1
|
Ocal I, Yilmaz MB, Kocaturk-Sel S, Tufan T, Erkoc MA, Comertpay G, Oksuz H, Barc ED. ATP sensitive K + channel subunits (Kir6.1, Kir6.2) are the candidate mediators regulating ameliorating effects of pulsed magnetic field on aortic contractility in diabetic rats. Bioelectromagnetics 2018; 39:299-311. [PMID: 29446477 DOI: 10.1002/bem.22111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/13/2017] [Indexed: 11/11/2022]
Abstract
Diabetes mellitus is a metabolic disease that causes increased morbidity and mortality in developed and developing countries. With recent advancements in technology, alternative treatment methods have begun to be investigated in the world. This study aims to evaluate the effect of pulsed magnetic field (PMF) on vascular complications and contractile activities of aortic rings along with Kir6.1 and Kir6.2 subunit expressions of ATP-sensitive potassium channels (KATP ) in aortas of controlled-diabetic and non-controlled diabetic rats. Controlled-diabetic and non-controlled diabetic adult male Wistar rats were exposed to PMF for a period of 6 weeks according to the PMF application protocol (1 h/day; intensity: 1.5 mT; consecutive frequency: 1, 10, 20, and 40 Hz). After PMF exposure, body weight and blood glucose levels were measured. Then, thoracic aorta tissue was extracted for relaxation-contraction and Kir6.1 and Kir6.2 expression experiments. Blood plasma glucose levels, body weight, and aortic ring contraction percentage decreased in controlled-diabetic rats but increased in non-controlled diabetic rats. PMF therapy repressed Kir6.1 mRNA expression in non-controlled diabetic rats but not in controlled diabetic rats. Conversely, Kir6.2 mRNA expressions were repressed both in controlled diabetic and non-controlled diabetic rats by PMF. Our findings suggest that the positive therapeutic effects of PMF may act through (KATP ) subunits and may frequently occur in insulin-free conditions. Bioelectromagnetics. 39:299-311, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isil Ocal
- Faculty of Medicine, Department of Biophysics, Cukurova University, Adana, Turkey
| | - Mehmet B Yilmaz
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Sabriye Kocaturk-Sel
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Turan Tufan
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Mehmet A Erkoc
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Gamze Comertpay
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Hale Oksuz
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| | - Esma D Barc
- Faculty of Medicine, Department of Medical Biology, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
De Franco S, Chiocchetti A, Ferretti M, Castelli L, Cadario F, Cerutti F, Rabbone I, Indelicato M, Mazzarino C, Chessa M, Bona G, Dianzani U. Defective Function of the Fas Apoptotic Pathway in Type 1 Diabetes Mellitus Correlates with Age at Onset. Int J Immunopathol Pharmacol 2016; 20:567-76. [PMID: 17880769 DOI: 10.1177/039463200702000314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Fas death receptor triggers lymphocyte apoptosis through an extrinsic and an intrinsic pathway involving caspase-8 and -9 respectively. Inherited defects of Fas function are displayed by a proportion of patients with Type 1 diabetes mellitus (T1DM) especially those with a second autoimmunity (T1DM-p). This study assesses activation of both pathways in Fas-resistant (FasR) patients to localize the defect. 21/28 (75%) T1DM-p, 14/50 (38%) T1DM, and 7/150 (5%) controls were FasR. Analysis of the 35 FasR patients and 20 Fas-sensitive (FasS) controls showed that caspase-9 activity was lower in T1DM-p and T1DM than in controls, whereas caspase-8 activity was lower in T1DM-p than in T1DM and the controls. Single patient analysis showed that 16/35 patients displayed defective activity of one (FasR1), whereas 19 displayed normal activity of both caspases (FasR2) Ages at onset of diabetes mellitus in T1DM and the second autoimmune disease in T1DM-p were lower in FasR than in FasS patients. All FasR1 patients developed diabetes mellitus before the age of 9 years, whereas a later onset was displayed by 26% FasR2 and 53% FasS patients. These data show that defective Fas function may involve both the extrinsic and intrinsic pathway in T1DM and severity correlates with the precocity of the autoimmune attack and its tissue polyreactivity.
Collapse
Affiliation(s)
- S De Franco
- Interdisciplinary Research Center of Autoimmune Disease and Department of Medical Science, A. Avogadro University of Eastern Piedmont, Novara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
The role of cytokines in the functional activity of phagocytes in blood and colostrum of diabetic mothers. Clin Dev Immunol 2013; 2013:590190. [PMID: 24489577 PMCID: PMC3877604 DOI: 10.1155/2013/590190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/17/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022]
Abstract
Immune response changes induced by diabetes are a risk factor for infections during pregnancy and may modify the development of the newborn's immune system. The present study analyzed colostrum and maternal and cord blood of diabetic women to determine (1) the levels of the cytokines IFN-γ and TGF-β and (2) phagocytic activity after incubation with cytokines. Methods. Colostrum and maternal and cord blood samples were classified into normoglycemic (N = 20) and diabetic (N = 19) groups. Cytokine levels, superoxide release, rate of phagocytosis, bactericidal activity, and intracellular Ca2+ release by phagocytes were analyzed in the samples. Irrespective of glycemic status, IFN-γ and TGF-β levels were not changed in colostrum and maternal and cord blood. In maternal blood and colostrum, superoxide release by cytokine-stimulated phagocytes was similar between the groups. Compared to spontaneous release, superoxide release was stimulated by IFN-γ and TGF-β in normoglycemic and diabetic groups. In the diabetic group, cord blood phagocytes incubated with IFN-γ exhibited higher phagocytic activity in response to EPEC, and maternal blood exhibited lower microbicidal activity. These data suggest that diabetes interferes in maternal immunological parameters and that IFN-γ and TGF-β modulate the functional activity of phagocytes in the colostrum, maternal blood, and cord blood of pregnant diabetic women.
Collapse
|
4
|
Pow Sang L, Majji S, Casares S, Brumeanu TD. Long-term silencing of autoimmune diabetes and improved life expectancy by a soluble pHLA-DR4 chimera in a newly-humanized NOD/DR4/B7 mouse. Hum Vaccin Immunother 2013; 10:693-9. [PMID: 24335553 DOI: 10.4161/hv.27374] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several human MHC class II (HLA) molecules are strongly associated with high incidence of autoimmune diseases including type 1 diabetes (T1D). The HLA-humanized mice may thus represent valuable tools to test HLA-based vaccines and therapeutics for human autoimmune diseases. Herein, we have tested the therapeutic potential of a soluble HLA-DR4-GAD65 271-280 (hu DEF-GAD65) chimera of human use in a newly-generated NOD/DR4/B7 double transgenic (dTg) mouse that develops spontaneously an accelerated T1D regardless the gender. The NOD/DR4/B7 dTg mice generated by a two-step crossing protocol express the HLA-DR*0401 molecules on 20% of antigen presenting cells, the human B7 molecules in pancreas, and HLA-DR4/GAD65-specific T-cells in the blood. Some 75% of pre-diabetic NOD/DR4/B7 dTg mice treated with hu DEF-GAD65 chimera remained euglycemic and showed a stabilized pancreatic insulitis 6 months after treatment. The 25% non responders developing hyperglycemia survived 3-4 months longer than their untreated littermates. T1D prevention by this reagent occurred by a Th2/TR-1 polarization in the pancreas. This study strongly suggests that the use of soluble pHLA reagents to suppress/stabilize the T1D progression and to extend the life expectancy in the absence of side effects is an efficient and safe therapeutic approach.
Collapse
Affiliation(s)
- Luis Pow Sang
- Department of Medicine; Division of Immunology; F. Edward Herbert School of Medicine; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| | - Sai Majji
- Naval Medical Research Center; Walter Reed Army Institute of Research; Infectious Diseases Directorate-Malaria Program; Silver Spring, MD USA
| | - Sofia Casares
- Department of Medicine; Division of Immunology; F. Edward Herbert School of Medicine; Uniformed Services University of the Health Sciences; Bethesda, MD USA; Naval Medical Research Center; Walter Reed Army Institute of Research; Infectious Diseases Directorate-Malaria Program; Silver Spring, MD USA
| | - Teodor D Brumeanu
- Department of Medicine; Division of Immunology; F. Edward Herbert School of Medicine; Uniformed Services University of the Health Sciences; Bethesda, MD USA
| |
Collapse
|
5
|
Malaria: Connecting reality with research. Eur J Immunol 2011; 41:882-4. [DOI: 10.1002/eji.201190014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Casares S, Brumeanu TD, Richie TL. The RTS,S malaria vaccine. Vaccine 2010; 28:4880-94. [PMID: 20553771 DOI: 10.1016/j.vaccine.2010.05.033] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 04/29/2010] [Accepted: 05/12/2010] [Indexed: 12/23/2022]
Abstract
RTS,S is the most advanced candidate vaccine against human malaria. During its remarkable journey from conception and design in the early 1980s to the multicenter Phase 3 trial currently underway across sub-Saharan Africa, RTS,S has overcome tremendous challenges and disproved established vaccine paradigms. In the last several years, Phase 2 studies conducted in infants and children in endemic areas have established the efficacy of RTS,S for reducing morbidity due to clinical malaria. If the results are realized in the Phase 3 trial, the chances for licensure in the near future appear high. Such progress is all the more remarkable given our lack of clear understanding regarding how the vaccine activates the human immune system, the immune correlates of protection or the mechanism whereby a vaccine targeting sporozoites and liver stage parasites can reduce the clinical disease associated with parasitemia. These unanswered questions pose important challenges to be addressed in the quest to understand the protection afforded by RTS,S and to build a more efficacious second generation vaccine against malaria. This review will focus on current knowledge about the protective efficacy of RTS,S and what we have learned regarding its impact on the human immune system.
Collapse
Affiliation(s)
- Sofia Casares
- US Military Malaria Vaccine Program, Naval Medical Research Center/Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | | | | |
Collapse
|
7
|
Casares S, Richie TL. Immune evasion by malaria parasites: a challenge for vaccine development. Curr Opin Immunol 2009; 21:321-30. [DOI: 10.1016/j.coi.2009.05.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/26/2009] [Accepted: 05/12/2009] [Indexed: 11/26/2022]
|
8
|
Knieke K, Hoff H, Maszyna F, Kolar P, Schrage A, Hamann A, Debes GF, Brunner-Weinzierl MC. CD152 (CTLA-4) determines CD4 T cell migration in vitro and in vivo. PLoS One 2009; 4:e5702. [PMID: 19479036 PMCID: PMC2682661 DOI: 10.1371/journal.pone.0005702] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 04/29/2009] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Migration of antigen-experienced T cells to secondary lymphoid organs and the site of antigenic-challenge is a mandatory prerequisite for the precise functioning of adaptive immune responses. The surface molecule CD152 (CTLA-4) is mostly considered as a negative regulator of T cell activation during immune responses. It is currently unknown whether CD152 can also influence chemokine-driven T cell migration. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the consequences of CD152 signaling on Th cell migration using chemotaxis assays in vitro and radioactive cell tracking in vivo. We show here that the genetic and serological inactivation of CD152 in Th1 cells reduced migration towards CCL4, CXCL12 and CCL19, but not CXCL9, in a G-protein dependent manner. In addition, retroviral transduction of CD152 cDNA into CD152 negative cells restored Th1 cell migration. Crosslinking of CD152 together with CD3 and CD28 stimulation on activated Th1 cells increased expression of the chemokine receptors CCR5 and CCR7, which in turn enhanced cell migration. Using sensitive liposome technology, we show that mature dendritic cells but not activated B cells were potent at inducing surface CD152 expression and the CD152-mediated migration-enhancing signals. Importantly, migration of CD152 positive Th1 lymphocytes in in vivo experiments increased more than 200% as compared to CD152 negative counterparts showing that indeed CD152 orchestrates specific migration of selected Th1 cells to sites of inflammation and antigenic challenge in vivo. CONCLUSIONS/SIGNIFICANCE We show here, that CD152 signaling does not just silence cells, but selects individual ones for migration. This novel activity of CD152 adds to the already significant role of CD152 in controlling peripheral immune responses by allowing T cells to localize correctly during infection. It also suggests that interference with CD152 signaling provides a tool for altering the cellular composition at sites of inflammation and antigenic challenge.
Collapse
Affiliation(s)
- Karin Knieke
- Experimentelle Pädiatrie, Universitätskinderklinik – Otto-von-Guericke Universität, Magdeburg, Germany
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Holger Hoff
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Maszyna
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Kolar
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Arnhild Schrage
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Alf Hamann
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | - Gudrun F. Debes
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Monika C. Brunner-Weinzierl
- Experimentelle Pädiatrie, Universitätskinderklinik – Otto-von-Guericke Universität, Magdeburg, Germany
- Deutsches Rheuma-Forschungszentrum Berlin and Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinischer Immunologie, CCM, Charité -Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Inuo M, Ihara K, Matsuo T, Kohno H, Hara T. Association study between B- and T-lymphocyte attenuator gene and type 1 diabetes mellitus or systemic lupus erythematosus in the Japanese population. Int J Immunogenet 2009; 36:65-8. [PMID: 19207938 DOI: 10.1111/j.1744-313x.2008.00809.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study is to elucidate whether the B- and T-lymphocyte attenuator (BTLA) gene is a new susceptibility gene for the development of type 1 diabetes (T1D) and systemic lupus erythematosus (SLE). As a result, this study did not find any genetic contribution of the BTLA gene to the development of T1D and SLE in Japanese population.
Collapse
Affiliation(s)
- M Inuo
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Higashiku, Fukuoka, Japan.
| | | | | | | | | |
Collapse
|
10
|
van Gurp PJ, Rongen GA, Lenders JWM, Al Nabawy AKM, Timmers HJLM, Tack CJ. Sustained hyperglycaemia increases muscle blood flow but does not affect sympathetic activity in resting humans. Eur J Appl Physiol 2004; 93:648-54. [PMID: 15778893 DOI: 10.1007/s00421-004-1247-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2004] [Indexed: 12/25/2022]
Abstract
An increase in capillary blood flow and pressure in response to diabetes mellitus may lead to microangiopathy. We hypothesize that these haemodynamic changes are caused by a decreased activity of the sympathetic nervous system due to episodes of sustained hyperglycaemia. Twelve healthy volunteers consecutively underwent a hyperglycaemic experiment (HYPER), with the plasma glucose level maintained at 20 mmol.l(-1) for 6 h by combined infusion of somatostatin, insulin and glucose; and a normoglycaemic experiment (NORMO), with similar infusions but with the plasma glucose maintained at fasting level. During both experiments, sympathetic nervous system (SNS) activity was measured by assessing the plasma catecholamine levels, microneurography, power spectral analysis and forearm blood flow (FBF). In an age- and weight matched group, fasting and 6-h sympathetic activity was measured without infusion of somatostatin and insulin (CONTROL). During HYPER, forearm blood flow increased from 2.45 (0.21) to 3.10 (0.48) ml.dl(-1).min(-1) ( P <0.05), but did not change in NORMO or CONTROL. The HYPER conditions did not change the plasma noradrenaline levels or the muscle sympathetic nerve activity [42 (4), 50 (10) and 45 (5) bursts/100 beats, HYPER, NORMO and CONTROL respectively]. Also, the power spectral analysis was similar under all experimental conditions. All results are expressed as the mean (SEM). In conclusion, sustained hyperglycaemia in normal subjects induces moderate vasodilation in skeletal muscle, but this increased blood flow can not be attributed to a decreased sympathetic tone.
Collapse
Affiliation(s)
- P J van Gurp
- Division of General Internal Medicine, Department of Internal Medicine, University Medical Center St Radboud, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
11
|
George SK, Preda I, Avagyan S, McEvoy RC, Rapaport R, Brumeanu TD, Casares S. Immunokinetics of autoreactive CD4 T cells in blood: a reporter for the “hit-and-run” autoimmune attack on pancreas and diabetes progression. J Autoimmun 2004; 23:151-60. [PMID: 15324933 DOI: 10.1016/j.jaut.2004.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/02/2004] [Accepted: 06/18/2004] [Indexed: 11/23/2022]
Abstract
Little is known about the fate of autoreactive CD4 T cells in blood. Using a mouse model for spontaneous autoimmune diabetes we demonstrated that the status of the autoimmune process in pancreas could be pictured through the frequency and phenotype of autoreactive CD4 T cells in the blood. Early during the prediabetic stage, the frequency of these cells in blood decreased as a consequence of their recruitment in the pancreas. This was followed by an imbalance between CD4(+)CD25(+) and CD4(+)CD69(+) T cells in the pancreas that was mirrored in the phenotype of autoreactive T cells in the blood. Waves of activated CD4(+)CD69(+) T cells in blood preceded the disease onset suggesting that the autoimmune attack on pancreas is a discontinuous "hit-and-run" rather than a continuous process. Tracking autoreactive CD4 T cells in blood may help in identifying prediabetic humans and monitoring the disease progression during therapeutic interventions.
Collapse
Affiliation(s)
- Sunil K George
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The T helper lymphocyte is responsible for orchestrating the appropriate immune response to a wide variety of pathogens. The recognition of the polarized T helper cell subsets Th1 and Th2 has led to an understanding of the role of these cells in coordinating a variety of immune responses, both in responses to pathogens and in autoimmune and allergic disease. Here, we discuss the mechanisms that control lineage commitment to the Th1 phenotype. What has recently emerged is a rich understanding of the cytokines, receptors, signal transduction pathways, and transcription factors involved in Th1 differentiation. Although the picture is still incomplete, the basic pathways leading to Th1 differentiation can now be understood in in vitro and a number of infection and disease models.
Collapse
Affiliation(s)
- Susanne J Szabo
- Department of Immunology and Infectious Diseases, Harvard School of Public Health Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
13
|
Vaitaitis GM, Poulin M, Sanderson RJ, Haskins K, Wagner DH. Cutting edge: CD40-induced expression of recombination activating gene (RAG) 1 and RAG2: a mechanism for the generation of autoaggressive T cells in the periphery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3455-9. [PMID: 12646605 DOI: 10.4049/jimmunol.170.7.3455] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been speculated that autoimmune diseases are caused by failure of central tolerance. However, this remains controversial. We have suggested that CD40 expression identifies autoaggressive T cells in the periphery of autoimmune prone mice. In this study, we report that CD40 was cloned from autoaggressive T cells and that engagement induces expression and nuclear translocation of the recombinases, recombination activating gene (RAG) 1 and RAG2 in the autoaggressive, but not in the nonautoaggressive, peripheral T cell population. Furthermore, we demonstrate that CD40 engagement induces altered TCR Valpha, but not Vbeta, expression in these cells. Therefore, CD40-regulated expression of RAG1 and RAG2 in peripheral T cells may constitute a novel pathway for the generation of autoaggressive T cells.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- CD40 Antigens/genetics
- CD40 Antigens/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Clone Cells
- Cloning, Molecular
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Female
- Gene Expression Regulation/immunology
- Genes, RAG-1/immunology
- Genes, T-Cell Receptor alpha/genetics
- Genes, T-Cell Receptor beta/genetics
- Mice
- Mice, Inbred NOD
- RNA, Messenger/biosynthesis
- RNA, Messenger/isolation & purification
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Gisela M Vaitaitis
- Department of Medicine and Webb-Waring Institute for Cancer, Aging and Antioxidant Research, University of Colorado, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
14
|
Overbergh L, Decallonne B, Branisteanu DD, Valckx D, Kasran A, Bouillon R, Mathieu C. Acute shock induced by antigen vaccination in NOD mice. Diabetes 2003; 52:335-41. [PMID: 12540605 DOI: 10.2337/diabetes.52.2.335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Type 1 diabetes in NOD mice can be prevented through autoantigen vaccination by shifting lymphocyte differentiation toward a T-helper 2 (Th(2)) response. However, in other models of autoimmunity, this approach may be accompanied by unexpected triggering of Th(2)-dependent anaphylactic shock. To test the safety of vaccination therapy in the NOD mouse model, we evaluated the effects of immunization with a wide battery of antigens in NOD, BALB/c, and C57BL/6 mice. Surprisingly, a nondiabetogenic antigen, hen egg white lysozyme, induced severe shock exclusively in NOD mice (shock in 11 of 11 mice, lethal in 3 mice). Shock severity was further increased by a more pronounced Th(2) setting generated by 1alpha,25(OH)(2)D(3) administration (17 of 17 mice, lethal in 14 mice, P < 0.0001). Pretreatment with dexamethasone resulted in full rescue, indicating an immune-mediated mechanism. Serum IgE levels and Th(1)/Th(2) cytokine profile analysis showed that the shock phenomenon was paralleled by a Th(2) response. mRNA expression of platelet-activating factor receptor (PAF-R) was significantly higher in NOD mice (P < 0.01) and was further increased by 1alpha,25(OH)(2)D(3). Pretreatment with WEB2086 (PAF-R antagonist) again protected all mice from lethal shock, indicating PAF as an anaphylaxis effector. In conclusion, in NOD mice, vaccination leading to a Th(2) immune shift can result in a lethal anaphylactic reaction.
Collapse
Affiliation(s)
- Lut Overbergh
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), University Hospital Gasthuisberg, Catholic University of Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|