genes crucial for progenitor proliferation and neuronal migration. Lastly, time-lapse imaging of neural stem cells in 2D in vitro cultures reveals abnormal cellular migration in BD samples. Overall, our study pinpoints a cellular and molecular deficit in BD patient-derived organoids and neural stem cell cultures.
Collapse
Affiliation(s)
- Kruttika Phalnikar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - M Srividya
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - S V Mythri
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - N S Vasavi
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Archisha Ganguly
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Aparajita Kumar
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Padmaja S
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Kishan Kalia
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Srishti S Mishra
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Sreeja Kumari Dhanya
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| | - Pradip Paul
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bharath Holla
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Suhas Ganesh
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Puli Chandramouli Reddy
- Centre of Excellence in Epigenetics, Department of Life Sciences, Shiv Nadar Institution of Eminence, Delhi-NCR, India-201314
| | - Reeteka Sud
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Biju Viswanath
- National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road Bengaluru, Karnataka, India-560029
| | - Bhavana Muralidharan
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK - Post, Bellary Road, Bengaluru, Karnataka, India-560065
| |
Collapse
|
17
|
Segura AG, Serna EDL, Sugranyes G, Baeza I, Valli I, Martínez-Serrano I, Díaz-Caneja CM, Andreu-Bernabeu Á, Moreno DM, Gassó P, Rodríguez N, Martínez-Pinteño A, Prohens L, Torrent C, García-Rizo C, Mas S, Castro-Fornieles J. Polygenic risk scores mediating functioning outcomes through cognitive and clinical features in youth at family risk and controls. Eur Neuropsychopharmacol 2024; 81:28-37. [PMID: 38310718 DOI: 10.1016/j.euroneuro.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
Schizophrenia and bipolar disorder exhibit substantial clinical overlap, particularly in individuals at familial high risk, who frequently present sub-threshold symptoms before the onset of illness. Severe mental disorders are highly polygenic traits, but their impact on the stages preceding the manifestation of mental disorders remains relatively unexplored. Our study aimed to examine the influence of polygenic risk scores (PRS) on sub-clinical outcomes over a 2-year period in youth at familial high risk for schizophrenia and bipolar disorder and controls. The sample included 222 children and adolescents, comprising offspring of parents with schizophrenia (n = 38), bipolar disorder (n = 80), and community controls (n = 104). We calculated PRS for psychiatric disorders, neuroticism and cognition using the PRS-CS method. Linear mixed-effects models were employed to investigate the association between PRS and cognition, symptom severity and functioning. Mediation analyses were conducted to explore whether clinical features acted as intermediaries in the impact of PRS on functioning outcomes. SZoff exhibited elevated PRS for schizophrenia. In the entire sample, PRS for depression, neuroticism, and cognitive traits showed associations with sub-clinical features. The effect of PRS for neuroticism and general intelligence on functioning outcomes were mediated by cognition and symptoms severity, respectively. This study delves into the interplay among genetics, the emergence of sub-clinical symptoms and functioning outcomes, providing novel evidence on mechanisms underpinning the continuum from sub-threshold features to the onset of mental disorders. The findings underscore the interplay of genetics, cognition, and clinical features, providing insights for personalized early interventions.
Collapse
Affiliation(s)
- Alex G Segura
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Elena de la Serna
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gisela Sugranyes
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Inmaculada Baeza
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Isabel Valli
- Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Irene Martínez-Serrano
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Covadonga M Díaz-Caneja
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Dolores M Moreno
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Adolescent Inpatient Unit, Department of Psychiatry, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Psychiatry Department, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Gassó
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodríguez
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Albert Martínez-Pinteño
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Llucia Prohens
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain
| | - Carla Torrent
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Barcelona Bipolar Disorders Program, Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, Fundació Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Clemente García-Rizo
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Barcelona Clinic Schizophrenia Unit, Institute of Neuroscience, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sergi Mas
- Department of Clinical Foundations, Pharmacology Unit, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Josefina Castro-Fornieles
- Child and Adolescent Psychiatry and Psychology Department, 2021SGR01319, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Child and Adolescent Psychiatry and Psychology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
18
|
Mindru FM, Radu AF, Bumbu AG, Radu A, Bungau SG. Insights into the Medical Evaluation of Ekbom Syndrome: An Overview. Int J Mol Sci 2024; 25:2151. [PMID: 38396826 PMCID: PMC10889746 DOI: 10.3390/ijms25042151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Ekbom syndrome, also known as delusional parasitosis (DP) or delusional infestation, is an uncommon psychiatric disorder distinguished by an enduring conviction of parasitic infestation, persisting notwithstanding the presence of medical evidence to the contrary. Primarily affecting middle-aged women, DP can manifest either as isolated psychological distress or as a component within a more intricate psychiatric framework, substantially influencing the quality of life for affected individuals. Its pathophysiological mechanism involves uncertain dopaminergic imbalances and dysfunction in the dopamine transporter system. Dermatologists often play a pivotal role in diagnosis, as patients first seek dermatological assessments of their signs and symptoms. However, DP frequently originates from underlying psychiatric disorders or medical variables, manifesting with neurological and infectious causative factors. The diagnostic complexity is attributed to patients' resolute convictions, leading to delayed psychiatric intervention. First-line DP treatment involves antipsychotics, with newer agents demonstrating promising prospects, but the lack of standardized protocols poses a significant therapeutic challenge. In this narrative review, both a comprehensive approach to this uncommon pathology and an update on the state of knowledge in this medical subfield focused on optimizing the management of DP are provided. The complexity of DP underlying its uncommon nature and the incomplete understanding of its pathophysiology highlight the need for further research through multicenter studies and multidisciplinary teams to enhance therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Florina Madalina Mindru
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
| | - Andrei-Flavius Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Adrian Gheorghe Bumbu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
- Department of Psycho-Neuroscience and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ada Radu
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
| | - Simona Gabriela Bungau
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania; (F.M.M.); (A.R.); (S.G.B.)
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
19
|
Williams LM, Carpenter WT, Carretta C, Papanastasiou E, Vaidyanathan U. Precision psychiatry and Research Domain Criteria: Implications for clinical trials and future practice. CNS Spectr 2024; 29:26-39. [PMID: 37675453 DOI: 10.1017/s1092852923002420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Psychiatric disorders are associated with significant social and economic burdens, many of which are related to issues with current diagnosis and treatments. The coronavirus (COVID-19) pandemic is estimated to have increased the prevalence and burden of major depressive and anxiety disorders, indicating an urgent need to strengthen mental health systems globally. To date, current approaches adopted in drug discovery and development for psychiatric disorders have been relatively unsuccessful. Precision psychiatry aims to tailor healthcare more closely to the needs of individual patients and, when informed by neuroscience, can offer the opportunity to improve the accuracy of disease classification, treatment decisions, and prevention efforts. In this review, we highlight the growing global interest in precision psychiatry and the potential for the National Institute of Health-devised Research Domain Criteria (RDoC) to facilitate the implementation of transdiagnostic and improved treatment approaches. The need for current psychiatric nosology to evolve with recent scientific advancements and increase awareness in emerging investigators/clinicians of the value of this approach is essential. Finally, we examine current challenges and future opportunities of adopting the RDoC-associated translational and transdiagnostic approaches in clinical studies, acknowledging that the strength of RDoC is that they form a dynamic framework of guiding principles that is intended to evolve continuously with scientific developments into the future. A collaborative approach that recruits expertise from multiple disciplines, while also considering the patient perspective, is needed to pave the way for precision psychiatry that can improve the prognosis and quality of life of psychiatric patients.
Collapse
Affiliation(s)
- Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - William T Carpenter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Evangelos Papanastasiou
- Boehringer Ingelheim Pharma GmbH & Co, Ingelheim am Rhein, Rhineland-Palatinate, Germany
- HMNC Holding GmbH, Wilhelm-Wagenfeld-Strasse 20, 80807Munich, Bavaria, Germany
| | | |
Collapse
|
20
|
Perrottelli A, Marzocchi FF, Caporusso E, Giordano GM, Giuliani L, Melillo A, Pezzella P, Bucci P, Mucci A, Galderisi S. Advances in the understanding of the pathophysiology of schizophrenia and bipolar disorder through induced pluripotent stem cell models. J Psychiatry Neurosci 2024; 49:E109-E125. [PMID: 38490647 PMCID: PMC10950363 DOI: 10.1503/jpn.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/04/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024] Open
Abstract
The pathophysiology of schizophrenia and bipolar disorder involves a complex interaction between genetic and environmental factors that begins in the early stages of neurodevelopment. Recent advancements in the field of induced pluripotent stem cells (iPSCs) offer a promising tool for understanding the neurobiological alterations involved in these disorders and, potentially, for developing new treatment options. In this review, we summarize the results of iPSC-based research on schizophrenia and bipolar disorder, showing disturbances in neurodevelopmental processes, imbalance in glutamatergic-GABAergic transmission and neuromorphological alterations. The limitations of the reviewed literature are also highlighted, particularly the methodological heterogeneity of the studies, the limited number of studies developing iPSC models of both diseases simultaneously, and the lack of in-depth clinical characterization of the included samples. Further studies are needed to advance knowledge on the common and disease-specific pathophysiological features of schizophrenia and bipolar disorder and to promote the development of new treatment options.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Giuliani
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Melillo
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Paola Bucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armida Mucci
- From the University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
21
|
de Sales SC, Philippsen M, de Jesus LS, Carriello MA, Alvim PHP, Costa DFB, da Rosa LC, Hasse-Sousa M, Czepielewski LS, Massuda R. Social cognition and psychosocial functioning in schizophrenia and bipolar disorder: Theory of mind as a key to understand schizophrenia dysfunction. Eur Neuropsychopharmacol 2023; 77:12-20. [PMID: 37660439 DOI: 10.1016/j.euroneuro.2023.08.483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Functional impairment is a common symptom in schizophrenia (SZ) and bipolar disorder (BD). Pharmacological treatments have limited functional recovery in both disorders. Social cognition, a cognitive process, has been associated with functioning in mental disorders. Theory of mind (ToM) is considered a key factor in understanding the social cognitive deficits in SZ and BD. Our study aimed to investigate the relationship between ToM and functioning in SZ, BD, and healthy controls (HC) and compare ToM and functioning impairments between groups. A total of 208 participants (HC n = 69; BD n = 89; SZ n = 50) were evaluated with the Functioning Assessment Short Test (FAST), Reading the Mind in the Eyes Test (RMET), the Vocabulary subtest of the Wechsler Abbreviated Scale for Intelligence (WASI) and the Hopkins Verbal Learning Test - Revised (HVLT-R). Comparisons of RMET between low- and high-functioning individuals and multiple linear regression analyses were conducted for each group. Multiple regression analysis revealed that the association between ToM and psychosocial functioning was observed only in SZ (β = -1.352, p = 0.008). Low-functioning SZ participants showed a lower ToM performance compared to participants with high-functioning SZ (t = 1.80, p = 0.039, Cohen's d = 0.938). No significant associations were found in the other groups. ToM is essential to understand the functional impairment in SZ, more than in BD. Furthermore, ToM may be a primary target for intervention strategies in improving functioning in SZ.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laura Canani da Rosa
- Departamento de Psicologia do Desenvolvimento e da Personalidade da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathias Hasse-Sousa
- Departamento de Psicologia do Desenvolvimento e da Personalidade da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Letícia Sanguinetti Czepielewski
- Departamento de Psicologia do Desenvolvimento e da Personalidade da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Raffael Massuda
- Departamento de Psiquiatria da Universidade Federal do Paraná
| |
Collapse
|
22
|
McKenna F, Gupta PK, Sui YV, Bertisch H, Gonen O, Goff DC, Lazar M. Microstructural and Microvascular Alterations in Psychotic Spectrum Disorders: A Three-Compartment Intravoxel Incoherent Imaging and Free Water Model. Schizophr Bull 2023; 49:1542-1553. [PMID: 36921060 PMCID: PMC10686346 DOI: 10.1093/schbul/sbad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND AND HYPOTHESIS Microvascular and inflammatory mechanisms have been hypothesized to be involved in the pathophysiology of psychotic spectrum disorders (PSDs). However, data evaluating these hypotheses remain limited. STUDY DESIGN We applied a three-compartment intravoxel incoherent motion free water imaging (IVIM-FWI) technique that estimates the perfusion fraction (PF), free water fraction (FW), and anisotropic diffusion of tissue (FAt) to examine microvascular and microstructural changes in gray and white matter in 55 young adults with a PSD compared to 37 healthy controls (HCs). STUDY RESULTS We found significantly increased PF, FW, and FAt in gray matter regions, and significantly increased PF, FW, and decreased FAt in white matter regions in the PSD group versus HC. Furthermore, in patients, but not in the HC group, increased PF, FW, and FAt in gray matter and increased PF in white matter were significantly associated with poor performance on several cognitive tests assessing memory and processing speed. We additionally report significant associations between IVIM-FWI metrics and myo-inositol, choline, and N-acetylaspartic acid magnetic resonance spectroscopy imaging metabolites in the posterior cingulate cortex, which further supports the validity of PF, FW, and FAt as microvascular and microstructural biomarkers of PSD. Finally, we found significant relationships between IVIM-FWI metrics and the duration of psychosis in gray and white matter regions. CONCLUSIONS The three-compartment IVIM-FWI model provides metrics that are associated with cognitive deficits and may reflect disease progression.
Collapse
Affiliation(s)
- Faye McKenna
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Pradeep Kumar Gupta
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Yu Veronica Sui
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Hilary Bertisch
- Northwell Health, Zucker Hillside Hospital, New York, NY, USA
| | - Oded Gonen
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Donald C Goff
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mariana Lazar
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
23
|
Yamada Y, Sumiyoshi T. Preclinical Evidence for the Mechanisms of Transcranial Direct Current Stimulation in the Treatment of Psychiatric Disorders; A Systematic Review. Clin EEG Neurosci 2023; 54:601-610. [PMID: 34898301 PMCID: PMC10625720 DOI: 10.1177/15500594211066151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022]
Abstract
Backgrounds. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique for the treatment of several psychiatric disorders, eg, mood disorders and schizophrenia. Although tDCS provides a promising approach, its neurobiological mechanisms remain to be explored. Objectives. To provide a systematic review of animal studies, and consider how tDCS ameliorates psychiatric conditions. Methods. A literature search was conducted on English articles identified by PubMed. We defined the inclusion criteria as follows: (1) articles published from the original data; (2) experimental studies in animals; (3) studies delivering direct current transcranially, ie, positioning electrodes onto the skull. Results. 138 papers met the inclusion criteria. 62 papers deal with model animals without any dysfunctions, followed by 52 papers for neurological disorder models, and 12 for psychiatric disorder models. The most studied category of functional areas is neurocognition, followed by motor functions and pain. These studies overall suggest the role for the late long-term potentiation (LTP) via anodal stimulation in the therapeutic effects of tDCS. Conclusions. tDCS Anodal stimulation may provide a novel therapeutic strategy to particularly enhance neurocognition in psychiatric disorders. Its mechanisms are likely to involve facilitation of the late LTP.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
24
|
Abashkin DA, Karpov DS, Kurishev AO, Marilovtseva EV, Golimbet VE. ASCL1 Is Involved in the Pathogenesis of Schizophrenia by Regulation of Genes Related to Cell Proliferation, Neuronal Signature Formation, and Neuroplasticity. Int J Mol Sci 2023; 24:15746. [PMID: 37958729 PMCID: PMC10648210 DOI: 10.3390/ijms242115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia (SZ) is a common psychiatric neurodevelopmental disorder with a complex genetic architecture. Genome-wide association studies indicate the involvement of several transcription factors, including ASCL1, in the pathogenesis of SZ. We aimed to identify ASCL1-dependent cellular and molecular mechanisms associated with SZ. We used Capture-C, CRISPR/Cas9 systems and RNA-seq analysis to confirm the involvement of ASCL1 in SZ-associated pathogenesis, establish a mutant SH-SY5Y line with a functional ASCL1 knockout (ASCL1-del) and elucidate differentially expressed genes that may underlie ASCL1-dependent pathogenic mechanisms. Capture-C confirmed the spatial interaction of the ASCL1 promoter with SZ-associated loci. Transcriptome analysis showed that ASCL1 regulation may be through a negative feedback mechanism. ASCL1 dysfunction affects the expression of genes associated with the pathogenesis of SZ, as well as bipolar and depressive disorders. Genes differentially expressed in ASCL1-del are involved in cell mitosis, neuronal projection, neuropeptide signaling, and the formation of intercellular contacts, including the synapse. After retinoic acid (RA)-induced differentiation, ASCL1 activity is restricted to a small subset of genes involved in neuroplasticity. These data suggest that ASCL1 dysfunction promotes SZ development predominantly before the onset of neuronal differentiation by slowing cell proliferation and impeding the formation of neuronal signatures.
Collapse
Affiliation(s)
| | - Dmitry S. Karpov
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russia
| | | | | | - Vera E. Golimbet
- Mental Health Research Center, Kashirskoe Sh., 34, Moscow 115522, Russia
| |
Collapse
|
25
|
Yamada Y, Narita Z, Inagawa T, Yokoi Y, Hirabayashi N, Shirama A, Sueyoshi K, Sumiyoshi T. Electrode montage for transcranial direct current stimulation governs its effect on symptoms and functionality in schizophrenia. Front Psychiatry 2023; 14:1243859. [PMID: 37860168 PMCID: PMC10582326 DOI: 10.3389/fpsyt.2023.1243859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
Backgrounds Patients with schizophrenia suffer from cognitive impairment that worsens real-world functional outcomes. We previously reported that multi-session transcranial direct current stimulation (tDCS) delivered to the left dorsolateral prefrontal cortex (DLPFC) improved daily living skills, while stimulation on the left superior temporal sulcus (STS) enhanced performance on a test of social cognition in these patients. To examine the region-dependent influence of tDCS on daily-living skills, neurocognition, and psychotic symptoms, this study compared effects of anodal stimulation targeting either of these two brain areas in patients with schizophrenia. Methods Data were collected from open-label, single-arm trials with anodal electrodes placed over the left DLPFC (N = 28) or STS (N = 15). Daily-living skills, neurocognition, and psychotic symptoms were measured with the UCSD performance-based skills assessment-brief (UPSA-B), Brief Assessment of Cognition in Schizophrenia (BACS), and Positive and Negative Syndrome Scale (PANSS), respectively. After baseline evaluation, tDCS (2 mA × 20 min) were delivered two times per day for 5 consecutive days. One month after the final stimulation, clinical assessments were repeated. Results Performance on the UPSA-B was significantly improved in patients who received anodal tDCS at the left DLPFC (d = 0.70, p < 0.001), while this effect was absent in patients with anodal electrodes placed on the left STS (d = 0.02, p = 0.939). Significant improvement was also observed for scores on the BACS with anodal tDCS delivered to the DLPFC (d = 0.49, p < 0.001); however, such neurocognitive enhancement was absent when the STS was stimulated (d = 0.05, p = 0.646). Both methods of anodal stimulation showed a significant improvement of General Psychopathology scores on the PANSS (DLPFC, d = 0.50, p = 0.027; STS, d = 0.44, p = 0.001). Conclusion These results indicate the importance of selecting brain regions as a target for tDCS according to clinical features of individual patients. Anodal stimulation of the left DLPFC may be advantageous in improving higher level functional outcomes in patients with schizophrenia. Trial registration These studies were registered within the University hospital Medical Information Network Clinical Trials Registry [(24), UMIN000015953], and the Japan Registry of Clinical Trials [(28), jRCTs032180026].
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Zui Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuma Yokoi
- Department of Educational Promotion, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuki Sueyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
26
|
Saglam Y, Oz A, Yildiz G, Ermis C, Kargin OA, Arslan S, Karacetin G. Can diffusion tensor imaging have a diagnostic utility to differentiate early-onset forms of bipolar disorder and schizophrenia: A neuroimaging study with explainable machine learning algorithms. Psychiatry Res Neuroimaging 2023; 335:111696. [PMID: 37595386 DOI: 10.1016/j.pscychresns.2023.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/11/2023] [Accepted: 07/26/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND/AIM Accurate diagnosis of early-onset psychotic disorders is crucial to improve clinical outcomes. This study aimed to differentiate patients with early-onset schizophrenia (EOS) from early-onset bipolar disorder (EBD) with machine learning (ML) algorithms using white matter tracts (WMT). METHOD Diffusion tensor imaging was obtained from adolescents with either EOS (n = 43) or EBD (n = 32). Global probabilistic tractography using an automated tract-based TRACULA software was performed to analyze the fractional anisotropy (FA) of forty-two WMT. The nested cross-validation was performed in feature selection and model construction. EXtreme Gradient Boosting (XGBoost) was applied to select the features that can give the best performance in the ML model. The interpretability of the model was explored with the SHApley Additive exPlanations (SHAP). FINDINGS The XGBoost algorithm identified nine out of the 42 major WMTs with significant predictive power. Among ML models, Support Vector Machine-Linear showed the best performance. Higher SHAP values of left acoustic radiation, bilateral anterior thalamic radiation, and the corpus callosum were associated with a higher likelihood of EOS. CONCLUSIONS Our findings suggested that ML models based on the FA values of major WMT reconstructed by global probabilistic tractography can unveil hidden microstructural aberrations to distinguish EOS from EBD.
Collapse
Affiliation(s)
- Yesim Saglam
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey.
| | - Ahmet Oz
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gokcen Yildiz
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Cagatay Ermis
- Queen Silvia Children's Hospital, Department of Child Psychiatry, Gothenburg, Sweden
| | - Osman Aykan Kargin
- Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serdar Arslan
- Division of Neuroradiology, Department of Radiology, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gul Karacetin
- Department of Child and Adolescent Psychiatry, University of Health Sciences, Bakirkoy Prof Dr Mazhar Osman Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
27
|
Niu M, Guo H, Zhang Z, Fu Y. Abnormal temporal variability of rich-club organization in three major psychiatric conditions. Front Psychiatry 2023; 14:1226143. [PMID: 37720902 PMCID: PMC10500439 DOI: 10.3389/fpsyt.2023.1226143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Convergent evidence has demonstrated a shared rich-club reorganization across multiple major psychiatric conditions. However, previous studies assessing altered functional couplings between rich-club regions have typically focused on the mean time series from entire functional magnetic resonance imaging (fMRI) scanning session, neglecting their time-varying properties. Methods In this study, we aim to explore the common and/or unique alterations in the temporal variability of rich-club organization among schizophrenia (SZ), bipolar disorder (BD), and attention deficit/hyperactivity disorder (ADHD). We employed a temporal rich-club (TRC) approach to quantitatively assess the propensity of well-connected nodes to form simultaneous and stable structures in a temporal network derived from resting-state fMRI data of 156 patients with major psychiatric disorders (SZ/BD/ADHD = 71/45/40) and 172 healthy controls. We executed the TRC workflow at both whole-brain and subnetwork scales across varying network sparsity, sliding window strategies, lengths and steps of sliding windows, and durations of TRC coefficients. Results The SZ and BD groups displayed significantly decreased TRC coefficients compared to corresponding HC groups at the whole-brain scale and in most subnetworks. In contrast, the ADHD group exhibited reduced TRC coefficients in longer durations, as opposed to shorter durations, which markedly differs from the SZ and BD groups. These findings reveal both transdiagnostic and illness-specific patterns in temporal variability of rich-club organization across SZ, BD, and ADHD. Discussion TRC may serve as an effective metric for detecting brain network disruptions in particular states, offering novel insights and potential biomarkers into the neurobiological basis underpinning the behavioral and cognitive deficits observed in these disorders.
Collapse
Affiliation(s)
- Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
| | - Hanning Guo
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich, Jülich, Germany
| | - Zhe Zhang
- School of Physics, Hangzhou Normal University, Hangzhou, China
- Institute of Brain Science, Hangzhou Normal University, Hangzhou, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Lee J, Costa-Dookhan K, Panganiban K, MacKenzie N, Treen QC, Chintoh A, Remington G, Müller DJ, Sockalingam S, Gerretsen P, Sanches M, Karnovsky A, Stringer KA, Ellingrod VL, Tso IF, Taylor SF, Agarwal SM, Hahn MK, Ward KM. Metabolomic signatures associated with weight gain and psychosis spectrum diagnoses: A pilot study. Front Psychiatry 2023; 14:1169787. [PMID: 37168086 PMCID: PMC10164938 DOI: 10.3389/fpsyt.2023.1169787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 05/13/2023] Open
Abstract
Psychosis spectrum disorders (PSDs), as well as other severe mental illnesses where psychotic features may be present, like bipolar disorder, are associated with intrinsic metabolic abnormalities. Antipsychotics (APs), the cornerstone of treatment for PSDs, incur additional metabolic adversities including weight gain. Currently, major gaps exist in understanding psychosis illness biomarkers, as well as risk factors and mechanisms for AP-induced weight gain. Metabolomic profiles may identify biomarkers and provide insight into the mechanistic underpinnings of PSDs and antipsychotic-induced weight gain. In this 12-week prospective naturalistic study, we compared serum metabolomic profiles of 25 cases within approximately 1 week of starting an AP to 6 healthy controls at baseline to examine biomarkers of intrinsic metabolic dysfunction in PSDs. In 17 of the case participants with baseline and week 12 samples, we then examined changes in metabolomic profiles over 12 weeks of AP treatment to identify metabolites that may associate with AP-induced weight gain. In the cohort with pre-post data (n = 17), we also compared baseline metabolomes of participants who gained ≥5% baseline body weight to those who gained <5% to identify potential biomarkers of antipsychotic-induced weight gain. Minimally AP-exposed cases were distinguished from controls by six fatty acids when compared at baseline, namely reduced levels of palmitoleic acid, lauric acid, and heneicosylic acid, as well as elevated levels of behenic acid, arachidonic acid, and myristoleic acid (FDR < 0.05). Baseline levels of the fatty acid adrenic acid was increased in 11 individuals who experienced a clinically significant body weight gain (≥5%) following 12 weeks of AP exposure as compared to those who did not (FDR = 0.0408). Fatty acids may represent illness biomarkers of PSDs and early predictors of AP-induced weight gain. The findings may hold important clinical implications for early identification of individuals who could benefit from prevention strategies to reduce future cardiometabolic risk, and may lead to novel, targeted treatments to counteract metabolic dysfunction in PSDs.
Collapse
Affiliation(s)
- Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kenya Costa-Dookhan
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kristoffer Panganiban
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Nicole MacKenzie
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Quinn Casuccio Treen
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Araba Chintoh
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel J. Müller
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Pharmacogenetics Research Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sanjeev Sockalingam
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Education, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philip Gerretsen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Geriatric Mental Health Services, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Marcos Sanches
- Biostatistics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alla Karnovsky
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kathleen A. Stringer
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, United States
| | - Vicki L. Ellingrod
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ivy F. Tso
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Psychiatry & Behavioral Health, Ohio State University, Columbus, OH, United States
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sri Mahavir Agarwal
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Margaret K. Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Kristen M. Ward
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
29
|
Zhang W, Du JL, Fang XY, Ni LY, Zhu YY, Yan W, Lu SP, Zhang RR, Xie SP. Shared and distinct structural brain alterations and cognitive features in drug-naïve schizophrenia and bipolar disorder. Asian J Psychiatr 2023; 82:103513. [PMID: 36827938 DOI: 10.1016/j.ajp.2023.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Our study aimed to examine the shared and distinct structural brain alterations, including cortical thickness(CT) and local gyrification index(LGI), and cognitive impairments between the early course stage of drug-naïve schizophrenia(SZ) and bipolar disorder(BD) patients when compared to healthy controls(HCs), and to further explore the correlation between altered brain structure and cognitive impairments. We included 72 SZ patients, 35 BD patients and 43 HCs. The cognitive function was assessed using the MATRICS Consensus Cognitive Battery. Cerebral cortex analyses were performed with FreeSurfer. Furthermore, any structural aberrations related to cognition impairments were examined. Cognitive impairments existed in SZ and BD patients and were much more severe and widespread in SZ patients, compared to HCs. There were no significant differences in LGI among three groups. Compared to HCs, SZ had thicker cortex in left pars triangularis, and BD showed thinner CT in left postcentral gyrus. In addition, BD showed thinner cortex in left pars triangularis, left pars opercularis, left insula and right fusiform gyrus compared to SZ. Moreover, our results indicated that CT in many brain areas were significantly correlated with cognitive function in HCs, but only CT of left pars triangularis was correlated with impaired social cognition found in SZ. The findings suggest that changes of CT in the left pars triangularis and left postcentral gyrus may be potential pathophysiological mechanisms of the cognition impairments in SZ and BD, respectively, and the divergent CT of partly brain areas in BD vs. SZ may help distinguish them in early phases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Jing-Lun Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Xing-Yu Fang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Long-Yan Ni
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuan-Yuan Zhu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shui-Ping Lu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Rong-Rong Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Shi-Ping Xie
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Ceylan MF, Tural Hesapcioglu S, Kanoğlu Yüksekkaya S, Erçin G, Yavas CP, Neşelіoğlu S, Erel O. Changes in neurofilament light chain protein (NEFL) in children and adolescents with Schizophrenia and Bipolar Disorder: Early period neurodegeneration. J Psychiatr Res 2023; 161:342-347. [PMID: 37003244 DOI: 10.1016/j.jpsychires.2023.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023]
Abstract
AIM Neurofilament light chain protein (NEFL), is defined as a structural protein which exists particularly in axones of neurons and is released to the cerum in consequence of neuroaxonal damage. The aim of this study is to investigate the peripheral cerumNEFLlevels of children and adolescents with early onset schizophrenia and bipolar disorder. METHOD In this study, we evaluated serum levels of NEFL in children and adolescents (13-17 years) with schizophrenia, bipolar disorder and healthy control group. The study is conducted with 35 schizophrenia, 38 bipolar disorder manic episode patients and 40 healthy controls. RESULTS The median age of the patient and control groups was 16 (IQR- Interquartile Range: 2). There was no statistical difference in median age (p = 0.52) and gender distribution(p = 0.53) between groups. NEFL levels of the patients with schizophrenia were significantly higher than the controls. NEFL levels of the patients with bipolar disorder were significantly higher than the controls. Serum levels of NEFL of the schizophrenia were higher than the bipolar disorder; however, the difference was not statistically significant. CONCLUSION In conclusion, serum NEFL level, as a confidential marker of neural damage, is increased in the children and adolescents with bipolar disorder and schizophrenia. This result may indicatea degenerative period in neurons of children and adolescents with schizophrenia or bipolar disorder and may play a role in the pathophisiology of these disorders. This result shows that there is neuronal damage in both diseases, but neuronal damage may be more in schizophrenia.
Collapse
Affiliation(s)
- Mehmet Fatih Ceylan
- Ankara Yildirim Beyazit University, Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara, Turkey.
| | - Selma Tural Hesapcioglu
- Ankara Yildirim Beyazit University, Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | - Seda Kanoğlu Yüksekkaya
- Ankara Yildirim Beyazit University, Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | - Görkem Erçin
- Ankara Yildirim Beyazit University, Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | - Cansu Pınar Yavas
- Ankara Yildirim Beyazit University, Faculty of Medicine, Child and Adolescent Psychiatry Department, Ankara, Turkey
| | - Salim Neşelіoğlu
- Ankara Yildirim Beyazit University, Faculty of Medicine, Clinical Biochemistry Department, Ankara, Turkey
| | - Ozcan Erel
- Ankara Yildirim Beyazit University, Faculty of Medicine, Clinical Biochemistry Department, Ankara, Turkey
| |
Collapse
|
31
|
Zeng L, He Z, Liu D, Li K, Gu K, Sun Q, Mei G, Zhang Y, Yan S, Zhang F. Genetic analysis of a large Han Chinese family line with schizoaffective psychosis. Heliyon 2023; 9:e14943. [PMID: 37025789 PMCID: PMC10070140 DOI: 10.1016/j.heliyon.2023.e14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
To locate the specific susceptibility genes of a high incidence of schizoaffective disease (SAD) with autonomic dominant inheritance, we recruited a family group from Henan Province with a high incidence of SAD, including 19 individuals sampled from five generations. We used a genome-wide high-density SNP chip to perform genotype detection. The LINKAGE package and MENDEL programs were used for. The two-point and multipoint analyses were calculated by Merlin and SimWalk2 software to obtain the nonparametric linkage (NPL) value, corresponding P value, and parameter linkage limit of detection (LOD) value. Genome-wide linkage analysis yielded a significant linkage signal located on the short arm of chromosome 19. In the dominant genetic model, the LOD of the multipoint parametric analysis was 2.5, and the nonparametric analysis was 19.4 (P < 0.00001). Further haploid genotype analysis localized the candidate region in the 19p13.3-13.2 region, beginning at rs178414 and ending at rs11668751 with a physical length of approximately 4.9 Mb. We believe that the genes responsible for SAD are in this region.
Collapse
Affiliation(s)
- Liping Zeng
- The Clinical Laboratory of No.984 Hospital of the People's Liberation Army, Beijing, 100094, China
- Corresponding author. NO.984 Hospital of the People’s Liberation Army, Beijing, China
| | - Ziyun He
- College of Laboratory Medicine, Zunyi Medical University, Zunyi, 563006, China
| | - Di Liu
- The 3rd People's Hospital of Heilongjiang Province-Qinhuangdao Branch, Qinhuangdao, 066001,China
| | - Kai Li
- The Clinical Laboratory of No.984 Hospital of the People's Liberation Army, Beijing, 100094, China
| | - Kesheng Gu
- The Clinical Laboratory of No.984 Hospital of the People's Liberation Army, Beijing, 100094, China
| | - Qi Sun
- The Clinical Laboratory of No.984 Hospital of the People's Liberation Army, Beijing, 100094, China
| | - Guisen Mei
- The Clinical Laboratory of No.984 Hospital of the People's Liberation Army, Beijing, 100094, China
| | - Yingxue Zhang
- The Clinical Laboratory of No.984 Hospital of the People's Liberation Army, Beijing, 100094, China
| | - Shengkai Yan
- College of Laboratory Medicine, Zunyi Medical University, Zunyi, 563006, China
| | - Feng Zhang
- College of Laboratory Medicine, Zunyi Medical University, Zunyi, 563006, China
- Beijing Institute of Genomics, Chinese Academy of Sciences No. 1 Beichen West Road, Chaoyang District, Beijing, 100800, China
- Ori-Gene (ShangDong)Science and Technology Co., Ltd, 261000, China
- Corresponding author. College of Laboratory Medicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
32
|
Raio A, Pergola G, Rampino A, Russo M, D’Ambrosio E, Selvaggi P, De Chiara V, Altamura M, Brudaglio F, Saponaro A, Semisa D, Bertolino A, Antonucci LA, Blasi G, Carofiglio A, Barrasso G, Bellomo A, Leccisotti I, Di Fino M, Andriola I, Pennacchio TC. Similarities and differences between multivariate patterns of cognitive and socio-cognitive deficits in schizophrenia, bipolar disorder and related risk. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:11. [PMID: 36801866 PMCID: PMC9938280 DOI: 10.1038/s41537-023-00337-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023]
Abstract
Cognition and social cognition anomalies in patients with bipolar disorder (BD) and schizophrenia (SCZ) have been largely documented, but the degree of overlap between the two disorders remains unclear in this regard. We used machine learning to generate and combine two classifiers based on cognitive and socio-cognitive variables, thus delivering unimodal and multimodal signatures aimed at discriminating BD and SCZ from two independent groups of Healthy Controls (HC1 and HC2 respectively). Multimodal signatures discriminated well between patients and controls in both the HC1-BD and HC2-SCZ cohorts. Although specific disease-related deficits were characterized, the HC1 vs. BD signature successfully discriminated HC2 from SCZ, and vice-versa. Such combined signatures allowed to identify also individuals at First Episode of Psychosis (FEP), but not subjects at Clinical High Risk (CHR), which were classified neither as patients nor as HC. These findings suggest that both trans-diagnostic and disease-specific cognitive and socio-cognitive deficits characterize SCZ and BD. Anomalous patterns in these domains are also relevant to early stages of disease and offer novel insights for personalized rehabilitative programs.
Collapse
Affiliation(s)
- Alessandra Raio
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Giulio Pergola
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Antonio Rampino
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy ,Psychiatry Unit - University Hospital, Bari, Italy
| | - Marianna Russo
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Enrico D’Ambrosio
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy ,grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 8AF UK
| | - Pierluigi Selvaggi
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy ,Psychiatry Unit - University Hospital, Bari, Italy
| | - Valerie De Chiara
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Mario Altamura
- grid.10796.390000000121049995Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Foggia, Foggia, Italy
| | | | | | | | - Alessandro Bertolino
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy ,Psychiatry Unit - University Hospital, Bari, Italy
| | - Linda A. Antonucci
- grid.7644.10000 0001 0120 3326Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Blasi
- Department of Translational Biomedicine and Neuroscience - University of Bari Aldo Moro, Bari, Italy. .,Psychiatry Unit - University Hospital, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Nagy Á, Dombi J, Fülep MP, Rudics E, Hompoth EA, Szabó Z, Dér A, Búzás A, Viharos ZJ, Hoang AT, Maczák B, Vadai G, Gingl Z, László S, Bilicki V, Szendi I. The Actigraphy-Based Identification of Premorbid Latent Liability of Schizophrenia and Bipolar Disorder. SENSORS (BASEL, SWITZERLAND) 2023; 23:958. [PMID: 36679755 PMCID: PMC9863012 DOI: 10.3390/s23020958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
(1) Background and Goal: Several studies have investigated the association of sleep, diurnal patterns, and circadian rhythms with the presence and with the risk states of mental illnesses such as schizophrenia and bipolar disorder. The goal of our study was to examine actigraphic measures to identify features that can be extracted from them so that a machine learning model can detect premorbid latent liabilities for schizotypy and bipolarity. (2) Methods: Our team developed a small wrist-worn measurement device that collects and identifies actigraphic data based on an accelerometer. The sensors were used by carefully selected healthy participants who were divided into three groups: Control Group (C), Cyclothymia Factor Group (CFG), and Positive Schizotypy Factor Group (PSF). From the data they collected, our team performed data cleaning operations and then used the extracted metrics to generate the feature combinations deemed most effective, along with three machine learning algorithms for categorization. (3) Results: By conducting the training, we were able to identify a set of mildly correlated traits and their order of importance based on the Shapley value that had the greatest impact on the detection of bipolarity and schizotypy according to the logistic regression, Light Gradient Boost, and Random Forest algorithms. (4) Conclusions: These results were successfully compared to the results of other researchers; we had a similar differentiation in features used by others, and successfully developed new ones that might be a good complement for further research. In the future, identifying these traits may help us identify people at risk from mental disorders early in a cost-effective, automated way.
Collapse
Affiliation(s)
- Ádám Nagy
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
| | - József Dombi
- Department of Computer Algorithms and Artificial Intelligence, University of Szeged, 2 Árpád Square, 6720 Szeged, Hungary
| | - Martin Patrik Fülep
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
| | - Emese Rudics
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
- Doctoral School of Interdisciplinary Medicine, Department of Medical Genetics, University of Szeged, 4 Somogyi Béla Street, 6720 Szeged, Hungary
| | - Emőke Adrienn Hompoth
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
| | - Zoltán Szabó
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
| | - András Dér
- ELKH Biological Research Centre, Institute of Biophysics, 62 Temesvári Boulevard, 6726 Szeged, Hungary
| | - András Búzás
- ELKH Biological Research Centre, Institute of Biophysics, 62 Temesvári Boulevard, 6726 Szeged, Hungary
| | - Zsolt János Viharos
- Institute for Computer Science and Control, Center of Excellence in Production Informatics and Control, Eötvös Lóránd Research Network (ELKH), Center of Excellence of the Hungarian Academy of Sciences (MTA), 13-17 Kende Street, 1111 Budapest, Hungary
- Faculty of Economics and Business, John von Neumann University, 10 Izsáki Street, 6000 Kecskemét, Hungary
| | - Anh Tuan Hoang
- Institute for Computer Science and Control, Center of Excellence in Production Informatics and Control, Eötvös Lóránd Research Network (ELKH), Center of Excellence of the Hungarian Academy of Sciences (MTA), 13-17 Kende Street, 1111 Budapest, Hungary
| | - Bálint Maczák
- Department of Technical Informatics, University of Szeged, 2 Árpád Square, 6720 Szeged, Hungary
| | - Gergely Vadai
- Department of Technical Informatics, University of Szeged, 2 Árpád Square, 6720 Szeged, Hungary
| | - Zoltán Gingl
- Department of Technical Informatics, University of Szeged, 2 Árpád Square, 6720 Szeged, Hungary
| | - Szandra László
- Doctoral School of Interdisciplinary Medicine, Department of Medical Genetics, University of Szeged, 4 Somogyi Béla Street, 6720 Szeged, Hungary
| | - Vilmos Bilicki
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
| | - István Szendi
- Department of Software Engineering, University of Szeged, 13 Dugonics Square, 6720 Szeged, Hungary
- Department of Psychiatry, Kiskunhalas Semmelweis Hospital, 1 Dr. Monszpart László Street, 6400 Kiskunhalas, Hungary
| |
Collapse
|
34
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
35
|
Arrouet A, Polgári P, Giersch A, Joos E. Temporal Order Judgments in Schizophrenia and Bipolar Disorders – Explicit and Implicit Measures. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Ordering events in time is essential for the understanding of causal relationships between successive events. Incorrect causal links can lead to false beliefs and an altered perception of reality. These symptoms belong to psychosis, which is present in schizophrenia (SZ) spectrum and bipolar (BP) disorder. Experimental results show that patients with SZ have an altered perception of temporal order, while there are no data in patients with BP. We investigated the ability of patients with SZ, BP, and controls to judge the order of stimuli with a 100-ms Stimulus Onset Asynchrony (SOA), and how such large asynchronies facilitate temporal order judgments for small asynchronies. Explicit temporal order effects suggest that patients with SZ perform worse at a long SOA (100 ms) as compared to controls, whereas patients with BP show no difference compared to controls or to patients with SZ. Implicit order effects reveal improved performances in case of identical as compared to different relative order between two successive trials for all groups, with no differences between the groups. We replicated explicit order impairments in patients with SZ compared to controls, while implicit effects appear to be preserved. This difficulty for patients to consciously order stimuli in time might be understood under the light of the loosening-of-associations phenomenon well described in SZ. Further, we showed that patients with BP do not reveal such an explicit order impairment which is consistent with phenomenological descriptions, suggesting a difference in time experience in patients with SZ and BP.
Collapse
Affiliation(s)
- Alana Arrouet
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
- CERVO Brain Research Centre, 2301 Av. D’Estimauville, Québec, QC G1E 1T2, Canada
| | - Patrik Polgári
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
| | - Anne Giersch
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
| | - Ellen Joos
- INSERM U1114, Cognitive Neuropsychology and Pathophysiology of Schizophrenia, 1 place de l’Hôpital, 67091 Strasbourg Cedex, France
| |
Collapse
|
36
|
Decreased basal ganglia and thalamic iron in early psychotic spectrum disorders are associated with increased psychotic and schizotypal symptoms. Mol Psychiatry 2022; 27:5144-5153. [PMID: 36071113 PMCID: PMC9772130 DOI: 10.1038/s41380-022-01740-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/14/2023]
Abstract
Iron deficits have been reported as a risk factor for psychotic spectrum disorders (PSD). However, examinations of brain iron in PSD remain limited. The current study employed quantitative MRI to examine iron content in several iron-rich subcortical structures in 49 young adult individuals with PSD (15 schizophrenia, 17 schizoaffective disorder, and 17 bipolar disorder with psychotic features) compared with 35 age-matched healthy controls (HC). A parametric approach based on a two-pool magnetization transfer model was applied to estimate longitudinal relaxation rate (R1), which reflects both iron and myelin, and macromolecular proton fraction (MPF), which is specific to myelin. To describe iron content, a synthetic effective transverse relaxation rate (R2*) was modeled using a linear fitting of R1 and MPF. PSD patients compared to HC showed significantly reduced R1 and synthetic R2* across examined regions including the pallidum, ventral diencephalon, thalamus, and putamen areas. This finding was primarily driven by decreases in the subgroup with schizophrenia, followed by schizoaffective disorder. No significant group differences were noted for MPF between PSD and HC while for regional volume, significant reductions in patients were only observed in bilateral caudate, suggesting that R1 and synthetic R2* reductions in schizophrenia and schizoaffective patients likely reflect iron deficits that either occur independently or precede structural and myelin changes. Subcortical R1 and synthetic R2* were also found to be inversely related to positive symptoms within the PSD group and to schizotypal traits across the whole sample. These findings that decreased iron in subcortical regions are associated with PSD risk and symptomatology suggest that brain iron deficiencies may play a role in PSD pathology and warrant further study.
Collapse
|
37
|
Dissecting the association between psychiatric disorders and neurological proteins: a genetic correlation and two-sample bidirectional Mendelian randomization study. Acta Neuropsychiatr 2022; 34:311-317. [PMID: 35343424 DOI: 10.1017/neu.2022.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The role of neurological proteins in the development of bipolar disorder (BD) and schizophrenia (SCZ) remains elusive now. The current study aims to explore the potential genetic correlations of plasma neurological proteins with BD and SCZ. METHODS By using the latest genome-wide association study (GWAS) summary data of BD and SCZ (including 41,917 BD cases, 11,260 SCZ cases, and 396,091 controls) derived from the Psychiatric GWAS Consortium website (PGC) and a recently released GWAS of neurological proteins (including 750 individuals), we performed a linkage disequilibrium score regression (LDSC) analysis to detect the potential genetic correlations between the two common psychiatric disorders and each of the 92 neurological proteins. Two-sample Mendelian randomisation (MR) analysis was then applied to assess the bidirectional causal relationship between the neurological proteins identified by LDSC, BD and SCZ. RESULTS LDSC analysis identified one neurological protein, NEP, which shows suggestive genetic correlation signals for both BD (coefficient = -0.165, p value = 0.035) and SCZ (coefficient = -0.235, p value = 0.020). However, those association did not remain significant after strict Bonferroni correction. Two sample MR analysis found that there was an association between genetically predicted level of NEP protein, BD (odd ratio [OR] = 0.87, p value = 1.61 × 10-6) and SCZ (OR = 0.90, p value = 4.04 × 10-6). However, in the opposite direction, there is no genetically predicted association between BD, SCZ, and NEP protein level. CONCLUSION This study provided novel clues for understanding the genetic effects of neurological proteins on BD and SCZ.
Collapse
|
38
|
Yamada Y, Inagawa T, Hirabayashi N, Sumiyoshi T. Emotion Recognition Deficits in Psychiatric Disorders as a Target of Non-invasive Neuromodulation: A Systematic Review. Clin EEG Neurosci 2022; 53:506-512. [PMID: 33587001 PMCID: PMC9548945 DOI: 10.1177/1550059421991688] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background. Social cognition deficits are a core feature of psychiatric disorders, such as schizophrenia and mood disorder, and deteriorate the functionality of patients. However, no definite strategy has been established to treat social cognition (eg, emotion recognition) impairments in these illnesses. Here, we provide a systematic review of the literature regarding transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) for the treatment of social cognition deficits in individuals with psychiatric disorders. Methods. A literature search was conducted on English articles identified by PubMed, PsycINFO, and Web of Science databases, according to the guidelines of the PRISMA statement. We defined the inclusion criteria as follows: (1) randomized controlled trials (RCTs), (2) targeting patients with psychiatric disorders (included in F20-F39 of the 10th revision of the International Statistical Classification of Diseases and Related Health Problems [ICD-10]), (3) evaluating the effect of tDCS or rTMS, (4) reporting at least one standardized social cognition test. Results. Five papers (3 articles on tDCS and 2 articles on rTMS) met the inclusion criteria which deal with schizophrenia or depression. The significant effects of tDCS or rTMS targeting the left dorsolateral prefrontal cortex on the emotion recognition domain were reported in patients with schizophrenia or depression. In addition, rTMS on the right inferior parietal lobe was shown to ameliorate social perception impairments of schizophrenia. Conclusions. tDCS and rTMS may enhance some domains of social cognition in patients with psychiatric disorders. Further research is warranted to identify optimal parameters to maximize the cognitive benefits of these neuromodulation methods.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention, National Institute of Mental Health, 26353National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
39
|
Uenishi S, Tamaki A, Yamada S, Yasuda K, Ikeda N, Mizutani-Tiebel Y, Keeser D, Padberg F, Tsuji T, Kimoto S, Takahashi S. Computational modeling of electric fields for prefrontal tDCS across patients with schizophrenia and mood disorders. Psychiatry Res Neuroimaging 2022; 326:111547. [PMID: 36240572 DOI: 10.1016/j.pscychresns.2022.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/30/2022] [Accepted: 10/01/2022] [Indexed: 02/25/2023]
Abstract
This cross-diagnostic study aims to computationally model electric field (efield) for prefrontal transcranial direct current stimulation in mood disorders and schizophrenia. Enrolled were patients with major depressive disorder (n = 23), bipolar disorder (n = 24), schizophrenia (n = 23), and healthy controls (n = 23). The efield was simulated using SimNIBS software (ver.2.1.1). Electrodes were placed at the left and right prefrontal areas and the current intensity was set to 2 mA intensity. Schizophrenia and major depressive disorder groups showed significantly lower 99.5th percentile efield strength than healthy controls. In voxel-wise analysis, patients with schizophrenia showed a significant reduction of simulated efield strength in the bilateral frontal lobe, cerebellum and brain stem compared with healthy controls. Among the patients with schizophrenia, reduction of simulated efield strength was not significantly correlated with psychiatric symptoms or global functioning. The patients with bipolar disorder showed no significant difference in simulated efield strength compared with healthy controls, and there was no significant difference between the clinical groups. Our results suggest attenuated electrophysiological response to transcranial direct current stimulation to the prefrontal cortex in patients with schizophrenia, and to some extent in patients with major depressive disorder.
Collapse
Affiliation(s)
- Shinya Uenishi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo, Japan.
| | - Atsushi Tamaki
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Hidaka Hospital, Gobo, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Natsuko Ikeda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Wakayama Prefectural Mental Health Care Center, Aridagawa, Japan
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany; Department of Radiology, University Hospital LMU Munich, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Munich, Germany
| | - Tomikimi Tsuji
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan; Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan; Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| |
Collapse
|
40
|
Kaliuzhna M, Kirschner M, Tobler PN, Kaiser S. Comparing adaptive coding of reward in bipolar I disorder and schizophrenia. Hum Brain Mapp 2022; 44:523-534. [PMID: 36111883 PMCID: PMC9842918 DOI: 10.1002/hbm.26078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Deficits in neural processing of reward have been described in both bipolar disorder (BD) and schizophrenia (SZ), but it remains unclear to what extent these deficits are caused by similar mechanisms. Efficient reward processing relies on adaptive coding which allows representing large input spans by limited neuronal encoding ranges. Deficits in adaptive coding of reward have previously been observed across the SZ spectrum and correlated with total symptom severity. In the present work, we sought to establish whether adaptive coding is similarly affected in patients with BD. Twenty-five patients with BD, 27 patients with SZ and 25 healthy controls performed a variant of the Monetary Incentive Delay task during functional magnetic resonance imaging in two reward range conditions. Adaptive coding was impaired in the posterior part of the right caudate in BD and SZ (trend level). In contrast, BD did not show impaired adaptive coding in the anterior caudate and right precentral gyrus/insula, where SZ showed deficits compared to healthy controls. BD patients show adaptive coding deficits that are similar to those observed in SZ in the right posterior caudate. Adaptive coding in BD appeared more preserved as compared to SZ participants especially in the more anterior part of the right caudate and to a lesser extent also in the right precentral gyrus. Thus, dysfunctional adaptive coding could constitute a fundamental deficit in severe mental illnesses that extends beyond the SZ spectrum.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Group, Department of PsychiatryUniversity of GenevaGenevaSwitzerland
| | | | - Philippe N. Tobler
- Laboratory for Social and Neural Systems Research, Department of EconomicsUniversity of ZurichZurichSwitzerland
| | - Stefan Kaiser
- Clinical and Experimental Psychopathology Group, Department of PsychiatryUniversity of GenevaGenevaSwitzerland,Department of Psychiatry, Psychotherapy and PsychosomaticsPsychiatric Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
41
|
Komatsu H, Onoguchi G, Jerotic S, Kanahara N, Kakuto Y, Ono T, Funakoshi S, Yabana T, Nakazawa T, Tomita H. Retinal layers and associated clinical factors in schizophrenia spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2022; 27:3592-3616. [PMID: 35501407 DOI: 10.1038/s41380-022-01591-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The retina shares structural and functional similarities with the brain. Furthermore, structural changes in the retina have been observed in patients with schizophrenia spectrum disorders (SSDs). This systematic review and meta-analysis investigated retinal abnormalities and their association with clinical factors for SSD. METHODS Studies related to retinal layers in SSD patients were retrieved from PubMed, Scopus, Web of Science, Cochrane Controlled Register of Trials, International Clinical Trials Registry Platform, and PSYNDEX databases from inception to March 31, 2021. We screened and assessed the eligibility of the identified studies. EZR ver.1.54 and the metafor package in R were used for the meta-analysis and a random-effects or fixed-effects model was used to report standardized mean differences (SMDs). RESULTS Twenty-three studies (2079 eyes of patients and 1571 eyes of controls) were included in the systematic review and meta-analysis. The average peripapillary retinal nerve fiber layer (pRNFL) thickness, average macular thickness (MT), and macular ganglion cell layer-inner plexiform layer (GCL-IPL) thickness were significantly lower in patients than in controls (n = 14, 6, and 3, respectively; SMD = -0.33, -0.49, and -0.43, respectively). Patients also had significantly reduced macular volume (MV) compared to controls (n = 7; SMD = -0.53). The optic cup volume (OCV) was significantly larger in patients than in controls (n = 3; SMD = 0.28). The meta-regression analysis indicated an association between several clinical factors, such as duration of illness and the effect size of the pRNFL, macular GCL-IPL, MT, and MV. CONCLUSION Thinning of the pRNFL, macular GCL-IPL, MT, and MV and enlargement of the OCV in SSD were observed. Retinal abnormalities may be applicable as state/trait markers in SSDs. The accumulated evidence was mainly cross-sectional and requires verification by longitudinal studies to characterize the relationship between OCT findings and clinical factors.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan. .,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan. .,Miyagi Psychiatric Center, Natori, Japan.
| | - Goh Onoguchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Stefan Jerotic
- Clinic for Psychiatry, University Clinical Centre of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nobuhisa Kanahara
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan.,Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yoshihisa Kakuto
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | - Shunichi Funakoshi
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takeshi Yabana
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toru Nakazawa
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Collaborative Program for Ophthalmic Drug Discovery, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
42
|
Yamada Y, Sueyoshi K, Yokoi Y, Inagawa T, Hirabayashi N, Oi H, Shirama A, Sumiyoshi T. Transcranial Direct Current Stimulation on the Left Superior Temporal Sulcus Improves Social Cognition in Schizophrenia: An Open-Label Study. Front Psychiatry 2022; 13:862814. [PMID: 35795024 PMCID: PMC9251509 DOI: 10.3389/fpsyt.2022.862814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with schizophrenia show impairments of social cognition, which cause poor real-world functional outcomes. Transcranial direct current stimulation (tDCS) delivered to frontal brain areas has been shown to partially alleviate disturbances of social cognition. In this study, we aimed to determine whether multisession tDCS targeting the superior temporal sulcus (STS), a brain region closely related to social cognition, would improve social cognitive performance in patients with schizophrenia. METHODS This was an open-label, single-arm trial to investigate the benefits and safety of multisession tDCS over the left STS. Fifteen patients received tDCS (2 mA × 20 min) two times per day for 5 consecutive days. Anodal and cathodal electrodes were placed over the left STS and right supraorbital regions, respectively. Assessments with the Social Cognition Screening Questionnaire (SCSQ), the Hinting Task (HT), the Brief Assessment of Cognition in Schizophrenia (BACS), and the Positive and Negative Syndrome Scale (PANSS) were conducted at baseline and 1 month after the final stimulation. RESULTS Significant improvements were found on theory of mind, as measured using the SCSQ (d = 0.53) and the HT (d = 0.49). These changes on social cognition were not correlated with those of neurocognition, as measured using the BACS or psychotic symptoms, as measured using the PANSS. There were no adverse events of serious/moderate levels attributable to tDCS. CONCLUSION These results suggest that administration of multisession tDCS with anode stimulation targeting the left STS provides a novel strategy to improve functional outcomes in patients with schizophrenia. ETHICS STATEMENT The National Center of Neurology and Psychiatry Clinical Research Review Board (CRB3180006) approved this study. TRIAL REGISTRATION This study was registered within the Japan Registry of Clinical Trials (jRCTs032180026).
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuki Sueyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuma Yokoi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuma Inagawa
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naotsugu Hirabayashi
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hideki Oi
- Department of Clinical Data Science, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Aya Shirama
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
43
|
Hwang M, Roh YS, Talero J, Cohen BM, Baker JT, Brady RO, Öngür D, Shinn AK. Auditory hallucinations across the psychosis spectrum: Evidence of dysconnectivity involving cerebellar and temporal lobe regions. Neuroimage Clin 2021; 32:102893. [PMID: 34911197 PMCID: PMC8636859 DOI: 10.1016/j.nicl.2021.102893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Auditory hallucinations (AH) are typically associated with schizophrenia (SZ), but they are also prevalent in bipolar disorder (BD). Despite the large body of research on the neural correlates of AH in SZ, the pathophysiology underlying AH remains unclear. Few studies have examined the neural substrates associated with propensity for AH in BD. Investigating AH across the psychosis spectrum has the potential to inform about the neural signature associated with the trait of AH, irrespective of psychiatric diagnosis. METHODS We compared resting state functional magnetic resonance imaging data in psychosis patients with (n = 90 AH; 68 SZ, 22 BD) and without (n = 55 NAH; 16 SZ, 39 BD) lifetime AH. We performed region of interest (ROI)-to-ROI functional connectivity (FC) analysis using 91 cortical, 15 subcortical, and 26 cerebellar atlas-defined regions. The primary aim was to identify FC differences between patients with and without lifetime AH. We secondarily examined differences between AH and NAH within each diagnosis. RESULTS Compared to the NAH group, patients with AH showed higher FC between cerebellum and frontal (left precentral gyrus), temporal [right middle temporal gyrus (MTG), left inferior temporal gyrus (ITG), left temporal fusiform gyrus)], parietal (bilateral superior parietal lobules), and subcortical (left accumbens, left palldium) brain areas. AH also showed lower FC between temporal lobe regions (between right ITG and right MTG and bilateral superior temporal gyri) relative to NAH. CONCLUSIONS Our findings suggest that dysconnectivity involving the cerebellum and temporal lobe regions may be common neurofunctional elements associated with AH propensity across the psychosis spectrum. We also found dysconnectivity patterns that were unique to lifetime AH within SZ or bipolar psychosis, suggesting both common and distinct mechanisms underlying AH pathophysiology in these disorders.
Collapse
Affiliation(s)
- Melissa Hwang
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Youkyung S Roh
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Jessica Talero
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA
| | - Bruce M Cohen
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Program for Neuropsychiatric Research, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Justin T Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Roscoe O Brady
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA
| | - Ann K Shinn
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, 115 Mill St, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, 25 Shattuck St, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Tarchi L, Damiani S, La Torraca Vittori P, Marini S, Nazzicari N, Castellini G, Pisano T, Politi P, Ricca V. The colors of our brain: an integrated approach for dimensionality reduction and explainability in fMRI through color coding (i-ECO). Brain Imaging Behav 2021; 16:977-990. [PMID: 34689318 PMCID: PMC9107439 DOI: 10.1007/s11682-021-00584-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
Several systematic reviews have highlighted the role of multiple sources in the investigation of psychiatric illness. For what concerns fMRI, the focus of recent literature preferentially lies on three lines of research, namely: functional connectivity, network analysis and spectral analysis. Data was gathered from the UCLA Consortium for Neuropsychiatric Phenomics. The sample was composed by 130 neurotypicals, 50 participants diagnosed with Schizophrenia, 49 with Bipolar disorder and 43 with ADHD. Single fMRI scans were reduced in their dimensionality by a novel method (i-ECO) averaging results per Region of Interest and through an additive color method (RGB): local connectivity values (Regional Homogeneity), network centrality measures (Eigenvector Centrality), spectral dimensions (fractional Amplitude of Low-Frequency Fluctuations). Average images per diagnostic group were plotted and described. The discriminative power of this novel method for visualizing and analyzing fMRI results in an integrative manner was explored through the usage of convolutional neural networks. The new methodology of i-ECO showed between-groups differences that could be easily appreciated by the human eye. The precision-recall Area Under the Curve (PR-AUC) of our models was > 84.5% for each diagnostic group as evaluated on the test-set – 80/20 split. In conclusion, this study provides evidence for an integrative and easy-to-understand approach in the analysis and visualization of fMRI results. A high discriminative power for psychiatric conditions was reached. This proof-of-work study may serve to investigate further developments over more extensive datasets covering a wider range of psychiatric diagnoses.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy.
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | | | - Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Nelson Nazzicari
- Council for Agricultural Research and Economics (CREA), Research Centre for Fodder Crops and Dairy Productions, Lodi, LO, Italy
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| | - Tiziana Pisano
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, viale della Maternità, Padiglione 8b, AOU Careggi, Firenze, Florence, FI, 50134, Italy
| |
Collapse
|
45
|
Efficacy and Safety of Multi-Session Transcranial Direct Current Stimulation on Social Cognition in Schizophrenia: A Study Protocol for an Open-Label, Single-Arm Trial. J Pers Med 2021; 11:jpm11040317. [PMID: 33921706 PMCID: PMC8073289 DOI: 10.3390/jpm11040317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
Backgrounds: Social cognition is defined as the mental operations underlying social behavior. Patients with schizophrenia elicit impairments of social cognition, which is linked to poor real-world functional outcomes. In a previous study, transcranial direct current stimulation (tDCS) improved emotional recognition, a domain of social cognition, in patients with schizophrenia. However, since social cognition was only minimally improved by tDCS when administered on frontal brain areas, investigations on the effect of tDCS on other cortical sites more directly related to social cognition are needed. Therefore, we present a study protocol to determine whether multi-session tDCS on superior temporal sulcus (STS) would improve social cognition deficits of schizophrenia. Methods: This is an open-label, single-arm trial, whose objective is to investigate the efficacy and safety of multi-session tDCS over the left STS to improve social cognition in patients with schizophrenia. The primary outcome measure will be the Social Cognition Screening Questionnaire. Neurocognition, functional capacity, and psychotic symptoms will also be evaluated by the Brief Assessment of Cognition in Schizophrenia, UCSD Performance-Based Skills Assessment-Brief, and Positive and Negative Syndrome Scale, respectively. Data will be collected at baseline, and 4 weeks after the end of intervention. If social cognition is improved in patients with schizophrenia by tDCS based on this protocol, we may plan randomized controlled trial.
Collapse
|
46
|
Canario E, Chen D, Biswal B. A review of resting-state fMRI and its use to examine psychiatric disorders. PSYCHORADIOLOGY 2021; 1:42-53. [PMID: 38665309 PMCID: PMC10917160 DOI: 10.1093/psyrad/kkab003] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 04/28/2024]
Abstract
Resting-state fMRI (rs-fMRI) has emerged as an alternative method to study brain function in human and animal models. In humans, it has been widely used to study psychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders, and attention deficit hyperactivity disorders. In this review, rs-fMRI and its advantages over task based fMRI, its currently used analysis methods, and its application in psychiatric disorders using different analysis methods are discussed. Finally, several limitations and challenges of rs-fMRI applications are also discussed.
Collapse
Affiliation(s)
- Edgar Canario
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| | - Donna Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, 619 Fenster Hall, Newark, NJ, 07102, US
| |
Collapse
|
47
|
De Berardis D, De Filippis S, Masi G, Vicari S, Zuddas A. A Neurodevelopment Approach for a Transitional Model of Early Onset Schizophrenia. Brain Sci 2021; 11:brainsci11020275. [PMID: 33672396 PMCID: PMC7926620 DOI: 10.3390/brainsci11020275] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
In the last decades, the conceptualization of schizophrenia has dramatically changed, moving from a neurodegenerative process occurring in early adult life to a neurodevelopmental disorder starting be-fore birth, showing a variety of premorbid and prodromal symptoms and, in relatively few cases, evolving in the full-blown psychotic syndrome. High rates of co-occurring different neurodevelopmental disorders such as Autism spectrum disorder and ADHD, predating the onset of SCZ, and neurobio-logical underpinning with significant similarities, support the notion of a pan-developmental disturbance consisting of impairments in neuromotor, receptive language, social and cognitive development. Con-sidering that many SCZ risk factors may be similar to symptoms of other neurodevelopmental psychi-atric disorders, transition processes from child & adolescent to adult systems of care should include both high risk people as well as subject with other neurodevelopmental psychiatric disorders with different levels of severity. This descriptive mini-review discuss the need of innovative clinical approaches, re-considering specific diagnostic categories, stimulating a careful analysis of risk factors and promoting the appropriate use of new and safer medications.
Collapse
Affiliation(s)
- Domenico De Berardis
- Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital “G. Mazzini,” National Health Service (NHS), 64100 ASL 4 Teramo, Italy
- Department of Neurosciences and Imaging, University “G. D’Annunzio”, 66100 Chieti, Italy
- Correspondence:
| | - Sergio De Filippis
- Department of Neuropsychiatry, Villa von Siebenthal Neuropsychiatric Hospital and Clinic, Genzano di Roma, 100045 Rome, Italy;
| | - Gabriele Masi
- IRCCS Stella Maris, Scientific Institute of Child Neurology and Psychiatry, Calambrone, 56128 Pisa, Italy;
| | - Stefano Vicari
- Department of Life Sciences and Publich Health, Catholic University, 00135 Rome, Italy;
- Child & Adolescent Psychiatry, Bambino Gesù Children’s Hospital, 00168 Rome, Italy
| | - Alessandro Zuddas
- Child and Adolescent Neuropsychiatry Unit, Department of Biomedical Sciences, University of Cagliari and “A Cao” Paediatric Hospital, “G Brotzu” Hospital Trust, 109134 Cagliari, Italy;
| |
Collapse
|
48
|
Yamada Y, Sumiyoshi T. Neurobiological Mechanisms of Transcranial Direct Current Stimulation for Psychiatric Disorders; Neurophysiological, Chemical, and Anatomical Considerations. Front Hum Neurosci 2021; 15:631838. [PMID: 33613218 PMCID: PMC7890188 DOI: 10.3389/fnhum.2021.631838] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
Backgrounds: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique for the treatment of several psychiatric disorders, e.g., mood disorders and schizophrenia. Therapeutic effects of tDCS are suggested to be produced by bi-directional changes in cortical activities, i.e., increased/decreased cortical excitability via anodal/cathodal stimulation. Although tDCS provides a promising approach for the treatment of psychiatric disorders, its neurobiological mechanisms remain to be explored. Objectives: To review recent findings from neurophysiological, chemical, and brain-network studies, and consider how tDCS ameliorates psychiatric conditions. Findings: Enhancement of excitatory synaptic transmissions through anodal tDCS stimulation is likely to facilitate glutamate transmission and suppress gamma-aminobutyric acid transmission in the cortex. On the other hand, it positively or negatively modulates the activities of dopamine, serotonin, and acetylcholine transmissions in the central nervous system. These neural events by tDCS may change the balance between excitatory and inhibitory inputs. Specifically, multi-session tDCS is thought to promote/regulate information processing efficiency in the cerebral cortical circuit, which induces long-term potentiation (LTP) by synthesizing various proteins. Conclusions: This review will help understand putative mechanisms underlying the clinical benefits of tDCS from the perspective of neurotransmitters, network dynamics, intracellular events, and related modalities of the brain function.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|