1
|
Ren H, Chen N, Liu Y, Wu M, Yan J, Chang M, Li H. Preparation of oat galactolipid and anti-liver cancer effects of oat galactolipid-modified curcumin-loaded liver targeting vesicle. Front Pharmacol 2025; 15:1511666. [PMID: 39845799 PMCID: PMC11751016 DOI: 10.3389/fphar.2024.1511666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The mortality rate for liver cancer is extremely high but clinical treatments have not made much progress, so it is necessary to develop anticancer agents with lower toxicities and more effective liver-targeting drug delivery systems (LTDDSs). At present, LTDDSs mediated by the asialoglycoprotein receptor (ASGPR) show excellent effects at improving the liver-targeting and antitumor effects of drugs. However, the galactosyl ligands are typically prepared by chemical synthesis and have some shortcomings. The present work endeavors to explore the influences of plant galactolipids as natural galactosyl ligands for LTDDSs. Methods Plant galactolipids were extracted from oat bran, and their characteristics were tested. Then, oat-galactolipid-modified curcumin-loaded liver-targeting vesicles (GCLTVs) and curcumin-loaded vesicles were prepared, which were used in a comparative study of the liver-targeting and liver anticancer effects in vitro and in vivo. Result The experimental results show that the oat galactolipids and GCLTVs were prepared successfully. The hydrophilic-lipophilic balance, acid, ester, and saponification values of the oat galactolipids were 14.89, 47.22, 237.09, and 284.30, respectively. The morphology of the GCLTV was spherical, with an average particle size of 64.47 nm and average potential of -19.73 mV. The optimal proportion of galactolipids in the GCLTVs was selected as 30%. Compared with the curcumin-loaded vesicles, GCLTV uptakes were significantly higher at 1, 2, and 4 h; further, the galactolipid modification significantly improved the liver-targeting capability of the GCLTVs in vivo. The inhibitory effects of the GCLTVs on the proliferation of HepG2 cells were significantly higher than those of the curcumin-loaded vesicles after 24 and 48 h. The antitumor effects of GCLTVs in vivo based on H&E staining results on liver tissues were stronger than those of the curcumin-loaded vesicles, and the expressions of P53, Bcl-2, and Bax were correspondingly more significant. Conclusion The GCLTVs show excellent liver-targeting capabilities in vitro and in vivo. Compared to the curcumin-loaded vesicles, the cytotoxicity and anticancer effects of the GCLTVs were significantly higher in vitro and in vivo. Thus, oat galactolipids could be used as a type of natural ligand of the ASGPR and a membrane material that would be beneficial for liver-targeting nanopreparations.
Collapse
Affiliation(s)
- Huiying Ren
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Nuo Chen
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yanqing Liu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Meimei Wu
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Jingsong Yan
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Mingxiang Chang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Hanmin Li
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
2
|
Li Q, Shi WR, Huang YL. Comparison of the protective effects of chitosan oligosaccharides and chitin oligosaccharide on apoptosis, inflammation and oxidative stress. Exp Ther Med 2024; 28:310. [PMID: 38873041 PMCID: PMC11170321 DOI: 10.3892/etm.2024.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
Chitin degradation products, especially chitosan oligosaccharides (COSs), are highly valued in various industrial fields, such as food, medicine, cosmetics and agriculture, for their rich resources and high cost-effectiveness. However, little is known about the impact of acetylation on COS cellular bioactivity. The present study aimed to compare the differential effects of COS and highly N-acetylated COS (NACOS), known as chitin oligosaccharide, on H2O2-induced cell stress. MTT assay showed that pretreatment with NACOS and COS markedly inhibited H2O2-induced RAW264.7 cell death in a concentration-dependent manner. Flow cytometry indicated that NACOS and COS exerted an anti-apoptosis effect on H2O2-induced oxidative damage in RAW264.7 cells. NACOS and COS treatment ameliorated H2O2-induced RAW264.7 cell cycle arrest. Western blotting revealed that the anti-oxidation effects of NACOS and COS were mediated by suppressing expression of proteins involved in H2O2-induced apoptosis, including Bax, Bcl-2 and cleaved PARP. Furthermore, the antagonist effects of NACOS were greater than those of COS, suggesting that acetylation was essential for the protective effects of COS.
Collapse
Affiliation(s)
- Qiongyu Li
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Wan-Rong Shi
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| | - Yun-Lin Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
3
|
Jalili C, Abbasi A, Rahmani-Kukia N, Andarzi S, Kakebaraie S, Zamir Nasta T. The relationship between aflatoxin B1 with the induction of extrinsic/intrinsic pathways of apoptosis and the protective role of taraxasterol in TM3 leydig cell line. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116316. [PMID: 38615640 DOI: 10.1016/j.ecoenv.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Salar Andarzi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Seyran Kakebaraie
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R, Iran
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R, Iran.
| |
Collapse
|
4
|
sofi S, Mehraj U, Jan N, Almilaibary A, Ahmad I, Ahmad F, Ahmad Mir M. Clinicopathological Significance and Expression Pattern of Bcl2 in Breast Cancer: A Comprehensive in silico and in vitro Study. Saudi J Biol Sci 2024; 31:103916. [PMID: 38223131 PMCID: PMC10787292 DOI: 10.1016/j.sjbs.2023.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/16/2024] Open
Abstract
B-cell lymphoma/leukemia gene-2 (Bcl-2) is the primary proto-oncogene that has been shown to work by preventing apoptosis/programmed cell death. Bcl-2 combines a variety of cell-generated signals associated to the survival and death of cells. In glioma, lung, and breast cancer, Bcl-2 over-expression has been linked to an increase in invasion and migration. Many treatment regimens that target Bcl2 have been established and approved, and thus increasing the survival rates of the patients. The primary goal of this research was to recognize new therapeutic compounds that target Bcl2 and assess Bcl2 expression pattern in BC patients. We used various bioinformatic tools as well as several in vitro assays to look out the expression and inhibition of Bcl2 in BC. Our study depicted that Bcl2 had a strong connection with tumour stroma, notably with suppressor cells originating from myeloid tissues. Moreover, in vitro and in silico research identified Paclitaxel as a promising natural substance that targets Bcl2. Overall, this work shows that Bcl2 overexpression accelerates the development of BC, and that targeting Bcl2 in combination with other drugs will dramatically improve BC patient's response to treatment and prevent the emergence of drug resistance.
Collapse
Affiliation(s)
- Shazia sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Umar Mehraj
- Department of pathology, Duke University, Durham, NC 27708, United States
| | - Nusrat Jan
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Abdullah Almilaibary
- Department of Family & Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, Saudi Arabia
| | - Irshad Ahmad
- Department of Medical Rehabilitation Sciences, CAMS, King Khalid University, Abha, Saudi Arabia
| | - Fuzail Ahmad
- College of Applied Sciences, Almaarefa University, Diriya, Riyadh 13713, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
5
|
Lee YJ, Pan Y, Lim D, Park SH, Sin SI, Kwack K, Park KY. Broccoli Cultivated with Deep Sea Water Mineral Fertilizer Enhances Anti-Cancer and Anti-Inflammatory Effects of AOM/DSS-Induced Colorectal Cancer in C57BL/6N Mice. Int J Mol Sci 2024; 25:1650. [PMID: 38338927 PMCID: PMC10855752 DOI: 10.3390/ijms25031650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to determine the alleviating effect of broccoli grown with deep sea water mineral (DSWM) fertilizer extracted from deep sea water on the development of colorectal cancer in C57BL/6N mice treated with AOM/DSS. Naturaldream Fertilizer Broccoli (NFB) cultured with deep sea water minerals (DSWM) showed a higher antioxidant effect and mineral content. In addition, orally administered NFB, showed a level of recovery in the colon and spleen tissues of mice compared with those in normal mice through hematoxylin and eosin (H&E) staining. Orally administered NFB showed the inhibition of the expression of inflammatory cytokine factors IL-1β, IL-6, TNF, IFN-γ, and IL-12 while increasing the expression of IL-10. Furthermore, the expression of inflammatory cytokines and NF-κB in the liver tissue was inhibited, and that of inflammatory enzymes, such as COX-2 and iNOS, was reduced. In the colon tissue, the expression of p53 and p21 associated with cell cycle arrest increased, and that of Bcl-2 associated with apoptosis decreased. Additionally, the expression of Bax, Bad, Bim, Bak, caspase 9, and caspase 3 increased, indicating enhanced activation of apoptosis-related factors. These results demonstrate that oral administration of broccoli cultivated using DSWM significantly restores spleen and colon tissues and simultaneously inhibits the NF-κB pathway while significantly decreasing cytokine expression. Moreover, by inducing cell cycle arrest and activating cell apoptosis, they also suggest alleviating AOM/DSS-induced colon cancer symptoms in C57BL/6N mice.
Collapse
Affiliation(s)
- Yeon-Jun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Yanni Pan
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Daewoo Lim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Seung-Hwan Park
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - Sin-Il Sin
- Agriculture Research Center for Carbon Neutral and Healing, Gurye-gun 57607, Republic of Korea
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (Y.-J.L.); (Y.P.); (D.L.)
| | - Kun-Young Park
- Graduate School of Integrative Medicine, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
6
|
Yaguchi T, Kameno M, Taira H, Kawakami J. Mitochondrial Dynamics of Bcl-2 Family Proteins during 17-β-Estradiol-Induced Apoptosis Correlate with the Malignancy of Endometrial Cancer Cells. Biochemistry 2023; 62:3041-3049. [PMID: 37856786 DOI: 10.1021/acs.biochem.3c00064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Excessive fat intake leads to an increase in cholesterol. Overexposure to estrogen derived from cholesterol is known to contribute to the malignancy of endometrial adenocarcinomas. However, it is not well understood the relationship between the exposure to estrogen and the malignancy of endometrial adenocarcinomas. We investigated how estrogen affected the malignancy of endometrial cancer cells, specifically HEC1 cells (a moderately differentiated adenocarcinoma) and HEC50B cells (a poorly differentiated adenocarcinoma). Cell viability was decreased by exogenous 17-β-estradiol (E2) in a concentration-dependent manner. E2 disturbed the mitochondrial membrane potentials by changing the localization of the B-cell lymphoma 2 (Bcl-2) family protein; however, there were significant differences in the localization of Bcl-2 family proteins between HEC1 and HEC50B cells. In HEC1 cells, E2 increased the expression of B-cell lymphoma-extra large (Bcl-XL) and the Bcl-2-associated X protein (Bax) and decreased Bcl-2 and Bcl-2-associated death promoter (Bad) expression on the outer mitochondrial membrane. Conversely, E2 increased the expression of Bad and Bax, and it decreased Bcl-2 and Bcl-XL expressions on the outer mitochondrial membrane in HEC50B cells. The disturbance of the mitochondrial membrane potential led to the release of cytochrome c from the mitochondria to the cytosolic space followed by activating caspase-9. After that, caspase-3 was activated and induced apoptosis. These results suggested that the localization of the Bcl-2 family protein observed under E2-induced apoptosis is related to the malignancy of endometrial cancer cells. We hope that the dynamics of Bcl-2 family proteins such as Bcl-XL and Bad will be used to diagnose malignant endometrial adenocarcinomas.
Collapse
Affiliation(s)
- Takahiro Yaguchi
- Department of Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Misaki Kameno
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hirofumi Taira
- Department of Medical Laboratory Science, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Junji Kawakami
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
7
|
Cheng Y, Yang X, Wang Y, Ding Q, Huang Y, Zhang C. The role of the Gas6/TAM signal pathway in the LPS-induced pulmonary epithelial cells injury. Mol Immunol 2023; 163:181-187. [PMID: 37820442 DOI: 10.1016/j.molimm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/23/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is an acute inflammatory respiratory disease. The interaction between growth arrest-specific 6 (Gas6) and tyrosine kinases of the Tyro3, Axl, Mer (TAM) family plays an important role in a variety of physiological and pathological processes, including inflammation. In this study, we mainly clarified the mechanism of the Gas6/TAM signal pathway in lipopolysaccharide (LPS)-induced pulmonary epithelial cells (BEAS-2B cells) injury. METHODS We cultured BEAS-2B cells in vitro and established a LPS-induced BEAS-2B cells injury model. Then, the siRNA sequence (siGas6-2) was transfected into cells. The expression of Gas6/TAM was measured based on quantitative reverse transcription polymerase chain reaction (qRT-RCR) and western blot (WB). Cell proliferation and apoptosis were measured by cell counting Kit-8 (CCK-8) and flow cytometry. The expression of pro-inflammatory factors was measured by qRT-RCR and WB. RESULTS Our study showed that when the 40 μg/mL LPS-induced BEAS-2B cells injury model was established, cell viability was significantly reduced, but the Gas6/TAM signal pathway was activated. When transfection with siGas6-2, low expression of Gas6 directly reduced the expression of downstream TAM receptors. Furthermore, the inhibition of the Gas6/TAM signal pathway significantly reduced the occurrence of cell apoptosis and the expression of inflammatory factors, and promoted cell proliferation. CONCLUSION Our research indicated that Gas6/TAM played an important role in cell proliferation, apoptosis, and inflammatory response in the LPS-induced BEAS-2B cells injury, and Gas6/TAM may be a new target in the treatment of ALI in the future.
Collapse
Affiliation(s)
- Yujing Cheng
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Xin Yang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Ying Wang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China
| | - Quan Ding
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Yu Huang
- Blood Center of Hani-Yi Autonomous Prefecture of Honghe, 661000 Mengzi, Yunnan, China
| | - Chan Zhang
- Department of Blood Transfusion, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, 650032 Kunming, Yunnan, China.
| |
Collapse
|
8
|
Masoudi R, Mohammadi A, Morovati S, Heidari AA, Asad-Sangabi M. Induction of apoptosis in colorectal cancer cells by matrix protein of PPR virus as a novel anti-cancer agent. Int J Biol Macromol 2023:125536. [PMID: 37369256 DOI: 10.1016/j.ijbiomac.2023.125536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Colorectal cancer (CRC) is a common and highly malignant neoplasm, ranking as the fourth most frequent cause of cancer-related deaths worldwide. Recently, non-human oncolytic viruses such as Peste des petits ruminants virus (PPRV) are considered as a potent candidate in the viral therapy of cancer. In the current study, the apoptotic effects of matrix (M) protein of PPRV was investigated on SW480 CRC cells. The M gene was cloned into the pcDNA™3.1/Hygro(+) expression vector and transfected into the cancer cells. The cytotoxic effects of the M protein on SW480 cells were confirmed using MTT assay. Furthermore, flow cytometry results showed that the M protein induces apoptosis in 91 % of CRC cells. Interestingly, the expression of the M gene in SW480 cells led to the up-regulation of genes including Bax, p53, and Caspase-9, as well as an increase in the Bax/Bcl-2 ratio. By using bioinformatics modeling, we hypothesized that the M protein could interact with Bax factor through its BH3-like motif and could further activate the intrinsic apoptosis pathway. Ultimately, this study provided the first evidence of the pro-apoptotic activity of PPRV M protein indicating its possible development as a promising novel anti-cancer agent.
Collapse
Affiliation(s)
- Ramin Masoudi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Ali Mohammadi
- Division of Virology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amir Ali Heidari
- Division of Aquatic Animal Health and Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mehdi Asad-Sangabi
- Division of Virology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front Oncol 2022; 12:985363. [PMID: 36313628 PMCID: PMC9597512 DOI: 10.3389/fonc.2022.985363] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/22/2022] [Indexed: 11/27/2022] Open
Abstract
Apoptosis, as a very important biological process, is a response to developmental cues or cellular stress. Impaired apoptosis plays a central role in the development of cancer and also reduces the efficacy of traditional cytotoxic therapies. Members of the B-cell lymphoma 2 (BCL-2) protein family have pro- or anti-apoptotic activities and have been studied intensively over the past decade for their importance in regulating apoptosis, tumorigenesis, and cellular responses to anticancer therapy. Since the inflammatory response induced by apoptosis-induced cell death is very small, at present, the development of anticancer drugs targeting apoptosis has attracted more and more attention. Consequently, the focus of this review is to summarize the current research on the role of BCL-2 family proteins in regulating apoptosis and the development of drugs targeting BCL-2 anti-apoptotic proteins. Additionally, the mechanism of BCL-2 family proteins in regulating apoptosis was also explored. All the findings indicate the potential of BCL-2 family proteins in the therapy of cancer.
Collapse
Affiliation(s)
- Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Zhong Wei
- Gastrointestinal Surgery, Anhui Provincial Hospital, Hefei, China
| | - Wanting Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Chandra R, Singh S, Ganguly C. β-Sitosterol & quercetin enhances brain development in iodine deficient rat models. Nutr Health 2022:2601060221122209. [PMID: 36017551 DOI: 10.1177/02601060221122209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recently thyroid hormone studies on brain growth, development and activity are regaining popularity. Thyroid hormones have long been believed to play critical role in mammalian brain growth and maturation regulating facets of neuronal cell growth, proliferation and differentiation and further signaling and glial cell differentiation. Deficiency of these hormones in mother leads to mental retardation in the subsequent offspring's. METHODS In this presented study, brain development of iodine deficient rat models created through deficiency in feeding, mating and further selection. Young adult female wistar rats were induced with iodine deficiency and then mated with healthy male rats. These pregnant hypothyroid induced females were treated with β-sitosterol (150 mg/kg/day) and quercetin (150 mg/kg/day) alone and in combination for whole gestation period. Analysis were dealt with the genetic and histological studies of the pups brain. PCR based RNA analysis was also carried out. Histology was done using eosin and hematoxylin. RESULTS Positive impacts of the β-sitosterol and quercetin on the iodine deficient brain were observed upon histological and PCR analysis. Altogether, the analysis proves that combined doses of β-sitosterol and quercetin for normal brain development in iodine deficient infants hence can be potentially applied as therapeutics in iodine deficiency circumstances.
Collapse
Affiliation(s)
- Rashmi Chandra
- Department of Biotechnology, 231528IMS Engineering College, Ghaziabad, UP, India
| | - Sushant Singh
- Amity Institute of Biotechnology, 557953Amity University Chhattisgarh, Raipur, India
| | - Chaiti Ganguly
- Department of Biotechnology, 582893IILM-CET, Greater Noida, UP, India
| |
Collapse
|
11
|
Zhu X, Shi C, Hou C. AFAP1-AS1/Hsa-miR-15a-5p/Bcl-2 Axis is a Potential Regulator of Cancer Cell Proliferation and Apoptosis in Gallbladder Carcinoma. Nutr Cancer 2022; 74:3363-3374. [PMID: 35404727 DOI: 10.1080/01635581.2022.2059090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xianhai Zhu
- Department of Interventional Radiology Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changgao Shi
- Department of Interventional Radiology Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Changlong Hou
- Department of Interventional Radiology Oncology, Anhui Provincial Cancer Hospital, West Branch of the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Song X, Zhang L, Hui X, Sun X, Yang J, Wang J, Wu H, Wang X, Zheng Z, Che F, Wang G. Selenium-containing protein from selenium-enriched Spirulina platensis antagonizes oxygen glucose deprivation-induced neurotoxicity by inhibiting ROS-mediated oxidative damage through regulating MPTP opening. PHARMACEUTICAL BIOLOGY 2021; 59:629-638. [PMID: 34062090 PMCID: PMC8172226 DOI: 10.1080/13880209.2021.1928715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Selenium-containing protein from selenium-enriched Spirulina platensis (Se-SP) (syn. Arthrospira platensis [Microcoleaceae]) showed novel antioxidant activity. However, the protective effect of Se-SP against oxygen glucose deprivation (OGD)-induced neural apoptosis has not been reported yet. OBJECTIVE To verify whether Se-SP can inhibit OGD-induced neural apoptosis and explore the underlying mechanism. MATERIALS AND METHODS Primary hippocampal neurons were separated from Sprague-Dawley (SD) rats. 95% N2 + 5% CO2 were employed to establish OGD model. Neurons were treated with 5 and 10 µg/mL Se-SP under OGD condition for 6 h. Neurons without treatment were the control group. Neural viability and apoptosis were detected by MTT, immunofluorescence and western blotting methods. RESULTS Se-SP significantly improved neuronal viability (from 57.2% to 94.5%) and inhibited apoptosis in OGD-treated primary neurons (from 45.6% to 6.3%), followed by improved neuronal morphology and caspases activation. Se-SP co-treatment also effectively suppressed OGD-induced DNA damage by inhibiting ROS accumulation in neurons (from 225.6% to 106.3%). Additionally, mitochondrial dysfunction was also markedly improved by Se-SP co-treatment via balancing Bcl-2 family expression. Moreover, inhibition of mitochondrial permeability transition pore (MPTP) by CsA (an MPTP inhibitor) dramatically attenuated OGD-induced ROS generation (from 100% to 56.2%), oxidative damage, mitochondrial membrane potential (MPP) loss (from 7.5% to 44.3%), and eventually reversed the neuronal toxicity and apoptosis (from 57.4% to 79.6%). DISCUSSION AND CONCLUSIONS Se-SP showed enhanced potential to inhibit OGD-induced neurotoxicity and apoptosis by inhibiting ROS-mediated oxidative damage through regulating MPTP opening, indicating that selenium-containing protein showed broad application in the chemoprevention and chemotherapy against human ischaemic brain injury.
Collapse
Affiliation(s)
- Xiaojie Song
- Department of Neurology, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Lijun Zhang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Xin Hui
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Xiangfu Sun
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Juntao Yang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Jinlei Wang
- Department of Internal Medicine, Taian Traffic Hospital, Taian, China
| | - Hualian Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB-CAS), Guangdong Key Laboratory of Marine Materia Medica (LMMM-GD), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Xianjun Wang
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Zuncheng Zheng
- Department of Rehabilitation, Taian City Central Hospital, Taian, ChinaShandong
| | - Fengyuan Che
- Department of Neurology, Linyi People’s Hospital, Linyi, China
| | - Guojun Wang
- Department of Neurosurgery, Taian City Central Hospital, Taian, China
| |
Collapse
|
13
|
Huxie Huaji Ointment Induced Apoptosis of Liver Cancer Cells In Vivo and In Vitro by Activating the Mitochondrial Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9922059. [PMID: 34335843 PMCID: PMC8298153 DOI: 10.1155/2021/9922059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 12/03/2022]
Abstract
Huxie Huaji (HXHJ) Ointment is a famous traditional Chinese medicinal prescription and is commonly used for the clinical treatment of hepatocellular carcinoma by boosting immunity and detoxification. However, the scientific evidence for the effect of HXHJ Ointment on hepatocellular carcinoma and the underlying molecular mechanism are lacking. The present study aimed to identify the effects of HXHJ Ointment on hepatocellular carcinoma in vitro and in vivo as well as investigating the mechanistic basis for the anticancer effect of HXHJ ointment. First, liquid chromatography-mass spectrometry was used to verify the composition of HXHJ Ointment and quality control. Second, in vitro, Cell Counting Kit (CCK8) cell viability assay and Hoechst 33342 staining assay were performed to explain the cell apoptosis. The protein levels of tumor suppressor protein (p53), B-cell lymphoma 2 gene (Bcl-2), cytochrome C (Cyt-C), and aspartate proteolytic enzyme-3 (caspase-3) were examined by immunofluorescence. Finally, in vivo, hematoxylin and eosin (H&E) staining was used to observe the pathological changes in hepatocellular carcinoma samples. Western blots and immunohistochemistry were used to detect the anticancer properties of HXHJ ointment. The results in vitro showed that 20% HXHJ Ointment serum could significantly inhibit HepG2 cell proliferation, increased tumor suppressor gene p53, downregulated antiapoptotic protein Bcl-2, promoted the release of mitochondrial Cyt-C, activated caspase-3, and induced HepG2 cell apoptosis. Furthermore, in vivo experiments showed that HXHJ Ointment could effectively inhibit tumor growth in nude mice xenotransplanted with HepG2 cells, changed the morphology of tumor cells, and regulated the expression of apoptosis-related protein pathway p53/Bcl-2/Cyt-C/caspase-3. HXHJ Ointment can significantly inhibit the development of hepatocellular carcinoma, and its mechanism may be related to the regulation of p53/Bcl-2/Cyt-C/caspase-3 signaling pathway to induce cell mitochondrial apoptosis.
Collapse
|
14
|
Wang M, Tang W, Gong N, Liu P. Sodium Danshensu inhibits the progression of lung cancer by regulating PI3K/Akt signaling pathway. Drug Dev Res 2021; 83:88-96. [PMID: 34196024 DOI: 10.1002/ddr.21846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/19/2022]
Abstract
Sodium Danshensu, extracted from the root of the Salvia miltiorrhiza, has pleiotropic effects including anti-oxidation, anti-inflammation and anti-tumor. However, whether Sodium Danshensu has an anti-cancer effect in lung cancer remains to be elucidated. The present study aimed to illustrate the effects of Sodium Danshensu on lung cancer cells and the potential molecular mechanisms. BEAS-2B, A549, and NCI-H1299 cells were stimulated with 25, 50, and 100 μM Sodium Danshensu for 24, 48, and 72 h, and then cell viability, apoptosis, migration and invasion were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry and Transwell assays, respectively. Moreover, the levels of Proliferating cell nuclear antigen (PCNA), matrix metalloproteinase 9 (MMP9), B-cell lymphoma-2 (Bcl-2) associated X (Bax), Bcl-2, phosphorylated (p)-phosphoinositide 3-kinase (PI3K), and p-Protein kinase B (AKT) in lung cancer cells were evaluated using quantitative real-time polymerase chain reaction (qRT-PCR) and/or Western blot assays. We observed that Sodium Danshensu suppressed cells viability, migration, and invasion, as well as promoted cells apoptosis in A549 and NCI-H1299 cells in a dose-dependent manner, while Sodium Danshensu had no cytotoxic effect on the proliferation activity of BEAS-2B cells. Moreover, the expression of PCNA, MMP9, Bcl-2 were decreased, but Bax was up-regulated in Sodium Danshensu-treated A549 and NCI-H1299 cells. Our findings also revealed that Sodium Danshensu inhibited PI3K/AKT pathway in A549 and NCI-H1299 cells. In conclusion, our study provided the first evidence that Sodium Danshensu suppressed the malignant biological behaviors of lung cancer cells, indicating that Sodium Danshensu might be a latent candidate for lung cancer therapy.
Collapse
Affiliation(s)
- Miao Wang
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Nianjin Gong
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Peijun Liu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| |
Collapse
|
15
|
Zhang F, Xu H, Xia R, Yu P, Li Y, Yu X, Sui D. Pseudo-ginsenoside Rh2 Induces Protective Autophagy in Hepatocellular Carcinoma HepG2 Cells. Recent Pat Anticancer Drug Discov 2021; 16:521-532. [PMID: 34109916 DOI: 10.2174/1574892816666210607100239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/02/2021] [Accepted: 03/20/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pseudo-ginsenoside-Rh2 (pseudo-G-Rh2), a novel derivative of ginsenoside Rh2, is reported to exert a pro-apoptotic effect on various malignancies. However, whether this anti-cancer action of pseudo-G-Rh2 involves autophagy remains to be determined and explored. OBJECTIVES Investigation of pseudo-G-Rh2-induced apoptosis and autophagy and the underlying mechanism. METHODS In the present study, the MTT assay was used for evaluating cell viability and the lactate dehydrogenase (LDH) assay was performed to assess cell toxicity. Autophagy evaluation was performed using monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM). The levels of autophagy-associated and apoptosis-associated proteins were determined using Western blotting. The Annexin V FITC/propidium iodide (PI) assay was used to assess apoptosis. RESULTS The Annexin V FITC/PI assay revealed that the percentage of apoptotic cells in HepG2 cells at concentrations 0, 20, 40, and 60 μM was 3.75%±1.37%, 5.70%±1.04%, 12.30%±2.10%, and 34.26%±4.73%, respectively. Pseudo-G-Rh2 was observed to significantly increase the expressions of BAX, cleaved-caspase-3, and cleaved-caspase-9, while it decreased the Bcl-2 expression. MDC and TEM analyses revealed that pseudo-G-Rh2 at concentrations 20, 40, and 60 μM significantly facilitated the accumulation of autophagosomes and autolysosomes within the HepG2 cells. Moreover, pseudo-G-Rh2 significantly increased the expressions of LC3 Ⅱ/LC3 Ⅰ, and Beclin-1 and decreased the expression of p62. The Annexin V FITC/PI assay also revealed that in comparison to the pseudo-G-Rh2 group, the concurrent treatment with pseudo-G-Rh2 and an autophagy inhibitor (CQ or 3-MA) significantly induced distinct apoptosis. In addition, pseudo-G-Rh2 activated AMPK and inhibited the PI3K/Akt/mTOR pathway in a concentration-dependent manner. Pseudo-G-Rh2 is similar to the current patents, which enhanced its anti-cancer activity by combining with autophagy inhibitors. CONCLUSION Pseudo-G-Rh2 could induce protective autophagy in HepG2 cells, at least in part, via AMPK and the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Fuyuan Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Rui Xia
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Ping Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Yuangeng Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Xiaofeng Yu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| |
Collapse
|
16
|
The mechanism and prevention of mitochondrial injury after exercise. J Physiol Biochem 2021; 77:215-225. [PMID: 33650090 DOI: 10.1007/s13105-021-00802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 02/18/2021] [Indexed: 10/22/2022]
Abstract
With the development of society, physical activity has come to be an effective means by which people pursue good health to improve the quality of life. However, with the increase of intensity and the passage of time, exercise injury has become a hazard that can no longer be ignored. It is imperative to find effective ways to inhibit or reduce the negative effects of exercise. Mitochondria are important organelles involved in exercise and play an important role in exercise injury and prevention. Studies have found that exercise preconditioning and increased mitochondrial nutrition can effectively decrease mitochondrial damage after exercise. Against this background, some of the newest developments in this important field are reviewed here. The results discussed indicate that exercise preconditioning and supplement mitochondrial nutrition need to be increased to prevent exercise-related injuries.
Collapse
|
17
|
Ma X. Protein Metabolism in Host Gastrointestinal Tract. Curr Protein Pept Sci 2020; 21:742-743. [PMID: 33210583 DOI: 10.2174/138920372108200923163047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xi Ma
- State Key Laboratory of Animal Nutrition College of Animal Science and Technology China Agricultural University (CAU) Beijing, China
| |
Collapse
|
18
|
Wilde L, Ramanathan S, Kasner M. B-cell lymphoma-2 inhibition and resistance in acute myeloid leukemia. World J Clin Oncol 2020; 11:528-540. [PMID: 32879842 PMCID: PMC7443828 DOI: 10.5306/wjco.v11.i8.528] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/01/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Spurred by better understanding of disease biology, improvements in molecular diagnostics, and the development of targeted therapies, the treatment of acute myeloid leukemia (AML) has undergone significant evolution in recent years. Arguably, the most exciting shift has come from the success of treatment with the B-cell lymphoma-2 inhibitor venetoclax. When given in combination with a hypomethylating agent or low dose cytarabine, venetoclax demonstrates high response rates, some of which are durable. In spite of this, relapses after venetoclax treatment are common, and much interest exists in elucidating the mechanisms of resistance to the drug. Alterations in leukemic stem cell metabolism have been identified as a possible escape route, and clinical trials focusing on targeting metabolism in AML are ongoing. This review article highlights current research regarding venetoclax treatment and resistance in AML with a focus on cellular metabolism.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Sabarina Ramanathan
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| | - Margaret Kasner
- Department of Hematology and Medical Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, PA 19107, United States
| |
Collapse
|