1
|
Chen Y, Xue Y, Jiang Q, Jin Y, Chen W, Hua M. Disruption of the FOXM1 Regulatory Region Inhibits Tumor Progression in Ovarian Cancer by CRISPR-Cas9. Drug Dev Res 2025; 86:e70049. [PMID: 39829431 DOI: 10.1002/ddr.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Ovarian cancer is the seventh most common lethal tumor among women in the world. FOXM1 is a transcription factor implicated in the initiation and progression of ovarian cancer by regulating key oncogenic genes. The role of regulatory regions in regulating the expression of FOXM1 in ovarian cancer is not completely clarified. Treatment with bromodomain and extraterminal (BET) inhibitors JQ-1 and I-BET were explored in ovarian cancer cell lines (OVCAR3, A2780, or SKOV3) to evaluate FOXM1 expression and biological behavior by qPCR, CCK8 assay, colony formation assay, wound-healing, and transwell assays. The regulatory regions (enhancer sequence spanning promoter or exon 1) of FOXM1 were deleted using CRISPR-Cas9 in the OVCAR3 cell line. FOXM1 expression and tumor biological behavior were further assessed in FOXM1 regulatory regions deleted OVCAR3 cell line. The mouse xenograft model was assessed at the indicated time points following subcutaneous injection of enhancer-deleted cells. Treatment with the JQ-1 and I-BET reduced the expression of FOXM1, decreasing cell proliferation, migration, and invasion in a panel of ovarian cancer cell lines including OVCAR3, A2780, and SKOV3 cells. By mining the published ChIP-sequencing data (H3K27Ac) from 12 ovarian cancer cell lines, we identified a potential enhancer and promoter region. Deletion of the spanning enhancer and promoter region of FOXM1 reduced mRNA and protein expression. Similarly, cell proliferation, migration, invasion, and tumorigenesis in both cells and mouse xenograft models were significantly attenuated. Our study demonstrates that JQ-1 and I-BET can regulate the expression of the FOXM1 gene-relating network. These data also indicate that disruption of the span enhancer and promoter region activity of FOXM1 has a vital role in the anti-ovarian cancer effect, hiding a potential opportunity for the evaluation of this non-coding DNA deletion disrupts the FOXM1 transcriptional network in ovarian cancer development.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
- Department of Oncology, Huaian Hospital of Huaian City, Huaian, China
| | - Yingzhuo Xue
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Qiuwen Jiang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunfeng Jin
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Weiguan Chen
- Department of Rehabilitation Medicine, The First People's Hospital of Nantong, Nantong, China
| | - Minhui Hua
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
2
|
Taghehchian N, Lotfi M, Zangouei AS, Akhlaghipour I, Moghbeli M. MicroRNAs as the critical regulators of Forkhead box protein family during gynecological and breast tumor progression and metastasis. Eur J Med Res 2023; 28:330. [PMID: 37689738 PMCID: PMC10492305 DOI: 10.1186/s40001-023-01329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/29/2023] [Indexed: 09/11/2023] Open
Abstract
Gynecological and breast tumors are one of the main causes of cancer-related mortalities among women. Despite recent advances in diagnostic and therapeutic methods, tumor relapse is observed in a high percentage of these patients due to the treatment failure. Late diagnosis in advanced tumor stages is one of the main reasons for the treatment failure and recurrence in these tumors. Therefore, it is necessary to assess the molecular mechanisms involved in progression of these tumors to introduce the efficient early diagnostic markers. Fokhead Box (FOX) is a family of transcription factors with a key role in regulation of a wide variety of cellular mechanisms. Deregulation of FOX proteins has been observed in different cancers. MicroRNAs (miRNAs) as a group of non-coding RNAs have important roles in post-transcriptional regulation of the genes involved in cellular mechanisms. They are also the non-invasive diagnostic markers due to their high stability in body fluids. Considering the importance of FOX proteins in the progression of breast and gynecological tumors, we investigated the role of miRNAs in regulation of the FOX proteins in these tumors. MicroRNAs were mainly involved in progression of these tumors through FOXM, FOXP, and FOXO. The present review paves the way to suggest a non-invasive diagnostic panel marker based on the miRNAs/FOX axis in breast and gynecological cancers.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Taghehchian N, Samsami Y, Maharati A, Zangouei AS, Boroumand-Noughabi S, Moghbeli M. Molecular biology of microRNA-342 during tumor progression and invasion. Pathol Res Pract 2023; 248:154672. [PMID: 37413875 DOI: 10.1016/j.prp.2023.154672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Cancer is considered as one of the main causes of human deaths and health challenges in the world. Various factors are involved in the high death rate of cancer patients, including late diagnosis and drug resistance that result in treatment failure and tumor recurrence. Invasive diagnostic methods are one of the main reasons of late tumor detection in cancer patients. Therefore, it is necessary to investigate the molecular tumor biology to introduce efficient non-invasive markers. MicroRNAs (miRNAs) are involved in regulation of the cellular mechanisms such as cell proliferation, apoptosis, and migration. MiRNAs deregulations have been also frequently shown in different tumor types. Here, we discussed the molecular mechanisms of miR-342 during tumor growth. MiR-342 mainly functions as a tumor suppressor by the regulation of transcription factors and signaling pathways such as WNT, PI3K/AKT, NF-kB, and MAPK. Therefore, miR-342 mimics can be used as a reliable therapeutic strategy to inhibit the tumor cells growth. The present review can also pave the way to introduce the miR-342 as a non-invasive diagnostic/prognostic marker in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Bank, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
A lignan from Alnus japonica inhibits glioblastoma tumorspheres by suppression of FOXM1. Sci Rep 2022; 12:13990. [PMID: 35978012 PMCID: PMC9385634 DOI: 10.1038/s41598-022-18185-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/08/2022] [Indexed: 11/08/2022] Open
Abstract
Forkhead Box M1 (FOXM1) is known to regulate cell proliferation, apoptosis and tumorigenesis. The lignan, (-)-(2R,3R)-1,4-O-diferuloylsecoisolariciresinol (DFS), from Alnus japonica has shown anti-cancer effects against colon cancer cells by suppressing FOXM1. The present study hypothesized that DFS can have anti-cancer effects against glioblastoma (GBM) tumorspheres (TSs). Immunoprecipitation and luciferase reporter assays were performed to evaluate the ability of DFS to suppress nuclear translocation of β-catenin through β-catenin/FOXM1 binding. DFS-pretreated GBM TSs were evaluated to assess the ability of DFS to inhibit GBM TSs and their transcriptional profiles. The in vivo efficacy was examined in orthotopic xenograft models of GBM. Expression of FOXM1 was higher in GBM than in normal tissues. DFS-induced FOXM1 protein degradation blocked β-catenin translocation into the nucleus and consequently suppressed downstream target genes of FOXM1 pathways. DFS inhibited cell viability and ATP levels, while increasing apoptosis, and it reduced tumorsphere formation and the invasiveness of GBM TSs. And DFS reduced the activities of transcription factors related to tumorigenesis, stemness, and invasiveness. DFS significantly inhibited tumor growth and prolonged the survival rate of mice in orthotopic xenograft models of GBM. It suggests that DFS inhibits the proliferation of GBM TSs by suppressing FOXM1. DFS may be a potential therapeutic agent to treat GBM.
Collapse
|
5
|
Wang X, Dou N, Wang J, Zhang Y, Li Y, Gao Y. FOXM1-induced miR-552 expression contributes to pancreatic cancer progression by targeting multiple tumor suppressor genes. Int J Biol Sci 2021; 17:915-925. [PMID: 33867818 PMCID: PMC8040302 DOI: 10.7150/ijbs.56733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of microRNAs (miRNAs) plays important roles during carcinogenesis. Forkhead box M1 (FOXM1), a well-known oncogenic transcription factor, has been implicated in the progression of multiple cancer types. To find out FOXM1-induced abnormal miRNAs in pancreatic cancer, we analyzed TCGA database and figured out miR-552 as the most relevant miRNA with FOXM1. Molecular experimental results demonstrated that FOXM1 transcriptionally activated miR-552 expression by directly binding to the promoter region of miR-552. In a pancreatic cancer tissue microarray, miR-552 expression was positively correlated with FOXM1 and high expression of miR-552 could predict poor patient outcome. Functionally, overexpression of miR-552 promoted pancreatic cancer cell migration and inhibition of miR-552 attenuated this phenotype. The inhibitory effect on cell migration caused by FOXM1 knockdown could be restored by exogenous expression of miR-552. By informatics analysis, we identified three tumor suppressor genes: DACH1, PCDH10 and SMAD4, all of which were negatively associated with FOXM1 and validated as functionally relevant targets of miR-552. Taken together, our findings provide a new FOXM1-miR-552-DACH1/PCDH10/SMAD4 axis to regulate pancreatic cancer cell progression and new opportunities for therapeutic intervention against this disease.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ning Dou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jialin Wang
- Department of Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yi Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
6
|
Kalathil D, John S, Nair AS. FOXM1 and Cancer: Faulty Cellular Signaling Derails Homeostasis. Front Oncol 2021; 10:626836. [PMID: 33680951 PMCID: PMC7927600 DOI: 10.3389/fonc.2020.626836] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
Collapse
Affiliation(s)
- Dhanya Kalathil
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Samu John
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| | - Asha S Nair
- Cancer Research Program-4, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India.,Research Centre, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
7
|
Yi L, Zhou L, Luo J, Yang Q. Circ-PTK2 promotes the proliferation and suppressed the apoptosis of acute myeloid leukemia cells through targeting miR-330-5p/FOXM1 axis. Blood Cells Mol Dis 2020; 86:102506. [PMID: 33126007 DOI: 10.1016/j.bcmd.2020.102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is characterized by malignant clonal disorder of blood cells with high relapse rate and low survival rate. Circular RNAs (circRNAs) have shown their important regulatory roles in AML progression. Here, we intended to disclose the role of circular RNA protein tyrosine kinase 2 (circ-PTK2) in the progression of AML and illustrate the potential working mechanisms. METHODS 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and colony formation assay were conducted to analyze cell proliferation ability, and the apoptosis rate was assessed by flow cytometry. Dual-luciferase reporter assay was used to validate the direct interaction between microRNA-330-5p (miR-330-5p) and circ-PTK2 or forkhead box M1 (FOXM1). RESULTS Circ-PTK2 was highly expressed in AML. Circ-PTK2 interference suppressed the proliferation and triggered the apoptosis of AML cells. Circ-PTK2 directly bound to miR-330-5p. Si-circ-PTK2-mediated inhibition on the malignant behaviors of AML cells was partly counteracted by the addition of anti-miR-330-5p. MiR-330-5p directly interacted with FOXM1 messenger RNA (mRNA), and FOXM1 overexpression partly reversed miR-330-5p-induced influence in AML cells. Circ-PTK2 up-regulated FOXM1 expression through sponging miR-330-5p in AML cells. CONCLUSION Circ-PTK2 promoted the proliferation and hampered the apoptosis of AML cells through targeting miR-330-5p/FOXM1 axis.
Collapse
Affiliation(s)
- Lai Yi
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Libo Zhou
- Department of Nephrology, Zhuzhou No. 2 Hospital, Zhuzhou, China
| | - Jinxia Luo
- Department of Dermatology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China
| | - Qiuhong Yang
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, China.
| |
Collapse
|
8
|
Xie Z, Janczyk PŁ, Zhang Y, Liu A, Shi X, Singh S, Facemire L, Kubow K, Li Z, Jia Y, Schafer D, Mandell JW, Abounader R, Li H. A cytoskeleton regulator AVIL drives tumorigenesis in glioblastoma. Nat Commun 2020; 11:3457. [PMID: 32651364 PMCID: PMC7351761 DOI: 10.1038/s41467-020-17279-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is a deadly cancer, with no effective therapies. Better understanding and identification of selective targets are urgently needed. We found that advillin (AVIL) is overexpressed in all the glioblastomas we tested including glioblastoma stem/initiating cells, but hardly detectable in non-neoplastic astrocytes, neural stem cells or normal brain. Glioma patients with increased AVIL expression have a worse prognosis. Silencing AVIL nearly eradicated glioblastoma cells in culture, and dramatically inhibited in vivo xenografts in mice, but had no effect on normal control cells. Conversely, overexpressing AVIL promoted cell proliferation and migration, enabled fibroblasts to escape contact inhibition, and transformed immortalized astrocytes, supporting AVIL being a bona fide oncogene. We provide evidence that the tumorigenic effect of AVIL is partly mediated by FOXM1, which regulates LIN28B, whose expression also correlates with clinical prognosis. AVIL regulates the cytoskeleton through modulating F-actin, while mutants disrupting F-actin binding are defective in its tumorigenic capabilities. Genes that modulate the cytoskeleton have been associated with increased cell proliferation and migration. Here, the authors show that AVIL, an actin regulatory protein, is overexpressed in glioblastomas and mediates oncogenic effects through regulation of FOXM1 stability and LIN28B expression.
Collapse
Affiliation(s)
- Zhongqiu Xie
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Pawel Ł Janczyk
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Aiqun Liu
- Tumor Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Xinrui Shi
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Loryn Facemire
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kristopher Kubow
- Department of Biology, James Madison University, Harrisonburg, VA, 22807, USA
| | - Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yuemeng Jia
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Dorothy Schafer
- Department of Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - James W Mandell
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA
| | - Hui Li
- Department of Pathology, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA. .,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
9
|
Uz M, Kalaga M, Pothuraju R, Ju J, Junker WM, Batra SK, Mallapragada S, Rachagani S. Dual delivery nanoscale device for miR-345 and gemcitabine co-delivery to treat pancreatic cancer. J Control Release 2019; 294:237-246. [PMID: 30576747 PMCID: PMC6379902 DOI: 10.1016/j.jconrel.2018.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
A polymeric dual delivery nanoscale device (DDND) was designed for combined delivery of microRNA (miR-345) and gemcitabine (GEM) to treat pancreatic cancer (PC). This temperature and pH-responsive pentablock copolymer system was able to restore miR-345, making xenograft tumors more susceptible to GEM, the standard therapy for PC. Restoration using DDND treatment results in sonic hedgehog signaling down regulation, which decreases desmoplasia, thereby resulting in improved GEM perfusion to the tumor and better therapeutic outcomes. The release of miR-345 and GEM could be tuned by using the DDND in the form of micelles or in the form of thermoreversible gels, based on polymer concentration. The DDNDs enabled miR-345 stability and sustained co-release of miR-345 and GEM, thereby facilitating dose-sparing use of GEM. Further, enhanced in vitro cellular uptake due to amphiphilic character, and endosomal escape because of the cationic end blocks led to efficient transfection with DDNDs. The combined DDND treatment enabled efficient reduction in cell viability of Capan-1 and CD18/HPAF cells in vitro compared with either GEM or miR-345 treatment alone. Mice carrying xenograft tumors treated with DDNDs carrying both miR-345 and GEM combination therapy displayed reduced tumor growth and less metastasis in distant organs compared to individual drug treatments. Immunohistochemical analysis of the xenograft tissues revealed significant down regulation of desmoplastic reaction, SHH, Gli-1, MUC4, and Ki67 compared to control groups.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Manisha Kalaga
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhyung Ju
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Qiu J, Zhao J, Zuo A, Liu L, Liu Q, Pan H, Yuan X. Lentiviral RNA interference-mediated downregulation of Forkhead box M1 expression suppresses growth of oral squamous cell carcinoma in vitro. Oncol Lett 2018; 17:525-531. [PMID: 30655797 DOI: 10.3892/ol.2018.9536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/10/2018] [Indexed: 11/06/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most fatal types of oral cancer worldwide. Forkhead box M1 (FOXM1) is associated with the occurrence and development of a number of types of human cancer, but its function in OSCC remains unclear. The present study aimed to explore the effect of FOXM1 downregulation using lentivirus-mediated short hairpin (sh)RNA against FOXM1 (LV-shFOXM1) in the cell line Tca8113 in vitro. Infection of Tca8113 cells with LV-shFOXM1 inhibited the mRNA and protein expression level of FOXM1. The downregulation of FOXM1 resulted in cell cycle arrest of Tca8113 cells, and the inhibition of proliferation, migration and invasion. The protein expression level of cyclins B1 and D1 were downregulated, whereas those of p27 and p21 were upregulated following infection with LV-shFOXM1, compared with the blank control and LV-shCON groups. In addition, FOXM1 downregulation decreased the expression of matrix metalloproteinase-2 and LV-shFOXM1 significantly suppressed OSCC cell viability. Therefore, FOXM1 may be a target for the treatment of OSCC.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Juan Zhao
- Department of Pediatrics, Jiaozhou People's Hospital, Qingdao, Shandong 266300, P.R. China
| | - Anjun Zuo
- Medical Services, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lan Liu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Qiaoqiao Liu
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Huazheng Pan
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiao Yuan
- Department of Stomatology, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
11
|
Hwang SM, Lee HJ, Jung JH, Sim DY, Hwang J, Park JE, Shim BS, Kim SH. Inhibition of Wnt3a/FOXM1/β-Catenin Axis and Activation of GSK3β and Caspases are Critically Involved in Apoptotic Effect of Moracin D in Breast Cancers. Int J Mol Sci 2018; 19:ijms19092681. [PMID: 30201862 PMCID: PMC6164368 DOI: 10.3390/ijms19092681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Although Moracin D derived from Morus alba was known to have anti-inflammatory and antioxidant activities, the underlying antitumor mechanism of Moracin D has not been unveiled thus far. Thus, in the recent study, the apoptotic mechanism of Moracin D was elucidated in breast cancer cells. Herein, Moracin D exerted significant cytotoxicity in MDA-MB-231 and MCF-7 cells. Furthermore, Moracin D increased sub G1 population; cleaved poly (Adenosine diphosphate (ADP-ribose)) polymerase (PARP); activated cysteine aspartyl-specific protease 3 (caspase 3); and attenuated the expression of c-Myc, cyclin D1, B-cell lymphoma 2 (Bcl-2), and X-linked inhibitor of apoptosis protein (XIAP) in MDA-MB231 cells. Of note, Moracin D reduced expression of Forkhead box M1 (FOXM1), β-catenin, Wnt3a, and upregulated glycogen synthase kinase 3 beta (GSK3β) on Tyr216 along with disturbed binding of FOXM1 with β-catenin in MDA-MB-231 cells. Conversely, GSK3β inhibitor SB216763 reversed the apoptotic ability of Moracin D to reduce expression of FOXM1, β-catenin, pro-caspase3, and pro-PARP in MDA-MB-231 cells. Overall, these findings provide novel insight that Moracin D inhibits proliferation and induces apoptosis via suppression of Wnt3a/FOXM1/β-catenin signaling and activation of caspases and GSK3β.
Collapse
Affiliation(s)
- Sung Min Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Hoon Jung
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Jisung Hwang
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
12
|
Yang X, Shi Y, Yan J, Fan H. Downregulation of FoxM1 inhibits cell growth and migration and invasion in bladder cancer cells. Am J Transl Res 2018; 10:629-638. [PMID: 29511457 PMCID: PMC5835828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
The FoxM1 (Forkhead Box M1) transcription factor plays a key role in regulation of cell growth, cell cycle, and transformation. Higher expression of FoxM1 has been observed in various types of human cancers including bladder cancer. However, the exact function of FoxM1 in bladder cancer has not been elucidated. To investigate the cellular and molecular function of FoxM1 in bladder cancer, we measured the consequences of downregulation and upregulation of FoxM1 in bladder cancer cells using MTT assay, wound healing assay, and invasion assay. We found that downregulation of FoxM1 inhibited cell growth, but induced apoptosis in bladder cancer cells. Moreover, we found that inhibition of FoxM1 retarded cell migration and invasion. In line with this, upregulation of FoxM1 led to cell growth promotion and inhibited cell apoptosis in bladder cancer cells. Consistently, upregulation of FoxM1 led to increased cell migration and invasion. Our Western blotting results identified that downregulation of FoxM1 increased p27 level and inhibited VEGF, while overexpression of FoxM1 reduced p27 level and increased VEGF. Our findings suggest that FoxM1 could be a useful target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Xinping Yang
- Department of Urological Surgery, The Jilin Province Tumor HospitalChangchun 130012, Jilin, China
| | - Yuanyuan Shi
- Department of Nursing, The Second Hospital, Jilin UniversityChangchun 130041, Jilin, China
| | - Jingzhe Yan
- Department of Abdominal Oncosurgery, Jilin Province Cancer HospitalChangchun 130012, Jilin, China
| | - Haitao Fan
- Department of Urological Surgery, The Second Hospital, Jilin UniversityChangchun 130041, Jilin, China
| |
Collapse
|
13
|
Yue M, Li S, Yan G, Li C, Kang Z. Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle 2018; 17:240-249. [PMID: 29301438 DOI: 10.1080/15384101.2017.1407892] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Paeoniflorin (PF) exhibits tumor suppressive functions in a variety of human cancers. However, the function of PF and molecular mechanism in colorectal cancer are elusive. In the present study, we investigated whether PF could exert its antiproliferative activity, anti-migration, and anti-invasive function in colorectal cancer cells. We found that PF inhibited cell growth and induced apoptosis and blocked cell cycle progression in the G0/G1 phase in colorectal cancer cells. Moreover, we found that PF suppressed cell migration and invasion in colorectal cancer cells. FoxM1 has been reported to play an important oncogenic role in human cancers. We also determine whether PF inhibited the expression of FoxM1, leading to its anti-cancer activity. We found that PF treatment in colorectal cancer cells resulted in down-regulation of FoxM1. The rescue experiments showed that overexpression of FoxM1 abrogated the tumor suppressive function induced by PF treatment. Notably, depletion of FoxM1 promoted the anti-tumor activity of PF in colorectal cancer cells. Therefore, inhibition of FoxM1 could participate in the anti-tumor activity of PF in colorectal cancer cells.
Collapse
Affiliation(s)
- Meng Yue
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Shiquan Li
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Guoqiang Yan
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Chenyao Li
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| | - Zhenhua Kang
- a Department of Colorectal and Anal Surgery , The First Hospital of Jilin University , Changchun , Jilin , 130021 , China
| |
Collapse
|
14
|
Peng WX, Han X, Zhang CL, Ge L, Du FY, Jin J, Gong AH. FoxM1-mediated RFC5 expression promotes temozolomide resistance. Cell Biol Toxicol 2017; 33:527-537. [PMID: 28185110 DOI: 10.1007/s10565-017-9381-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 01/17/2017] [Indexed: 12/15/2022]
Abstract
Although methylguanine-DNA-methyltransferase (MGMT) plays an important role in resistance to temozolomide (TMZ) in glioma, 40% of gliomas with MGMT inactivation are still resistant to TMZ. The underlying mechanism is not clear. Here, we report that forkhead box M1 (FoxM1) transcriptionally activates the expression of DNA repair gene replication factor C5 (RFC5) to promote TMZ resistance in glioma cells independent of MGMT activation. We showed that RFC5 expression is positively correlated with FoxM1 expression in human glioma cells and FoxM1 is able to transcriptionally activate RFC expression by interaction with the RFC5 promoter. Furthermore, knockdown of FoxM1 or RFC5 partially re-sensitizes glioma cells to TMZ. Consistently, thiostrepton, a FoxM1 inhibitor, in combination with TMZ significantly inhibits proliferation and promotes apoptosis in glioma cells. Taken together, these findings suggest that the FoxM1-RFC5 axis may mediate TMZ resistance and thiostrepton may serve as a potential therapeutic agent against TMZ resistance in glioma cells.
Collapse
Affiliation(s)
- Wan-Xin Peng
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiu Han
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chun-Li Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lu Ge
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Feng-Yi Du
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Jin
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ai-Hua Gong
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
15
|
Mamdouh S, Khorshed F, Aboushousha T, Hamdy H, Diab A, Seleem M, Saber M. Evaluation of Mir-224, Mir-215 and Mir-143 as Serum Biomarkers for HCV Associated Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2017; 18:3167-3171. [PMID: 29172295 PMCID: PMC5773807 DOI: 10.22034/apjcp.2017.18.11.3167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
HCV induced hepatitis and hepatocellular carcinoma as its sequel are major health problems world-wide and especially in Egypt. For diagnosis and during treatment of liver diseases, liver functions are monitored through determination of serum levels of liver enzymes and α-fetoprotein although the obtained information is generally not sufficient for either early detection of hepatic insult or effective follow up of therapeutic effects. More sensitive biomarkers may help to achieve these goals. MiRNAs are small non-coding RNAs that have an important role in gene expression and regulation. Many, such as miR-224, miR-215, miR-143 are correlated with tumor appearance and with the degree of fibrosis in lung, breast and colon cancer. This study was performed to estimate the level of these miRNAs in serum of patients with HCV-associated hepatitis and HCC in relation to grade of hepatitis, stage of fibrosis and differentiation of tumor tissue. In addition, correlations between serological and tissue levels were assessed. A total of 80 patients were examined, out of which 50 were included in the study. Blood samples and tissue specimens from malignant tumor and corresponding non-tumor tissue of HCV hepatitis patients were collected. Blood samples from 20 healthy volunteers were also obtained as controls. It was found that miRNAs profiles differed in HCC patients compared to controls and HCV-associated hepatitis cases. Distinction of tumor grade and fibrosis stage of patients as well as between different grades of tumor differentiation proved possible, making miRNAs promising biomarkers for diagnosis and assessment of treatment response of HCC patients.
Collapse
Affiliation(s)
- Samah Mamdouh
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Egypt.
| | | | | | | | | | | | | |
Collapse
|
16
|
Yue Z, Si T, Pan Z, Cao W, Yan Z, Jiang Z, Ouyang H. Sophoridine suppresses cell growth in human medulloblastoma through FoxM1, NF-κB and AP-1. Oncol Lett 2017; 14:7941-7946. [PMID: 29344238 DOI: 10.3892/ol.2017.7224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/15/2017] [Indexed: 01/24/2023] Open
Abstract
Sophoridine is an alkaloid extracted from Sophora alopecuroides that has extensive pharmacological actions. In the present study, the effect of sophoridine on cell growth of human medulloblastoma and its mechanism were investigated. Human medulloblastoma D283-Med cells were incubated with 0, 0.5, 1 or 2 mg/ml sophoridine for 24, 48 or 72 h. Cell proliferation and cytotoxicity were analyzed using MTT and lactate dehydrogenase assays, respectively. Next, analyses of cell apoptosis and caspase-3/8 activity were performed using flow cytometry or spectrophotometry, respectively. Lastly, the change in FoxM1, TrkB, BDNF, NF-κB and AP-1 expression was investigated using western blot analysis. In the present study, treatment with sophoridine significantly suppressed cell growth and induced apoptosis in human medulloblastoma cells. In addition, sophoridine significantly increased cytotoxicity and caspase-3/8 activity in human medulloblastoma. Finally, it was found that sophoridine suppresses the protein expression of FoxM1, TrkB, BDNF NF-κB and AP-1 in human medulloblastoma cells. The present study suggests that sophoridine suppresses cell growth of human medulloblastoma through the inhibition of the FoxM1, NF-κB and AP-1 signaling pathway.
Collapse
Affiliation(s)
- Zhensong Yue
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Tongguo Si
- Department of Invasive Technology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhanyu Pan
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhuchen Yan
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Zhansheng Jiang
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Huaqiang Ouyang
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
17
|
He S, Liao B, Deng Y, Su C, Tuo J, Liu J, Yao S, Xu L. MiR-216b inhibits cell proliferation by targeting FOXM1 in cervical cancer cells and is associated with better prognosis. BMC Cancer 2017; 17:673. [PMID: 28978307 PMCID: PMC5628450 DOI: 10.1186/s12885-017-3650-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 09/21/2017] [Indexed: 02/07/2023] Open
Abstract
Background Our previous study showed FOXM1 expression was significantly up-regulated in cervical cancer, and was associated with poor prognosis. To clarify miRNAs-FOXM1 modulation pathways, in this study, we investigated the relationships between miR-216b and FOXM1 and the role of miR-216b in cell proliferation and prognosis of cervical cancer patients. Methods Western blotting and qPCR were used to determine expression of FOXM1, cell cycle related factors and miR-216b level. MiR-216b overexpression and inhibited cell models were constructed, and siRNA was used for FOXM1 silencing. Cell proliferation was analyzed by MTT and colony formation assay. Dual luciferase reporter assay system was used to clarify the relationships between miR-216b and FOXM1. Kaplan-Meier survival analysis was used to evaluate prognosis. Results MiR-216b was down-regulated in cervical cancer cells and tissues, and its ectopic expression could decrease cell proliferation. Western blotting analysis showed miR-216b can inhibit cell proliferation by regulating FOXM1-related cell cycle factors, suppressing cyclinD1, c-myc, LEF1 and p-Rb and enhancing p21 expression. Repressing of miR-216b stimulated cervical cancer cell proliferation, whereas silencing FOXM1 expression could reverse this effect. Western blotting and luciferase assay results proved FOXM1 is a direct target of miR-216b. Survival analysis showed higher level of miR-216b was associated with better prognosis in cervical cancer patients. Conclusions FOXM1 expression could be suppressed by miR-216b via direct binding to FOXM1 3′-UTR and miR-216b could inhibit cell proliferation by regulating FOXM1 related Wnt/β-catenin signal pathway. MiR-216b level is related to prognosis in cervical cancer patients and may serve as a potential prognostic marker. Electronic supplementary material The online version of this article (10.1186/s12885-017-3650-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanyang He
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Bing Liao
- Department of Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yalan Deng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Chang Su
- Department of Hematology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiuling Tuo
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China.
| | - Lin Xu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
18
|
Li XR, Chu HJ, Lv T, Wang L, Kong SF, Dai SZ. miR-342-3p suppresses proliferation, migration and invasion by targeting FOXM1 in human cervical cancer. FEBS Lett 2014; 588:3298-307. [PMID: 25066298 DOI: 10.1016/j.febslet.2014.07.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Xu-Ri Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China; Department of Gynecology and Obstetrics, The Affiliated Hiser Medical Group of Qingdao University Medical College, Qingdao, China
| | - Hui-Jun Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Teng Lv
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shou-Fang Kong
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China; Department of Gynecology and Obstetrics, The Affiliated Hiser Medical Group of Qingdao University Medical College, Qingdao, China
| | - Shu-Zhen Dai
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China; Gynecological Tumors and Reproductive Function Protection Laboratory of Qingdao, China; Key Laboratory of Cervical Disease of Qingdao, China.
| |
Collapse
|