1
|
Dhurandhar Y, Tomar S, Das A, Prajapati JL, Singh AP, Bodake SH, Namdeo KP. Chronic inflammation in obesity and neurodegenerative diseases: exploring the link in disease onset and progression. Mol Biol Rep 2025; 52:424. [PMID: 40274681 DOI: 10.1007/s11033-025-10509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Obesity, a worldwide health emergency, is defined by excessive fat accumulation and significantly impacts metabolic health. In addition to its recognized association with cardiovascular disease, diabetes, and other metabolic illnesses, recent studies have revealed the connection between obesity and neurodegeneration. The main reason for this link is inflammation caused by the growth of fat tissue, which activates harmful processes that affect how the brain works. Fat tissue, particularly the fat around the organs, produces various substances that cause inflammation, such as cytokines (TNF-α, IL-6), adipokines (leptin, resistin), and free fatty acids. These chemicals cause low-grade, persistent systemic inflammation, which is becoming more widely acknowledged as a major factor in peripheral metabolic dysfunction and pathology of the central nervous system (CNS). Inflammatory signals in the brain cause neuroinflammatory reactions that harm neuronal structures, change neuroplasticity, and disrupt synaptic function. When obesity-related inflammation is present, the brain's resident immune cells, known as microglia, become hyperactivated, which can lead to the production of neurotoxic chemicals, which can cause neuronal death. This neuroinflammation exacerbates the negative effects of obesity on brain health and is linked to cognitive decline, Alzheimer's disease, and other neurodegenerative disorders. Moreover, the blood-brain barrier (BBB) exhibits increased permeability during inflammatory states, facilitating the infiltration of peripheral immune cells and cytokines into the brain, hence exacerbating neurodegeneration. Adipose tissue is a source of chronic inflammatory mediators, which are examined in this review along with the molecular pathways that connect inflammation brought on by obesity to neurodegeneration. Additionally, it addresses various anti-inflammatory treatment approaches, including lifestyle modifications, anti-inflammatory medications, and gut microbiota modulation, to lessen the metabolic and neurological effects of obesity. Recognizing the link between obesity and inflammation opens up new opportunities for early intervention and the development of targeted treatments to prevent or alleviate neurodegenerative disorders.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Shubham Tomar
- Pharmacovigilance Programme of India, Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Ghaziabad, Uttar Pradesh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Jeevan Lal Prajapati
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Surendra H Bodake
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, 495009, India.
| |
Collapse
|
2
|
Fu K, Gao X, Hua P, Huang Y, Dong R, Wang M, Li Q, Li Z. Anti-obesity effect of Angelica keiskei Jiaosu prepared by yeast fermentation on high-fat diet-fed mice. Front Nutr 2023; 9:1079784. [PMID: 36698478 PMCID: PMC9868866 DOI: 10.3389/fnut.2022.1079784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
In this study, an Angelica keiskei (A. keiskei) Jiaosu (FAK) was prepared by yeast fermentation to investigate its anti-obesity effect on high-fat diet (HFD)-fed mice. 70 SPF grade male C57BL/6J mice were randomly divided into 7 groups (n = 10): blank control group (N), high-fat model group (M), positive control group (Orl), unfermented control group (NF), high-dose intervention group (FH), medium-dose intervention group (FM), and low-dose intervention group (FL). The results showed that FAK intervention significantly reduced the body weight, Lee's index and liver index of HFD-fed mice (P < 0.05). Compared with M group, the serum levels of triglyceride (TG), total cholesterol (TC), leptin and glucose (GLU) in FH group were remarkably decreased and that of interleukin-27 (IL-27) were increased (P < 0.05). The levels of TG, and TC in the liver of mice were also markedly decreased in the FH group (P < 0.05). HE staining results showed that the liver cells in the three intervention groups had less degeneration and fatty vacuoles in the cytoplasm, and the liver cords were orderly arranged compared with that of M group. Furthermore, FAK significantly inhibited epididymal adipose tissue cell expansion induced by HFD. FAK up-regulated the protein expression levels of p-AMPK and PPARα to promote lipolysis and down-regulated the expression of PPARγ to reduce lipid synthesis (P < 0.05). Additionally, the results of gut microbiota showed that after the intervention, a decrease trend of F/B value and Deferribacterota was noticed in the FH group compared with M group. At the genus level, FAK intervention significantly increased that of Ileiobacterium compared to the M group (p < 0.05). A rising trend of norank_f_Muribaculaceae, Lactobacillus, and Bifidobacterium were also observed in the HF group. Conclusively, these findings demonstrated that FAK intervention can effectively improve obesity in mice caused by HFD and the potential mechanisms was related to the regulation of serum levels of leptin and IL-27, lipogenesis and lipolysis in adipose tissue and gut microbiota composition.
Collapse
Affiliation(s)
- Kunli Fu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China
| | - Xiang Gao
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China,Anqiu Huatao Food Co., Ltd., Weifang, China
| | - Puyue Hua
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China
| | - Yuedi Huang
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China
| | - Ruitao Dong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Mingji Wang
- Joint Institute of Angelica keiskei Health Industry Technology, Qingdao Balanson Biotech Co., Ltd., Qingdao, China
| | - Qun Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China,Joint Institute of Angelica keiskei Health Industry Technology, Qingdao Balanson Biotech Co., Ltd., Qingdao, China
| | - Zichao Li
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Qingdao, China,Joint Institute of Angelica keiskei Health Industry Technology, Qingdao Balanson Biotech Co., Ltd., Qingdao, China,*Correspondence: Zichao Li,
| |
Collapse
|
3
|
The influence of periodontal status and serum biomarkers on salivary leptin levels in systemic lupus erythematosus patients. Saudi Dent J 2022; 34:708-714. [PMID: 36570575 PMCID: PMC9767834 DOI: 10.1016/j.sdentj.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
Objective This study aimed to investigate the influence of periodontal status, clinical data, and serum markers on salivary leptin levels in patients with systemic lupus erythematosus (SLE). Methods A case-control study was conducted with 38 patients with SLE and 29 healthy controls. Periodontal data included periodontal probing depth (PPD), clinical attachment level (CAL), and gingival bleeding on probing (BOP). Stimulated saliva samples were collected to analyze salivary leptin levels. Clinical and serum data were collected from the SLE group. Statistical analysis included the t-test, Mann-Whitney test, Spearman correlation coefficient, and a structural equation model. Results The SLE group had a lower salivary leptin level than the control group (P = 0.002). The model revealed that SLE had an inverse and independent effect on salivary leptin (standardized estimate = - 0.289, P = 0.023). Moreover, salivary leptin level negatively correlated with the serum levels of triglyceride, creatinine, and leukocytes, positively correlated with the serum total cholesterol, but was not significantly correlated with the periodontal status. Conclusion These findings suggest that patients with SLE have a lower salivary leptin level. In addition, the level of salivary leptin does not appear to be related to periodontal status in patients with SLE.
Collapse
Key Words
- BMI, body mass index
- CAL, clinical attachment level
- CFI, comparative fit index
- GBI, gingival bleeding index
- GOT, glutamic oxaloacetic transaminase
- GPT, glutamate-pyruvate transaminase
- Leptin
- PPD, periodontal probing depth
- Periodontal diseases
- RMSEA, root mean square error of approximation
- SEM, structural equation model
- SLE, systemic lupus erythematosus
- SRMR, standardized root mean square residual
- Saliva
- Systemic lupus erythematosus
- TG, triglycerides
- TLI, Tucker-Lewis index
Collapse
|
4
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
5
|
Misch M, Puthanveetil P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int J Mol Sci 2022; 23:ijms23105439. [PMID: 35628271 PMCID: PMC9141226 DOI: 10.3390/ijms23105439] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Leptin is a well-known hunger-sensing peptide hormone. The role of leptin in weight gain and metabolic homeostasis has been explored for the past two decades. In this review, we have tried to shed light upon the impact of leptin signaling on health and diseases. At low or moderate levels, this peptide hormone supports physiological roles, but at chronically higher doses exhibits detrimental effects on various systems. The untoward effects we observe with chronically higher levels of leptin are due to their receptor-mediated effect or due to leptin resistance and are not well studied. This review will help us in understanding the non-anorexic roles of leptin, including their contribution to the metabolism of various systems and inflammation. We will be able to get an alternative perspective regarding the physiological and pathological roles of this mysterious peptide hormone.
Collapse
Affiliation(s)
- Monica Misch
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA;
| | - Prasanth Puthanveetil
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
6
|
Li J, Chen Y, Liu Q, Tian Z, Zhang Y. Mechanistic and therapeutic links between rheumatoid arthritis and diabetes mellitus. Clin Exp Med 2022; 23:287-299. [DOI: 10.1007/s10238-022-00816-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 02/07/2023]
|
7
|
Wang Y, Wang P, Xu Q, Dong L, Liu Y, Chen Y, Zhou J, Lu X, Zuo D, Chen Q. Inflammatory arthritis increases the susceptibility to acute immune-mediated hepatitis in mice through enhancing leptin expression in T cells. Mol Immunol 2021; 140:97-105. [PMID: 34673376 DOI: 10.1016/j.molimm.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Liver function abnormalities are common in patients with inflammatory arthritis. However, the precise mechanism is still unclear. In this study, inflammatory arthritis was established in mice by subcutaneous injection of complete Freund's adjuvant, and the intravenous injection of concanavalin A (Con A) was employed to induce acute immune-mediated hepatitis in mice. The result showed that the arthritis mice were more susceptible to ConA-induced hepatitis than the control mice, as evidenced by increased hepatic necrosis, elevated serum alanine aminotransferase activity, and raised inflammatory cytokines. Besides, the in vitro assay demonstrated that the T cells from arthritis mice were more sensitive to the Con A stimulation than those from control mice. Moreover, we determined that the level of leptin, a kind of adipokine, was significantly increased in the serum and hepatic T cells of arthritis mice. Interestingly, the data indicated that the enhanced expression of leptin in hepatic T cells is responsible for the hypersensitivity of arthritis mice-derived T cells to Con A challenge. Collectively, our findings demonstrate an unexpected role of leptin in the connection between inflammatory arthritis and acute immune-mediated hepatitis, thus providing new insight into the clinical therapy of arthritis-related liver dysfunction.
Collapse
Affiliation(s)
- Youyi Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ping Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Qishan Xu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lijun Dong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yunzhi Liu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Chen
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China.
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Bai Z, Ye Y, Ye X, Yuan B, Tang Y, Wei J, Jin M, Wang G, Li X. Leptin promotes glycolytic metabolism to induce dendritic cells activation via STAT3-HK2 pathway. Immunol Lett 2021; 239:88-95. [PMID: 34480980 DOI: 10.1016/j.imlet.2021.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Leptin is over-secreted in many autoimmune diseases, which can promote dendritic cells (DCs) maturation and up-regulate the expression of inflammatory cytokines, but the underlying mechanisms are not fully elucidated. Considering the major role of leptin in maintaining energy balance and the significant role of glycolysis in DCs activation, our study aims to investigate whether leptin promotes the activation of DCs via glycolysis and its underlying mechanisms. We demonstrated that leptin promoted the activation of DCs, including up-regulating the expression of co-stimulatory molecules and inflammatory cytokines, enhancing the proliferation and T helper 17 (Th17) cell ratio in peripheral blood mononuclear cells (PBMC) co-cultured with leptin-stimulated DCs. Leptin also enhanced DCs glycolysis with increased glucose consumption, lactate production, and the expression of hexokinase 2 (HK2). In addition, the activation of DCs stimulated by leptin could be inhibited by the glycolysis inhibitor 2-deoxy-d-glucose (2-DG). To explore the signaling pathways involved in leptin-induced HK2 expression, we observed that the inhibitors of STAT3 (NSC74859) could repress the enhancement of HK2 triggered by leptin stimulation. Therefore, our results indicated that leptin promoted glycolytic metabolism to induce DCs activation via STAT3-HK2 pathway.
Collapse
Affiliation(s)
- Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xiaokang Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| |
Collapse
|
9
|
Association of Leptin Gene Polymorphisms with Rheumatoid Arthritis in a Chinese Population. BIOMED RESEARCH INTERNATIONAL 2021; 2020:3789319. [PMID: 33083462 PMCID: PMC7559230 DOI: 10.1155/2020/3789319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Background Recently, increasing studies have revealed that leptin is involved in the development of rheumatoid arthritis (RA). This study is aimed at exploring the association of leptin gene single nucleotide polymorphisms (SNPs) with susceptibility to RA in a Chinese population. Methods We recruited 600 RA patients and 600 healthy controls from a Chinese population and analyzed their three leptin SNPs (rs10244329, rs2071045, and rs2167270) using the improved Multiplex Ligase Detection Reaction (iMLDR) assays. The associations of these SNPs with clinical manifestations of RA were also analyzed. Enzyme-linked immunosorbent assay (ELISA) was performed for plasma leptin determination. Results No significant difference in either allele or genotype frequencies of these three SNPs between RA patients and healthy controls was observed (all P > 0.05). Association between the genotype effects of dominant, recessive models was also not found (all P > 0.05). No significant difference in plasma leptin levels was detected between RA patients and controls (P > 0.05). Conclusion Leptin gene (rs10244329, rs2071045, and rs2167270) polymorphisms are not associated with RA genetic susceptibility and its clinical features in the Chinese population.
Collapse
|
10
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
11
|
Ortega-Azorín C, Coltell O, Asensio EM, Sorlí JV, González JI, Portolés O, Saiz C, Estruch R, Ramírez-Sabio JB, Pérez-Fidalgo A, Ordovas JM, Corella D. Candidate Gene and Genome-Wide Association Studies for Circulating Leptin Levels Reveal Population and Sex-Specific Associations in High Cardiovascular Risk Mediterranean Subjects. Nutrients 2019; 11:nu11112751. [PMID: 31766143 PMCID: PMC6893551 DOI: 10.3390/nu11112751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/13/2022] Open
Abstract
Leptin is a hormone crucial in the regulation of food intake and body-weight maintenance. However, the genes and gene variants that influence its plasma levels are still not well known. Results of studies investigating polymorphisms in candidate genes have been inconsistent, and, in addition, very few genome-wide association studies (GWAS) have been undertaken. Our aim was to investigate the genes and gene variants most associated with plasma leptin concentrations in a high-cardiovascular-risk Mediterranean population. We measured plasma leptin in 1011 men and women, and analyzed the genetic factors associated using three approaches: (1) Analyzing the single nucleotide polymorphisms (SNPs) reported in a GWAS meta-analysis in other populations (including an SNP in/near each of these LEP, SLC32A1, GCKR, CCNL, COBLL1, and FTO genes); (2) Investigating additional SNPs in/near those genes, also including the RLEP gene; and (3) Undertaking a GWAS to discover new genes. We did not find any statistically significant associations between the previously published SNPs and plasma leptin (Ln) in the whole population adjusting for sex and age. However, on undertaking an extensive screening of other gene variants in those genes to capture a more complete set of SNPs, we found more associations. Outstanding among the findings was the heterogeneity per sex. We detected several statistically significant interaction terms with sex for these SNPs in the candidate genes. The gene most associated with plasma leptin levels was the FTO gene in men (specifically the rs1075440 SNP) and the LEPR in women (specifically the rs12145690 SNP). In the GWAS on the whole population, we found several new associations at the p < 1 × 10-5 level, among them with the rs245908-CHN2 SNP (p = 1.6 × 10-6). We also detected a SNP*sex interaction at the GWAS significance level (p < 5 × 10-8), involving the SLIT3 gene, a gene regulated by estrogens. In conclusion, our study shows that the SNPs selected as relevant for plasma leptin levels in other populations, are not good markers for this Mediterranean population, so supporting those studies claiming a bias when generalizing GWAS results to different populations. These population-specific differences may include not only genetic characteristics, but also age, health status, and the influence of other environmental variables. In addition, we have detected several sex-specific effects. These results suggest that genomic analyses, involving leptin, should be estimated by sex and consider population-specificity for more precise estimations.
Collapse
Affiliation(s)
- Carolina Ortega-Azorín
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
| | - Eva M. Asensio
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
| | - Jose V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
| | - José I. González
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
| | - Olga Portolés
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
| | - Carmen Saiz
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
- Department of Internal Medicine, Hospital Clinic, Institut d’Investigació Biomèdica August Pi i Sunyer (IDIBAPS), University of Barcelona, Villarroel, 170, 08036 Barcelona, Spain
| | | | - Alejandro Pérez-Fidalgo
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Cáncer, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA;
- Department of Cardiovascular Epidemiology and Population Genetics, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- IMDEA Alimentación, 28049 Madrid, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain; (C.O.-A.); (E.M.A.); (J.V.S.); (J.I.G.); (O.P.); (C.S.); (A.P.-F.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain; (O.C.); (R.E.)
- Correspondence: ; Tel.: +34-96-386-4800
| |
Collapse
|