1
|
Singh A, Lalung J, Ivshina I, Kostova I. Editorial: Pharmaceutically active micropollutants - how serious is the problem and is there a microbial way out? Front Microbiol 2024; 15:1466334. [PMID: 39282568 PMCID: PMC11393639 DOI: 10.3389/fmicb.2024.1466334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Japareng Lalung
- School of Industrial Technology, University Sains Malaysia, George Town, Malaysia
| | - Irina Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
- Microbiology and Immunology Department, Perm State National Research University, Perm, Russia
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Petroleum Hydrocarbon Catabolic Pathways as Targets for Metabolic Engineering Strategies for Enhanced Bioremediation of Crude-Oil-Contaminated Environments. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Anthropogenic activities and industrial effluents are the major sources of petroleum hydrocarbon contamination in different environments. Microbe-based remediation techniques are known to be effective, inexpensive, and environmentally safe. In this review, the metabolic-target-specific pathway engineering processes used for improving the bioremediation of hydrocarbon-contaminated environments have been described. The microbiomes are characterised using environmental genomics approaches that can provide a means to determine the unique structural, functional, and metabolic pathways used by the microbial community for the degradation of contaminants. The bacterial metabolism of aromatic hydrocarbons has been explained via peripheral pathways by the catabolic actions of enzymes, such as dehydrogenases, hydrolases, oxygenases, and isomerases. We proposed that by using microbiome engineering techniques, specific pathways in an environment can be detected and manipulated as targets. Using the combination of metabolic engineering with synthetic biology, systemic biology, and evolutionary engineering approaches, highly efficient microbial strains may be utilised to facilitate the target-dependent bioprocessing and degradation of petroleum hydrocarbons. Moreover, the use of CRISPR-cas and genetic engineering methods for editing metabolic genes and modifying degradation pathways leads to the selection of recombinants that have improved degradation abilities. The idea of growing metabolically engineered microbial communities, which play a crucial role in breaking down a range of pollutants, has also been explained. However, the limitations of the in-situ implementation of genetically modified organisms pose a challenge that needs to be addressed in future research.
Collapse
|
3
|
Ma F, Ma R, Zou Y, Zhao L. Effect of Astaxanthin on the Antioxidant Capacity and Intestinal Microbiota of Tsinling Lenok Trout (Brachymystax lenok tsinlingensis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1125-1137. [PMID: 36329353 DOI: 10.1007/s10126-022-10175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Astaxanthin (Ast) has been shown to be beneficial for the antioxidant capacity, immune system, and stress tolerance of fish. This study was conducted to investigate the effects of dietary supplementation of Ast on the antioxidant capacity and intestinal microbiota of tsinling lenok trout. We formulated four diets with 0 (CT), 50 (A50), 100 (A100), and 150 (A150) mg/kg Ast. The results showed that Ast increased total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px), lysozyme (LZM), and catalase (CAT) activities. Malondialdehyde (MDA) content was lower in A150 and A100 than in CT (P < 0.05). Furthermore, the activities of acid phosphatase (ACP) were higher in A100 and A150 than in CT (P < 0.05). We harvested the midgut and applied next-generation sequencing of 16S rDNA. Compared to the control group, the Ast group had a greater abundance of Halomonas. Functional analysis showed that polycyclic aromatic hydrocarbon degradation was significantly higher with Ast, while novobiocin biosynthesis and C5-branched dibasic acid metabolism were significantly lower with Ast. In conclusion, Ast could enhance the antioxidant capacity, non-specific immunity, and intestinal health of tsinling lenok trout.
Collapse
Affiliation(s)
- Fang Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China.
| | - Ruilin Ma
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Yali Zou
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| | - Lei Zhao
- Key Laboratory of Resource Utilization of Agricultural Solid Waste in Gansu Province, Tianshui Normal University, South Xihe Road, Qinzhou District, Tianshui, 741000, Gansu Province, People's Republic of China
| |
Collapse
|
4
|
Li A, Chen K, Li B, Liang P, Shen C. Biphenyl-degrading Bacteria Isolation with Laser Induced Visualized Ejection Separation Technology and Traditional Colony Sorting. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:571-576. [PMID: 35841406 DOI: 10.1007/s00128-022-03574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
In this work, biphenyl was used as carbon source to enrich microorganisms from polychlorinated biphenyls (PCBs)-contaminated paddy soil samples, and the taxonomic structures in both of the soil samples and the fourth-generation enrichments were examined with high-throughput sequencing. Single cells were isolated from the enrichments via single cell sorting technology named Laser Induced Visualized Ejection Separation Technology (LIVEST) and also traditional single colony sorting, and the genera of the isolates were identified using 16S rRNA sequencing. The results from high-throughput sequencing present that enrichment from generation to generation can considerably change the microbial community. Comparing the two sorting methods, the LIVEST is more time-saving and cell-targeted for microbial resource exploration. Based on the further verification of biphenyl degradation, it was found that some strains belonging to genera Macrococcus, Aerococcus and Metabacillus are capable in degrading biphenyl, which have not been reported yet.
Collapse
Affiliation(s)
- Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- China Coal Aerial Photogrammetry and Remote Sensing Group Co., Ltd., 710199, Xi'an, China
| | - Kezhen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Bei Li
- The State Key Lab of Applied Optics, Fine Mechanics and Physics, Changchun Institute of Optics, CAS, 130033, Changchun, China
| | - Peng Liang
- The State Key Lab of Applied Optics, Fine Mechanics and Physics, Changchun Institute of Optics, CAS, 130033, Changchun, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S. New insights into the degradation of synthetic pollutants in contaminated environments. CHEMOSPHERE 2021; 268:128827. [PMID: 33162154 DOI: 10.1016/j.chemosphere.2020.128827] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 05/11/2023]
Abstract
The environment is contaminated by synthetic contaminants owing to their extensive applications globally. Hence, the removal of synthetic pollutants (SPs) from the environment has received widespread attention. Different remediation technologies have been investigated for their abilities to eliminate SPs from the ecosystem; these include photocatalysis, sonochemical techniques, nanoremediation, and bioremediation. SPs, which can be organic or inorganic, can be degraded by microbial metabolism at contaminated sites. Owing to their diverse metabolisms, microbes can adapt to a wide variety of environments. Several microbial strains have been reported for their bioremediation potential concerning synthetic chemical compounds. The selection of potential strains for large-scale removal of organic pollutants is an important research priority. Additionally, novel microbial consortia have been found to be capable of efficient degradation owing to their combined and co-metabolic activities. Microbial engineering is one of the most prominent and promising techniques for providing new opportunities to develop proficient microorganisms for various biological processes; here, we have targeted the SP-degrading mechanisms of microorganisms. This review provides an in-depth discussion of microbial engineering techniques that are used to enhance the removal of both organic and inorganic pollutants from different contaminated environments and under different conditions. The degradation of these pollutants is investigated using abiotic and biotic approaches; interestingly, biotic approaches based on microbial methods are preferable owing to their high potential for pollutant removal and cost-effectiveness.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, 248161, Uttarakhand, India
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology, Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
6
|
Genomic and transcriptomic perspectives on mycoremediation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 2020; 104:6919-6928. [PMID: 32572576 DOI: 10.1007/s00253-020-10746-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Mycoremediation holds great potential in remedying toxic environments contaminated with polyaromatic organic pollutants. To harness the natural process for practical applications, understanding the genetic and molecular basis of the remediation process is prerequisite. Compared to known bacterial degradation pathways of aromatic pollutants, however, the fungal degradation system is less studied and understanding of the genetic basis for biochemical activity is still incomplete. In this review, we surveyed recent findings from genomic and transcriptomic approaches to mycoremediation of aromatic pollutants, in company with the genomic basis of polycyclic aromatic hydrocarbon (PAH) degradation by basidiomycete fungi, Dentipellis sp. KUC8613. Unique features in the fungal degradation of PAHs were outlined by multiple cellular processes: (i) the initial oxidation of recalcitrant contaminants by various oxidoreductases including mono- and dioxygenases, (ii) the following detoxification, and (iii) the mineralization of activated pollutants that are common metabolism in many fungi. Along with the genomic data, the transcriptomic analysis not only posits a full repertoire of inducible genes that are common or specific to metabolize different PAHs but also leads to the discovery of uncharacterized genes with potential functions for bioremediation processes. In addition, the metagenomic study accesses community level of mycoremediation process to seek for the potential species or a microbial consortium in the natural environments. The comprehensive understanding of fungal degradation in multiple levels will accelerate practical application of mycoremediation. Key points • Mycoremediation of polyaromatic pollutants exploits a potent fungal degrader. • Fungal genomics provides a full repository of potential genes and enzymes. • Mycoremediation is a concerted cellular process involved with many novel genes. • Multi-omics approach enables the genome-scale reconstruction of remedying pathways.
Collapse
|
7
|
Jaiswal S, Shukla P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front Microbiol 2020; 11:808. [PMID: 32508759 PMCID: PMC7249858 DOI: 10.3389/fmicb.2020.00808] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.
Collapse
|