1
|
Aoki K, Ishitani T. Mechanical force-driven cell competition ensures robust morphogen gradient formation. Semin Cell Dev Biol 2025; 170:103607. [PMID: 40220598 DOI: 10.1016/j.semcdb.2025.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Morphogen gradients provide positional data and maintain tissue patterns by instructing cells to adopt distinct fates. In contrast, morphogen gradient-forming tissues undergo dynamic morphogenetic movements that generate mechanical forces and can disturb morphogen signal transduction. However, the interactions between morphogen gradients and these forces remain largely unknown. In this study, we described how mechanical force-mediated cell competition corrects noisy morphogen gradients to ensure robust tissue patterns. The Wnt/β-catenin morphogen gradient-that patterns the embryonic anterior-posterior axis-generates cadherin-actomyosin interaction-mediated intercellular tension gradients-termed mechano-gradients. Naturally generated unfit cells that produce noisy Wnt/β-catenin gradients induce local deformation of the mechano-gradients. Neighboring fit cells sense this deformation, resulting in the activation of Piezo family mechanosensitive calcium channels and secretion of annexinA1, which specifically kills unfit cells to recover morphogen gradients. Therefore, mechanical force-mediated cell competition between the morphogen-receiver cells supports robust gradient formation. Additionally, we discuss the potential roles of mechanical force-driven cell competition in other contexts, including organogenesis and cancer.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Yadav S, Kc S, Blaskovich MAT, Lu CT, Lam AK, Nguyen NT. RhoA and Rac1 as Mechanotransduction Mediators in Colorectal Cancer. Adv Biol (Weinh) 2025:e2400626. [PMID: 39887960 DOI: 10.1002/adbi.202400626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related deaths, creating an urgent need for innovative diagnostic solutions. Mechanobiology, a cutting-edge field that investigates how physical forces influence cell behavior, is now revealing new insights into cancer progression. This research focuses on two crucial players: RhoA and Rac1, small yet powerful proteins that regulate the structure and movement of cancer cells. RhoA controls cell adhesion and migration, while Rac1 drives cell movement and invasion. As CRC tumors grow and reshape the colon's mechanical environment, these pathways become disrupted, accelerating cancer progression. Examining the level of RhoA and Rac1 in CRC clinical samples under mechanical strain reveals their potential as diagnostic markers. Tracking the activity of these proteins can unlock valuable insights into cancer cell dissemination, offering new avenues for understanding and diagnosing CRC. This approach holds promise for earlier detection and better outcomes by offering key insights for more effective diagnostic strategies.
Collapse
Affiliation(s)
- Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| | - Sanjaya Kc
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Mark A T Blaskovich
- Institute of Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Cu-Tai Lu
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Alfred K Lam
- School of Medicine and Dentistry, Griffith University, Southport, QLD, 4222, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
3
|
Altaie S, Alrawi A, Duan X, Alnada Q. Exploring the effects of simulated microgravity on esophageal cancer cells: insights into morphological, growth behavior, adhesion, and genetic damage. J Biol Phys 2024; 50:351-366. [PMID: 39400902 PMCID: PMC11490601 DOI: 10.1007/s10867-024-09663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
The exploration of microgravity has garnered substantial scholarly attention due to its potential to offer unique insights into the behavior of biological systems. This study presents a preliminary investigation into the effects of simulated microgravity on esophageal cancer cells, examining various aspects such as morphology, growth behavior, adhesion, inhibition rate, and DNA damage. To achieve this, a novel microgravity simulator named "Gravity Challenge" was utilized for its effectiveness in minimizing external influences that could compromise microgravity conditions. The international cell line SK-GT-4 was utilized as the focal point of this investigation. Results revealed noticeable alterations in the growth behavior of cancer cells following exposure to simulated microgravity for 24 h, characterized by a loss of adhesion properties compared to control cells. Concurrently, cell viability exhibited a decline, as evidenced by cytotoxicity testing. Furthermore, the comet assay test demonstrated that cells subjected to microgravity simulation experienced a higher incidence of DNA damage compared to their control counterparts. In conclusion, this comprehensive examination of the impact of simulated microgravity on esophageal cancer cells extends beyond morphological changes, delving into genetic implications through observed DNA damage. The diminished vitality of cells under microgravity conditions underscores the multifaceted effects on cellular behavior in response to environmental variations. These findings represent a significant step towards understanding the dynamics of cancer cells, laying the groundwork for future research aimed at identifying potential therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Saifaldeen Altaie
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin, China.
- College of Medicine, Ninevah University, Mosul, Iraq.
| | - Amera Alrawi
- College of Science, University of Mosul, Mosul, Iraq
| | - Xuexin Duan
- School of Precision Instrument and Optoelectronic Engineering, Tianjin University, Tianjin, China
| | - Qater Alnada
- College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
4
|
Aoki K, Higuchi T, Akieda Y, Matsubara K, Ohkawa Y, Ishitani T. Mechano-gradients drive morphogen-noise correction to ensure robust patterning. SCIENCE ADVANCES 2024; 10:eadp2357. [PMID: 39546611 PMCID: PMC11567007 DOI: 10.1126/sciadv.adp2357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Morphogen gradients instruct cells to pattern tissues. Although the mechanisms by which morphogens transduce chemical signals have been extensively studied, the roles and regulation of the physical communication between morphogen-receiver cells remain unclear. Here, we show that the Wnt/β-catenin-morphogen gradient, which patterns the embryonic anterior-posterior (AP) axis, generates intercellular tension gradients along the AP axis by controlling membrane cadherin levels in zebrafish embryos. This "mechano-gradient" is used for the cell competition-driven correction of noisy morphogen gradients. Naturally and artificially generated unfit cells, producing noisy Wnt/β-catenin gradients, induce local deformation of the mechano-gradients that activate mechanosensitive calcium channels in the neighboring fit cells, which then secrete annexin A1a to kill unfit cells. Thus, chemo-mechanical interconversion-mediated competitive communication between the morphogen-receiver cells ensures precise tissue patterning.
Collapse
Affiliation(s)
- Kana Aoki
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiki Higuchi
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Akieda
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kotone Matsubara
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Fukuoka, Fukuoka 812-0054, Japan
| | - Tohru Ishitani
- Department of Homeostatic Regulation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Guzman A, Kawase T, Devanny AJ, Efe G, Navaridas R, Yu K, Regunath K, Mercer IG, Avard RC, Muniz de Queiroz R, Rustgi AK, Kaufman LJ, Prives C. Mutant p53 regulates cancer cell invasion in complex three-dimensional environments through mevalonate pathway-dependent Rho/ROCK signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618100. [PMID: 39464132 PMCID: PMC11507699 DOI: 10.1101/2024.10.13.618100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Certain mutations can confer neomorphic gain of function (GOF) activities to the p53 protein that affect cancer progression. Yet the concept of mutant p53 GOF has been challenged. Here, using various strategies to alter the status of mutant versions of p53 in different cell lines, we demonstrate that mutant p53 stimulates cancer cell invasion in three-dimensional environments. Mechanistically, mutant p53 enhances RhoA/ROCK-dependent cell contractility and cell-mediated extracellular matrix (ECM) re-organization via increasing mevalonate pathway-dependent RhoA localization to the membrane. In line with this, RhoA-dependent pro-invasive activity is also mediated by IDI-1, a mevalonate pathway product. Further, the invasion-enhancing effect of mutant p53 is dictated by the biomechanical properties of the surrounding ECM, thereby adding a cell-independent layer of regulation to mutant p53 GOF activity that is mediated by dynamic reciprocal cell-ECM interactions. Together our findings link mutant p53 metabolic GOF activity with an invasive cellular phenotype in physiologically relevant and context-dependent settings. Significance This study addresses the contribution of mutant p53 to the process of cancer cell dissemination in physiologically relevant three-dimensional environments - a key characteristic of metastatic disease. Several mutant p53 proteins display pro-oncogenic activity with respect to cancer cell invasion in 3D environments via mevalonate pathway-dependent Rho/ROCK signaling axis.
Collapse
|
6
|
Khodaverdi K, Bakhshi A, Mozafari MR, Naghib SM. A review of chitosan-based nanocarriers as drug delivery systems for brain diseases: Critical challenges, outlooks and promises. Int J Biol Macromol 2024; 278:134962. [PMID: 39179064 DOI: 10.1016/j.ijbiomac.2024.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/06/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The administration of medicinal drugs orally or systemically limits the treatment of specific central nervous system (CNS) illnesses, such as certain types of brain cancers. These methods can lead to severe adverse reactions and inadequate transport of drugs to the brain, resulting in limited effectiveness. The CNS homeostasis is maintained by various barriers within the brain, such as the endothelial, epithelial, mesothelial, and glial barriers, which strictly control the movement of chemicals, solutes, and immune cells. Brain capillaries consist of endothelial cells (ECs) and perivascular pericytes, with pericytes playing a crucial role in maintaining the blood-brain barrier (BBB), influencing new blood vessel formation, and exhibiting secretory capabilities. This article summarizes the structural components and anatomical characteristics of the BBB. Intranasal administration, a non-invasive method, allows drugs to reach the brain by bypassing the BBB, while direct cerebral administration targets specific brain regions with high concentrations of therapeutic drugs. Technical and mechanical tools now exist to bypass the BBB, enabling the development of more potent and safer medications for neurological disorders. This review also covers clinical trials, formulations, challenges, and patents for a comprehensive perspective.
Collapse
Affiliation(s)
- Khashayar Khodaverdi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Ali Bakhshi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran; Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia; Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| |
Collapse
|
7
|
Zhao F, Qiu Y, Liu W, Zhang Y, Liu J, Bian L, Shao L. Biomimetic Hydrogels as the Inductive Endochondral Ossification Template for Promoting Bone Regeneration. Adv Healthc Mater 2024; 13:e2303532. [PMID: 38108565 DOI: 10.1002/adhm.202303532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Repairing critical size bone defects (CSBD) is a major clinical challenge and requires effective intervention by biomaterial scaffolds. Inspired by the fact that the cartilaginous template-based endochondral ossification (ECO) process is crucial to bone healing and development, developing biomimetic biomaterials to promote ECO is recognized as a promising approach for repairing CSBD. With the unique highly hydrated 3D polymeric network, hydrogels can be designed to closely emulate the physiochemical properties of cartilage matrix to facilitate ECO. In this review, the various preparation methods of hydrogels possessing the specific physiochemical properties required for promoting ECO are introduced. The materiobiological impacts of the physicochemical properties of hydrogels, such as mechanical properties, topographical structures and chemical compositions on ECO, and the associated molecular mechanisms related to the BMP, Wnt, TGF-β, HIF-1α, FGF, and RhoA signaling pathways are further summarized. This review provides a detailed coverage on the materiobiological insights required for the design and preparation of hydrogel-based biomaterials to facilitate bone regeneration.
Collapse
Affiliation(s)
- Fujian Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yonghao Qiu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Wenjing Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Yanli Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Jia Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, P. R. China
| |
Collapse
|
8
|
Buisson J, Zhang X, Zambelli T, Lavalle P, Vautier D, Rabineau M. Reverse Mechanotransduction: Driving Chromatin Compaction to Decompaction Increases Cell Adhesion Strength and Contractility. NANO LETTERS 2024; 24:4279-4290. [PMID: 38546049 DOI: 10.1021/acs.nanolett.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mechanical extracellular signals elicit chromatin remodeling via the mechanotransduction pathway, thus determining cellular function. However, the reverse pathway is an open question: does chromatin remodeling shape cells, regulating their adhesion strength? With fluidic force microscopy, we can directly measure the adhesion strength of epithelial cells by driving chromatin compaction to decompaction with chromatin remodelers. We observe that chromatin compaction, induced by performing histone acetyltransferase inhibition or ATP depletion, leads to a reduction in nuclear volume, disrupting actin cytoskeleton and focal adhesion assembly, and ultimately decreases in cell adhesion strength and traction force. Conversely, when chromatin decompaction is drived by removing the remodelers, cells recover their original shape, adhesion strength, and traction force. During chromatin decompaction, cells use depolymerized proteins to restore focal adhesion assemblies rather than neo-synthesized cytoskeletal proteins. We conclude that chromatin remodeling shapes cells, regulating adhesion strength through a reverse mechanotransduction pathway from the nucleus to the cell surface involving RhoA activation.
Collapse
Affiliation(s)
- Julie Buisson
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich 8092, Switzerland
| | - Philippe Lavalle
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
- SPARTHA Medical SAS, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Dominique Vautier
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| | - Morgane Rabineau
- Inserm UMR_S 1121, CNRS EMR 7003, Université de Strasbourg, Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg F-67000, France
| |
Collapse
|
9
|
Coló GP, Seiwert A, Haga RB. Lfc subcellular localization and activity is controlled by αv-class integrin. J Cell Sci 2023; 136:307374. [PMID: 37129180 DOI: 10.1242/jcs.260740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Fibronectin (FN)-binding integrins control a variety of cellular responses through Rho GTPases. The FN-binding integrins, αvβ3 and α5β1, are known to induce different effects on cell morphology and motility. Here, we report that FN-bound αvβ3 integrin, but not FN-bound α5β1 integrin, triggers the dissociation of the RhoA GEF Lfc (also known as GEF-H1 and ARHGEF2 in humans) from microtubules (MTs), leading to the activation of RhoA, formation of stress fibres and maturation of focal adhesions (FAs). Conversely, loss of Lfc expression decreases RhoA activity, stress fibre formation and FA size, suggesting that Lfc is the major GEF downstream of FN-bound αvβ3 that controls RhoA activity. Mechanistically, FN-engaged αvβ3 integrin activates a kinase cascade involving MARK2 and MARK3, which in turn leads to phosphorylation of several phospho-sites on Lfc. In particular, S151 was identified as the main site involved in the regulation of Lfc localization and activity. Our findings indicate that activation of Lfc and RhoA is orchestrated in FN-adherent cells in an integrin-specific manner.
Collapse
Affiliation(s)
- Georgina P Coló
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Andrea Seiwert
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Raquel B Haga
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
10
|
Hosseini M, Brown J, Khosrotehrani K, Bayat A, Shafiee A. Skin biomechanics: a potential therapeutic intervention target to reduce scarring. BURNS & TRAUMA 2022; 10:tkac036. [PMID: 36017082 PMCID: PMC9398863 DOI: 10.1093/burnst/tkac036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/27/2022] [Indexed: 12/19/2022]
Abstract
Pathological scarring imposes a major clinical and social burden worldwide. Human cutaneous wounds are responsive to mechanical forces and convert mechanical cues to biochemical signals that eventually promote scarring. To understand the mechanotransduction pathways in cutaneous scarring and develop new mechanotherapy approaches to achieve optimal scarring, the current study highlights the mechanical behavior of unwounded and scarred skin as well as intra- and extracellular mechanisms behind keloid and hypertrophic scars. Additionally, the therapeutic interventions that promote optimal scar healing by mechanical means at the molecular, cellular or tissue level are extensively reviewed. The current literature highlights the significant role of fibroblasts in wound contraction and scar formation via differentiation into myofibroblasts. Thus, understanding myofibroblasts and their responses to mechanical loading allows the development of new scar therapeutics. A review of the current clinical and preclinical studies suggests that existing treatment strategies only reduce scarring on a small scale after wound closure and result in poor functional and aesthetic outcomes. Therefore, the perspective of mechanotherapies needs to consider the application of both mechanical forces and biochemical cues to achieve optimal scarring. Moreover, early intervention is critical in wound management; thus, mechanoregulation should be conducted during the healing process to avoid scar maturation. Future studies should either consider combining mechanical loading (pressure) therapies with tension offloading approaches for scar management or developing more effective early therapies based on contraction-blocking biomaterials for the prevention of pathological scarring.
Collapse
Affiliation(s)
- Motaharesadat Hosseini
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering (MMPE), Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Jason Brown
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Ardeshir Bayat
- Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, England, UK
| | - Abbas Shafiee
- Herston Biofabrication Institute, Metro North Hospital and Health Service, Brisbane, QLD 4029, Australia
| |
Collapse
|
11
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Ida-Naitoh M, Tokuyama H, Futatsugi K, Yasuda M, Adachi K, Kanda T, Tanabe Y, Wakino S, Itoh H. Proximal-tubule molecular relay from early Protein diaphanous homolog 1 to late Rho-associated protein kinase 1 regulates kidney function in obesity-induced kidney damage. Kidney Int 2022; 102:798-814. [PMID: 35716954 DOI: 10.1016/j.kint.2022.05.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
The small GTPase protein RhoA has two effectors, ROCK (Rho-associated protein kinase 1) and mDIA1 (Protein diaphanous homolog 1), which cooperate reciprocally. However, temporal regulation of RhoA and its effectors in obesity-induced kidney damage remains unclear. Here, we investigated the role of RhoA activation in the proximal tubules at the early and late stages of obesity-induced kidney damage. In mice, a three week high-fat diet induced proximal tubule hypertrophy and damage without increased albuminuria, and RhoA/mDIA1 activation without ROCK activation. Conversely, a 12- week high-fat diet induced proximal tubule hypertrophy, proximal tubule damage, increased albuminuria, and RhoA/ROCK activation without mDIA1 elevation. Proximal tubule hypertrophy resulting from cell cycle arrest accompanied by downregulation of the multifunctional cyclin-dependent kinase inhibitor p27Kip1 was elicited by RhoA activation. Mice overexpressing proximal tubule-specific and dominant-negative RHOA display amelioration of high-fat diet-induced kidney hypertrophy, cell cycle abnormalities, inflammation, and renal impairment. In human proximal tubules cells, mechanical stretch mimicking hypertrophy activated ROCK, which triggered inflammation. In human kidney samples from normal individuals with a body mass index of about 25, proximal tubule cell size correlated with body mass index, proximal tubule cell damages, and mDIA1 expression. Thus, RhoA activation in proximal tubules is critical for the initiation and progression of obesity-induced kidney damage. Hence, the switch in the downstream RhoA effector in proximal tubule represents a transition from normal to pathogenic kidney adaptation and to body weight gain, leading to obesity-induced kidney damage.
Collapse
Affiliation(s)
- Makiko Ida-Naitoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirobumi Tokuyama
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Koji Futatsugi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Marie Yasuda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Keika Adachi
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takeshi Kanda
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiyuki Tanabe
- Department of Clinical Pharmacology, Yokohama University of Pharmacy, Kanagawa, Japan
| | - Shu Wakino
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan.
| | - Hiroshi Itoh
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
13
|
Marjanovic J, Ramirez HA, Jozic I, Stone RC, Wikramanayake TC, Head CR, Abdo Abujamra B, Ojeh N, Kirsner RS, Lev-Tov H, Pastar I, Tomic-Canic M. Dichotomous role of miR193b-3p in diabetic foot ulcers maintains inhibition of healing and suppression of tumor formation. Sci Transl Med 2022; 14:eabg8397. [PMID: 35544594 PMCID: PMC9707408 DOI: 10.1126/scitranslmed.abg8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Despite the hyperproliferative environment marked by activation of β-catenin and overexpression of c-myc, the epidermis surrounding chronic diabetic foot ulcers (DFUs) is clinically hypertrophic and nonmigratory yet does not undergo malignant transformation. We identified miR193b-3p as a master regulator that contributes to this unique cellular phenotype. We determined that induction of tumor suppressor miR193b-3p is a unique feature of DFUs that is not found in venous leg ulcers, acute wounds, or cutaneous squamous cell carcinoma (SCC). Genomic analyses of DFUs identified suppression of the miR193b-3p target gene network that orchestrates cell motility. Inhibition of migration and wound closure was further confirmed by overexpression of miR193b-3p in human organotypic and murine in vivo wound models, whereas miR193b-3p knockdown accelerated wound reepithelialization in human ex vivo and diabetic murine wounds in vivo. The dominant negative effect of miR193b-3p on keratinocyte migration was maintained in the presence of promigratory miR31-5p and miR15b-5p, which were also overexpressed in DFUs. miR193b-3p mediated antimigratory activity by disrupting stress fiber formation and by decreasing activity of GTPase RhoA. Conversely, miR193b-3p targets that typically participate in malignant transformation were found to be differentially regulated between DFUs and SCC, including the proto-oncogenes KRAS (Kirsten rat sarcoma viral proto-oncogene) and KIT (KIT proto-oncogene). Although miR193b-3p acts as a tumor suppressor contributing to low tumor incidence in DFUs, it also acts as a master inhibitor of cellular migration and epithelialization in DFUs. Thus, miR193b-3p may represent a target for wound healing induction, cancer therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Horacio A Ramirez
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Tongyu C Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Beatriz Abdo Abujamra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Nkemcho Ojeh
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Faculty of Medical Sciences, The University of the West Indies, Bridgetown BB11000, Barbados
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| |
Collapse
|
14
|
Jesus D, Pinho AR, Gomes MC, Oliveira CS, Mano JF. Emerging modulators for osteogenic differentiation: a combination of chemical and topographical cues for bone microenvironment engineering. SOFT MATTER 2022; 18:3107-3119. [PMID: 35373803 DOI: 10.1039/d2sm00009a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone presents an intrinsic ability for self-regeneration and repair, however critical defects and large fractures require invasive and time-consuming clinical interventions. As an alternative to current therapy, bone tissue engineering (BTE) has primarily aimed to recreate the bone microenvironment by delivering key biomolecules and/or by modification of scaffolds to guide cell fate towards the osteogenic lineage or other phenotypes that may benefit the bone regeneration mechanism. Considering that bone cells communicate, in their native microenvironment, through biochemical and physical signals, most strategies fail when considering only chemical, geometrical or mechanical cues. This is not representative of the physiological conditions, where the cells are simultaneously in contact and stimulated by several cues. Therefore, this review explores the synergistic effect of biochemical/physical cues in regulating cellular events, namely cell adhesion, proliferation, osteogenic differentiation, and mineralization, highlighting the importance of the combined modifications for the development of innovative bone regenerative therapies.
Collapse
Affiliation(s)
- Diana Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Ana R Pinho
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Maria C Gomes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Cláudia S Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
15
|
Ardoña HAM, Zimmerman JF, Shani K, Kim SH, Eweje F, Bitounis D, Parviz D, Casalino E, Strano M, Demokritou P, Parker KK. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NANOIMPACT 2022; 26:100401. [PMID: 35560286 PMCID: PMC9812361 DOI: 10.1016/j.impact.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Su-Hwan Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Evan Casalino
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA.
| |
Collapse
|
16
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
17
|
Exosomes derived from human umbilical cord mesenchymal stem cells reduce tendon injuries via the miR-27b-3p/ARHGAP5/RhoA signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:232-242. [PMID: 35130628 PMCID: PMC9909356 DOI: 10.3724/abbs.2021026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tendon injuries are common clinical issues resulted from tissue overuse and age-related degeneration. Previous sutdies have suggested that exosomes secreted by mesenchymal stem cells (MSCs) contribute to tissue injury repair. Here, we provide evidence for a critical role of human umbilical cord mesenchymal stem cell (hucMSC)-derived exosomes in reducing tendon injury by activating the RhoA signaling. Treatment of primary injured tenocytes with hucMSC exosomes increases cell proliferation and invasion, which correlates with increased RhoA activity. RhoA mediates the effects of hucMSC exosomes, as treatment of primary injured tenocytes with the RhoA inhibitor, CCG-1423, abolishes the effects of hucMSC exosomes on cell proliferation and invasion. Mechanistically, we observe that hucMSC exosomes induce the expression of a microRNA, miR-27b-3p, which targets and suppresses ARHGAP5, a negative regulator of RhoA. Consistent with this observation, ARHGAP5 overexpression suppresses the effects of hucMSC exosomes on cell proliferation and invasion, while knockdown of ARHGAP5 rescues these effects. Finally, we demonstrate the functional significance of our findings using an Achilles tendon injury model and show that treatment with exosomes reduces tendon injury in rats, which correlates with increased RhoA activity and reduced ARHGAP5 expression. Taken together, our findings highlight a critical role of hucMSC exosomes in reducing tendon injury via miR-27b-3p-mediated suppression of ARHGAP5, resulting in RhoA activation, and leading to increased cell proliferation and invasion of primary injured tenocytes.
Collapse
|
18
|
Dysregulation of Cytoskeleton Remodeling Drives Invasive Leading Cells Detachment. Cancers (Basel) 2021; 13:cancers13225648. [PMID: 34830801 PMCID: PMC8616115 DOI: 10.3390/cancers13225648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Detachment of cancer cells is the first step in tumor metastasis and malignancy. Our results showed that the TGF-β1/vimentin/focal adhesion protein assembly axis was involved in the control of the dynamics of initial tumor detachment under adequate nutrition, based on the Boyden chamber and 3D in-gel spheroid analysis. Abstract Detachment of cancer cells is the first step in tumor metastasis and malignancy. However, studies on the balance of initial tumor anchoring and detachment are limited. Herein, we revealed that the regulation of cytoskeleton proteins potentiates tumor detachment. The blockage of TGF-β1 using neutralizing antibodies induced cancer cell detachment in the Boyden chamber and 3D in-gel spheroid models. Moreover, treatment with latrunculin B, an actin polymerization inhibitor, enhanced cell dissociation by abolishing actin fibers, indicating that TGF-β1 mediates the formation of actin stress fibers, and is likely responsible for the dynamics of anchoring and detachment. Indeed, latrunculin B disrupted the formation of external TGF-β1-induced actin fibers and translocation of intracellular vinculin, a focal adhesion protein, resulting in the suppression of cell adhesion. Moreover, the silencing of vimentin substantially reduced cell adhesion and enhanced cell detachment, revealing that cell adhesion and focal adhesion protein translocation stimulated by TGF-β1 require vimentin. Using the 3D in-gel spheroid model, we found that latrunculin B suppressed the cell adhesion promoted by external TGF-β1, increasing the number of cells that penetrated the Matrigel and detached from the tumor spheres. Thus, cytoskeleton remodeling maintained the balance of cell anchoring and detachment, and the TGF-β1/vimentin/focal adhesion protein assembly axis was involved in the control dynamics of initial tumor detachment.
Collapse
|
19
|
Townes-Anderson E, Halasz E, Wang W, Zarbin M. Coming of Age for the Photoreceptor Synapse. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34550300 PMCID: PMC8475281 DOI: 10.1167/iovs.62.12.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose To discuss the potential contribution of rod and cone synapses to the loss of visual function in retinal injury and disease. Methods The published literature and the authors' own work were reviewed. Results Retinal detachment is used as a case study of rod spherule and cone pedicle plasticity after injury. Both rod and cone photoreceptors terminals are damaged after detachment although the structural changes observed are only partially overlapping. For second-order neurons, only those associated with rod spherules respond consistently to injury by remodeling. Examination of signaling pathways involved in plasticity of conventional synapses and in neural development has been and may continue to be productive in discovering novel therapeutic targets. Rho kinase (ROCK) inhibition is an example of therapy that may reduce synaptic damage by preserving normal synaptic structure of rod and cone cells. Conclusions We hypothesize that synaptic damage contributes to poor visual restoration after otherwise successful anatomical repair of retinal detachment. A similar situation may exist for patients with degenerative retinal disease. Thus, synaptic structure and function should be routinely studied, as this information may disclose therapeutic strategies to mitigate visual loss.
Collapse
Affiliation(s)
- Ellen Townes-Anderson
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Eva Halasz
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| | - Weiwei Wang
- Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard University, Boston, Massachusetts, United States
| | - Marco Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, United States
| |
Collapse
|
20
|
Yuan Y, Zhu C, Liu M, Ke B. Comparative proteome analysis of form-deprivation myopia in sclera with iTRAQ-based quantitative proteomics. Mol Vis 2021; 27:494-505. [PMID: 34526757 PMCID: PMC8410231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Scleral remodeling plays a key role in axial elongation in myopia. The aim of the present study was to identify the proteomics changes and specific signaling networks to gain insight into the molecular basis of scleral remodeling in myopic eyes. Methods Guinea pig form-deprivation myopia was induced with a translucent diffuser on a random eye for 4 weeks, while the other eye served as the contralateral control group. The axial length and refraction were measured at the beginning and end of the treatment. The proteins were extracted from the sclerae of each group and prepared for quantitative isobaric tags for relative and absolute quantification (iTRAQ) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. The coexpression networks and protein functions were analyzed using Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA). Quantitative real-time PCR (qRT-PCR) and western blotting were performed to confirm the authenticity and accuracy of the iTRAQ results. Results After 4 weeks, the form-deprivation eyes developed significant degrees of myopia, and the axial length increased statistically significantly (p<0.05). A total of 2,579 unique proteins with <1% false discovery rate (FDR) were identified. Furthermore, 56 proteins were found to be upregulated, and 84 proteins were found to be downregulated, with a threshold of a 1.2-fold change and p<0.05 in the myopia group, when compared to the control group. Further bioinformatics analysis indicated that 44 of 140 differentially expressed proteins were involved in cellular movement and cellular assembly and organization. The qRT-PCR or western blotting results confirmed that myosin IIB, ACTIN3, and cellular cytoskeletons were downregulated, while RhoA and RAP1A were upregulated in the sclera in myopic eyes. These results were consistent with the proteomics results. Conclusions Proteomics and bioinformatics results can be helpful for identifying proteins and providing new insights for better understanding of the molecular mechanism underlying scleral remodeling. These results revealed that the proteins associated with cellular movement and cellular assembly and organization are altered during the development of myopia. Furthermore, RhoA plays a key role in the pathways involved in cellular movement and cellular assembly and organization.
Collapse
Affiliation(s)
- Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,National Clinical Research Center for Eye Diseases; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| | - Chengcheng Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China,Shanghai engineering center for visual science and photomedicine, Shanghai, China
| | - Mingming Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China,Shanghai engineering center for precise diagnosis and treatment of eye diseases, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai, China,National Clinical Research Center for Eye Diseases; Shanghai, China,Shanghai Key Laboratory of Fundus Disease, Shanghai, China
| |
Collapse
|
21
|
Berlew EE, Kuznetsov IA, Yamada K, Bugaj LJ, Boerckel JD, Chow BY. Single-Component Optogenetic Tools for Inducible RhoA GTPase Signaling. Adv Biol (Weinh) 2021; 5:e2100810. [PMID: 34288599 DOI: 10.1002/adbi.202100810] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/08/2021] [Indexed: 01/31/2023]
Abstract
Optogenetic tools are created to control RhoA GTPase, a central regulator of actin organization and actomyosin contractility. RhoA GTPase, or its upstream activator ARHGEF11, is fused to BcLOV4, a photoreceptor that can be dynamically recruited to the plasma membrane by a light-regulated protein-lipid electrostatic interaction with the inner leaflet. Direct membrane recruitment of these proteins induces potent contractile signaling sufficient to separate adherens junctions with as little as one pulse of blue light. Induced cytoskeletal morphology changes are dependent on the alignment of the spatially patterned stimulation with the underlying cell polarization. RhoA-mediated cytoskeletal activation drives yes-associated protein (YAP) nuclear localization within minutes and consequent mechanotransduction verified by YAP-transcriptional enhanced associate domain transcriptional activity. These single-transgene tools do not require protein binding partners for dynamic membrane localization and permit spatiotemporally precise control over RhoA signaling to advance the study of its diverse regulatory roles in cell migration, morphogenesis, and cell cycle maintenance.
Collapse
Affiliation(s)
- Erin E Berlew
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| | - Ivan A Kuznetsov
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| | - Keisuke Yamada
- Department of Electrical Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, 169-8050, Japan
| | - Lukasz J Bugaj
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA.,Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, 210 South 33 rd Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
22
|
Inman A, Smutny M. Feeling the force: Multiscale force sensing and transduction at the cell-cell interface. Semin Cell Dev Biol 2021; 120:53-65. [PMID: 34238674 DOI: 10.1016/j.semcdb.2021.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.
Collapse
Affiliation(s)
- Angus Inman
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK.
| |
Collapse
|
23
|
Salomón R, Reyes-López FE, Tort L, Firmino JP, Sarasquete C, Ortiz-Delgado JB, Quintela JC, Pinilla-Rosas JM, Vallejos-Vidal E, Gisbert E. Medicinal Plant Leaf Extract From Sage and Lemon Verbena Promotes Intestinal Immunity and Barrier Function in Gilthead Seabream ( Sparus aurata). Front Immunol 2021; 12:670279. [PMID: 34054843 PMCID: PMC8160519 DOI: 10.3389/fimmu.2021.670279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
The inclusion of a medicinal plant leaf extract (MPLE) from sage (Salvia officinalis) and lemon verbena (Lippia citriodora), rich in verbascoside and triterpenic compounds like ursolic acid, was evaluated in gilthead seabream (Sparus aurata) fed a low fishmeal-based diet (48% crude protein, 17% crude fat, 21.7 MJ kg-1, 7% fishmeal, 15% fish oil) for 92 days. In particular, the study focused on the effect of these phytogenic compounds on the gut condition by analyzing the transcriptomic profiling (microarray analysis) and histological structure of the intestinal mucosa, as well as the histochemical properties of mucins stored in goblet cells. A total number of 506 differentially expressed genes (285 up- and 221 down-regulated) were found when comparing the transcriptomic profiling of the intestine from fish fed the control and MPLE diets. The gut transcripteractome revealed an expression profile that favored biological mechanisms associated to the 1) immune system, particularly involving T cell activation and differentiation, 2) gut integrity (i.e., adherens and tight junctions) and cellular proliferation, and 3) cellular proteolytic pathways. The histological analysis showed that the MPLE dietary supplementation promoted an increase in the number of intestinal goblet cells and modified the composition of mucins' glycoproteins stored in goblet cells, with an increase in the staining intensity of neutral mucins, as well as in mucins rich in carboxylated and weakly sulfated glycoconjugates, particularly those rich in sialic acid residues. The integration of transcriptomic and histological results showed that the evaluated MPLE from sage and lemon verbena is responsible for the maintenance of intestinal health, supporting gut homeostasis and increasing the integrity of the intestinal epithelium, which suggests that this phytogenic may be considered as a promising sustainable functional additive for aquafeeds.
Collapse
Affiliation(s)
- Ricardo Salomón
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Joana P. Firmino
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
- PhD Program in Aquaculture, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | - Juan B. Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Universidad de Cádiz, Cádiz, Spain
| | | | | | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Enric Gisbert
- Aquaculture Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Sant Carles de la Ràpita (IRTA-SCR), Sant Carles de la Ràpita, Spain
| |
Collapse
|
24
|
Zaman R, Lombardo A, Sauvanet C, Viswanatha R, Awad V, Bonomo LER, McDermitt D, Bretscher A. Effector-mediated ERM activation locally inhibits RhoA activity to shape the apical cell domain. J Cell Biol 2021; 220:211973. [PMID: 33836044 PMCID: PMC8185690 DOI: 10.1083/jcb.202007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/07/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II–containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.
Collapse
Affiliation(s)
- Riasat Zaman
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Andrew Lombardo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Cécile Sauvanet
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Raghuvir Viswanatha
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Valerie Awad
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Locke Ezra-Ros Bonomo
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - David McDermitt
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| |
Collapse
|
25
|
Devi SS, Yadav R, Arya R. Altered Actin Dynamics in Cell Migration of GNE Mutant Cells. Front Cell Dev Biol 2021; 9:603742. [PMID: 33816461 PMCID: PMC8012676 DOI: 10.3389/fcell.2021.603742] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/09/2021] [Indexed: 11/27/2022] Open
Abstract
Cell migration is an essential cellular process that requires coordination of cytoskeletal dynamics, reorganization, and signal transduction. The actin cytoskeleton is central in maintaining the cellular structure as well as regulating the mechanisms of cell motility. Glycosylation, particularly sialylation of cell surface proteins like integrins, regulates signal transduction from the extracellular matrix to the cytoskeletal network. The activation of integrin by extracellular cues leads to recruitment of different focal adhesion complex proteins (Src, FAK, paxillin, etc.) and activates the signal including Rho GTPases for the regulation of actin assembly and disassembly. During cell migration, the assembly and disassembly of actin filament provides the essential force for the cell to move. Abnormal sialylation can lead to actin signaling dysfunction leading to aberrant cell migration, one of the main characteristics of cancer and myopathies. In the present study, we have reported altered F-actin to G-actin ratios in GNE mutated cells. These cells exhibit pathologically relevant mutations of GNE (UDP N-acetylneuraminic 2-epimerase/N-acetylmannosamine kinase), a key sialic acid biosynthetic enzyme. It was found that GNE neither affects the actin polymerization nor binds directly to actin. However, mutation in GNE resulted in increased binding of α-actinin to actin filaments. Further, through confocal imaging, GNE was found to be localized in focal adhesion complex along with paxillin. We further elucidated that mutation in GNE resulted in upregulation of RhoA protein and Cofilin activity is downregulated, which could be rescued with Rhosin and chlorogenic acid, respectively. Lastly, mutant in GNE reduced cell migration as implicated from wound healing assay. Our study indicates that molecules altering Cofilin function could significantly revert the cell migration defect due to GNE mutation in sialic acid-deficient cells. We propose cytoskeletal proteins to be alternate drug targets for disorders associated with GNE such as GNE myopathy.
Collapse
Affiliation(s)
| | - Rashmi Yadav
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ranjana Arya
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
26
|
Natriuretic peptide receptor-C releases and activates guanine nucleotide-exchange factor H1 in a ligand-dependent manner. Biochem Biophys Res Commun 2021; 552:9-16. [PMID: 33740666 DOI: 10.1016/j.bbrc.2021.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 01/07/2023]
Abstract
Although natriuretic peptide receptor-C (NPR-C) is involved in the clearance of natriuretic peptides from plasma, it also possesses other physiological functions, such as inhibition of adenylyl cyclase activity through Gαi. However, the physiological roles and intracellular signaling pathways of NPR-C have yet been not fully elucidated. In this study, we identified a RhoA-specific guanine nucleotide-exchange factor, GEF-H1, as a novel binding protein of NPR-C. We demonstrated that endogenous NPR-C interacted with GEF-H1 in HeLa cells, and that the interaction between NPR-C and GEF-H1 was dependent on a 37-amino acid cytoplasmic region of NPR-C. In contrast, another natriuretic peptide receptor, NPR-A, which includes the kinase homology and guanylyl cyclase domains in the intracellular region, did not interact with GEF-H1. We also revealed that the ligands of NPR-C (i.e., ANP, CNP, and osteocrin) caused dissociation of GEF-H1 from NPR-C. Furthermore, osteocrin treatment induced phosphorylation of GEF-H1 at Ser-886, enhanced the interaction of GEF-H1 with 14-3-3, and increased the amount of activated GEF-H1. These findings strongly supported that NPR-C may be involved in diverse physiological roles by regulating GEF-H1 signaling.
Collapse
|
27
|
Yuan C, Arora A, Garofalo AM, Grange RW. Potential cross-talk between muscle and tendon in Duchenne muscular dystrophy. Connect Tissue Res 2021; 62:40-52. [PMID: 32867551 DOI: 10.1080/03008207.2020.1810247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To describe potential signaling (cross-talk) between dystrophic skeletal muscle and tendon in Duchenne muscular dystrophy. MATERIALS AND METHODS Review of Duchenne muscular dystrophy and associated literature relevant to muscle-tendon cross-talk. RESULTS AND CONCLUSIONS Duchenne muscular dystrophy results from the absence of the protein dystrophin and the associated dystrophin - glycoprotein complex, which are thought to provide both structural support and signaling functions for the muscle fiber. In addition, there are other potential signal pathways that could represent cross-talk between muscle and tendon, particularly at the myotendinous junction. Duchenne muscular dystrophy is characterized by multiple pathophysiologic mechanisms. Herein, we explore three of these: (1) the extracellular matrix, fibrosis, and fat deposition; (2) satellite cells; and (3) tensegrity. A key signaling protein that emerged in each was transforming growth factor - beta one (TGF-β1).].
Collapse
Affiliation(s)
- Claire Yuan
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Ashwin Arora
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Anthony M Garofalo
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| | - Robert W Grange
- Department of Human Nutrition, Foods, and Exercise and Metabolism Core, Virginia Tech , Blacksburg, Virginia, USA
| |
Collapse
|
28
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
29
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
30
|
Domingues C, Geraldo AM, Anjo SI, Matos A, Almeida C, Caramelo I, Lopes-da-Silva JA, Paiva A, Carvalho J, Pires das Neves R, Manadas B, Grãos M. Cofilin-1 Is a Mechanosensitive Regulator of Transcription. Front Cell Dev Biol 2020; 8:678. [PMID: 32903827 PMCID: PMC7438942 DOI: 10.3389/fcell.2020.00678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanical properties of the extracellular environment are interrogated by cells and integrated through mechanotransduction. Many cellular processes depend on actomyosin-dependent contractility, which is influenced by the microenvironment’s stiffness. Here, we explored the influence of substrate stiffness on the proteome of proliferating undifferentiated human umbilical cord-matrix mesenchymal stem/stromal cells. The relative abundance of several proteins changed significantly by expanding cells on soft (∼3 kPa) or stiff substrates (GPa). Many such proteins are associated with the regulation of the actin cytoskeleton, a major player of mechanotransduction and cell physiology in response to mechanical cues. Specifically, Cofilin-1 levels were elevated in cells cultured on soft comparing with stiff substrates. Furthermore, Cofilin-1 was de-phosphorylated (active) and present in the nuclei of cells kept on soft substrates, in contrast with phosphorylated (inactive) and widespread distribution in cells on stiff. Soft substrates promoted Cofilin-1-dependent increased RNA transcription and faster RNA polymerase II-mediated transcription elongation. Cofilin-1 is part of a novel mechanism linking mechanotransduction and transcription.
Collapse
Affiliation(s)
- Catarina Domingues
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - A Margarida Geraldo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Sandra Isabel Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - André Matos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Cláudio Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Polytechnic Institute of Coimbra, Coimbra College of Agriculture, Coimbra, Portugal
| | - Inês Caramelo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | | | - Artur Paiva
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Coimbra, Portugal
| | - João Carvalho
- Centro de Física da Universidade de Coimbra (CFisUC), Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Mário Grãos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal.,Biocant, Technology Transfer Association, Cantanhede, Portugal
| |
Collapse
|
31
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 PMCID: PMC7261780 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
32
|
Kuehlmann B, Bonham CA, Zucal I, Prantl L, Gurtner GC. Mechanotransduction in Wound Healing and Fibrosis. J Clin Med 2020; 9:jcm9051423. [PMID: 32403382 PMCID: PMC7290354 DOI: 10.3390/jcm9051423] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Skin injury is a common occurrence and mechanical forces are known to significantly impact the biological processes of skin regeneration and wound healing. Immediately following the disruption of the skin, the process of wound healing begins, bringing together numerous cell types to collaborate in several sequential phases. These cells produce a multitude of molecules and initiate multiple signaling pathways that are associated with skin disorders and abnormal wound healing, including hypertrophic scars, keloids, and chronic wounds. Studies have shown that mechanical forces can alter the microenvironment of a healing wound, causing changes in cellular function, motility, and signaling. A better understanding of the mechanobiology of cells in the skin is essential in the development of efficacious therapeutics to reduce skin disorders, normalize abnormal wound healing, and minimize scar formation.
Collapse
Affiliation(s)
- Britta Kuehlmann
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Clark A. Bonham
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
| | - Isabel Zucal
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Lukas Prantl
- University Center for Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Regensburg and Caritas Hospital St. Josef, 93053 Regensburg, Germany; (I.Z.); (L.P.)
| | - Geoffrey C. Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; (B.K.); (C.A.B.)
- Correspondence: ; Tel.: +1-650-736-2776
| |
Collapse
|
33
|
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 2020; 16:2014-2028. [PMID: 32549750 PMCID: PMC7294938 DOI: 10.7150/ijbs.44943] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complicated, multistep process that is responsible for over 90% of cancer-related death. Metastatic disease or the movement of cancer cells from one site to another requires dramatic remodeling of the cytoskeleton. The regulation of cancer cell migration is determined not only by biochemical factors in the microenvironment but also by the biomechanical contextual information provided by the extracellular matrix (ECM). The responses of the cytoskeleton to chemical signals are well characterized and understood. However, the mechanisms of response to mechanical signals in the form of externally applied force and forces generated by the ECM are still poorly understood. Furthermore, understanding the way cellular mechanosensors interact with the physical properties of the microenvironment and transmit the signals to activate the cytoskeletal movements may help identify an effective strategy for the treatment of cancer. Here, we will discuss the role of tumor microenvironment during cancer metastasis and how physical forces remodel the cytoskeleton through mechanosensing and transduction.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing, 100044, China
| |
Collapse
|
34
|
Lin X, Zhang K, Wei D, Tian Y, Gao Y, Chen Z, Qian A. The Impact of Spaceflight and Simulated Microgravity on Cell Adhesion. Int J Mol Sci 2020; 21:ijms21093031. [PMID: 32344794 PMCID: PMC7246714 DOI: 10.3390/ijms21093031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
Microgravity induces a number of significant physiological changes in the cardiovascular, nervous, immune systems, as well as the bone tissue of astronauts. Changes in cell adhesion properties are one aspect affected during long-term spaceflights in mammalian cells. Cellular adhesion behaviors can be divided into cell-cell and cell-matrix adhesion. These behaviors trigger cell-cell recognition, conjugation, migration, cytoskeletal rearrangement, and signal transduction. Cellular adhesion molecule (CAM) is a general term for macromolecules that mediate the contact and binding between cells or between cells and the extracellular matrix (ECM). In this review, we summarize the four major classes of adhesion molecules that regulate cell adhesion, including integrins, immunoglobulin superfamily (Ig-SF), cadherins, and selectin. Moreover, we discuss the effects of spaceflight and simulated microgravity on the adhesion of endothelial cells, immune cells, tumor cells, stem cells, osteoblasts, muscle cells, and other types of cells. Further studies on the effects of microgravity on cell adhesion and the corresponding physiological behaviors may help increase the safety and improve the health of astronauts in space.
Collapse
Affiliation(s)
- Xiao Lin
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kewen Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Daixu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi’an 710069, China;
| | - Ye Tian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, 710072, China; (X.L.); (K.Z.); (Y.T.); (Y.G.); (Z.C.)
- Xi’an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: ; Tel.: +86-135-7210-8260
| |
Collapse
|
35
|
Hui E, Gimeno KI, Guan G, Caliari SR. Spatiotemporal Control of Viscoelasticity in Phototunable Hyaluronic Acid Hydrogels. Biomacromolecules 2019; 20:4126-4134. [PMID: 31600072 DOI: 10.1021/acs.biomac.9b00965] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Viscoelasticity has emerged as a critical regulator of cell behavior. However, there is an unmet need to develop biomaterials where viscoelasticity can be spatiotemporally controlled to mimic the dynamic and heterogeneous nature of tissue microenvironments. Toward this objective, we developed a modular hyaluronic acid hydrogel combining light-mediated covalent and supramolecular cross-linking to afford spatiotemporal control of network viscoelastic properties. Covalently cross-linked elastic hydrogels or viscoelastic hydrogels combining covalent and supramolecular interactions were fabricated to match healthy and fibrotic liver mechanics. LX-2 human hepatic stellate cells cultured on viscoelastic hydrogels displayed reductions in spreading, actin stress fiber organization, and myocardin-related transcription factor A (MRTF-A) nuclear localization compared to cells on elastic hydrogels. We further demonstrated the dynamic capabilities of our hydrogel system through photo-mediated secondary incorporation of either covalent or supramolecular cross-links to modulate viscoelastic properties. We used photopatterning to create hydrogels with well-controlled patterned regions of stiff elastic mechanics representing fibrotic tissue nodules surrounded by regions of soft viscoelastic hydrogel mimicking healthy tissue. Cells responded to the local mechanics of the patterned substrates with increased spreading in fibrosis-mimicking regions. Together, this work represents an important step forward toward the creation of hydrogel models with spatiotemporal control of both stiffness and viscoelastic cell-instructive cues.
Collapse
|
36
|
Pedrosa AR, Bodrug N, Gomez-Escudero J, Carter EP, Reynolds LE, Georgiou PN, Fernandez I, Lees DM, Kostourou V, Alexopoulou AN, Batista S, Tavora B, Serrels B, Parsons M, Iskratsch T, Hodivala-Dilke KM. Tumor Angiogenesis Is Differentially Regulated by Phosphorylation of Endothelial Cell Focal Adhesion Kinase Tyrosines-397 and -861. Cancer Res 2019; 79:4371-4386. [PMID: 31189647 DOI: 10.1158/0008-5472.can-18-3934] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 04/26/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
Expression of focal adhesion kinase (FAK) in endothelial cells (EC) is essential for angiogenesis, but how FAK phosphorylation at tyrosine-(Y)397 and Y861 regulate tumor angiogenesis in vivo is unknown. Here, we show that tumor growth and angiogenesis are constitutively reduced in inducible, ECCre+;FAKY397F/Y397F -mutant mice. Conversely, ECCre+;FAKY861F/Y861F mice exhibit normal tumor growth with an initial reduction in angiogenesis that recovered in end-stage tumors. Mechanistically, FAK-Y397F ECs exhibit increased Tie2 expression, reduced Vegfr2 expression, decreased β1 integrin activation, and disrupted downstream FAK/Src/PI3K(p55)/Akt signaling. In contrast, FAK-Y861F ECs showed decreased Vegfr2 and Tie2 expression with an enhancement in β1 integrin activation. This corresponds with a decrease in Vegfa-stimulated response, but an increase in Vegfa+Ang2- or conditioned medium from tumor cell-stimulated cellular/angiogenic responses, mimicking responses in end-stage tumors with elevated Ang2 levels. Mechanistically, FAK-Y861F, but not FAK-Y397F ECs showed enhanced p190RhoGEF/P130Cas-dependent signaling that is required for the elevated responses to Vegfa+Ang2. This study establishes the differential requirements of EC-FAK-Y397 and EC-FAK-Y861 phosphorylation in the regulation of EC signaling and tumor angiogenesis in vivo. SIGNIFICANCE: Distinct motifs of the focal adhesion kinase differentially regulate tumor blood vessel formation and remodeling.
Collapse
Affiliation(s)
- Ana-Rita Pedrosa
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Natalia Bodrug
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jesus Gomez-Escudero
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Louise E Reynolds
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Paraskivi Natalia Georgiou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Isabelle Fernandez
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Delphine M Lees
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Vassiliki Kostourou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Annika N Alexopoulou
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Silvia Batista
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bernardo Tavora
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom
| | - Bryan Serrels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Thomas Iskratsch
- Division of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Kairbaan M Hodivala-Dilke
- Centre for Tumour Biology, Barts Cancer Institute-a CR-UK Centre of Excellence, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
37
|
Hsu YH, Huang HP, Chang HR. The uremic toxin p-cresol promotes the invasion and migration on carcinoma cells via Ras and mTOR signaling. Toxicol In Vitro 2019; 58:126-131. [DOI: 10.1016/j.tiv.2019.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 03/04/2019] [Accepted: 03/21/2019] [Indexed: 12/19/2022]
|
38
|
Meshik X, O’Neill PR, Gautam N. Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration. ACS Synth Biol 2019; 8:498-510. [PMID: 30764607 DOI: 10.1021/acssynbio.8b00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
Collapse
|
39
|
From cell shape to cell fate via the cytoskeleton - Insights from the epidermis. Exp Cell Res 2019; 378:232-237. [PMID: 30872138 DOI: 10.1016/j.yexcr.2019.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Animal cells exhibit a wide range of shapes that reflect their diverse functions. Cell shape is determined by a balance between internal and external forces and therefore involves the cytoskeleton and its associated adhesion structures. Cell shape dynamics during development and homeostasis are tightly regulated and closely coordinated with cell fate determination. Defects in cell shape are a hallmark of many pathological conditions including cancer and skin diseases. This review highlights the links between cell shape and cell fate in the epidermis, which have been studied for over 40 years both in vitro and in vivo. Briefly discussing seminal experiments showing the strong coupling between keratinocyte cell shape and their fate we primarily focus on recent studies uncovering novel cellular and molecular mechanisms linking epidermal cell shape with cell growth, differentiation, asymmetric division, and delamination.
Collapse
|
40
|
Nyeng P, Heilmann S, Löf-Öhlin ZM, Pettersson NF, Hermann FM, Reynolds AB, Semb H. p120ctn-Mediated Organ Patterning Precedes and Determines Pancreatic Progenitor Fate. Dev Cell 2019; 49:31-47.e9. [PMID: 30853440 DOI: 10.1016/j.devcel.2019.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 12/13/2018] [Accepted: 02/04/2019] [Indexed: 11/28/2022]
Abstract
The mechanism of how organ shape emerges and specifies cell fate is not understood. Pancreatic duct and endocrine lineages arise in a spatially distinct domain from the acinar lineage. Whether these lineages are pre-determined or settle once these niches have been established remains unknown. Here, we reconcile these two apparently opposing models, demonstrating that pancreatic progenitors re-localize to establish the niche that will determine their ultimate fate. We identify a p120ctn-regulated mechanism for coordination of organ architecture and cellular fate mediated by differential E-cadherin based cell sorting. Reduced p120ctn expression is necessary and sufficient to re-localize a subset of progenitors to the peripheral tip domain, where they acquire an acinar fate. The same mechanism is used re-iteratively during endocrine specification, where it balances the choice between the alpha and beta cell fates. In conclusion, organ patterning is regulated by p120ctn-mediated cellular positioning, which precedes and determines pancreatic progenitor fate.
Collapse
Affiliation(s)
- Pia Nyeng
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark.
| | - Silja Heilmann
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Zarah M Löf-Öhlin
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | - Florian Malte Hermann
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Albert B Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Henrik Semb
- Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), University of Copenhagen, 2200 Copenhagen N, Denmark; Institute of Translational Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
41
|
The extracellular matrix-myosin pathway in mechanotransduction: from molecule to tissue. Emerg Top Life Sci 2018; 2:727-737. [PMID: 33530663 PMCID: PMC7289002 DOI: 10.1042/etls20180043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 12/23/2022]
Abstract
Mechanotransduction via the extracellular matrix (ECM)–myosin pathway is involved in determining cell morphology during development and in coupling external transient mechanical stimuli to the reorganization of the cytoskeleton. Here, we present a review on the molecular mechanisms involved in this pathway and how they influence cellular development and organization. We investigate key proteins involved in the ECM–myosin pathway and discuss how specific binding events and conformational changes under force are related to mechanical signaling. We connect these molecular mechanisms with observed morphological changes at the cellular and organism level. Finally, we propose a model encompassing the biomechanical signals along the ECM–myosin pathway and how it could be involved in cell adhesion, cell migration, and tissue architecture.
Collapse
|
42
|
Campbell H, Heidema C, Pilarczyk DG, DeMali KA. SHP-2 is activated in response to force on E-cadherin and dephosphorylates vinculin Y822. J Cell Sci 2018; 131:jcs.216648. [PMID: 30478196 DOI: 10.1242/jcs.216648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/16/2018] [Indexed: 11/20/2022] Open
Abstract
The response of cells to mechanical inputs is a key determinant of cell behavior. In response to external forces, E-cadherin initiates signal transduction cascades that allow the cell to modulate its contractility to withstand the force. Much attention has focused on identifying the E-cadherin signaling pathways that promote contractility, but the negative regulators remain undefined. In this study, we identify SHP-2 as a force-activated phosphatase that negatively regulates E-cadherin force transmission by dephosphorylating vinculin Y822. To specifically probe a role for SHP-2 in E-cadherin mechanotransduction, we mutated vinculin so that it retains its phosphorylation but cannot be dephosphorylated. Cells expressing the mutant vinculin have increased contractility. This work provides a mechanism for inactivating E-cadherin mechanotransduction and provides a new method for specifically targeting the action of phosphatases in cells.
Collapse
Affiliation(s)
- Hannah Campbell
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Christy Heidema
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daisy G Pilarczyk
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kris A DeMali
- Department of Biochemistry and the Interdisciplinary Program in Molecular and Cellular Biology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
43
|
Ma TJ, Zhang ZW, Lu YL, Zhang YY, Tao DC, Liu YQ, Ma YX. CLOCK and BMAL1 stabilize and activate RHOA to promote F-actin formation in cancer cells. Exp Mol Med 2018; 50:1-15. [PMID: 30287810 PMCID: PMC6172197 DOI: 10.1038/s12276-018-0156-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023] Open
Abstract
Circadian genes control most of the physiological functions in cancer cells, including cell proliferation, migration, and invasion. The CLOCK and BMAL1 complex plays a central role in circadian rhythms. Previous studies have shown that circadian genes may act as oncogenes or tumor-suppressor genes. In addition, F-actin, regulated by RHOA, has been shown to participate in tumor progression. However, the roles of the CLOCK and BMAL1 genes in the regulation of tumor progression via the RHOA-ROCK-CFL pathway remain largely unclear. Here we first indicate that the rearrangement of F-actin is regulated by CLOCK and BMAL1. We found that CLOCK and BMAL1 can upregulate RHOA expression by inhibiting CUL3-mediated ubiquitination and activate RHOA by reducing the interaction between RHOA and RhoGDI. Consequently, CLOCK and BMAL1 control the expression of the components of the RHOA-ROCK-CFL pathway, which alters the dynamics of F-actin/G-actin turnover and promotes cancer cell proliferation, migration, and invasion. In conclusion, our research proposes a novel insight into the role of CLOCK and BMAL1 in tumor cells.
Collapse
Affiliation(s)
- Teng-Jiao Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Zhi-Wei Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Yi-Lu Lu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Ying-Ying Zhang
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Da-Chang Tao
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Yun-Qiang Liu
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China
| | - Yong-Xin Ma
- Department of Medical Genetics, State Key Laboratory of Biotherapy, West China Hospital and Collaborative Innovation Center, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
44
|
Kahue CN, Jerrell RJ, Parekh A. Expression of human papillomavirus oncoproteins E6 and E7 inhibits invadopodia activity but promotes cell migration in HPV-positive head and neck squamous cell carcinoma cells. Cancer Rep (Hoboken) 2018; 1:e1125. [PMID: 32721084 PMCID: PMC7941430 DOI: 10.1002/cnr2.1125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Background The rapid increase in the incidence of head and neck squamous cell carcinoma (HNSCC) is caused by high‐risk human papillomavirus (HPV) infections. The HPV oncogenes E6 and E7 promote carcinogenesis by disrupting signaling pathways that control survival and proliferation. Although these cancers are often diagnosed with metastases, the mechanisms that regulate their dissemination are unknown. Aims The aim of this study was to determine whether the HPV‐16 E6 and E7 oncogenes affected the invasive and migratory properties of HNSCC cells which promote their spread and metastasis. Methods and results Invasiveness was determined using invadopodia assays which allow for quantitation of extracellular matrix (ECM) degradation by invadopodia which are proteolytic membrane protrusions that facilitate invasion. Using cell lines and genetic manipulations, we found that HPV inhibited invadopodia activity in aggressive cell lines which was mediated by the E6 and E7 oncogenes. Given these findings, we also tested whether HPV caused differences in the migratory ability of HNSCC cells using Transwell assays. In contrast to our invadopodia results, we found no correlation between HPV status and cell migration; however, blocking the expression of the E6 and E7 oncoproteins in a HPV‐positive (HPV+) HNSCC cell line resulted in decreased migration. Conclusions Our data suggest that the E6 and E7 oncoproteins are negative regulators of invadopodia activity but may promote migration in HPV+ HNSCC cells. Despite the need for ECM proteolysis to penetrate most tissues, the unique structure of the head and neck tissues in which these cancers arise may facilitate the spread of migratory cancer cells without significant proteolytic ability.
Collapse
Affiliation(s)
- Charissa N Kahue
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
45
|
Yuan Y, Li M, To CH, Lam TC, Wang P, Yu Y, Chen Q, Hu X, Ke B. The Role of the RhoA/ROCK Signaling Pathway in Mechanical Strain-Induced Scleral Myofibroblast Differentiation. ACTA ACUST UNITED AC 2018; 59:3619-3629. [PMID: 30029249 DOI: 10.1167/iovs.17-23580] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ying Yuan
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Min Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Ho To
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region of China, China
| | - Thomas Chuen Lam
- Laboratory of Experimental Optometry, Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong, Hong Kong Special Administrative Region of China, China
| | - Peng Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Yunjie Yu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| | - Qingzhong Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Hu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bilian Ke
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Disease, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China
| |
Collapse
|
46
|
Campion CG, Zaoui K, Verissimo T, Cossette S, Matsuda H, Solban N, Hamet P, Tremblay J. COMMD5/HCaRG Hooks Endosomes on Cytoskeleton and Coordinates EGFR Trafficking. Cell Rep 2018; 24:670-684.e7. [DOI: 10.1016/j.celrep.2018.06.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022] Open
|
47
|
Vasilevich AS, Mourcin F, Mentink A, Hulshof F, Beijer N, Zhao Y, Levers M, Papenburg B, Singh S, Carpenter AE, Stamatialis D, van Blitterswijk C, Tarte K, de Boer J. Designed Surface Topographies Control ICAM-1 Expression in Tonsil-Derived Human Stromal Cells. Front Bioeng Biotechnol 2018; 6:87. [PMID: 30003080 PMCID: PMC6031747 DOI: 10.3389/fbioe.2018.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Fibroblastic reticular cells (FRCs), the T-cell zone stromal cell subtype in the lymph nodes, create a scaffold for adhesion and migration of immune cells, thus allowing them to communicate. Although known to be important for the initiation of immune responses, studies about FRCs and their interactions have been impeded because FRCs are limited in availability and lose their function upon culture expansion. To circumvent these limitations, stromal cell precursors can be mechanotranduced to form mature FRCs. Here, we used a library of designed surface topographies to trigger FRC differentiation from tonsil-derived stromal cells (TSCs). Undifferentiated TSCs were seeded on a TopoChip containing 2176 different topographies in culture medium without differentiation factors, then monitored cell morphology and the levels of ICAM-1, a marker of FRC differentiation. We identified 112 and 72 surfaces that upregulated and downregulated, respectively, ICAM-1 expression. By monitoring cell morphology, and expression of the FRC differentiation marker ICAM-1 via image analysis and machine learning, we discovered correlations between ICAM-1 expression, cell shape and design of surface topographies and confirmed our findings by using flow cytometry. Our findings confirmed that TSCs are mechano-responsive cells and identified particular topographies that can be used to improve FRC differentiation protocols.
Collapse
Affiliation(s)
- Aliaksei S Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frédéric Mourcin
- Institut National de la Santé et de la Recherche Médicale, U917, Equipe Labelisée Ligue Contre le Cancer, Université Rennes, I'Etablissement Français du Sang Bretagne, Rennes, France
| | - Anouk Mentink
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Frits Hulshof
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Nick Beijer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | | | | | | | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Dimitrios Stamatialis
- Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens van Blitterswijk
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Karin Tarte
- Institut National de la Santé et de la Recherche Médicale, U917, Equipe Labelisée Ligue Contre le Cancer, Université Rennes, I'Etablissement Français du Sang Bretagne, Rennes, France
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
48
|
Salvi AM, DeMali KA. Mechanisms linking mechanotransduction and cell metabolism. Curr Opin Cell Biol 2018; 54:114-120. [PMID: 29902730 DOI: 10.1016/j.ceb.2018.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
Abstract
Throughout their lifetimes, all cells experience force. These forces are sensed by cell surface adhesion receptors, such as the cadherins and integrins. Much attention has focused on identifying how these adhesion receptors transmit force. In contrast, less is known regarding how these force-activated pathways are integrated with other cellular processes. In this review, we describe how cadherins and integrins transmit force, and discuss how these adhesion receptors are linked to cell metabolism. We focus on understanding this connection by highlighting how the cadherins and integrins interact with a master regulator of energy homeostasis, AMP-activated protein kinase (AMPK) and its upstream activator, Liver Kinase B1 (LKB1). We consider why there is a need for force transmission to be coupled to metabolism and highlight the major unanswered questions in the field.
Collapse
Affiliation(s)
- Alicia M Salvi
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Kris A DeMali
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
49
|
Abstract
Three-dimensional (3D) cell culture systems have gained increasing interest not only for 3D migration studies but also for their use in drug screening, tissue engineering, and ex vivo modeling of metastatic behavior in the field of cancer biology and morphogenesis in the field of developmental biology. The goal of studying cells in a 3D context is to attempt to more faithfully recapitulate the physiological microenvironment of tissues, including mechanical and structural parameters that we envision will reveal more predictive data for development programs and disease states. In this review, we discuss the pros and cons of several well-characterized 3D cell culture systems for performing 3D migration studies. We discuss the intracellular and extracellular signaling mechanisms that govern cell migration. We also describe the mathematical models and relevant assumptions that can be used to describe 3D cell movement.
Collapse
Affiliation(s)
- Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
| | - Daniele M. Gilkes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences in Oncology Center, Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA;, ,
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
50
|
Zhang G, Zhu F, Han G, Li Z, Yu Q, Li Z, Li J. Silencing of URG11 expression inhibits the proliferation and epithelial‑mesenchymal transition in benign prostatic hyperplasia cells via the RhoA/ROCK1 pathway. Mol Med Rep 2018; 18:391-398. [PMID: 29749520 DOI: 10.3892/mmr.2018.8993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/09/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Guanying Zhang
- Second Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Feng Zhu
- First Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Guangye Han
- Second Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zeyu Li
- Second Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Quanfeng Yu
- Second Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhenhui Li
- Second Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Jianchang Li
- Second Department of Urinary Surgery, First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|