1
|
Fenu G, Griñán-Lisón C, Etzi F, González-Titos A, Pisano A, Toledo B, Farace C, Sabalic A, Carrillo E, Marchal JA, Madeddu R. Functional Characterization of miR-216a-5p and miR-125a-5p on Pancreatic Cancer Stem Cells. Int J Mol Sci 2025; 26:2830. [PMID: 40243417 PMCID: PMC11988779 DOI: 10.3390/ijms26072830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death. Its poor prognosis is closely related to late-stage diagnosis, which results from both nonspecific symptoms and the absence of biomarkers for early diagnosis. MicroRNAs (miRNAs) exert a regulatory role in numerous biological processes and their aberrant expression has been found in a broad spectrum of diseases, including cancer. Cancer stem cells (CSCs) represent a driving force for PDAC initiation, progression, and metastatic spread. Our previous research highlighted the interesting behavior of miR-216a-5p and miR-125a-5p related to PDAC progression and the CSC phenotype. The present study aimed to evaluate the effect of miR-216a-5p and miR-125a-5p on the acquisition or suppression of pancreatic CSC traits. BxPC-3, AsPC-1 cell lines, and their CSC-like models were transfected with miR-216a-5p and miR-125a-5p mimics and inhibitors. Following transfection, we evaluated their impact on the expression of CSC surface markers (CD44/CD24/CxCR4), ALDH1 activity, pluripotency- and EMT-related gene expression, and clonogenic potential. Our results show that miR-216a-5p enhances the expression of CD44/CD24/CxCR4 while negatively affecting the activity of ALDH1 and the expression of EMT genes. MiR-216a-5p positively influenced the clonogenic property. MiR-125a-5p promoted the expression of CD44/CD24/CxCR4 while inhibiting ALDH1 activity. It enhanced the expression of Snail, Oct-4, and Sox-2, while the clonogenic potential appeared to be affected. Comprehensively, our results provide further knowledge on the role of miRNAs in pancreatic CSCs. Moreover, they corroborate our previous findings about miR-216a-5p's potential dual role and miR-125a-5p's promotive function in PDAC.
Collapse
Affiliation(s)
- Grazia Fenu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (G.F.); (F.E.); (C.F.); (A.S.); (R.M.)
| | - Carmen Griñán-Lisón
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; (A.G.-T.); (B.T.); (E.C.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Federica Etzi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (G.F.); (F.E.); (C.F.); (A.S.); (R.M.)
| | - Aitor González-Titos
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; (A.G.-T.); (B.T.); (E.C.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Andrea Pisano
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (G.F.); (F.E.); (C.F.); (A.S.); (R.M.)
| | - Belén Toledo
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; (A.G.-T.); (B.T.); (E.C.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Cristiano Farace
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (G.F.); (F.E.); (C.F.); (A.S.); (R.M.)
| | - Angela Sabalic
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (G.F.); (F.E.); (C.F.); (A.S.); (R.M.)
| | - Esmeralda Carrillo
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; (A.G.-T.); (B.T.); (E.C.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain; (A.G.-T.); (B.T.); (E.C.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy; (G.F.); (F.E.); (C.F.); (A.S.); (R.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
- International Society for Research on Cadmium and Trace Element Toxicity, 07100 Sassari, Italy
| |
Collapse
|
2
|
Hashem J, Alkhalaileh L, Abushukair H, Ayesh M. miRNA Profiles in Patients with Hematological Malignancy at Different Stages of the Disease: A Preliminary Study. Biomedicines 2024; 12:1924. [PMID: 39200388 PMCID: PMC11351647 DOI: 10.3390/biomedicines12081924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
The dysregulation of miRNA expression has been shown to impact cellular physiology and tumorigenesis. Studies have reported several miRNA regulatory elements and pathways that play a significant role in the diagnosis, prognosis, and treatment of hematological malignancies. This is the first study to test the differential expression of miRNAs at crucial stages of the disease, specifically newly diagnosed, resistant to treatment, and remission. Circulating miRNAs extracted from the blood samples of 18 patients diagnosed with leukemia or lymphoma at different stages and 2 healthy controls were quantified by qPCR using a panel of 96 tumorigenic miRNAs. An enrichment analysis was performed to understand the mechanisms through which differential miRNA expression affects cellular and molecular functions. Significant upregulation of hsa-miR-1, hsa-miR-20a-5p, hsa-miR-23a-3p, hsa-miR-92b3p, and hsa-miR-196a-5p was detected among the different stages of leukemia and lymphoma. mir-1 and mir-196a-5p were upregulated in the remission stage of leukemia, while mir-20a-5p, mir-23a-3p, and mir-92b-3p were upregulated during the resistant stage of lymphoma. The enrichment analysis revealed these miRNAs' involvement in the RAS signaling pathway, TGF-β signaling, and apoptotic pathways, among others. This study highlights new biomarkers that could be used as potential targets for disease diagnosis, prognosis, and treatment, therefore enhancing personalized treatments and survival outcomes for patients.
Collapse
Affiliation(s)
- Jood Hashem
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Lujain Alkhalaileh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (M.A.)
| | - Mahmoud Ayesh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (H.A.); (M.A.)
| |
Collapse
|
3
|
Batan S, Kuppuswamy S, Wood M, Reddy M, Annex B, Ganta V. Inhibiting anti-angiogenic VEGF165b activates a miR-17-20a-Calcipressin-3 pathway that revascularizes ischemic muscle in peripheral artery disease. COMMUNICATIONS MEDICINE 2024; 4:3. [PMID: 38182796 PMCID: PMC10770062 DOI: 10.1038/s43856-023-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND VEGF165a increases the expression of the microRNA-17-92 cluster, promoting developmental, retinal, and tumor angiogenesis. We have previously shown that VEGF165b, an alternatively spliced anti-angiogenic VEGF-A isoform, inhibits the VEGFR-STAT3 pathway in ischemic endothelial cells (ECs) to decrease their angiogenic capacity. In ischemic macrophages (Møs), VEGF165b inhibits VEGFR1 to induce S100A8/A9 expression, which drives M1-like polarization. Our current study aims to determine whether VEGF165b inhibition promotes perfusion recovery by regulating the microRNA(miR)-17-92 cluster in preclinical PAD. METHODS Femoral artery ligation and resection was used as a preclinical PAD model. Hypoxia serum starvation (HSS) was used as an in vitro PAD model. VEGF165b was inhibited/neutralized by an isoform-specific VEGF165b antibody. RESULTS Here, we show that VEGF165b-inhibition induces the expression of miR-17-20a (within miR-17-92 (miR-17-18a-19a-19b-20a-92) cluster) in HSS-ECs and HSS-Møs vs. respective normal and/or isotype-matched IgG controls to enhance perfusion recovery. Consistent with the bioinformatics analysis that revealed RCAN3 as a common target of miR-17 and miR-20a, Argonaute-2 pull-down assays showed decreased miR-17-20a expression and higher RCAN3 expression in the RNA-induced silencing complex of HSS-ECs and HSS-Møs vs. respective controls. Inhibiting miR-17-20a induced RCAN3 levels to decrease ischemic angiogenesis and promoted M1-like polarization to impair perfusion recovery. Finally, using STAT3 inhibitors, S100A8/A9 silencers, and VEGFR1-deficient ECs and Møs, we show that VEGF165b-inhibition activates the miR-17-20a-RCAN3 pathway independent of VEGFR1-STAT3 or VEGFR1-S100A8/A9 in ischemic-ECs and ischemic-Møs respectively. CONCLUSIONS Our data revealed a hereunto unrecognized therapeutic 'miR-17-20a-RCAN3' pathway in the ischemic vasculature that is VEGFR1-STAT3/S100A8/A9 independent and is activated only upon VEGF165b-inhibition in PAD.
Collapse
Affiliation(s)
- Sonia Batan
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Sivaraman Kuppuswamy
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Madison Wood
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Meghana Reddy
- Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Brian Annex
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Vijay Ganta
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
4
|
Batan S, Kuppuswamy S, Wood M, Reddy M, Annex BH, Ganta VC. Inhibiting Anti-angiogenic VEGF165b Activates a Novel miR-17-20a-Calcipressin-3 Pathway that Revascularizes Ischemic Muscle in Peripheral Artery Disease. RESEARCH SQUARE 2023:rs.3.rs-3213504. [PMID: 37645966 PMCID: PMC10462251 DOI: 10.21203/rs.3.rs-3213504/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Background VEGF165a increases the expression of microRNA-17-92 cluster, promoting developmental, retinal, and tumor angiogenesis. We have previously shown that VEGF165b, an alternatively spliced VEGF-A isoform, inhibits the VEGFR-STAT3 pathway in ischemic endothelial cells (ECs) to decrease their angiogenic capacity. In ischemic macrophages (Møs), VEGF165b inhibits VEGFR1 to induce S100A8/A9 expression, which drives M1-like polarization. Our current study aims to determine whether VEGF165b inhibition promotes perfusion recovery by regulating the miR-17-92 cluster in preclinical PAD. Methods Hind limb ischemia (HLI) induced by femoral artery ligation and resection was used as a preclinical PAD model. Hypoxia serum starvation (HSS) was used as an in vitro PAD model. VEGF165b was inhibited/neutralized by an isoform-specific VEGF165b antibody. Results Systematic analysis of miR-17-92 cluster members (miR-17-18a-19a-19b-20a-92) in experimental-PAD models showed that VEGF165b-inhibition induces miRNA-17-20a (within miR-17-92 cluster) in HSS-ECs and HSS-bone marrow derived macrophages (BMDMs) vs. respective normal and/or isotype matched IgG controls to enhance perfusion-recovery. Consistent with the bioinformatics analysis that revealed RCAN3 as a common target of miR-17 and miR-20a, Argonaute-2 pull-down assays showed decreased miR-17-20a expression and higher RCAN3 expression in the RISC complex of HSS-ECs and HSS-BMDMs vs. the respective controls. Inhibiting miR-17-20a induced RCAN3 levels to decrease ischemic angiogenesis and promoted M1-like polarization to impair perfusion recovery. Finally, using STAT3 inhibitors, S100A8/A9 silencers and VEGFR1-deficient ECs and Møs, we show that VEGF165b inhibition activates the miR-17-20a-RCAN3 pathway independent of VEGFR1-STAT3 or VEGFR1-S100A8/A9 in ischemic ECs and ischemic Møs, respectively. Conclusion Our data revealed a hereunto unrecognized therapeutic 'miR-17-20a-RCAN3' pathway in the ischemic vasculature that is VEGFR1-STAT3/S100A8/A9 independent and is activated only upon VEGF165b inhibition in PAD.
Collapse
Affiliation(s)
- S Batan
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta-GA-30912
| | - S Kuppuswamy
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta-GA-30912
| | - M Wood
- Medical College of Georgia, Augusta University, Augusta-GA-30912
| | - M Reddy
- Medical College of Georgia, Augusta University, Augusta-GA-30912
| | - B H Annex
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta-GA-30912
| | - V C Ganta
- Vascular Biology Center, Department of Medicine, Augusta University, Augusta-GA-30912
| |
Collapse
|
5
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
6
|
El-Mahdy HA, Elsakka EGE, El-Husseiny AA, Ismail A, Yehia AM, Abdelmaksoud NM, Elshimy RAA, Noshy M, Doghish AS. miRNAs role in bladder cancer pathogenesis and targeted therapy: Signaling pathways interplay - A review. Pathol Res Pract 2023; 242:154316. [PMID: 36682282 DOI: 10.1016/j.prp.2023.154316] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Bladder cancer (BC) is the 11th most popular cancer in females and 4th in males. A lot of efforts have been exerted to improve BC patients' care. Besides, new approaches have been developed to enhance the efficiency of BC diagnosis, prognosis, therapeutics, and monitoring. MicroRNAs (miRNAs, miRs) are small chain nucleic acids that can regulate wide networks of cellular events. They can inhibit or degrade their target protein-encoding genes. The miRNAs are either downregulated or upregulated in BC due to epigenetic alterations or biogenesis machinery abnormalities. In BC, dysregulation of miRNAs is associated with cell cycle arrest, apoptosis, proliferation, metastasis, treatment resistance, and other activities. A variety of miRNAs have been related to tumor kind, stage, or patient survival. Besides, although new approaches for using miRNAs in the diagnosis, prognosis, and treatment of BC have been developed, it still needs further investigations. In the next words, we illustrate the recent advances in the role of miRNAs in BC aspects. They include the role of miRNAs in BC pathogenesis and therapy. Besides, the clinical applications of miRNAs in BC diagnosis, prognosis, and treatment are also discussed.
Collapse
Affiliation(s)
- Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Reham A A Elshimy
- Clinical & Chemical Pathology Department, National Cancer Institute, Cairo University, 11796 Cairo, Egypt
| | - Mina Noshy
- Clinical Pharmacy Department, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun 2022; 33:100647. [PMID: 36327576 DOI: 10.1016/j.ctarc.2022.100647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.
Collapse
|
8
|
GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene regulatory networks (GRN) are one of the etiologies associated with cancer. Their dysregulation can be associated with cancer formation and asymmetric cellular functions in cancer stem cells, leading to disease persistence and resistance to treatment. Systems that model the complex dynamics of these networks along with adapting to partially known real omics data are closer to reality and may be useful to understand the mechanisms underlying neoplastic phenomena. In this paper, for the first time, modelling of GRNs is performed using delayed nonlinear variable order fractional (VOF) systems in the state space by a new tool called GENAVOS. Although the tool uses gene expression time series data to identify and optimize system parameters, it also models possible epigenetic signals, and the results show that the nonlinear VOF systems have very good flexibility in adapting to real data. We found that GRNs in cancer cells actually have a larger delay parameter than in normal cells. It is also possible to create weak chaotic, periodic, and quasi-periodic oscillations by changing the parameters. Chaos can be associated with the onset of cancer. Our findings indicate a profound effect of time-varying orders on these networks, which may be related to a type of cellular epigenetic memory. By changing the delay parameter and the variable order functions (possible epigenetics signals) for a normal cell system, its behaviour becomes quite similar to the behaviour of a cancer cell. This work confirms the effective role of the miR-17-92 cluster as an epigenetic factor in the cancer cell cycle.
Collapse
|
9
|
Read DE, Gupta A, Cawley K, Fontana L, Agostinis P, Samali A, Gupta S. Downregulation of miR-17-92 Cluster by PERK Fine-Tunes Unfolded Protein Response Mediated Apoptosis. Life (Basel) 2021; 11:life11010030. [PMID: 33418948 PMCID: PMC7825066 DOI: 10.3390/life11010030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 01/07/2023] Open
Abstract
An important event in the unfolded protein response (UPR) is activation of the endoplasmic reticulum (ER) kinase PERK. The PERK signalling branch initially mediates a prosurvival response, which progresses to a proapoptotic response upon prolonged ER stress. However, the molecular mechanisms of PERK-mediated cell death are not well understood. Here we show that expression of the primary miR-17-92 transcript and mature miRNAs belonging to the miR-17-92 cluster are decreased during UPR. We found that miR-17-92 promoter reporter activity was reduced during UPR in a PERK-dependent manner. Furthermore, we show that activity of the miR-17-92 promoter is repressed by ectopic expression of ATF4 and NRF2. Promoter deletion analysis mapped the region responding to UPR-mediated repression to a site in the proximal region of the miR-17-92 promoter. Hypericin-mediated photo-oxidative ER damage reduced the expression of miRNAs belonging to the miR-17-92 cluster in wild-type but not in PERK-deficient cells. Importantly, ER stress-induced apoptosis was inhibited upon miR-17-92 overexpression in SH-SY5Y and H9c2 cells. Our results reveal a novel function for ATF4 and NRF2, where repression of the miR-17-92 cluster plays an important role in ER stress-mediated apoptosis. Mechanistic details are provided for the potentiation of cell death via sustained PERK signalling mediated repression of the miR-17-92 cluster.
Collapse
Affiliation(s)
- Danielle E. Read
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Ananya Gupta
- Discipline of Physiology, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
| | - Karen Cawley
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland; (K.C.); (A.S.)
| | - Laura Fontana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, 02138 MA, USA;
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium;
- VIB Center for Cancer Biology Research, 3000 Leuven, Belgium
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland; (K.C.); (A.S.)
| | - Sanjeev Gupta
- Discipline of Pathology, Cancer Progression and Treatment Research Group, Lambe Institute for Translational Research, School of Medicine, National University of Ireland-Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
10
|
Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Cancers (Basel) 2020; 12:E3657. [PMID: 33291485 PMCID: PMC7762117 DOI: 10.3390/cancers12123657] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.
Collapse
Affiliation(s)
- Subhasree Kumar
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Edward A. Gonzalez
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| | - Pranela Rameshwar
- Department of Medicine, Hematology/Oncology, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ 07103, USA
| | - Jean-Pierre Etchegaray
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA; (S.K.); (E.A.G.)
| |
Collapse
|
11
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
12
|
miRNA as promising theragnostic biomarkers for predicting radioresistance in cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 157:103183. [PMID: 33310279 DOI: 10.1016/j.critrevonc.2020.103183] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
Radioresistance remains as an obstacle in cancer treatment. This systematic review and meta-analysis aimed to evaluate the association between the expression of miRNAs and responses to radiotherapy and the prognosis of different tumors. In total, 77 miRNAs in 19 cancer types were studied, in which 24 miRNAs were upregulated and 58 miRNAs were downregulated in cancer patients. Five miRNAs were differentially expressed. Moreover, 75 miRNAs were found to be related to radioresistance, while 5 were observed to be related to radiosensitivity. The pooled HR and 95 % confidence interval for the combined studies was 1.135 (0.819-1.574; P-value = 0.4). The HR values of the subgroup analysis for miR-21 (HR = 2.344; 95 % CI: 1.927-2.850; P-value = 0.000), nasopharyngeal carcinoma (HR = 0.448; 95 % CI: 0.265-0.760; P = 0.003) and breast cancer (HR = 1.131; 95 % CI: 0.311-4.109; P = .85) were obtained. Our results highlighted that across the published literature, miRNAs can modulate tumor radioresistance or sensitivity by affecting radiation-related signaling pathways. It seems that miRNAs could be considered as a theragnostic biomarker to predict and monitor clinical response to radiotherapy. Thus, the prediction of radioresistance in malignant patients will improve radiotherapy outcomes and radiotherapeutic resistance.
Collapse
|
13
|
Differential expression, function and prognostic value of miR-17-92 cluster in ER-positive and triple-negative breast cancer. Cancer Treat Res Commun 2020; 25:100224. [PMID: 33096318 DOI: 10.1016/j.ctarc.2020.100224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022]
Abstract
Recent evidence has shown that the miR-17-92 cluster can function either as oncogene or tumor suppressor in human cancers. The function of miR-17-92 in subtypes of breast cancer remains largely unknown. The expression of miR-17-92 is elevated in triple negative breast cancer (TNBC) but reduced in estrogen receptor (ER)-positive breast cancer (ERPBC). We show that increased expression of miRNAs belonging to the miR-17-92 cluster is associated with poor outcome in TNBC, whereas the expression of miR-17-92 miRNAs is with good outcome in ERPBC. We show that ectopic expression of miR-17-92 inhibited cell growth and invasion of ER-positive and HER2-enriched cells. On the contrary, miR-17-92 expression enhanced cell growth and invasion of TNBC cells. Further, we found that miR-17-92 expression sensitized MCF7 cells to chemotherapeutic compounds, whereas it rendered SKBR3 cells resistant to them. We found that expression of ADORA1 was reduced by miR-17-92-expressing breast cancer cells, specifically in ERPBC. We observed an inverse correlation between the expression of ADORA1 and miR-17-92 in human breast cancer. Treatment with DPCPX, a selective ADORA1 antagonist, abolished the difference in the growth of control and miR-17-92 overexpressing MCF7 cells and identified ADORA1 as a key functional target of miR-17-92 in ERPBC. Furthermore, increased expression of ADORA1 in ERPBC is associated with a poor outcome. Our observations underscore the context-dependent role of miR-17-92 in breast cancer subtypes and suggest that miR-17-92 could serve as novel prognostic markers in breast cancer.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
15
|
Tsamou M, Nawrot TS, Carollo RM, Trippas AJ, Lefebvre W, Vanpoucke C, Vrijens K. Prenatal particulate air pollution exposure and expression of the miR-17/92 cluster in cord blood: Findings from the ENVIRONAGE birth cohort. ENVIRONMENT INTERNATIONAL 2020; 142:105860. [PMID: 32599355 DOI: 10.1016/j.envint.2020.105860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Air pollution exposure during pregnancy is an important environmental health issue. Epigenetics mediate the effects of prenatal exposure and could increase disease predisposition in later life. The oncogenic miR-17/92 cluster is involved in normal development and disease. OBJECTIVES Here, for the first time the potential prenatal effects of particulate matter with a diameter<2.5 μm (PM2.5) exposure on expression of the miR-17/92 cluster in cord blood are explored. METHODS In 370 mother-newborn pairs from the ENVIRONAGE birth cohort, expression of three members of the miR-17/92 cluster was measured in cord blood by qRT-PCR. Expression of C-MYC and CDKN1A, a cluster activator and a target gene, respectively, was also analyzed. Multivariable linear regression models were used to associate the relative m(i)RNA expression with prenatal PM2.5 exposure. RESULTS PM2.5 exposure averaged (10th-90th percentile) 11.7 (9.0-14.4) µg/m3 over the entire pregnancy. In cord blood, miR-17 and miR-20a showed a -45.0% (95%CI: -55.9 to -31.4, p < 0.0001) and a -33.7% (95%CI: -46.9 to -17.2, p = 0.0003), decrease in expression in association with first trimester PM2.5 exposure, and a -32.5% (95%CI: -45.6 to -16.3, p = 0.0004) and -23.3% (95%CI: -38.1 to -4.8, p = 0.02), respectively, decrease in expression in association with PM2.5 exposure during the entire pregnancy. In association with third trimester PM2.5 exposure, a reduction of -25.8% (95%CI: -40.2 to -8.0, p = 0.007) and -14.2% (95%CI: -27.7 to 1.9, p = 0.08), for miR-20a and miR-92a expression, respectively, was identified. Only miR-92a expression (-15.7%, 95%CI: -27.3 to -2.4, p = 0.02) was associated with PM2.5 exposure during the last month of pregnancy. C-MYC expression was downregulated in cord blood in association with prenatal PM2.5 exposure during the first trimester and the entire pregnancy, in the adjusted model. DISCUSSION Lower expression levels of the miR-17/92 cluster in cord blood in association with increased prenatal PM2.5 exposure were observed. Whether this oncogenic microRNA cluster plays a role in trans-placental carcinogenesis remains to be elucidated.
Collapse
Affiliation(s)
- Maria Tsamou
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), Leuven, Belgium
| | | | - Ann-Julie Trippas
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Wouter Lefebvre
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Karen Vrijens
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
16
|
Shibuya N, Kakeji Y, Shimono Y. MicroRNA-93 targets WASF3 and functions as a metastasis suppressor in breast cancer. Cancer Sci 2020; 111:2093-2103. [PMID: 32307765 PMCID: PMC7293106 DOI: 10.1111/cas.14423] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cells with cancer stem cell (CSC) properties initiate both primary tumor formation and metastases at distant sites. Acquisition of CSC properties is highly associated with epigenetic alterations, including those mediated by microRNAs (miRNAs). We have previously established the breast cancer patient‐derived tumor xenograft (PDX) mouse model in which CSC marker CD44+ cancer cells formed spontaneous microscopic metastases in the liver. In this PDX mouse, we found that the expression levels of 3 miRNAs (miR‐25, miR‐93, and miR‐106b) in the miR‐106b‐25 cluster were much lower in the CD44+ human cancer cells metastasized to the liver than those at the primary site. Constitutive overexpression of miR‐93 suppressed invasive ability and 3D‐organoid formation capacity of breast cancer cells in vitro and significantly suppressed their metastatic ability to the liver in vivo. Wiskott‐Aldrich syndrome protein family member 3 (WASF3), a regulator of both cytoskeleton remodeling and CSC properties, was identified as a functional target of miR‐93: overexpression of miR‐93 reduced the protein level of WASF3 in breast cancer cells and WASF3 rescued the miR‐93‐mediated suppression of breast cancer cell invasion. These findings suggest that miR‐93 functions as a metastasis suppressor by suppressing both invasion ability and CSC properties in breast cancers.
Collapse
Affiliation(s)
- Naoki Shibuya
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yohei Shimono
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
17
|
A Comprehensive Molecular Characterization of the Pancreatic Neuroendocrine Tumor Cell Lines BON-1 and QGP-1. Cancers (Basel) 2020; 12:cancers12030691. [PMID: 32183367 PMCID: PMC7140066 DOI: 10.3390/cancers12030691] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 02/08/2023] Open
Abstract
Experimental models of neuroendocrine tumor disease are scarce, with only a few existing neuroendocrine tumor cell lines of pancreatic origin (panNET). Their molecular characterization has so far focused on the neuroendocrine phenotype and cancer-related mutations, while a transcription-based assessment of their developmental origin and malignant potential is lacking. In this study, we performed immunoblotting and qPCR analysis of neuroendocrine, epithelial, developmental endocrine-related genes as well as next-generation sequencing (NGS) analysis of microRNAs (miRs) on three panNET cell lines, BON-1, QGP-1, and NT-3. All three lines displayed a neuroendocrine and epithelial phenotype; however, while insulinoma-derived NT-3 cells preferentially expressed markers of mature functional pancreatic β-cells (i.e., INS, MAFA), both BON-1 and QGP-1 displayed high expression of genes associated with immature or non-functional β/δ-cells genes (i.e., NEUROG3), or pancreatic endocrine progenitors (i.e., FOXA2). NGS-based identification of miRs in BON-1 and QGP-1 cells revealed the presence of all six members of the miR-17–92 cluster, which have been implicated in β-cell function and differentiation, but also have roles in cancer being both oncogenic or tumor suppressive. Notably, both BON-1 and QGP-1 cells expressed several miRs known to be negatively associated with epithelial–mesenchymal transition, invasion or metastasis. Moreover, both cell lines failed to exhibit migratory activity in vitro. Taken together, NT-3 cells resemble mature functional β-cells, while both BON-1 and QGP-1 are more similar to immature/non-functional pancreatic β/δ-cells or pancreatic endocrine progenitors. Based on the recent identification of three transcriptional subtypes in panNETs, NT-3 cells resemble the “islet/insulinoma tumors” (IT) subtype, while BON-1 and QGP-1 cells were tentatively classified as “metastasis-like/primary” (MLP). Our results provide a comprehensive characterization of three panNET cell lines and demonstrate their relevance as neuroendocrine tumor models.
Collapse
|
18
|
Posner R, Laubenbacher R. The contribution of microRNA-mediated regulation to short- and long-term gene expression predictability. J Theor Biol 2020; 486:110055. [PMID: 31647935 DOI: 10.1016/j.jtbi.2019.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/14/2019] [Accepted: 10/20/2019] [Indexed: 11/28/2022]
Abstract
MicroRNAs are a class of short, noncoding RNAs which are essential for the coordination and timing of cell differentiation and embryonic development. However, despite their guiding role in development, microRNAs are dysregulated in many pathologies, including nearly all cases of cancer. While both development and oncogenesis can be thought of as extremes of phenotypic plasticity, they characteristically manifest on much different time scales: one taking place over a matter of weeks, the other typically requiring decades. Because microRNAs are believed to support this plasticity, a critically important question is how microRNAs affect phenotypic stability on different time scales, and what dynamical characteristics shift the balance between these two roles. To address this question, we extend a well-established mathematical model of transcriptional gene regulation to include translational regulation by microRNAs, and examine their effects on both short- and long-term gene expression predictability. Our findings show that microRNAs greatly improve short-term predictability for earlier, developmental phenotypes while causing a small decrease in long-term predictability, and that these effects are difficult to separate. In addition to providing a theoretical explanation for this seemingly duplicitous behavior, we describe some of the properties which determine the cost-benefit balance between short-term stabilization and long-term destabilization.
Collapse
Affiliation(s)
- Russell Posner
- Center for Quantitative Medicine, UConn Health, 263 Farmington Avenue Farmington, CT 06030, USA.
| | - Reinhard Laubenbacher
- Center for Quantitative Medicine, UConn Health, 263 Farmington Avenue Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, 10 Discovery Dr, Farmington, CT 06032, USA
| |
Collapse
|
19
|
Zhang S, Wang L, Wang L, Chen Y, Li F. miR‐17‐5p affects porcine granulosa cell growth and oestradiol synthesis by targeting
E2F1
gene. Reprod Domest Anim 2019; 54:1459-1469. [DOI: 10.1111/rda.13551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Shuna Zhang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education Huazhong Agricultural University Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan China
| | - Ling Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education Huazhong Agricultural University Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan China
| | - Lei Wang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education Huazhong Agricultural University Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan China
| | - Yaru Chen
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education Huazhong Agricultural University Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan China
| | - Fenge Li
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs & Key Laboratory of Agricultural Animal Genetics Breeding and Reproduction of Ministry of Education Huazhong Agricultural University Wuhan China
- The Cooperative Innovation Center for Sustainable Pig Production Wuhan China
| |
Collapse
|
20
|
Cruz-Gil S, Sánchez-Martínez R, Wagner-Reguero S, Stange D, Schölch S, Pape K, Ramírez de Molina A. A more physiological approach to lipid metabolism alterations in cancer: CRC-like organoids assessment. PLoS One 2019; 14:e0219944. [PMID: 31339921 PMCID: PMC6655698 DOI: 10.1371/journal.pone.0219944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Precision medicine might be the response to the recent questioning of the use of metformin as an anticancer drug in colorectal cancer (CRC). Thus, in order to establish properly its benefits, metformin application needs to be assayed on the different progression stages of CRC. In this way, intestinal organoids imply a more physiological tool, representing a new therapeutic opportunity for CRC personalized treatment to assay tumor stage-dependent drugs. The previously reported lipid metabolism-related axis, Acyl-CoA synthetases/ Stearoyl-CoA desaturase (ACSLs/SCD), stimulates colon cancer progression and metformin is able to rescue the invasive and migratory phenotype conferred to cancer cells upon this axis overexpression. Therefore, we checked ACSL/SCD axis status, its regulatory miRNAs and the effect of metformin treatment in intestinal organoids with the most common acquired mutations in a sporadic CRC (CRC-like organoids) as a model for specific and personalized treatment. Despite ACSL4 expression is upregulated progressively in CRC-like organoids, metformin is able to downregulate its expression, especially in the first two stages (I, II). Besides, organoids are clearly more sensitive in the first stage (Apc mutated) to metformin than current chemotherapeutic drugs such as fluorouracil (5-FU). Metformin performs an independent "Warburg effect" blockade to cancer progression and is able to reduce crypt stem cell markers expression such as LGR5+. These results suggest a putative increased efficiency of the use of metformin in early stages of CRC than in advanced disease.
Collapse
Affiliation(s)
- Silvia Cruz-Gil
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Ruth Sánchez-Martínez
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Sonia Wagner-Reguero
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| | - Daniel Stange
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Pape
- Department of Gastrointestinal, Thoracic and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ana Ramírez de Molina
- Molecular Oncology Group/ IMDEA Food Institute, CEI UAM + CSIC, Ctra, De Cantoblanco, Madrid, Spain
| |
Collapse
|
21
|
Huang Y, Yang N. MicroRNA-20a-5p inhibits epithelial to mesenchymal transition and invasion of endometrial cancer cells by targeting STAT3. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5715-5724. [PMID: 31949657 PMCID: PMC6963080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Endometrial cancer (EC) is the fourth most common malignancy among women. Epithelial to mesenchymal transition (EMT) and invasion have been identified as central cellular processes in tumor progression and malignant transformation. The function and molecular basis of microRNA-20a-5p (miR-20a-5p) in the development of EC are poorly defined. METHODS RT-qPCR assay was used to detect the levels of miR-20a-5p and signal transducer and activator of transcription 3 (STAT3) mRNA. Western blot assay was conducted to determine protein expression of STAT3, N-cadherin, Vimentin and E-cadherin. Cell invasive capacity was examined by transwell invasion assay. Bioinformatics analysis, luciferase reporter assay and RIP assay were performed to investigate the interaction between miR-20a-5p and STAT3 3'UTR. RESULTS miR-20a-5p expression was strikingly reduced in EC tissues and cells. Functional analysis revealed that miR-20a-5p overexpression inhibited EMT and invasion of EC cells. Further exploration showed that miR-20a-5p inhibited STAT3 expression by direct interaction. Moreover, the knockdown of STAT3 suppressed EMT and invasion of EC cells. Additionally, the depletion of STAT3 weakened miR-20a-5p downregulation-induced cell EMT and invasion in EC. CONCLUSION miR-20a-5p inhibited EMT and invasion of EC cells by targeting STAT3, highlighting the vital roles of miR-20a-5p and STAT3 in the metastasis and malignant transformation of EC.
Collapse
Affiliation(s)
- Yu Huang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital Chengdu, Sichuan, China
| | - Nian Yang
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital Chengdu, Sichuan, China
| |
Collapse
|
22
|
Dyson G, Farran B, Bolton S, Craig DB, Dombkowski A, Beebe-Dimmer JL, Powell IJ, Podgorski I, Heilbrun LK, Bock CH. The extrema of circulating miR-17 are identified as biomarkers for aggressive prostate cancer. Am J Cancer Res 2018; 8:2088-2095. [PMID: 30416858 PMCID: PMC6220145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/03/2018] [Indexed: 06/09/2023] Open
Abstract
MicroRNAs (miRNAs) constitute short non-coding RNAs that can post-transcriptionally modulate the expression of many oncogenes and tumor suppressor genes engaged in key cellular processes. Deregulated serum miRNA signatures have been detected in various solid cancers including prostate cancer, suggesting that circulating miRNAs could function as non-invasive biomarkers of tumor emergence and progression. To determine whether serum miRNA expression levels are different between patients with aggressive and non-aggressive prostate cancer, we analyzed a panel of miRNAs from the blood of African American (AA) prostate cancer patients using a new recursive partitioning method that allows hypothesis testing of each split. We observed that both extrema of circulating miR-17, i.e. upregulation and downregulation, are associated with aggressive prostate cancer. A similar effect was observed in tumor samples from a separate dataset representing a different population of prostate cancer patients and in AA prostate cancer samples from the TCGA. The dual effect is consistent with the contradictory findings on the role of miR-17 in prostate cancer progression, whereby it controls important oncogenic and tumor-suppressive genes.
Collapse
Affiliation(s)
- Greg Dyson
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Batoul Farran
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Susan Bolton
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Douglas B Craig
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Alan Dombkowski
- Karmanos Cancer Institute and Department of Pediatrics, Wayne State UniversityDetroit MI, USA
| | | | - Isaac J Powell
- Karmanos Cancer Institute and Department of Urology, Wayne State UniversityDetroit MI, USA
| | - Izabela Podgorski
- Karmanos Cancer Institute and Department of Pharmacology, Wayne State UniversityDetroit MI, USA
| | - Lance K Heilbrun
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| | - Cathryn H Bock
- Karmanos Cancer Institute and Department of Oncology, Wayne State UniversityDetroit MI, USA
| |
Collapse
|
23
|
Abstract
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression, involved in the silencing of messenger RNA (mRNA) translation. The importance of miRNA signatures in disease screening, prognosis, and progression of different tumor types and subtypes is increasing. miRNA expression levels change depending on numerous factors. In this review, we are describing the circumstances under which miRNA levels can change, these are named 'levels' of heterogeneity of miRNAs. miRNAs can have oncogenic, tumor suppressive, or both roles depending on tumor type and target mRNA whose translation they silence. The expression levels of a single miRNA may vary across different cancer types and subtypes, indicating that a miRNA signature may be tissue specific. miRNA levels of expression also vary during disease formation and propagation, indicating the presence of a time profile for their expression. The complexity of the miRNA-mRNA interference network mirrors different genetic and epigenetic changes that influence miRNA and mRNA availability to each other, and hence, their binding ability. The potential role of miRNAs as biomarkers is two-fold; first, for monitoring of the phases of cancer pathogenesis, and second, to characterize the particular type/subtype of cancer. It is important that a particular miRNA should be characterized by examining as many types and subtypes of cancers as are available, as well as being extracted from different types of samples, in order to obtain a complete picture of its behavior and importance in the disease pathology.
Collapse
Affiliation(s)
- Nina Petrovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia. .,Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, 11000, Serbia.
| | - Sercan Ergün
- Ulubey Vocational Higher School, Ordu University, 52850, Ordu, Turkey
| | - Esma R Isenovic
- Department for Radiobiology and Molecular Genetics, Vinca Institute of Nuclear Sciences, University of Belgrade, Mike Alasa 12-14, Belgrade, 11000, Serbia.,Faculty of Stomatology, Pancevo, University Business Academy, Novi Sad, Serbia
| |
Collapse
|
24
|
Hasegawa T, Glavich GJ, Pahuski M, Short A, Semmes OJ, Yang L, Galkin V, Drake R, Esquela-Kerscher A. Characterization and Evidence of the miR-888 Cluster as a Novel Cancer Network in Prostate. Mol Cancer Res 2018; 16:669-681. [PMID: 29330297 DOI: 10.1158/1541-7786.mcr-17-0321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/10/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Abstract
Prostate cancer afflicts 1 in 7 men and is the second leading cause of male cancer-related deaths in the United States. MicroRNAs (miRNAs), an extensive class of approximately 22 nucleotide noncoding RNAs, are often aberrantly expressed in tissues and fluids from prostate cancer patients, but the mechanisms of how specific miRNAs regulate prostate tumorigenesis and metastasis are poorly understood. Here, miR-888 was identified as a novel prostate factor that promotes proliferation and migration. miR-888 resides within a genomic cluster of 7 miRNA genes (mir-892c, mir-890, mir-888, mir-892a, mir-892b, mir-891b, mir-891a) on human chromosome Xq27.3. Moreover, as miR-888 maps within HPCX1, a locus associated with susceptibility and/or hereditary prostate cancer, it was hypothesized that additional miRNA cluster members also play functional roles in the prostate. Expression analysis determined that cluster members were similarly elevated in metastatic PC3-ML prostate cells and their secreted exosomes, as well as enriched in expressed prostatic secretions urine-derived exosomes obtained from clinical patients with high-grade prostate cancer. In vitro assays revealed that miR-888 cluster members selectively modulated PC3-derived and LNCaP cell proliferation, migration, invasion, and colony formation. Mouse xenograft studies verified miR-888 and miR-891a as pro-oncogenic factors that increased prostate tumor growth in vivo Further analysis validated RBL1, KLF5, SMAD4, and TIMP2 as direct miR-888 targets and that TIMP2 is also coregulated by miR-891a. This study provides the first comprehensive analysis of the entire miR-888 cluster and reveals biological insight.Implications: This work reveals a complex noncoding RNA network in the prostate that could be developed as effective diagnostic and therapeutic tools for advanced prostate cancer. Mol Cancer Res; 16(4); 669-81. ©2018 AACR.
Collapse
Affiliation(s)
- Tsuyoshi Hasegawa
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Garrison J Glavich
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Mary Pahuski
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Aleena Short
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - O John Semmes
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Lifang Yang
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Vitold Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Richard Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Aurora Esquela-Kerscher
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
25
|
Yang H, Peng Z, Liang M, Zhang Y, Wang Y, Huang T, Jiang Y, Jiang B, Wang Y. The miR-17-92 cluster/QKI2/β-catenin axis promotes osteosarcoma progression. Oncotarget 2018; 9:25285-25293. [PMID: 29861871 PMCID: PMC5982768 DOI: 10.18632/oncotarget.23935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Quaking(QKI) is an RNA binding protein, and it has been shown to serve as a tumor suppressor. However, the expression and functions of QKI in osteosarcoma progression remain poorly understood. In this study, we aimed to explore the expression of QKI2 in osteosarcoma tissues and to determine the mechanisms underlying aberrant QKI2 expression and the effect of QKI2 on osteosarcoma progression. We found that QKI2 was significantly down-regulated in osteosarcoma tissues compared with adjacent normal bone tissues. Using a series of molecular biological techniques, we demonstrated that all members of the miR-17-92 cluster were up-regulated and contributed to the down-regulation of QKI2 expression in osteosarcoma. Functional examination showed that QKI2 inhibited the proliferation, migration and invasion of osteosarcoma cells via decreasing the expression of β-catenin. Conclusively, we revealed that the regulatory axis consisting of the miR-17-92 cluster/QKI2/β-catenin plays a crucial role in the development and progression of osteosarcoma.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhibin Peng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Min Liang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yubo Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yangyang Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianwen Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yudong Jiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Jiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yansong Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
26
|
Awan FM, Naz A, Obaid A, Ikram A, Ali A, Ahmad J, Naveed AK, Janjua HA. MicroRNA pharmacogenomics based integrated model of miR-17-92 cluster in sorafenib resistant HCC cells reveals a strategy to forestall drug resistance. Sci Rep 2017; 7:11448. [PMID: 28904393 PMCID: PMC5597599 DOI: 10.1038/s41598-017-11943-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
Among solid tumors, hepatocellular carcinoma (HCC) emerges as a prototypical therapy-resistant tumor. Considering the emerging sorafenib resistance crisis in HCC, future studies are urgently required to overcome resistance. Recently noncoding RNAs (ncRNAs) have emerged as significant regulators in signalling pathways involved in cancer drug resistance and pharmacologically targeting these ncRNAs might be a novel stratagem to reverse drug resistance. In the current study, using a hybrid Petri net based computational model, we have investigated the harmonious effect of miR-17-92 cluster inhibitors/mimics and circular RNAs on sorafenib resistant HCC cells in order to explore potential resistance mechanisms and to identify putative targets for sorafenib-resistant HCC cells. An integrated model was developed that incorporates seven miRNAs belonging to miR-17-92 cluster (hsa-miR-17-5p, hsa-miR-17-3p, hsa-miR-19a, hsa-miR-19b, hsa-miR-18a, hsa-miR-20a and hsa-miR-92) and crosstalk of two signaling pathways (EGFR and IL-6) that are differentially regulated by these miRNAs. The mechanistic connection was proposed by the correlation between members belonging to miR-17-92 cluster and corresponding changes in the protein levels of their targets in HCC, specifically those targets that have verified importance in sorafenib resistance. Current findings uncovered potential pathway features, underlining the significance of developing modulators of this cluster to combat drug resistance in HCC.
Collapse
Affiliation(s)
- Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aqsa Ikram
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Abdul Khaliq Naveed
- Islamic International Medical College (IIMC), Riphah International University, Rawalpindi, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
27
|
Liao XH, Xiang Y, Yu CX, Li JP, Li H, Nie Q, Hu P, Zhou J, Zhang TC. STAT3 is required for MiR-17-5p-mediated sensitization to chemotherapy-induced apoptosis in breast cancer cells. Oncotarget 2017; 8:15763-15774. [PMID: 28178652 PMCID: PMC5362521 DOI: 10.18632/oncotarget.15000] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 01/05/2017] [Indexed: 01/07/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) controls cell survival, growth, migration, and invasion. Here, we observed that STAT3 exerted anti-apoptotic effects in breast cancer cells. On the other hand, miR-17-5p induced apoptosis in breast cancer cells, and overexpression of miR-17-5p sensitized MCF-7 cells to paclitaxel-induced apoptosis via STAT3. Overexpression of STAT3 in MCF-7 cells decreased paclitaxel-induced apoptosis, but STAT3 knockout abolished the miR-17-5p-induced increases in apoptosis. Finally, miR-17-5p promoted apoptosis by increasing p53 expression, which was inhibited by STAT3. These results demonstrate a novel pathway via which miR-17-5p inhibits STAT3 and increases p53 expression to promote apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Xing-Hua Liao
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Yuan Xiang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Cheng-Xi Yu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Jia-Peng Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Hui Li
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Qi Nie
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,Wuhan Medical Treatment Center, Hubei, 430023, P.R. China
| | - Peng Hu
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China
| | - Jun Zhou
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Tong-Cun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Hubei, 430081, P.R. China.,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| |
Collapse
|
28
|
Berardocco M, Radeghieri A, Busatto S, Gallorini M, Raggi C, Gissi C, D'Agnano I, Bergese P, Felsani A, Berardi AC. RNA-seq reveals distinctive RNA profiles of small extracellular vesicles from different human liver cancer cell lines. Oncotarget 2017; 8:82920-82939. [PMID: 29137313 PMCID: PMC5669939 DOI: 10.18632/oncotarget.20503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022] Open
Abstract
Liver cancer (LC) is one of the most common cancers and represents the third highest cause of cancer-related deaths worldwide. Extracellular vesicle (EVs) cargoes, which are selectively enriched in RNA, offer great promise for the diagnosis, prognosis and treatment of LC. Our study analyzed the RNA cargoes of EVs derived from 4 liver-cancer cell lines: HuH7, Hep3B, HepG2 (hepato-cellular carcinoma) and HuH6 (hepatoblastoma), generating two different sets of sequencing libraries for each. One library was size-selected for small RNAs and the other targeted the whole transcriptome. Here are reported genome wide data of the expression level of coding and non-coding transcripts, microRNAs, isomiRs and snoRNAs providing the first comprehensive overview of the extracellular-vesicle RNA cargo released from LC cell lines. The EV-RNA expression profiles of the four liver cancer cell lines share a similar background, but cell-specific features clearly emerge showing the marked heterogeneity of the EV-cargo among the individual cell lines, evident both for the coding and non-coding RNA species.
Collapse
Affiliation(s)
- Martina Berardocco
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Chiara Raggi
- Center for Autoimmune Liver Diseases, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Clarissa Gissi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | - Igea D'Agnano
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Armando Felsani
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Italy.,Genomnia Srl, Bresso, Italy
| | - Anna C Berardi
- U.O.C. of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| |
Collapse
|
29
|
Bobbili MR, Mader RM, Grillari J, Dellago H. OncomiR-17-5p: alarm signal in cancer? Oncotarget 2017; 8:71206-71222. [PMID: 29050357 PMCID: PMC5642632 DOI: 10.18632/oncotarget.19331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 12/16/2022] Open
Abstract
Soon after microRNAs entered the stage as novel regulators of gene expression, they were found to regulate -and to be regulated by- the development, progression and aggressiveness of virtually all human types of cancer. Therefore, miRNAs in general harbor a huge potential as diagnostic and prognostic markers as well as potential therapeutic targets in cancer. The miR-17-92 cluster was found to be overexpressed in many human cancers and to promote unrestrained cell growth, and has therefore been termed onco-miR-1. In addition, its expression is often dysregulated in many other diseases. MiR-17-5p, its most prominent member, is an essential regulator of fundamental cellular processes like proliferation, autophagy and apoptosis, and its deficiency is neonatally lethal in the mouse. Many cancer types are associated with elevated miR-17-5p expression, and the degree of overexpression might correlate with cancer aggressiveness and responsiveness to chemotherapeutics - suggesting miR-17-5p to be an alarm signal. Liver, gastric or colorectal cancers are examples where miR-17-5p has been observed exclusively as an oncogene, while, in other cancer types, like breast, prostate and lung cancer, the role of miR-17-5p is not as clear-cut, and it might also act as tumor-suppressor. However, in all cancer types studied so far, miR-17-5p has been found at elevated levels in the circulation. In this review, we therefore recapitulate the current state of knowledge about miR-17-5p in the context of cancer, and suggest that elevated miR-17-5p levels in the plasma might be a sensitive and early alarm signal for cancer ('alarmiR'), albeit not a specific alarm for a specific type of tumor.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Robert M Mader
- Department of Medicine I, Comprehensive Cancer Center of the Medical University of Vienna, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | - Hanna Dellago
- Christian Doppler Laboratory on Biotechnology of Skin Aging, Department of Biotechnology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,TAmiRNA GmbH, Vienna, Austria
| |
Collapse
|
30
|
Wang T, Liu Y, Zhao M. Mutational analysis of driver genes with tumor suppressive and oncogenic roles in gastric cancer. PeerJ 2017; 5:e3585. [PMID: 28729958 PMCID: PMC5516769 DOI: 10.7717/peerj.3585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/26/2017] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) is a complex disease with heterogeneous genetic mechanisms. Genomic mutational profiling of gastric cancer not only expands our knowledge about cancer progression at a fundamental genetic level, but also could provide guidance on new treatment decisions, currently based on tumor histology. The fact that precise medicine-based treatment is successful in a subset of tumors indicates the need for better identification of clinically related molecular tumor phenotypes, especially with regard to those driver mutations on tumor suppressor genes (TSGs) and oncogenes (ONGs). We surveyed 313 TSGs and 160 ONGs associated with 48 protein coding and 19 miRNA genes with both TSG and ONG roles. Using public cancer mutational profiles, we confirmed the dual roles of CDKN1A and CDKN1B. In addition to the widely recognized alterations, we identified another 82 frequently mutated genes in public gastric cancer cohort. In summary, these driver mutation profiles of individual GC will form the basis of personalized treatment of gastric cancer, leading to substantial therapeutic improvements.
Collapse
Affiliation(s)
- Tianfang Wang
- School of Science and Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Australia
| | - Yining Liu
- The School of Public Health, Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Min Zhao
- School of Science and Engineering, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Australia
| |
Collapse
|
31
|
Sand M, Hessam S, Amur S, Skrygan M, Bromba M, Stockfleth E, Gambichler T, Bechara FG. Expression of oncogenic miR-17-92 and tumor suppressive miR-143-145 clusters in basal cell carcinoma and cutaneous squamous cell carcinoma. J Dermatol Sci 2017; 86:142-148. [PMID: 28187958 DOI: 10.1016/j.jdermsci.2017.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/05/2016] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND A variety of cancers are associated with the expression of the oncogenic miR-17-92 cluster (Oncomir-1) and tumor suppressor miR-143-5p/miR-145-5p. Epidermal skin cancer has not been investigated for the expression of miR-17-92 and miR-143-145 clusters, despite being extensively studied regarding global microRNA profiles. The goal of this study was to investigate the expression and possible correlation of expression of miR17-92 and miR-143-145 cluster members in epidermal skin cancer. METHODS We evaluated punch biopsies from patients with cutaneous squamous cell carcinoma (cSCC, n=15) and basal cell carcinoma (BCC, n=16), along with control specimens from non-lesional epidermal skin (n=16). Expression levels of the miR17-92 cluster (including miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-3p, miR-19b-1-5p, miR-20a-3p, miR-20a-5p, miR-92a-3p, and miR-92a-5p) and the tumor-suppressive cluster miR-143-145 (including miR-143-5p and miR-145-5p) were detected by quantitative real-time reverse transcriptase polymerase chain reaction. RESULTS We noted a highly significant increased expression of the miR-17-92 members miR-17-5p, miR-18a-5p, miR19a-3p, and miR-19b-3p and tumor suppressor miR-143-5p (p<0.01) in cSCC. miR-145-5p had a significantly decreased expression (p<0.05) for in BCC. A correlation analysis revealed multiple correlating miRNA-pairs within and between the investigated clusters. CONCLUSION This study marks the first evidence for the participation of members of the miR-17-92 cluster in cSCC and miR-143-145 cluster in BCC.
Collapse
Affiliation(s)
- Michael Sand
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany.
| | - Schapoor Hessam
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Susanne Amur
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany; Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Marina Skrygan
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Michael Bromba
- Department of Plastic Surgery, St. Josef Hospital, Catholic Clinics of the Ruhr Peninsula, 45257 Essen, Germany
| | - Eggert Stockfleth
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Thilo Gambichler
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Falk G Bechara
- Dermatologic Surgery Unit, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
32
|
Mihailovich M, Bonaldi T. MYC/miR-17-92 interplay maintains B-lymphoma cell homeostasis. Cell Cycle 2016; 15:1025-6. [PMID: 27097369 DOI: 10.1080/15384101.2016.1157977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Marija Mihailovich
- a Department of Experimental Oncology , European Institute of Oncology , Milan , Italy
| | - Tiziana Bonaldi
- a Department of Experimental Oncology , European Institute of Oncology , Milan , Italy
| |
Collapse
|
33
|
Abstract
MicroRNA molecules have a variety of roles in cellular development and proliferation processes, including normal osteogenesis. These effects are exerted through post-translational inhibition of target genes. Altered miRNA expression has been demonstrated in several cancers, both in the tumor tissue and in the peripheral circulation. This may influence carcinogenesis if the specific miRNA targets are encoded by tumor suppressor genes or oncogenes. To date, most research investigating the role of microRNAs and primary bone tumors has focused on osteosarcoma and Ewing sarcoma. Several microRNAs including the miR-34 family have been implicated in osteosarcoma tumorigenesis via effects on the Notch signaling pathway. Progression, invasion, and metastasis of osteosarcoma tumor cells is also influenced by microRNA expression. In addition, microRNA expression may affect the response to chemotherapy in osteosarcoma and thus hold potential for future use as either a prognostic indicator or a therapeutic target. The EWS-FLI1 fusion protein produced in Ewing sarcoma has been shown to induce changes in miRNA expression. MicroRNA expression profiling may have some potential for prediction of disease progression and survival in Ewing sarcoma. There is limited evidence to support a role for microRNAs in other primary bone tumors, either malignant or benign; however, early work is suggestive of involvement in chondrosarcoma, multiple osteochondromatosis, and giant cell tumors of bone.
Collapse
|
34
|
Masud Karim SM, Liu L, Le TD, Li J. Identification of miRNA-mRNA regulatory modules by exploring collective group relationships. BMC Genomics 2016; 17 Suppl 1:7. [PMID: 26817421 PMCID: PMC4895272 DOI: 10.1186/s12864-015-2300-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background microRNAs (miRNAs) play an essential role in the post-transcriptional gene regulation in plants and animals. They regulate a wide range of biological processes by targeting messenger RNAs (mRNAs). Evidence suggests that miRNAs and mRNAs interact collectively in gene regulatory networks. The collective relationships between groups of miRNAs and groups of mRNAs may be more readily interpreted than those between individual miRNAs and mRNAs, and thus are useful for gaining insight into gene regulation and cell functions. Several computational approaches have been developed to discover miRNA-mRNA regulatory modules (MMRMs) with a common aim to elucidate miRNA-mRNA regulatory relationships. However, most existing methods do not consider the collective relationships between a group of miRNAs and the group of targeted mRNAs in the process of discovering MMRMs. Our aim is to develop a framework to discover MMRMs and reveal miRNA-mRNA regulatory relationships from the heterogeneous expression data based on the collective relationships. Results We propose DIscovering COllective group RElationships (DICORE), an effective computational framework for revealing miRNA-mRNA regulatory relationships. We utilize the notation of collective group relationships to build the computational framework. The method computes the collaboration scores of the miRNAs and mRNAs on the basis of their interactions with mRNAs and miRNAs, respectively. Then it determines the groups of miRNAs and groups of mRNAs separately based on their respective collaboration scores. Next, it calculates the strength of the collective relationship between each pair of miRNA group and mRNA group using canonical correlation analysis, and the group pairs with significant canonical correlations are considered as the MMRMs. We applied this method to three gene expression datasets, and validated the computational discoveries. Conclusions Analysis of the results demonstrates that a large portion of the regulatory relationships discovered by DICORE is consistent with the experimentally confirmed databases. Furthermore, it is observed that the top mRNAs that are regulated by the miRNAs in the identified MMRMs are highly relevant to the biological conditions of the given datasets. It is also shown that the MMRMs identified by DICORE are more biologically significant and functionally enriched. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2300-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S M Masud Karim
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, Adelaide, 5095, SA, Australia.
| | - Lin Liu
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, Adelaide, 5095, SA, Australia.
| | - Thuc Duy Le
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, Adelaide, 5095, SA, Australia.
| | - Jiuyong Li
- School of Information Technology and Mathematical Sciences, University of South Australia, Mawson Lakes, Adelaide, 5095, SA, Australia.
| |
Collapse
|
35
|
Cioffi M, Trabulo SM, Sanchez-Ripoll Y, Miranda-Lorenzo I, Lonardo E, Dorado J, Reis Vieira C, Ramirez JC, Hidalgo M, Aicher A, Hahn S, Sainz B, Heeschen C. The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells. Gut 2015; 64:1936-48. [PMID: 25887381 PMCID: PMC4680182 DOI: 10.1136/gutjnl-2014-308470] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/04/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. DESIGN Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. RESULTS We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-β1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. CONCLUSIONS Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catarina Reis Vieira
- Stem Cells & Cancer Group, CNIO, Madrid, Spain,Viral Vector Unit, Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | - Juan Carlos Ramirez
- Viral Vector Unit, Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | - Manuel Hidalgo
- Gastrointestinal Cancer Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Stephan Hahn
- Department of Molecular Gastrointestinal Oncology, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Bruno Sainz
- Stem Cells & Cancer Group, CNIO, Madrid, Spain
| | - Christopher Heeschen
- Stem Cells & Cancer Group, CNIO, Madrid, Spain,Barts Cancer Institute, Centre for Stem Cells in Cancer & Ageing, Queen Mary University of London, London, UK
| |
Collapse
|
36
|
Zambrano T, Hirata RDC, Hirata MH, Cerda Á, Salazar LA. Altered microRNome Profiling in Statin-Induced HepG2 Cells: A Pilot Study Identifying Potential new Biomarkers Involved in Lipid-Lowering Treatment. Cardiovasc Drugs Ther 2015; 29:509-518. [PMID: 26602562 DOI: 10.1007/s10557-015-6627-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Statins are widely prescribed drugs to manage hypercholesterolemia. Despite they are considered effective lipid-lowering agents, significant inter-individual variability has been reported in relation to drug response. Among the reasons explaining this variation, genetic factors are known to partially contribute. Nonetheless, poor evidence exists regarding epigenetic factors involved. METHODS We investigated if atorvastatin can modulate the cholesterol related miR-33 family. Furthermore, we analyzed the microRNA expression profiles in HepG2 cells treated for 24 hours with atorvastatin or simvastatin using a microarray platform. RESULTS Our results indicate that atorvastatin does not influence the expression of the miR-33 family. In addition, microarray examination revealed that atorvastatin modulated thirteen miRs, whilst simvastatin only affected two miRs. All significantly modulated miRs after simvastastin therapy were also modulated by atorvastatin. In addition, four novel miRs with previously unreported functions were identified as statin-modulated. CONCLUSION We identified several novel miRs affected by statin treatment. Additional research is needed to determine the biological significance of differentially expressed miRs identified in statins-induced HepG2 cells.
Collapse
Affiliation(s)
- Tomás Zambrano
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario D C Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mario H Hirata
- School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Álvaro Cerda
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile. .,Centro de Biología Molecular & Farmacogenética, Departamento de Ciencias Básicas, Facultad de Medicina, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile.
| |
Collapse
|
37
|
Xuan Y, Yang H, Zhao L, Lau WB, Lau B, Ren N, Hu Y, Yi T, Zhao X, Zhou S, Wei Y. MicroRNAs in colorectal cancer: small molecules with big functions. Cancer Lett 2014; 360:89-105. [PMID: 25524553 DOI: 10.1016/j.canlet.2014.11.051] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is the third most lethal malignancy, with pathogenesis intricately dependent upon microRNAs (miRNAs). miRNAs are short, non-protein coding RNAs, targeting the 3'-untranslated regions (3'-UTR) of certain mRNAs. They usually serve as tumor suppressors or oncogenes, and participate in tumor phenotype maintenance. Therefore, miRNAs consequently regulate CRC carcinogenesis and other biological functions, including apoptosis, development, angiogenesis, migration, and proliferation. Due to its differential expression and distinct stability, miRNAs are regarded as molecular biomarkers (for diagnosis/prognosis) and therapeutic targets for CRC. Recently, a remarkable number of miRNAs have been discovered with implications via incompletely understood mechanisms in CRC. As further study of relevant miRNAs continues, it is hopeful that novel miRNA-based therapeutic strategies may be available for CRC patients in the future.
Collapse
Affiliation(s)
- Yu Xuan
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China; The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiliang Yang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linjie Zhao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medial Center, Affiliate of Stanford University, USA
| | - Ning Ren
- College of Biological Sciences, Sichuan University, Chengdu 610041, China
| | - Yuehong Hu
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Shengtao Zhou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu 610041, China.
| | - Yuquan Wei
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
38
|
Abstract
Osteosarcomas are rare with an estimated incidence of 5-6 cases per one million inhabitants per year. As the prognosis has not improved significantly over the last 30 years and more than 30 % of patients still die of the disease a better understanding of the molecular tumorigenesis is urgently needed to identify prognostic and predictive biomarkers as well as potential therapeutic targets. Using genome-wide SNP chip analyses we were able to detect a genetic signature enabling a prognostic prediction of patients already at the time of initial diagnosis. Furthermore, we found the microRNA cluster 17-92 to be constitutively overexpressed in osteosarcomas. The microRNAs included here are intermingled in a complex network of several oncogenes and tumor suppressors that have been described to be deregulated in osteosarcomas. Therefore, the microRNA cluster 17-92 could represent a central regulator in the development of osteosarcomas.
Collapse
Affiliation(s)
- D Baumhoer
- Knochentumor-Referenzzentrum am Institut für Pathologie , Universitätsspital Basel, Schönbeinstr. 40, 4031, Basel, Schweiz,
| |
Collapse
|
39
|
Miao YS, Zhao YY, Zhao LN, Wang P, Liu YH, Ma J, Xue YX. MiR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of ZO-1, occludin and claudin-5. Cell Signal 2014; 27:156-67. [PMID: 25452107 DOI: 10.1016/j.cellsig.2014.10.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/07/2014] [Accepted: 10/19/2014] [Indexed: 01/07/2023]
Abstract
The purposes of this study were to investigate the possible molecular mechanisms of miR-18a regulating the permeability of blood-tumor barrier (BTB) via down-regulated expression and distribution of runt-related transcription factor 1 (RUNX1). An in vitro BTB model was established with hCMEC/D3 cells and U87MG cells to obtain glioma vascular endothelial cells (GECs). The endogenous expressions of miR-18a and RUNX1 were converse in GECs. The overexpression of miR-18a significantly impaired the integrity and increased the permeability of BTB, which respectively were detected by TEER and HRP flux assays, accompanied by down-regulated mRNA and protein expressions and distributions of ZO-1, occludin and claudin-5 in GECs. Dual-luciferase reporter assay was carried out and revealed RUNX1 is a target gene of miR-18a. Meanwhile, mRNA and protein expressions and distribution of RUNX1 were downregulated by miR-18a. Most important, miR-18a and RUNX1 could reversely regulate the permeability of BTB as well as the expressions and distributions of ZO-1, occludin and claudin-5. Finally, chromatin immunoprecipitation verified that RUNX1 interacted with "TGGGGT" DNA sequence in promoter region of ZO-1, occludin and claudin-5 respectively. Taken together, our present study indicated that miR-18a increased the permeability of BTB via RUNX1 mediated down-regulation of tight junction related proteins ZO-1, occludin and claudin-5, which would attract more attention to miR-18a and RUNX1 as potential targets of drug delivery across BTB and provide novel strategies for glioma treatment.
Collapse
Affiliation(s)
- Yin-Sha Miao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Ying-Yu Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Li-Ni Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang 110001, PR China; Institute of Pathology and Pathophysiology, China Medical University, Shenyang 110001, PR China.
| |
Collapse
|
40
|
Kan CWS, Howell VM, Hahn MA, Marsh DJ. Genomic alterations as mediators of miRNA dysregulation in ovarian cancer. Genes Chromosomes Cancer 2014; 54:1-19. [PMID: 25280227 DOI: 10.1002/gcc.22221] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/10/2014] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is the fifth most common cause of cancer death in women worldwide. Serous epithelial ovarian cancer (SEOC) is the most common and aggressive histological subtype. Widespread genomic alterations go hand-in-hand with aberrant DNA damage signaling and are a hallmark of high-grade SEOC. MicroRNAs (miRNAs) are a class of small noncoding RNA molecules that are nonrandomly distributed in the genome. They are frequently located in chromosomal regions susceptible to copy number variation (CNV) associated with malignancy that can influence their expression. Widespread changes in miRNA expression have been reported in multiple cancer types including ovarian cancer. This review examines CNV and single nucleotide polymorphisms, two common types of genomic alterations that occur in ovarian cancer, in the context of their influence on the expression of miRNA and the ability of miRNA to bind to and regulate their target genes. This includes genes encoding proteins involved in DNA repair and the maintenance of genomic stability. Improved understanding of mechanisms of miRNA dysregulation and the role of miRNA in ovarian cancer will provide further insight into the pathogenesis and treatment of this disease.
Collapse
Affiliation(s)
- Casina W S Kan
- Hormones and Cancer Group, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, Sydney, NSW 2065, Australia
| | | | | | | |
Collapse
|
41
|
Minami Y, Kohsaka S, Tsuda M, Yachi K, Hatori N, Tanino M, Kimura T, Nishihara H, Minami A, Iwasaki N, Tanaka S. SS18-SSX-regulated miR-17 promotes tumor growth of synovial sarcoma by inhibiting p21WAF1/CIP1. Cancer Sci 2014; 105:1152-9. [PMID: 24989082 PMCID: PMC4462386 DOI: 10.1111/cas.12479] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) can function as tumor suppressors or oncogenes, and also as potential specific cancer biomarkers; however, there are few published studies on miRNA in synovial sarcomas, and their function remains unclear. We transfected the OncomiR miRNA Precursor Virus Library into synovial sarcoma Fuji cells followed by a colony formation assay to identify miRNAs to confer an aggressive tumorigenicity, and identified miR-17-5p from the large colonies. MiR-17 was found to be induced by a chimeric oncoprotein SS18-SSX specific for synovial sarcoma, and all examined cases of human synovial sarcoma expressed miR-17, even at high levels in several cases. Overexpression of miR-17 in synovial sarcoma cells, Fuji and HS-SYII, increased colony forming ability in addition to cell growth, but not cell motility and invasion. Tumor volume formed in mice in vivo was significantly increased by miR-17 overexpression with a marked increase of MIB-1 index. According to PicTar and Miranda algorithms, which predicted CDKN1A (p21) as a putative target of miR-17, a luciferase assay was performed and revealed that miR-17 directly targets the 3′-UTR of p21 mRNA. Indeed, p21 protein level was remarkably decreased by miR-17 overexpression in a p53-independent manner. It is noteworthy that miR-17 succeeded in suppressing doxorubicin-evoked higher expression of p21 and conferred the drug resistance. Meanwhile, introduction of anti-miR-17 in Fuji and HS-SYII cells significantly decreased cell growth, consistent with rescued expression of p21. Taken together, miR-17 promotes the tumor growth of synovial sarcomas by post-transcriptional suppression of p21, which may be amenable to innovative therapeutic targeting in synovial sarcoma.
Collapse
Affiliation(s)
- Yusuke Minami
- Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Enterococcus faecalis Infection and Reactive Oxygen Species Down-Regulates the miR-17-92 Cluster in Gastric Adenocarcinoma Cell Culture. Genes (Basel) 2014; 5:726-38. [PMID: 25170597 PMCID: PMC4198927 DOI: 10.3390/genes5030726] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/14/2014] [Accepted: 08/13/2014] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation due to bacterial overgrowth of the stomach predisposes to the development of gastric cancer and is also associated with high levels of reactive oxygen species (ROS). In recent years increasing attention has been drawn to microRNAs (miRNAs) due to their role in the pathogenesis of many human diseases including gastric cancer. Here we studied the impact of infection by the gram-positive bacteria Enterococcus faecalis (E. faecalis) on global miRNA expression as well as the effect of ROS on selected miRNAs. Human gastric adenocarcinoma cell line MKN74 was infected with living E. faecalis for 24 h or for 5 days or with E. faecalis lysate for 5 days. The miRNA expression was examined by microarray analysis using Affymetrix GeneChip miRNA Arrays. To test the effect of ROS, MKN74 cells were treated with 100 mM tert-Butyl hydroperoxide (TBHP). Following 5 days of E. faecalis infection we found 91 differentially expressed miRNAs in response to living bacteria and 2 miRNAs responded to E. faecalis lysate. We verified the down-regulation of the miR-17-92 and miR-106-363 clusters and of other miRNAs involved in the oxidative stress-response by qRT-PCR. We conclude that only infection by living E. faecalis bacteria caused a significant global response in miRNA expression in the MKN74 cell culture. E. faecalis infection as well as ROS stimulation down-regulated the expression of the miR-17-92 cluster. We believe that these changes could reflect a general response of gastric epithelial cells to bacterial infections.
Collapse
|
43
|
Arabi L, Gsponer JR, Smida J, Nathrath M, Perrina V, Jundt G, Ruiz C, Quagliata L, Baumhoer D. Upregulation of the miR-17-92 cluster and its two paraloga in osteosarcoma - reasons and consequences. Genes Cancer 2014; 5:56-63. [PMID: 24955218 PMCID: PMC4063253 DOI: 10.18632/genesandcancer.6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 12/25/2022] Open
Abstract
Osteosarcomas (OS) are aggressive bone tumors characterized by complex karyotypes with highly variable structural and numerical chromosomal aberrations. Although several genes and pathways commonly altered in malignant tumors have also been identified in OS, the molecular pathogenesis and driving genetic events eventually leading to tumor development are still poorly understood. The microRNA (miRNA) cluster 17-92 and its two paraloga 106a-363 and 106b-25 are known to have diverse oncogenic properties and have been shown to be constantly upregulated in several established OS cell lines. In this study we analyzed a series of 75 well characterized pretherapeutic OS samples for their expression of cluster-related miRNAs and correlated our findings with clinico-pathological parameters including prognosis, metastases and response to neoadjuvant therapy. Interestingly, higher expression levels of specific miRNAs were significantly associated with an adverse outcome of patients and were also higher in patients with systemic spread. We could furthermore show a direct correlation between the expression of cluster activators (MYC, E2F1-3), inhibitors (TP53), individual miRNAs, and pro-apoptotic targets (FAS, BIM). Our findings therefore underline a critical role of the miR-17-92 cluster and its two paraloga in OS biology with pathogenetic and prognostic impact.
Collapse
Affiliation(s)
- Leila Arabi
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joël R Gsponer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valeria Perrina
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gernot Jundt
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Christian Ruiz
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Shared senior authorship
| | - Daniel Baumhoer
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Shared senior authorship
| |
Collapse
|
44
|
Yi S, Lu D, Peng W, Wang T, Zhang Y, Lin H. Differential expression profiling of spleen microRNAs in response to two distinct type II interferons in Tetraodon nigroviridis. PLoS One 2014; 9:e96336. [PMID: 24800866 PMCID: PMC4011704 DOI: 10.1371/journal.pone.0096336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/04/2014] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are endogenous, small non-coding RNAs approximately 18-26 nucleotides in length that regulate target gene expression at the post-transcription level. Interferon-γ (IFN-γ) is a Th1 cytokine that is involved in both the innate and adaptive immune responses. We previously identified two IFN-γ genes in green-spotted puffer fish (Tetraodon nigroviridis). To determine whether miRNAs participate in IFN-γ-related immune responses, T. nigroviridis spleen cells were treated with recombinant IFN-γ isoforms, and a Solexa high-throughput sequencing method was used to identify miRNAs. In total, 1,556, 1,538 and 1,573 miRNAs were found in the three samples, and differentially expressed miRNAs were determined. In total, 398 miRNAs were differentially expressed after rIFN-γ1 treatment, and 438 miRNAs were differentially expressed after rIFN-γ2 treatment; additionally, 403 miRNAs were differentially expressed between the treatment groups. Ten differentially expressed miRNAs were chosen for validation using qRT-PCR. Target genes for the differentially expressed miRNAs were predicted, and GO and KEGG analyses were performed. This study provides basic knowledge regarding fish IFN-γ-induced miRNAs and offers clues for further studies into the mechanisms underlying fish IFN-γ-mediated immune responses.
Collapse
Affiliation(s)
- Shibai Yi
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
- * E-mail: (DL); (HL)
| | - Wan Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Ting Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, PR China
- * E-mail: (DL); (HL)
| |
Collapse
|
45
|
Palma CA, Al Sheikha D, Lim TK, Bryant A, Vu TT, Jayaswal V, Ma DDF. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia. Mol Cancer 2014; 13:79. [PMID: 24708856 PMCID: PMC4021368 DOI: 10.1186/1476-4598-13-79] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/27/2014] [Indexed: 12/17/2022] Open
Abstract
Background Acute myeloid leukaemia (AML) is characterised by the halt in maturation of myeloid progenitor cells, combined with uncontrolled proliferation and abnormal survival, leading to the accumulation of immature blasts. In many subtypes of AML the underlying causative genetic insults are not fully described. MicroRNAs are known to be dysregulated during oncogenesis. Overexpression of miR-155 is associated with some cancers, including haematological malignancies, and it has been postulated that miR-155 has an oncogenic role. This study investigated the effects of modulating miR-155 expression in human AML cells, and its mechanism of action. Results Analysis of miR-155 expression patterns in AML patients found that Fms-like tyrosine kinase 3 (FLT3)-wildtype AML has the same expression level as normal bone marrow, with increased expression restricted to AML with the FLT3-ITD mutation. Induction of apoptosis by cytarabine arabinoside or myelomonocytic differentiation by 1,23-dihydroxyvitaminD3 in FLT3-wildtype AML cells led to upregulated miR-155 expression. Knockdown of miR-155 by locked nucleic acid antisense oligonucleotides in the FLT3-wildtype AML cells conferred resistance to cytarabine arabinoside induced apoptosis and suppressed the ability of cells to differentiate. Ectopic expression of miR-155 in FLT3-wildtype AML cells led to a significant gain of myelomonocytic markers (CD11b, CD14 and CD15), increase in apoptosis (AnnexinV binding), decrease in cell growth and clonogenic capacity. In silico target prediction identified a number of putative miR-155 target genes, and the expression changes of key transcription regulators of myeloid differentiation and apoptosis (MEIS1, GF1, cMYC, JARID2, cJUN, FOS, CTNNB1 and TRIB2) were confirmed by PCR. Assessment of expression of apoptosis-related proteins demonstrated a marked increase in cleaved caspase-3 expression confirming activation of the apoptosis cascade. Conclusions This study provides evidence for an anti-leukaemic role for miR-155 in human FLT3-wildtype AML, by inducing cell apoptosis and myelomonocytic differentiation, which is in contrast to its previously hypothesized role as an oncogene. This highlights the complexity of gene regulation by microRNAs that may have tumour repressor or oncogenic effects depending on disease context or tissue type.
Collapse
Affiliation(s)
| | | | | | | | | | | | - David D F Ma
- Blood, Stem Cells and Cancer Research, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, Australia.
| |
Collapse
|
46
|
Zhou M, Ma J, Chen S, Chen X, Yu X. MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine 2014; 45:302-10. [PMID: 23673870 DOI: 10.1007/s12020-013-9986-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/07/2013] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have been identified to play important functions during osteoblast proliferation, differentiation, and apoptosis. The miR-17~92 cluster is highly conserved in all vertebrates. Loss-of-function of the miR-17-92 cluster results in smaller embryos and immediate postnatal death of all animals. Germline hemizygous deletions of MIR17HG are accounted for microcephaly, short stature, and digital abnormalities in a few cases of Feingold syndrome. These reports indicate that miR-17~92 may play important function in skeletal development and mature. To determine the functional roles of miR-17~92 in bone metabolism as well as osteoblast proliferation and differentiation. Murine embryonic stem cells D3 and osteoprogenitor cell line MC3T3-E1 were induced to differentiate into osteoblasts; the expression of miR-17-92 was assayed by quantitative real-time RT-PCR. The skeletal phenotypes were assayed in mice heterozygous for miR-17~92 (miR-17~92 (+/Δ) ). To determine the possibly direct function of miR-17~92 in bone cells, osteoblasts from miR-17~92 (+/Δ) mice were investigated by ex vivo cell culture. miR-17, miR-92a, and miR-20a within miR-17-92 cluster were expressed at high level in bone tissue and osteoblasts. The expression of miR-17-92 was down-regulated along with osteoblast differentiation, the lowest level was found in mature osteoblasts. Compared to wildtype controls, miR-17-92 (+/Δ) mice showed significantly lower trabecular and cortical bone mineral density, bone volume and trabecular number at 10 weeks old. mRNA expression of Runx2 and type I collagen was significantly lower in bone from miR-17-92 (+/Δ) mice. Osteoblasts from miR-17-92 (+/Δ) mice showed lower proliferation rate, ALP activity and less calcification. Our research suggests that the miR-17-92 cluster critically regulates bone metabolism, and this regulation is mostly through its function in osteoblasts.
Collapse
Affiliation(s)
- Mingliang Zhou
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Xu Z, Zhang C, Cheng L, Hu M, Tao H, Song L. The microRNA miR-17 regulates lung FoxA1 expression during lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2014; 445:48-53. [PMID: 24486549 DOI: 10.1016/j.bbrc.2014.01.108] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 11/30/2022]
Abstract
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.
Collapse
Affiliation(s)
- Zhaojun Xu
- Cardiothoracic Surgery of the First Affiliated Hospital, Hunan University of Traditional Chinese Medicine, Changsha, Hunan 41007, China
| | - Caiping Zhang
- University of South China, College of Life Science, Department of Biochemistry and Molecular Biology, Hengyang, Hunan 421001, China
| | - Lijuan Cheng
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Mei Hu
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Huai Tao
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lan Song
- Department of Biochemistry and Molecular Biology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (Incubation), Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; University of South China, College of Life Science, Department of Biochemistry and Molecular Biology, Hengyang, Hunan 421001, China.
| |
Collapse
|
48
|
Noncoding RNA in oncogenesis: a new era of identifying key players. Int J Mol Sci 2013; 14:18319-49. [PMID: 24013378 PMCID: PMC3794782 DOI: 10.3390/ijms140918319] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/23/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022] Open
Abstract
New discoveries and accelerating progresses in the field of noncoding RNAs (ncRNAs) continuously challenges our deep-rooted doctrines in biology and sometimes our imagination. A growing body of evidence indicates that ncRNAs are important players in oncogenesis. While a stunning list of ncRNAs has been discovered, only a small portion of them has been examined for their biological activities and very few have been characterized for the molecular mechanisms of their action. To date, ncRNAs have been shown to regulate a wide range of biological processes, including chromatin remodeling, gene transcription, mRNA translation and protein function. Dysregulation of ncRNAs contributes to the pathogenesis of a variety of cancers and aberrant ncRNA expression has a high potential to be prognostic in some cancers. Thus, a new cancer research era has begun to identify novel key players of ncRNAs in oncogenesis. In this review, we will first discuss the function and regulation of miRNAs, especially focusing on the interplay between miRNAs and several key cancer genes, including p53, PTEN and c-Myc. We will then summarize the research of long ncRNAs (lncRNAs) in cancers. In this part, we will discuss the lncRNAs in four categories based on their activities, including regulating gene expression, acting as miRNA decoys, mediating mRNA translation, and modulating protein activities. At the end, we will also discuss recently unraveled activities of circular RNAs (circRNAs).
Collapse
|
49
|
Stepanenko AA, Vassetzky YS, Kavsan VM. Antagonistic functional duality of cancer genes. Gene 2013; 529:199-207. [PMID: 23933273 DOI: 10.1016/j.gene.2013.07.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/08/2013] [Accepted: 07/09/2013] [Indexed: 12/21/2022]
Abstract
Cancer evolution is a stochastic process both at the genome and gene levels. Most of tumors contain multiple genetic subclones, evolving in either succession or in parallel, either in a linear or branching manner, with heterogeneous genome and gene alterations, extensively rewired signaling networks, and addicted to multiple oncogenes easily switching with each other during cancer progression and medical intervention. Hundreds of discovered cancer genes are classified according to whether they function in a dominant (oncogenes) or recessive (tumor suppressor genes) manner in a cancer cell. However, there are many cancer "gene-chameleons", which behave distinctly in opposite way in the different experimental settings showing antagonistic duality. In contrast to the widely accepted view that mutant NADP(+)-dependent isocitrate dehydrogenases 1/2 (IDH1/2) and associated metabolite 2-hydroxyglutarate (R)-enantiomer are intrinsically "the drivers" of tumourigenesis, mutant IDH1/2 inhibited, promoted or had no effect on cell proliferation, growth and tumorigenicity in diverse experiments. Similar behavior was evidenced for dozens of cancer genes. Gene function is dependent on genetic network, which is defined by the genome context. The overall changes in karyotype can result in alterations of the role and function of the same genes and pathways. The diverse cell lines and tumor samples have been used in experiments for proving gene tumor promoting/suppressive activity. They all display heterogeneous individual karyotypes and disturbed signaling networks. Consequently, the effect and function of gene under investigation can be opposite and versatile in cells with different genomes that may explain antagonistic duality of cancer genes and the cell type- or the cellular genetic/context-dependent response to the same protein. Antagonistic duality of cancer genes might contribute to failure of chemotherapy. Instructive examples of unexpected activity of cancer genes and "paradoxical" effects of different anticancer drugs depending on the cellular genetic context/signaling network are discussed.
Collapse
Affiliation(s)
- A A Stepanenko
- State Key Laboratory of Molecular and Cellular Biology, Institute of Molecular Biology and Genetics, 150 Zabolotnogo Street, Kyiv 03680, Ukraine.
| | | | | |
Collapse
|
50
|
Shen Y, Lu L, Xu J, Meng W, Qing Y, Liu Y, Zhang B, Hu H. Bortezomib induces apoptosis of endometrial cancer cells through microRNA-17-5p by targeting p21. Cell Biol Int 2013; 37:1114-21. [PMID: 23716467 DOI: 10.1002/cbin.10139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 04/29/2013] [Indexed: 11/11/2022]
Abstract
Bortezomib suppresses ubiquitin (Ub)-dependent protein degradation and preferentially kills various tumour cells in vitro and in animal models. However, its mechanism of action is not fully understood. We report that bortezomib inhibits the proliferation and proteasomal activity of human endometrial cancer cells and induces G2/M arrest and apoptosis by modulating the miRNA level. By miRNA microarray, iR-17-5p was the most downregulated of all those in HTB-111 and Ishikawa cells after bortezomib treatment. This observation was confirmed by quantitative real-time PCR (qRT-PCR). Target prediction using TargetScan software identified p21 as a potential target for miR-17-5p, which was confirmed by luciferase reporter, qRT-PCR and Western blot assays. The transfection of miR-17-5p mimics or siRNA-p21 reversed the effect of bortezomib on HTB-111 and Ishikawa cells, indicating that miR-17-5p may mediate the function of bortezomib by targeting p21 in endometrial cancer cells. These findings show novel mechanisms by which bortezomib inhibits proliferation and promotes the apoptosis of human endometrial cancer cells.
Collapse
Affiliation(s)
- Yuan Shen
- Gynecology and Obstetrics Department of the First Affiliated Hospital of JiNan University, Guangzhou, 510630, China
| | | | | | | | | | | | | | | |
Collapse
|