1
|
Xu D, Fan W, Fu B, Nie H. HMGA1 Regulates IRS2 to Promote Inflammatory Responses and Oxidative Stress Injury in MPP +-Induced cells. Cell Biochem Biophys 2025; 83:783-792. [PMID: 39244689 DOI: 10.1007/s12013-024-01510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder for which novel treatment approaches are continuously sought. This study investigates the role of high-mobility group A1 (HMGA1) in modulating inflammatory responses and oxidative stress injury in PD. We utilized the murine dopaminergic neuronal cell line MN9D, treating cells with 1-methyl-4-phenylpyridinium ion (MPP+) to mimic PD conditions. The expression levels of HMGA1 and insulin receptor substrate 2 (IRS2) were measured using quantitative polymerase chain reaction and Western blot assay. Cell damage was assessed with cell counting kit-8 and lactate dehydrogenase assays. Inflammatory response and oxidative stress were evaluated by quantifying interleukin (IL)-1β, IL-6, tumor necrosis factor-α, reactive oxygen species, superoxide dismutase, and malondialdehyde (MDA) levels using enzyme-linked immunosorbent assay and commercial kits. The binding interaction between HMGA1 and IRS2 was analyzed using chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. Our findings revealed that MPP+ treatment increased the expression of HMGA1 and IRS2. Downregulation of HMGA1 enhanced cell viability, reduced inflammation, and mitigated oxidative stress in MPP+-induced cells. Further investigation demonstrated that HMGA1 bounded to the IRS2 promoter, enhancing IRS2 expression. Overexpression of IRS2 counteracted the protective effects of HMGA1 downregulation. In conclusion, HMGA1 exacerbates MPP+-induced cell damage by activating IRS2 transcription, which in turn heightens inflammation and oxidative stress. These findings suggest that targeting HMGA1 could be a potential therapeutic strategy for PD.
Collapse
Affiliation(s)
- Dongxun Xu
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, 610213, Sichuan Province, P. R. China
| | - Wenhui Fan
- Department of Neurology, Sichuan Taikang Hospital, Chengdu, 610213, Sichuan Province, P. R. China
| | - Bing Fu
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu Province, P. R. China
| | - Hongxia Nie
- Department of Neurology, The Second People's Hospital of Lianyungang, Lianyungang, 222006, Jiangsu Province, P. R. China.
| |
Collapse
|
2
|
Resar LMS, Luo LZ. High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression. Int J Mol Sci 2025; 26:2125. [PMID: 40076747 PMCID: PMC11899949 DOI: 10.3390/ijms26052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Patients with chronic, indolent myeloproliferative neoplasms (MPNs) are at risk for transformation to highly lethal leukemia, although targetable mechanisms driving progression remain elusive. We discovered that the High Mobility Group A1 (HMGA1) gene is up-regulated with MPN progression in patients and required for evolution into myelofibrosis (MF) or acute myeloid leukemia (AML) in preclinical models. HMGA1 encodes the HMGA1 epigenetic regulators that modulate the chromatin state during embryogenesis and tissue regeneration. While HMGA1 is silenced in most differentiated cells, it becomes aberrantly re-expressed in JAK2 mutant (JAK2-V617F) MPN, with the highest levels after transformation to secondary MF or AML. Here, we review recent work highlighting HMGA1 function in MPN progression. Though underlying mechanisms continue to emerge, increasing evidence suggests that HMGA1 functions as a "chromatin key" required to "unlock" regions of the genome involved in clonal expansion and progression in MPN. Together, these findings illuminate HMGA1 as a driver of MPN progression and a promising therapeutic target.
Collapse
Affiliation(s)
- Linda M. S. Resar
- Departments of Medicine (Hematology), Oncology, Pathology and Institute for Cellular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | | |
Collapse
|
3
|
Luo LZ, Kim JH, Herrera I, Wu S, Wu X, Park SS, Cho J, Cope L, Xian L, West BE, Calderon-Espinosa J, Kim J, Thompson Z, Maloo I, Larman T, Reddy KL, Feng Y, Fearon ER, Sears CL, Resar L. HMGA1 acts as an epigenetic gatekeeper of ASCL2 and Wnt signaling during colon tumorigenesis. J Clin Invest 2025; 135:e184442. [PMID: 39895630 PMCID: PMC11785931 DOI: 10.1172/jci184442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/27/2024] [Indexed: 02/04/2025] Open
Abstract
Mutated tumor cells undergo changes in chromatin accessibility and gene expression, resulting in aberrant proliferation and differentiation, although how this occurs is unclear. HMGA1 chromatin regulators are abundant in stem cells and oncogenic in diverse tissues; however, their role in colon tumorigenesis is only beginning to emerge. Here, we uncover a previously unknown epigenetic program whereby HMGA1 amplifies Wnt signaling during colon tumorigenesis driven by inflammatory microbiota and/or Adenomatous polyposis coli (Apc) inactivation. Mechanistically, HMGA1 "opens" chromatin to upregulate the stem cell regulator, Ascl2, and downstream Wnt effectors, promoting stem and Paneth-like cell states while depleting differentiated enterocytes. Loss of just one Hmga1 allele within colon epithelium restrains tumorigenesis and Wnt signaling driven by mutant Apc and inflammatory microbiota. However, HMGA1 deficiency has minimal effects in colon epithelium under homeostatic conditions. In human colon cancer cells, HMGA1 directly induces ASCL2 by recruiting activating histone marks. Silencing HMGA1 disrupts oncogenic properties, whereas reexpression of ASCL2 partially rescues these phenotypes. Further, HMGA1 and ASCL2 are coexpressed and upregulated in human colorectal cancer. Together, our results establish HMGA1 as an epigenetic gatekeeper of Wnt signals and cell state under conditions of APC inactivation, illuminating HMGA1 as a potential therapeutic target in colon cancer.
Collapse
Affiliation(s)
- Li Z. Luo
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shaoguang Wu
- Division of Infectious Diseases, Department of Medicine
| | - Xinqun Wu
- Division of Infectious Diseases, Department of Medicine
| | - Seong-Sik Park
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Juyoung Cho
- Research Institute, National Cancer Center, Goyang-si, Gyeonggido, Republic of Korea
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center, Division of Biostatistics
| | - Lingling Xian
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bailey E. West
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Pathobiology Graduate Program, Department of Pathology, and
| | - Julian Calderon-Espinosa
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Human Genetics Graduate Program, Department of Genetics and Molecular Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph Kim
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zanshé Thompson
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Isha Maloo
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Karen L. Reddy
- Department of Biological Chemistry, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ying Feng
- Department of Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric R. Fearon
- Department of Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cynthia L. Sears
- Division of Infectious Diseases, Department of Medicine
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
- Molecular Immunology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linda Resar
- Division of Hematology, Department of Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Division of Biostatistics
- Pathobiology Graduate Program, Department of Pathology, and
- Human Genetics Graduate Program, Department of Genetics and Molecular Medicine, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Pathology and
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, and
| |
Collapse
|
4
|
Ren W, Fang Z, Dolzhenko E, Saunders CT, Cheng Z, Popic V, Peltz G. A Murine Database of Structural Variants Enables the Genetic Architecture of a Spontaneous Murine Lymphoma to be Characterized. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632219. [PMID: 39868308 PMCID: PMC11761040 DOI: 10.1101/2025.01.09.632219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A more complete map of the pattern of genetic variation among inbred mouse strains is essential for characterizing the genetic architecture of the many available mouse genetic models of important biomedical traits. Although structural variants (SVs) are a major component of genetic variation, they have not been adequately characterized among inbred strains due to methodological limitations. To address this, we generated high-quality long-read sequencing data for 40 inbred strains; and designed a pipeline to optimally identify and validate different types of SVs. This generated a database for 40 inbred strains with 573,191SVs, which included 10,815 duplications and 2,115 inversions, that also has 70 million SNPs and 7.5 million insertions/deletions. Analysis of this SV database led to the discovery of a novel bi-genic model for susceptibility to a B cell lymphoma that spontaneously develops in SJL mice, which was initially described 55 years ago. The first genetic factor is a previously identified endogenous retrovirus encoded protein that stimulates CD4 T cells to produce the cytokines required for lymphoma growth. The second genetic factor is a newly found deletion SV, which ablates a protein whose promotes B lymphoma development in SJL mice. Characterizing the genetic architecture of SJL lymphoma susceptibility could provide new insight into the pathogenesis of a human lymphoma that has similarities with this murine lymphoma.
Collapse
Affiliation(s)
- Wenlong Ren
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | - Zhuoqing Fang
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | | | | | - Zhuanfen Cheng
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| | | | - Gary Peltz
- Department of Anesthesia, Pain and Perioperative Medicine, Stanford University School of Medicine, Stanford CA 94305
| |
Collapse
|
5
|
Battista S, Fedele M, Secco L, Ingo AMD, Sgarra R, Manfioletti G. Binding to the Other Side: The AT-Hook DNA-Binding Domain Allows Nuclear Factors to Exploit the DNA Minor Groove. Int J Mol Sci 2024; 25:8863. [PMID: 39201549 PMCID: PMC11354804 DOI: 10.3390/ijms25168863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
The "AT-hook" is a peculiar DNA-binding domain that interacts with DNA in the minor groove in correspondence to AT-rich sequences. This domain has been first described in the HMGA protein family of architectural factors and later in various transcription factors and chromatin proteins, often in association with major groove DNA-binding domains. In this review, using a literature search, we identified about one hundred AT-hook-containing proteins, mainly chromatin proteins and transcription factors. After considering the prototypes of AT-hook-containing proteins, the HMGA family, we review those that have been studied in more detail and that have been involved in various pathologies with a particular focus on cancer. This review shows that the AT-hook is a domain that gives proteins not only the ability to interact with DNA but also with RNA and proteins. This domain can have enzymatic activity and can influence the activity of the major groove DNA-binding domain and chromatin docking modules when present, and its activity can be modulated by post-translational modifications. Future research on the function of AT-hook-containing proteins will allow us to better decipher their function and contribution to the different pathologies and to eventually uncover their mutual influences.
Collapse
Affiliation(s)
- Sabrina Battista
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Monica Fedele
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy; (S.B.); (M.F.)
| | - Luca Secco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | | | - Riccardo Sgarra
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| | - Guidalberto Manfioletti
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.S.); (A.M.D.I.)
| |
Collapse
|
6
|
Olan I, Ando-Kuri M, Parry AJ, Handa T, Schoenfelder S, Fraser P, Ohkawa Y, Kimura H, Narita M, Narita M. HMGA1 orchestrates chromatin compartmentalization and sequesters genes into 3D networks coordinating senescence heterogeneity. Nat Commun 2024; 15:6891. [PMID: 39134516 PMCID: PMC11319441 DOI: 10.1038/s41467-024-51153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
HMGA1 is an abundant non-histone chromatin protein that has been implicated in embryonic development, cancer, and cellular senescence, but its specific role remains elusive. Here, we combine functional genomics approaches with graph theory to investigate how HMGA1 genomic deposition controls high-order chromatin networks in an oncogene-induced senescence model. While the direct role of HMGA1 in gene activation has been described previously, we find little evidence to support this. Instead, we show that the heterogeneous linear distribution of HMGA1 drives a specific 3D chromatin organization. HMGA1-dense loci form highly interactive networks, similar to, but independent of, constitutive heterochromatic loci. This, coupled with the exclusion of HMGA1-poor chromatin regions, leads to coordinated gene regulation through the repositioning of genes. In the absence of HMGA1, the whole process is largely reversed, but many regulatory interactions also emerge, amplifying the inflammatory senescence-associated secretory phenotype. Such HMGA1-mediated fine-tuning of gene expression contributes to the heterogeneous nature of senescence at the single-cell level. A similar 'buffer' effect of HMGA1 on inflammatory signalling is also detected in lung cancer cells. Our study reveals a mechanism through which HMGA1 modulates chromatin compartmentalization and gene regulation in senescence and beyond.
Collapse
Affiliation(s)
- Ioana Olan
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masami Ando-Kuri
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Oncode In stitute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aled J Parry
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Altos Labs Cambridge Institute, Portway Building, Granta Park, Cambridge, UK
| | - Tetsuya Handa
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
- Enhanc3D Genomics Ltd, Cambridge, UK
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
7
|
Vriend J, Liu XQ. Survival-Related Genes on Chromosomes 6 and 17 in Medulloblastoma. Int J Mol Sci 2024; 25:7506. [PMID: 39062749 PMCID: PMC11277021 DOI: 10.3390/ijms25147506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Survival of Medulloblastoma (MB) depends on various factors, including the gene expression profiles of MB tumor tissues. In this study, we identified 967 MB survival-related genes (SRGs) using a gene expression dataset and the Cox proportional hazards regression model. Notably, the SRGs were over-represented on chromosomes 6 and 17, known for the abnormalities monosomy 6 and isochromosome 17 in MB. The most significant SRG was HMGA1 (high mobility group AT-hook 1) on chromosome 6, which is a known oncogene and a histone H1 competitor. High expression of HMGA1 was associated with worse survival, primarily in the Group 3γ subtype. The high expression of HMGA1 was unrelated to any known somatic copy number alteration. Most SRGs on chromosome 17p were associated with low expression in Group 4β, the MB subtype, with 93% deletion of 17p and 98% copy gain of 17q. GO enrichment analysis showed that both chromosomes 6 and 17 included SRGs related to telomere maintenance and provided a rationale for testing telomerase inhibitors in Group 3 MBs. We conclude that HMGA1, along with other SRGs on chromosomes 6 and 17, warrant further investigation as potential therapeutic targets in selected subgroups or subtypes of MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Xiao-Qing Liu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
8
|
Zhong C, Zhang Q, Bao H, Li Y, Nie C. Hsa_circ_0054220 Upregulates HMGA1 by the Competitive RNA Pattern to Promote Neural Impairment in MPTP Model of Parkinson's Disease. Appl Biochem Biotechnol 2024; 196:4008-4023. [PMID: 37815624 DOI: 10.1007/s12010-023-04740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. Circular RNAs (circRNAs) have been confirmed to regulate neurodegenerative diseases. This study was aimed to explore hsa_circ_0054220 functions in PD. MPP-stimulated SH-SY5Y cells were established as the PD cell model. PD mouse model was established by MPTP. Gene expression in cells and tissues was tested by RT-qPCR. Cell viability and apoptosis were evaluated through CCK-8 and TUNEL assays. The interactions of RNAs were determined by RNA pull-down assay, RIP assay, and luciferase reporter assay. Circ_0054220 expressed at a high level in MPP-treated SH-SY5Y cells. Circ_0054220 inhibition promoted viability and suppressed apoptosis in MPP-stimulated cells. Furthermore, we found that circ_0054220 can competitively bind to miR-145 and miR-625 to upregulate high mobility group A1 (HMGA1) expression. HMGA1 was positively regulated by circ_0054220 and overexpressed in MPP-treated cells as well as the striatum (STR), substantia nigra pars compacta (SNpc), and serum of MPTP-induced mouse model of PD. HMGA1 overexpression counteracted the function of circ_0054220 silencing on cell apoptosis. Furthermore, HMGA1 inhibition notably alleviated motor dysfunction and increased the quantity of neurons in mice resembling PD. Circ_0054220 upregulates HMGA1 by the competitive endogenous RNAs (ceRNA) pattern to promote neural impairment in PD.
Collapse
Affiliation(s)
- Cundi Zhong
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Niaoning, China
| | - Qiang Zhang
- Rehabilitation Medicine, Sinopharm (Dalian) Rehabilitation Hospital, Dalian, 116013, Niaoning, China
| | - Haiping Bao
- Neurology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Niaoning, China
| | - Yu Li
- Neurology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Niaoning, China
| | - Chen Nie
- Neurology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Niaoning, China.
| |
Collapse
|
9
|
Sun Y, Guo G, Zhang Y, Chen X, Lu Y, Hong R, Xiong J, Li J, Hu X, Wang S, Liu Y, Zhang Z, Yang X, Nan Y, Huang Q. IKBKE promotes the ZEB2-mediated EMT process by phosphorylating HMGA1a in glioblastoma. Cell Signal 2024; 116:111062. [PMID: 38242271 DOI: 10.1016/j.cellsig.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
IKBKE (Inhibitor of Nuclear Factor Kappa-B Kinase Subunit Epsilon) is an important oncogenic protein in a variety of tumors, which can promote tumor growth, proliferation, invasion and drug resistance, and plays a critical regulatory role in the occurrence and progression of malignant tumors. HMGA1a (High Mobility Group AT-hook 1a) functions as a cofactor for proper transcriptional regulation and is highly expressed in multiple types of tumors. ZEB2 (Zinc finger E-box Binding homeobox 2) exerts active functions in epithelial mesenchymal transformation (EMT). In our current study, we confirmed that IKBKE can increase the proliferation, invasion and migration of glioblastoma cells. We then found that IKBKE can phosphorylate HMGA1a at Ser 36 and/or Ser 44 sites and inhibit the degradation process of HMGA1a, and regulate the nuclear translocation of HMGA1a. Crucially, we observed that HMGA1a can regulate ZEB2 gene expression by interacting with ZEB2 promoter region. Hence, HMGA1a was found to promote the ZEB2-related metastasis. Consequently, we demonstrated that IKBKE can exert its oncogenic functions via the IKBKE/HMGA1a/ZEB2 signalling axis, and IKBKE may be a prominent biomarker for the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Gaochao Guo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yu Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xingjie Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yalin Lu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Rujun Hong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jinbiao Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xue Hu
- Department of Clinical Nutrition, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, China
| | - Shuaishuai Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Henan Provincial People's Hospital, Cerebrovascular Disease Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Zhimeng Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Neurosurgery, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315000, China
| | - Xuejun Yang
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yang Nan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Qiang Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.
| |
Collapse
|
10
|
Achiro JM, Tao Y, Gao F, Lin CH, Watanabe M, Neumann S, Coppola G, Black DL, Martin KC. Aging differentially alters the transcriptome and landscape of chromatin accessibility in the male and female mouse hippocampus. Front Mol Neurosci 2024; 17:1334862. [PMID: 38318533 PMCID: PMC10839115 DOI: 10.3389/fnmol.2024.1334862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Aging-related memory impairment and pathological memory disorders such as Alzheimer's disease differ between males and females, and yet little is known about how aging-related changes in the transcriptome and chromatin environment differ between sexes in the hippocampus. To investigate this question, we compared the chromatin accessibility landscape and gene expression/alternative splicing pattern of young adult and aged mouse hippocampus in both males and females using ATAC-seq and RNA-seq. We detected significant aging-dependent changes in the expression of genes involved in immune response and synaptic function and aging-dependent changes in the alternative splicing of myelin sheath genes. We found significant sex-bias in the expression and alternative splicing of hundreds of genes, including aging-dependent female-biased expression of myelin sheath genes and aging-dependent male-biased expression of genes involved in synaptic function. Aging was associated with increased chromatin accessibility in both male and female hippocampus, especially in repetitive elements, and with an increase in LINE-1 transcription. We detected significant sex-bias in chromatin accessibility in both autosomes and the X chromosome, with male-biased accessibility enriched at promoters and CpG-rich regions. Sex differences in gene expression and chromatin accessibility were amplified with aging, findings that may shed light on sex differences in aging-related and pathological memory loss.
Collapse
Affiliation(s)
- Jennifer M. Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Yang Tao
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Fuying Gao
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Chia-Ho Lin
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Marika Watanabe
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Sylvia Neumann
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Giovanni Coppola
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Douglas L. Black
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, United States
| | - Kelsey C. Martin
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| |
Collapse
|
11
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
13
|
Basu J, Olsson A, Ferchen K, Titerina EK, Chetal K, Nicolas E, Czyzewicz P, Levchenko D, Ge L, Hua X, Grimes HL, Salomonis N, Kappes DJ. ThPOK is a critical multifaceted regulator of myeloid lineage development. Nat Immunol 2023; 24:1295-1307. [PMID: 37474652 PMCID: PMC10792516 DOI: 10.1038/s41590-023-01549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
The transcription factor ThPOK (encoded by Zbtb7b) is well known for its role as a master regulator of CD4 lineage commitment in the thymus. Here, we report an unexpected and critical role of ThPOK as a multifaceted regulator of myeloid lineage commitment, differentiation and maturation. Using reporter and knockout mouse models combined with single-cell RNA-sequencing, progenitor transfer and colony assays, we show that ThPOK controls monocyte-dendritic cell versus granulocyte lineage production during homeostatic differentiation, and serves as a brake for neutrophil maturation in granulocyte lineage-specified cells through transcriptional regulation of lineage-specific transcription factors and RNA via altered messenger RNA splicing to reprogram intron retention.
Collapse
Affiliation(s)
- Jayati Basu
- Fox Chase Cancer Center, Philadelphia, PA, USA.
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Andre Olsson
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Kyle Ferchen
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizaveta K Titerina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kashish Chetal
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | | | | | | | - Lu Ge
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Xiang Hua
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|
14
|
Xu Y, Zheng M, Gong L, Liu G, Qian S, Han Y, Kang J. Comprehensive Profiling of Rapamycin Interacting Proteins with Multiple Mass Spectrometry-Based Omics Techniques. Anal Chem 2023. [PMID: 37216191 DOI: 10.1021/acs.analchem.3c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Profiling drug-protein interactions is critical for understanding a drug's mechanism of action and predicting the possible adverse side effects. However, to comprehensively profile drug-protein interactions remains a challenge. To address this issue, we proposed a strategy that integrates multiple mass spectrometry-based omics analysis to provided global drug-protein interactions, including physical interactions and functional interactions, with rapamycin (Rap) as a model. Chemoproteomics profiling reveals 47 Rap binding proteins including the known target protein FKBP12 with high confidence. Gen Ontology enrichment analysis suggested that the Rap binding proteins are implicated in several important cellular processes, such as DNA replication, immunity, autophagy, programmed cell death, aging, transcription modulation, vesicle-mediated transport, membrane organization, and carbohydrate and nucleobase metabolic processes. The phosphoproteomics profiling revealed 255 down-regulated and 150 up-regulated phosphoproteins responding to Rap stimulation; they mainly involve the PI3K-Akt-mTORC1 signaling axis. Untargeted metabolomic profiling revealed 22 down-regulated metabolites and 75 up-regulated metabolites responding to Rap stimulation; they are mainly associated with the synthesis processes of pyrimidine and purine. The integrative multiomics data analysis provides deep insight into the drug-protein interactions and reveals Rap's complicated mechanism of action.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Mengmeng Zheng
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Li Gong
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Guizhen Liu
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Shanshan Qian
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| | - Jingwu Kang
- State Key Laboratory of Chemical Biology, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200120, China
| |
Collapse
|
15
|
Liang J, Ye C, Chen K, Gao Z, Lu F, Wei K. Non-coding RNAs in breast cancer: with a focus on glucose metabolism reprogramming. Discov Oncol 2023; 14:72. [PMID: 37204526 DOI: 10.1007/s12672-023-00687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Breast cancer is the tumor with the highest incidence in women worldwide. According to research, the poor prognosis of breast cancer is closely related to abnormal glucose metabolism in tumor cells. Changes in glucose metabolism in tumor cells are an important feature. When sufficient oxygen is available, cancer cells tend to undergo glycolysis rather than oxidative phosphorylation, which promotes rapid proliferation and invasion of tumor cells. As research deepens, targeting the glucose metabolism pathway of tumor cells is seen as a promising treatment. Non-coding RNAs (ncRNAs), a recent focus of research, are involved in the regulation of enzymes of glucose metabolism and related cancer signaling pathways in breast cancer cells. This article reviews the regulatory effect and mechanism of ncRNAs on glucose metabolism in breast cancer cells and provides new ideas for the treatment of breast cancer.
Collapse
Affiliation(s)
- Junjie Liang
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chun Ye
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Kaiqin Chen
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zihan Gao
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fangguo Lu
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ke Wei
- Medical School, Hunan University of Chinese Medicine, Changsha, 410208, China.
- Hunan Province Key Laboratory of Integrative Pathogen Biology, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
16
|
Chia L, Wang B, Kim JH, Luo LZ, Shuai S, Herrera I, Chen SY, Li L, Xian L, Huso T, Heydarian M, Reddy K, Sung WJ, Ishiyama S, Guo G, Jaffee E, Zheng L, Cope LM, Gabrielson K, Wood L, Resar L. HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. J Clin Invest 2023; 133:151601. [PMID: 36919699 PMCID: PMC10014113 DOI: 10.1172/jci151601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/25/2023] [Indexed: 03/15/2023] Open
Abstract
High mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation. HMGA1 deficiency disrupts oncogenic properties in vitro while impairing tumor inception and progression in KPC mice and subcutaneous or orthotopic models of PDAC. RNA sequencing revealed HMGA1 transcriptional networks governing proliferation and tumor-stroma interactions, including the FGF19 gene. HMGA1 directly induces FGF19 expression and increases its protein secretion by recruiting active histone marks (H3K4me3, H3K27Ac). Surprisingly, disrupting FGF19 via gene silencing or the FGFR4 inhibitor BLU9931 recapitulates most phenotypes observed with HMGA1 deficiency, decreasing tumor growth and formation of a desmoplastic stroma in mouse models of PDAC. In human PDAC, overexpression of HMGA1 and FGF19 defines a subset of tumors with extremely poor outcomes. Our results reveal what we believe is a new paradigm whereby HMGA1 and FGF19 drive tumor progression and stroma formation, thus illuminating FGF19 as a rational therapeutic target for a molecularly defined PDAC subtype.
Collapse
Affiliation(s)
- Lionel Chia
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bowen Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jung-Hyun Kim
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Li Z Luo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuai Shuai
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Iliana Herrera
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Liping Li
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lingling Xian
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tait Huso
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Woo Jung Sung
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shun Ishiyama
- Department of Pathology.,Department of Molecular and Comparative Pathobiology
| | - Gongbo Guo
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Leslie M Cope
- Department of Oncology, and.,Division of Biostatistics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Laura Wood
- Pathobiology Graduate Program, Department of Pathology and.,Department of Pathology.,Department of Oncology, and
| | - Linda Resar
- Pathobiology Graduate Program, Department of Pathology and.,Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Biochemistry and Molecular Biology Program, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Pathology.,Department of Oncology, and
| |
Collapse
|
17
|
Zhu J, Zheng Y, Liu Y, Chen M, Liu Y, Li J. Association between HMGA1 and immunosuppression in hepatocellular carcinoma: A comprehensive bioinformatics analysis. Medicine (Baltimore) 2023; 102:e32707. [PMID: 36705364 PMCID: PMC9876027 DOI: 10.1097/md.0000000000032707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The high mobility group A1 (HMGA1) gene is overexpressed in malignant tumors, and its expression level correlates with the progression and metastasis of tumors. However, the specific role of HMGA1 in hepatocellular carcinoma (HCC) and relevant influencing approaches in tumor immunity remain unclear. In this study, the expression and clinical significance of HMGA1 in HCC immunity were analyzed. The expression levels of HMGA1 mRNA and protein in HCC tissue and normal liver tissue were analyzed based on the cancer genome atlas, the gene expression omnibus and the Human Protein Atlas databases. The correlation between HMGA1 and clinicopathological factors was analyzed, and survival was estimated based on the expression of HMGA1. Gene set cancer analysis and the TISIDB database were used to identify tumor-infiltrating immune cells and immune inhibitors. Gene set enrichment analysis was performed to determine the involved signaling pathway. The HMGA1 genetic alterations were identified with the cBioPortal for Cancer Genomics. The expression of HMGA1 mRNA and protein was significantly higher in HCC tissue and negatively correlated with survival. Neutrophils, Th17 cells, several immune inhibitors, and signaling pathways were positively correlated with the expression of HMGA1. Amplification was the main type of genetic alteration in HMGA1. These findings demonstrate that HMGA1 can be a therapeutic target and a potential biomarker to predict the prognosis of patients with HCC. HMGA1 may affect the progression of HCC by suppressing the immune function of these patients.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yongshun Zheng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuyao Liu
- Department of Burn, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengding Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, China
- * Correspondence: Jiabin Li, Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Jixi road 218, Hefei, Anhui 230022, China (e-mail: )
| |
Collapse
|
18
|
Yang Y, Ye X, Zhang H, Lin Z, Fang M, Wang J, Yu Y, Hua X, Huang H, Xu W, Liu L, Lin Z. A novel transcription factor-based signature to predict prognosis and therapeutic response of hepatocellular carcinoma. Front Genet 2023; 13:1068837. [PMID: 36685838 PMCID: PMC9845592 DOI: 10.3389/fgene.2022.1068837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common aggressive malignancies with increasing incidence worldwide. The oncogenic roles of transcription factors (TFs) were increasingly recognized in various cancers. This study aimed to develop a predicting signature based on TFs for the prognosis and treatment of HCC. Methods: Differentially expressed TFs were screened from data in the TCGA-LIHC and ICGC-LIRI-JP cohorts. Univariate and multivariate Cox regression analyses were applied to establish a TF-based prognostic signature. The receiver operating characteristic (ROC) curve was used to assess the predictive efficacy of the signature. Subsequently, correlations of the risk model with clinical features and treatment response in HCC were also analyzed. The TF target genes underwent Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, followed by protein-protein-interaction (PPI) analysis. Results: A total of 25 differentially expressed TFs were screened, 16 of which were related to the prognosis of HCC in the TCGA-LIHC cohort. A 2-TF risk signature, comprising high mobility group AT-hook protein 1 (HMGA1) and MAF BZIP transcription factor G (MAFG), was constructed and validated to negatively related to the overall survival (OS) of HCC. The ROC curve showed good predictive efficiencies of the risk score regarding 1-year, 2-year and 3-year OS (mostly AUC >0.60). Additionally, the risk score independently predicted OS for HCC patients both in the training cohort of TCGA-LIHC dataset (HR = 2.498, p = 0.007) and in the testing cohort of ICGC-LIRI-JP dataset (HR = 5.411, p < 0.001). The risk score was also positively correlated to progressive characteristics regarding tumor grade, TNM stage and tumor invasion. Patients with a high-risk score were more resistant to transarterial chemoembolization (TACE) treatment and agents of lapatinib and erlotinib, but sensitive to chemotherapeutics. Further enrichment and PPI analyses demonstrated that the 2-TF signature distinguished tumors into 2 clusters with proliferative and metabolic features, with the hub genes belonging to the former cluster. Conclusion: Our study identified a 2-TF prognostic signature that indicated tumor heterogeneity with different clinical features and treatment preference, which help optimal therapeutic strategy and improved survival for HCC patients.
Collapse
Affiliation(s)
- Yanbing Yang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuenian Ye
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Haibin Zhang
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Zhaowang Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Min Fang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Jian Wang
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yuyan Yu
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xuwen Hua
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Hongxuan Huang
- Department of Orthopedics, Dongguan People’s Hospital, Dongguan, China
| | - Weifeng Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Liu
- Department of Radiology, The First Affiliated Hospital of Dali University, Dali, China,*Correspondence: Ling Liu, ; Zhan Lin,
| | - Zhan Lin
- Department of Radiology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China,*Correspondence: Ling Liu, ; Zhan Lin,
| |
Collapse
|
19
|
Vaidya M, Smith J, Field M, Sugaya K. Analysis of regulatory sequences in exosomal DNA of NANOGP8. PLoS One 2023; 18:e0280959. [PMID: 36696426 PMCID: PMC9876286 DOI: 10.1371/journal.pone.0280959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023] Open
Abstract
Exosomes participate in intercellular communication by transporting functionally active molecules. Such cargo from the original cells comprising proteins, micro-RNA, mRNA, single-stranded (ssDNA) and double-stranded DNA (dsDNA) molecules pleiotropically transforms the target cells. Although cancer cells secrete exosomes carrying a significant level of DNA capable of modulating oncogene expression in a recipient cell, the regulatory mechanism is unknown. We have previously reported that cancer cells produce exosomes containing NANOGP8 DNA. NANOGP8 is an oncogenic paralog of embryonic stem cell transcription factor NANOG and does not express in cells since it is a pseudogene. However, in this study, we evaluated NANOGP8 expression in glioblastoma multiforme (GBM) tissue from a surgically removed brain tumor of a patient. Significantly higher NANOGP8 transcription was observed in GBM cancer stem cells (CSCs) than in GBM cancer cells or neural stem cells (NSCs), despite identical sequences of NANOGP8-upstream genomic region in all the cell lines. This finding suggests that upstream genomic sequences of NANOGP8 may have environment-dependent promoter activity. We also found that the regulatory sequences upstream of exosomal NANOGP8 GBM DNA contain multiple core promoter elements, transcription factor binding sites, and segments of human viruses known for their oncogenic role. The exosomal sequence of NANOGP8-upstream GBM DNA is different from corresponding genomic sequences in CSCs, cancer cells, and NSCs as well as from the sequences reported by NCBI. These sequence dissimilarities suggest that exosomal NANOGP8 GBM DNA may not be a part of the genomic DNA. Exosomes possibly acquire this DNA from other sources where it is synthesized by an unknown mechanism. The significance of exosome-bestowed regulatory elements in the transcription of promoter-less retrogene such as NANOGP8 remains to be determined.
Collapse
Affiliation(s)
- Manjusha Vaidya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Jonhoi Smith
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
| | - Melvin Field
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- AdventHealth Cancer Institute, Orlando, FL, United States of America
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States of America
- * E-mail:
| |
Collapse
|
20
|
Saed L, Balcerczak E, Łochowski M, Olechnowicz E, Sałagacka-Kubiak A. HMGA1 gene expression level in cancer tissue and blood samples of non-small cell lung cancer (NSCLC) patients: preliminary report. Mol Genet Genomics 2022; 297:1505-1514. [PMID: 35948739 PMCID: PMC9596564 DOI: 10.1007/s00438-022-01936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023]
Abstract
The study aimed to assess the HMGA1 gene expression level in NSCLC patients and to evaluate its association with selected clinicopathological features and overall survival of patients. The expression of the HMGA1, coding non-histone transcription regulator HMGA1, was previously proved to correlate with the ability of cancer cells to metastasize the advancement of the disease. The prognostic value of the HMGA1 expression level was demonstrated in some neoplasms, e.g., pancreatic, gastric, endometrial, hepatocellular cancer, but the knowledge about its role in non-small cell lung cancer (NSCLC) is still limited. Thus, the HMGA1 expression level was evaluated by real-time PCR method in postoperative tumor tissue and blood samples collected at the time of diagnosis, 100 days and 1 year after surgery from 47 NSCLC patients. Mean HMGA1 expression level in blood decreased systematically from the time of cancer diagnosis to 1 year after surgery. The blood HMGA1 expression level 1 year after surgery was associated with the tobacco smoking status of patients (p= 0.0230). Patients with high blood HMGA1 expression levels measured 100 days after surgery tend to have worse overall survival than those with low expression levels (p= 0.1197). Tumor HMGA1 expression level was associated with neither features nor the overall survival of NSCLC patients. Moreover, no correlation between HMGA1 expression level measured in tumor tissue and blood samples was stated. Blood HMGA1 mRNA level could be a promising factor in the prognostication of non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Lias Saed
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Mariusz Łochowski
- Department of Thoracic Surgery, Memorial Copernicus Hospital, Medical University of Lodz, Lodz, Poland
| | - Ewa Olechnowicz
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Sałagacka-Kubiak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
21
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
22
|
Zhu Y, Yang Y, Bu H, Huang H, Chen H, Ran J, Qin L, Ni Y, Yao M, Song T, Li M, Yang Y, Guo T, Chao N, Liu Z, Li W, Zhang L. Apelin‐mediated deamidation of
HMGA1
promotes tumorigenesis by enhancing
SREBP1
activity and lipid synthesis. Cancer Sci 2022; 113:3722-3734. [PMID: 36087034 PMCID: PMC9633285 DOI: 10.1111/cas.15515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/27/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Enhanced fatty acid synthesis provides proliferation and survival advantages for tumor cells. Apelin is an adipokine, which serves as a ligand of G protein–coupled receptors that promote tumor growth in malignant cancers. Here, we confirmed that apelin increased sterol regulatory element–binding protein 1 (SREBP1) activity and induced the expression of glutamine amidotransferase for deamidating high‐mobility group A 1 (HMGA1) to promote fatty acid synthesis and proliferation of lung cancer cells. This post‐translational modification stabilized the HMGA1 expression and enhanced the formation of the apelin‐HMGA1‐SREBP1 complex to facilitate SREBP1 activity for lipid metabolism and lung cancer cell growth. We uncovered the pivotal role of apelin‐mediated deamidation of HMGA1 in lipid metabolism and tumorigenesis of lung cancer cells.
Collapse
Affiliation(s)
- Yihan Zhu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital Sichuan University Chengdu China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Hong Bu
- Department of Pathology, West China Hospital Sichuan University Chengdu China
| | - Hong Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital Sichuan University Chengdu China
| | - Hongyu Chen
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital Sichuan University Chengdu China
| | - Jingjing Ran
- Laboratory of Human Diseases and Immunotherapies, West China Hospital Sichuan University Chengdu China
| | - Liwen Qin
- Administration of Research Park, West China Hospital Sichuan University Chengdu China
| | - Yinyun Ni
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Menglin Yao
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Tingting Song
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Mufeng Li
- Department of Nuclear Medicine, West China Hospital Sichuan University Chengdu China
| | - Yongfeng Yang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Tingting Guo
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Ningning Chao
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Zhiqing Liu
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease‐related Molecular Network, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
23
|
Saed L, Jeleń A, Mirowski M, Sałagacka-Kubiak A. Prognostic Significance of HMGA1 Expression in Lung Cancer Based on Bioinformatics Analysis. Int J Mol Sci 2022; 23:ijms23136933. [PMID: 35805937 PMCID: PMC9266824 DOI: 10.3390/ijms23136933] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/15/2022] Open
Abstract
High-mobility group protein 1 (HMGA1) participates in the processes of DNA transcription, replication, recombination, and repair. The HMGA1 gene is expressed abundantly during embryogenesis and is reactivated during carcinogenesis. HMGA1 gene expression has been associated with a high degree of malignancy, metastatic tendency, and poor survival in breast, colon, ovary, and pancreatic cancers. However, its prognostic significance in lung cancer remains unclear. Using publicly available data, HMGA1 was shown to be overexpressed in both small and non-small lung tumors, with higher expression compared to both the adjacent non-malignant lung tissues and non-tumor lung tissues of healthy individuals. Elevated HMGA1 expression could result from lowered HMGA1 methylation and was connected with some clinicopathological features like sex, age, and stage of the disease. The high HMGA1 expression level was connected with shorter overall and first progression survival time among lung adenocarcinoma patients, but not lung squamous cell carcinoma patients. HMGA1 could interact with proteins involved in cellular senescence and cell cycle control (TP53, RB1, RPS6KB1, and CDK1), transcription regulation (EP400 and HMGA2), chromatin assembly and remodeling (LMNB1), and cholesterol and isoprene biosynthesis (HMGCR and INSIG1). Taken together, HMGA1 overexpression could be an essential element of lung carcinogenesis and a prognostic feature in lung cancer.
Collapse
|
24
|
HMGA1 Promotes Macrophage Recruitment via Activation of NF-κB-CCL2 Signaling in Hepatocellular Carcinoma. J Immunol Res 2022; 2022:4727198. [PMID: 35785026 PMCID: PMC9242763 DOI: 10.1155/2022/4727198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Tumor-associated macrophages (TAMs) are known to generate an immune-suppressive tumor microenvironment (TME) and promote tumor progression. Hepatocellular carcinoma (HCC) is a devastating disease that evolves in the background of chronic inflammatory liver damage. In this study, we aimed to uncover the mechanism by which HCC cells recruit macrophages into the TME. Methods Bioinformatic analysis was performed to identify differentially expressed genes related to macrophage infiltration. An orthotopic HCC xenograft model was used to determine the role of macrophages in HCC tumor growth. Clodronate liposomes were used to delete macrophages. Western blotting analysis, quantitative real-time PCR, and enzyme-linked immunosorbent assay were performed to determine the underlying mechanisms. Results The high mobility group A1 (HMGA1) gene was identified as a putative modulator of macrophage infiltration in HCC. Deletion of macrophages with clodronate liposomes significantly abrogated the tumor-promoting effects of HMGA1 on HCC growth. Mechanistically, HMGA1 can regulate the expression of C-C Motif Chemokine Ligand 2 (CCL2), also referred to as monocyte chemoattractant protein 1 (MCP1), which is responsible for macrophage recruitment. Moreover, NF-κB was required for HMGA1-mediated CCL2 expression. Pharmacological or genetic inhibition of NF-κB largely blocked CCL2 levels in HMGA1-overexpressing HCC cells. Conclusions This study reveals HMGA1 as a crucial regulator of macrophage recruitment by activating NF-κB-CCL2 signaling, proves that HMGA1-induced HCC aggressiveness dependents on the macrophage, and provide an attractive target for therapeutic interventions in HCC.
Collapse
|
25
|
Sgubin M, Pegoraro S, Pellarin I, Ros G, Sgarra R, Piazza S, Baldassarre G, Belletti B, Manfioletti G. HMGA1 positively regulates the microtubule-destabilizing protein stathmin promoting motility in TNBC cells and decreasing tumour sensitivity to paclitaxel. Cell Death Dis 2022; 13:429. [PMID: 35504904 PMCID: PMC9065117 DOI: 10.1038/s41419-022-04843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/14/2022]
Abstract
High Mobility Group A1 (HMGA1) is an architectural chromatin factor involved in the regulation of gene expression and a master regulator in Triple Negative Breast Cancer (TNBC). In TNBC, HMGA1 is overexpressed and coordinates a gene network that controls cellular processes involved in tumour development, progression, and metastasis formation. Here, we find that the expression of HMGA1 and of the microtubule-destabilizing protein stathmin correlates in breast cancer (BC) patients. We demonstrate that HMGA1 depletion leads to a downregulation of stathmin expression and activity on microtubules resulting in decreased TNBC cell motility. We show that this pathway is mediated by the cyclin-dependent kinase inhibitor p27kip1 (p27). Indeed, the silencing of HMGA1 expression in TNBC cells results both in an increased p27 protein stability and p27-stathmin binding. When the expression of both HMGA1 and p27 is silenced, we observe a significant rescue in cell motility. These data, obtained in cellular models, were validated in BC patients. In fact, we find that patients with high levels of both HMGA1 and stathmin and low levels of p27 have a statistically significant lower survival probability in terms of relapse-free survival (RFS) and distant metastasis-free survival (DMFS) with respect to the patient group with low HMGA1, low stathmin, and high p27 expression levels. Finally, we show in an in vivo xenograft model that depletion of HMGA1 chemo-sensitizes tumour cells to paclitaxel, a drug that is commonly used in TNBC treatments. This study unveils a new interaction among HMGA1, p27, and stathmin that is critical in BC cell migration. Moreover, our data suggest that taxol-based treatments may be more effective in reducing the tumour burden when tumour cells express low levels of HMGA1.
Collapse
Affiliation(s)
- Michela Sgubin
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Silvia Pegoraro
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ilenia Pellarin
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Gloria Ros
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy ,grid.5970.b0000 0004 1762 9868Present Address: International School for Advanced Studies (SISSA), Area of Neuroscience Trieste, Trieste, Italy
| | - Riccardo Sgarra
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Silvano Piazza
- grid.425196.d0000 0004 1759 4810International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, Trieste, Italy
| | - Gustavo Baldassarre
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- grid.418321.d0000 0004 1757 9741Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, Aviano, Italy
| | - Guidalberto Manfioletti
- grid.5133.40000 0001 1941 4308Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Furuke H, Konishi H, Arita T, Kataoka S, Shibamoto J, Takabatake K, Takaki W, Shimizu H, Yamamoto Y, Morimura R, Komatsu S, Shiozaki A, Ikoma H, Otsuji E. miR‑4730 suppresses the progression of liver cancer by targeting the high mobility group A1 pathway. Int J Mol Med 2022; 49:83. [PMID: 35485281 PMCID: PMC9106373 DOI: 10.3892/ijmm.2022.5139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
As liver cancer (LC) is the sixth most commonly diagnosed malignancy, it is necessary to elucidate the molecular mechanisms responsible for LC progression. MicroRNAs (miRNAs/miRs) play crucial roles in tumor progression by regulating target gene expression. The present study assessed miRNA-4730 expression and function in LC. The effects of miR-4730 overexpression were examined in LC cell lines, and the target genes of miR-4730 were evaluated using microarray analysis and TargetScan data. In addition, the association between miR-4730 expression in tissue samples and the prognosis of 70 patients with LC was evaluated. miR-4730 expression was suppressed in LC tissues and cell lines. miR-4730 overexpression suppressed cell proliferation and cell cycle progression and promoted apoptosis. High mobility group A1 (HMGA1) was revealed as the direct target of miR-4730 using luciferase reporter assay, and the inhibition of downstream integrin-linked kinase (ILK) expression and Akt or glycogen synthase kinase 3β (GSK3β) phosphorylation was confirmed. The lower expression of miR-4730 in tissue samples was significantly associated with a worse recurrence-free survival of patients with LC. On the whole, miR-4730 suppressed tumor progression by directly targeting HMGA1 and inhibiting the ILK/Akt/GSK3β pathway. miR-4730 thus has potential for use as a prognostic marker and may prove to be a therapeutic target for miRNA-based therapies.
Collapse
Affiliation(s)
- Hirotaka Furuke
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Satoshi Kataoka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Jun Shibamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuya Takabatake
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yusuke Yamamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|
27
|
Palazzo I, Todd LJ, Hoang TV, Reh TA, Blackshaw S, Fischer AJ. NFkB-signaling promotes glial reactivity and suppresses Müller glia-mediated neuron regeneration in the mammalian retina. Glia 2022; 70:1380-1401. [PMID: 35388544 DOI: 10.1002/glia.24181] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/25/2022]
Abstract
Müller glia (MG) in mammalian retinas are incapable of regenerating neurons after damage, whereas the MG in lower vertebrates regenerate functional neurons. Identification of cell signaling pathways and gene regulatory networks that regulate MG-mediated regeneration is key to harnessing the regenerative potential of MG. Here, we study how NFkB-signaling influences glial responses to damage and reprogramming of MG into neurons in the rodent retina. We find activation of NFkB and dynamic expression of NFkB-associated genes in MG after damage, however damage-induced NFkB activation is inhibited by microglia ablation. Knockout of NFkB in MG suppressed the accumulation of immune cells after damage. Inhibition of NFkB following NMDA-damage significantly enhanced the reprogramming of Ascl1-overexpressing MG into neuron-like cells. scRNA-seq of retinal glia following inhibition of NFkB reveals coordination with signaling via TGFβ2 and suppression of NFI and Id transcription factors. Inhibition of Smad3 signal transducer or Id transcription factors increased numbers of neuron-like cells produced by Ascl1-overexpressing MG. We conclude that NFkB is a key signaling hub that is activated in MG after damage, mediates the accumulation of immune cells, and suppresses the neurogenic potential of MG.
Collapse
Affiliation(s)
- Isabella Palazzo
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Levi J Todd
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Thanh V Hoang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas A Reh
- Department of Biological Structure, College of Medicine, University of Washington, Seattle, Washington, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
28
|
De Feo A, Pazzaglia L, Ciuffarin L, Mangiagli F, Pasello M, Simonetti E, Pellegrini E, Ferrari C, Bianchi G, Spazzoli B, Scotlandi K. miR-214-3p Is Commonly Downregulated by EWS-FLI1 and by CD99 and Its Restoration Limits Ewing Sarcoma Aggressiveness. Cancers (Basel) 2022; 14:cancers14071762. [PMID: 35406534 PMCID: PMC8997046 DOI: 10.3390/cancers14071762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Ewing’s sarcoma (EWS), the second most frequent primary tumor of bone in the pediatric population, is a very aggressive, undifferentiated mesenchymal malignancy with a high tendency to develop lung and/or bone metastasis. The prognosis of patients with metastasis remains dismal, and new strategies are needed to control the dissemination of EWS cells. EWS is driven by alterations induced by the EWS-FLI1 chimera which acts as an aberrant transcriptional factor that induces the complete reprograming of the gene expression. EWS cells are also characterized by high expression of CD99, a cell surface molecule that interacts with EWS-FLI1 to sustain EWS malignancy. This study shows that miR-214-3p is a common mediator of EWS-FLI1 and CD99, and we report that miR-214-3p acts as on oncosuppressor in EWS. MiR-214-3p is constitutively repressed in cell lines and clinical samples but is re-expressed after the silencing of EWS-FLI1 and/or CD99. The restoration of miR-214-3p limits EWS cell growth and migration and represses the expression of its target HMGA1, supporting the potential role of this miRNA as a marker of tumor aggressiveness. Abstract Ewing’s sarcoma (EWS), an aggressive pediatric bone and soft-tissue sarcoma, has a very stable genome with very few genetic alterations. Unlike in most cancers, the progression of EWS appears to depend on epigenetic alterations. EWS–FLI1 and CD99, the two hallmarks of EWS, are reported to severely impact the malignancy of EWS cells, at least partly by regulating the expression of several types of non-coding RNAs. Here, we identify miR-214-3p as a common mediator of either EWS-FLI1 or CD99 by in silico analysis. MiR-214-3p expression was lower in EWS cells and in clinical samples than in bone marrow mesenchymal stem cells, and this miRNA was barely expressed in metastatic lesions. Silencing of EWS-FLI1 or CD99 restored the expression of miR-214-3p, leading to a reduced cell growth and migration. Mechanistically, miR-214-3p restoration inhibits the expression of the high-mobility group AT-hook 1 (HMGA1) protein, a validated target of miR-214-3p and a major regulator of the transcriptional machinery. The decrease in HMGA1 expression reduced the growth and the migration of EWS cells. Taken together, our results support that the miR-214-3p is constitutively repressed by both EWS-FLI1 and CD99 because it acts as an oncosuppressor limiting the dissemination of EWS cells.
Collapse
Affiliation(s)
- Alessandra De Feo
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| | - Laura Pazzaglia
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Lisa Ciuffarin
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Fabio Mangiagli
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Michela Pasello
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Elisa Simonetti
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Evelin Pellegrini
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Cristina Ferrari
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
| | - Giuseppe Bianchi
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Benedetta Spazzoli
- IRCCS Istituto Ortopedico Rizzoli, Third Orthopaedic Clinic and Traumatology, 40136 Bologna, Italy; (G.B.); (B.S.)
| | - Katia Scotlandi
- SSD Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.P.); (L.C.); (F.M.); (M.P.); (E.S.); (E.P.); (C.F.)
- Correspondence: (A.D.F.); (K.S.); Tel.: +39-051-6366760 (K.S.); +39-051-6366937 (A.D.F.); Fax: +39-051-6366763 (A.D.F. & K.S.)
| |
Collapse
|
29
|
Wei YG, Yang CK, Wei ZL, Liao XW, He YF, Zhou X, Huang HS, Lan CL, Han CY, Peng T. High-Mobility Group AT-Hook 1 Served as a Prognosis Biomarker and Associated with Immune Infiltrate in Hepatocellular Carcinoma. Int J Gen Med 2022; 15:609-621. [PMID: 35058711 PMCID: PMC8765458 DOI: 10.2147/ijgm.s344858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The protein high-mobility group AT-hook 1 (HMGA1) has been demonstrated that modulated cellular proliferation, invasion, and apoptosis with a poor prognosis in miscellaneous carcinomas. However, the mechanism of circumstantial carcinogenesis and association with the immune microenvironment of HMGA1 in hepatocellular carcinoma (HCC) had not been extensively explored. METHODS The gene expression, clinicopathological correlation, and prognosis analysis were performed in the data obtained from TCGA. The results were further validated by ICGC and GEO database and external validation cohort from Guangxi. The HMGA1 protein expression was further examined in the HPA database. Biological function analyses were conducted by GSEA, STRING database, and Coexpedia online tool. Using TIMER and CIBERSORT method, the relationship between immune infiltrate and HMGA1 was investigated. RESULTS In HCC, HMGA1 had much higher transcriptional and proteomic expression than in corresponding paraneoplastic tissue. Patients with high HMGA1 expression had a poor prognosis and unpromising clinicopathological features. High HMGA1 expression was closely related to the cell cycle, tumorigenesis, substance metabolism, and immune processes by regulating complex signaling pathways. Notably, HMGA1 may be associated with TP53 mutational carcinogenesis. Moreover, increased HMGA1 expression may lead to an increase in immune infiltration and a decrease in tumor purity in HCC. CIBERSORT analysis elucidated that the amount of B cell naive, B cell memory, T cells gamma delta, macrophages M2, and mast cell resting decreased when HMGA1 expression was high, whereas T cells follicular helper, macrophages M0, and Dendritic cells resting increased. CONCLUSION In conclusions, HMGA1 is a potent prognostic biomarker and a sign of immune infiltration in HCC, which may be a potential immunotherapy target for HCC.
Collapse
Affiliation(s)
- Yong-Guang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Zhong-Liu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Yong-Fei He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Hua-Sheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chen-Lu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| |
Collapse
|
30
|
Chromatin basis of the senescence-associated secretory phenotype. Trends Cell Biol 2022; 32:513-526. [PMID: 35012849 DOI: 10.1016/j.tcb.2021.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023]
Abstract
Cellular senescence is a stable cell growth arrest. Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed senescence-associated secretory phenotype (SASP). The SASP exerts a range of functions in both normal health and pathology, which is possibly best characterized in cancers and physical aging. Recent studies demonstrated that chromatin is instrumental in regulating the SASP both through nuclear transcription and via the innate immune cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway in the cytoplasm. Here, we will review these regulatory mechanisms, with an emphasis on most recent developments in the field. We will highlight the challenges and opportunities in developing intervention approaches, such as targeting chromatin regulatory mechanisms, to alter the SASP as an emerging approach to combat cancers and achieve healthy aging.
Collapse
|
31
|
miR-142-3p simultaneously targets HMGA1, HMGA2, HMGB1, and HMGB3 and inhibits tumorigenic properties and in-vivo metastatic potential of human cervical cancer cells. Life Sci 2021; 291:120268. [PMID: 34973275 DOI: 10.1016/j.lfs.2021.120268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022]
Abstract
AIMS High-mobility group (HMG) proteins are oncogenic in different cancers, including cervical cancer; silencing their individual expression using sh-RNAs, siRNAs, and miRNAs has had anti-tumorigenic effects, but the consequences of their collective downregulation are not known. Since multiple gene targeting is generally very effective in cancer therapy, the present study highlighted the consequences of silencing the expression of HMGA1, A2, B1, and B3 using sh-RNAs or miR-142-3p (that can potentially target HMGA1, A2, B1, and B3) in cervical cancer cell lines. MAIN METHODS 3' UTR luciferase reporter assays were performed to validate HMGA1, A2, B1, and B3 as targets of miR-142-3p in human cervical cancer cells. Annexin V/PI dual staining and flow cytometry analyses were used to detect apoptotic cells. miR-142-3p-mediated regulation of cell death, colony formation, migration, and invasion was investigated in human cervical cancer cells together with in vivo metastasis in zebrafish. KEY FINDINGS Concurrent knockdown of HMGA1, A2, B1, and B3 through their corresponding sh-RNAs inhibited cell viability and colony formation but induced apoptosis, and these effects were relatively reduced upon their individual knockdown. miR-142-3p targeted HMGA1, A2, B1, and B3 by binding to their 3'UTRs and induced apoptosis but inhibited proliferation, migration, and invasion of human cervical cancer cells. In addition, miR-142-3p expression decreased phospho-p65 and EMT-related proteins in cervical cancer cells and their in vivo metastatic potential upon implantation in zebrafish. SIGNIFICANCE These findings suggest that miR-142-3p acts as a tumor-suppressive miRNA by targeting HMGA1, A2, B1, and B3 and may serve as a potential therapeutic agent in human cervical cancer.
Collapse
|
32
|
Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021; 13:46. [PMID: 35052385 PMCID: PMC8774879 DOI: 10.3390/genes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
HMGA1 Has Predictive Value in Response to Chemotherapy in Gastric Cancer. Curr Oncol 2021; 29:56-67. [PMID: 35049679 PMCID: PMC8774981 DOI: 10.3390/curroncol29010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is a serious health problem worldwide. Although its incidence is decreasing, the five-year survival rate remains low. Thus, it is essential to identify new biomarkers that could promote better diagnosis and treatment of patients with gastric cancer. High-mobility group AT-hook 1 (HMGA1) is a non-histone, chromatin-binding protein that has been found overexpressed in several tumor types. It has been correlated with invasion, metastasis, and drug resistance, leading to worse patient survival. The aim of this work was to evaluate the clinical value of HMGA1 in gastric cancer. HMGA1 expression was analyzed by immunohistochemistry in a single hospital series (n = 323) of gastric adenocarcinoma cases (stages I to IV) with clinicopathological and treatment data. In this series, HMGA1 expression showed no significant relevance as a prognostic biomarker. Nevertheless, a significantly better overall survival was observed in cases with high levels of HMGA1 when they were treated with chemotherapy, compared to the nontreated ones, implying that they can benefit more from treatment than patients with low expression of HMGA1. We thereby show for the first time that HMGA1 expression has a substantial value as a biomarker of response to chemotherapy in gastric cancer.
Collapse
|
34
|
Cao J, Yan W, Ma X, Huang H, Yan H. Insulin-like Growth Factor 2 mRNA-Binding Protein 2-a Potential Link Between Type 2 Diabetes Mellitus and Cancer. J Clin Endocrinol Metab 2021; 106:2807-2818. [PMID: 34061963 PMCID: PMC8475209 DOI: 10.1210/clinem/dgab391] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Indexed: 12/12/2022]
Abstract
CONTEXT Type 2 diabetes mellitus (T2DM) and cancer share a variety of risk factors and pathophysiological features. It is becoming increasingly accepted that the 2 diseases are related, and that T2DM increases the risk of certain malignancies. OBJECTIVE This review summarizes recent advancements in the elucidation of functions of insulin-like growth factor 2 (IGF-2) messenger RNA (mRNA)-binding protein 2 (IGF2BP2) in T2DM and cancer. METHODS A PubMed review of the literature was conducted, and search terms included IGF2BP2, IMP2, or p62 in combination with cancer or T2DM. Additional sources were identified through manual searches of reference lists. The increased risk of multiple malignancies and cancer-associated mortality in patients with T2DM is believed to be driven by insulin resistance, hyperinsulinemia, hyperglycemia, chronic inflammation, and dysregulation of adipokines and sex hormones. Furthermore, IGF-2 is oncogenic, and its loss-of-function splice variant is protective against T2DM, which highlights the pivotal role of this growth factor in the pathogenesis of these 2 diseases. IGF-2 mRNA-binding proteins, particularly IGF2BP2, are also involved in T2DM and cancer, and single-nucleotide variations (formerly single-nucleotide polymorphisms) of IGF2BP2 are associated with both diseases. Deletion of the IGF2BP2 gene in mice improves their glucose tolerance and insulin sensitivity, and mice with transgenic p62, a splice variant of IGF2BP2, are prone to diet-induced fatty liver disease and hepatocellular carcinoma, suggesting the biological significance of IGF2BP2 in T2DM and cancer. CONCLUSION Accumulating evidence has revealed that IGF2BP2 mediates the pathogenesis of T2DM and cancer by regulating glucose metabolism, insulin sensitivity, and tumorigenesis. This review provides insight into the potential involvement of this RNA binding protein in the link between T2DM and cancer.
Collapse
Affiliation(s)
- Junguo Cao
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
- Division of Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Weijia Yan
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
- Department of Ophthalmology, University of Heidelberg, Heidelberg 69120, Germany
| | - Xiujian Ma
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Hong Yan
- Shaanxi Eye Hospital (Xi’an People’s Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 71004, Shaanxi Province, China
| |
Collapse
|
35
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
36
|
Shomali N, Marofi F, Tarzi S, Tamjdidfar R, Akbari M, Parvari S, Sadeghvand S, Deljavan M, Moridi O, Javadi M, Shotorbani SS. HSP90 inhibitor modulates HMGA1 and HMGB2 expression along with cell viability via NF-KB signaling pathways in melanoma in-vitro. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Mansoori B, Najafi S, Mohammadi A, AsadollahSeraj H, Savadi P, Mansoori B, Nazari A, Mokhtarzadeh A, Roshani E, Duijf PH, Cho WCS, Baradaran B. The synergy between miR-486-5p and tamoxifen causes profound cell death of tamoxifen-resistant breast cancer cells. Biomed Pharmacother 2021; 141:111925. [PMID: 34323695 DOI: 10.1016/j.biopha.2021.111925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
Breast cancer (BC) is the most common type of malignancy in women. A subset of breast cancers show resistance to endocrine-based therapies. The estrogen receptor (ER) plays a critical role in developing hormone-dependent BC. Loss of ER contributes to resistance to tamoxifen therapy and may contribute to mortality. Thus, it is crucial to overcome this problem. Here, using luciferase reporter assays, qRT-PCR, and Western blot analyses, we demonstrate that the microRNA miR-486-5p targets HMGA1 mRNA, decreasing its mRNA and protein levels in ER-positive (ER+) BC cells. Consistently, miR-486-5p is significantly downregulated, whereas HMGA1 is considerably upregulated in ER+ BC samples. Remarkably, while both miR-486-5p and tamoxifen individually cause G2/M cell cycle arrest, combination treatment synergistically causes profound cell death, specifically in tamoxifen-resistant ER+ cells but not in tamoxifen-sensitive ER+ cells. Combined treatment with miR-486-5p and tamoxifen also additively reduces cell migration, invasion, colony formation, mammary spheroid formation and a CD24-CD44+ cell population, representing decreased cancer stemness. However, these phenomena are independent of the tamoxifen responsiveness of the ER+ BC cells. Thus, miR-486-5p and tamoxifen exhibit additive and synergistic tumor-suppressive effects, most importantly causing profound cell death specifically in tamoxifen-resistant BC cells. Therefore, our work suggests that combining miR-486-5p replacement therapy with tamoxifen treatment is a promising strategy to treat endocrine therapy-resistant BC.
Collapse
Affiliation(s)
- Behzad Mansoori
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Pouria Savadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Mansoori
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afsaneh Nazari
- Department of Genetics, Faculty of Basic Sciences, Islamic Azad University, Zanjan Branch, Zanjan, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Roshani
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Pascal Hg Duijf
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Centre for Data Science, Queensland University of Technology, Brisbane, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Ghanem MS, Monacelli F, Nencioni A. Advances in NAD-Lowering Agents for Cancer Treatment. Nutrients 2021; 13:1665. [PMID: 34068917 PMCID: PMC8156468 DOI: 10.3390/nu13051665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor, but it also acts as a substrate for NAD-consuming enzymes, regulating cellular events such as DNA repair and gene expression. Since such processes are fundamental to support cancer cell survival and proliferation, sustained NAD production is a hallmark of many types of neoplasms. Depleting intratumor NAD levels, mainly through interference with the NAD-biosynthetic machinery, has emerged as a promising anti-cancer strategy. NAD can be generated from tryptophan or nicotinic acid. In addition, the "salvage pathway" of NAD production, which uses nicotinamide, a byproduct of NAD degradation, as a substrate, is also widely active in mammalian cells and appears to be highly exploited by a subset of human cancers. In fact, research has mainly focused on inhibiting the key enzyme of the latter NAD production route, nicotinamide phosphoribosyltransferase (NAMPT), leading to the identification of numerous inhibitors, including FK866 and CHS-828. Unfortunately, the clinical activity of these agents proved limited, suggesting that the approaches for targeting NAD production in tumors need to be refined. In this contribution, we highlight the recent advancements in this field, including an overview of the NAD-lowering compounds that have been reported so far and the related in vitro and in vivo studies. We also describe the key NAD-producing pathways and their regulation in cancer cells. Finally, we summarize the approaches that have been explored to optimize the therapeutic response to NAMPT inhibitors in cancer.
Collapse
Affiliation(s)
- Moustafa S. Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (M.S.G.); (F.M.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
39
|
Zhang AM, Wellberg EA, Kopp JL, Johnson JD. Hyperinsulinemia in Obesity, Inflammation, and Cancer. Diabetes Metab J 2021; 45:285-311. [PMID: 33775061 PMCID: PMC8164941 DOI: 10.4093/dmj.2020.0250] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The relative insufficiency of insulin secretion and/or insulin action causes diabetes. However, obesity and type 2 diabetes mellitus can be associated with an absolute increase in circulating insulin, a state known as hyperinsulinemia. Studies are beginning to elucidate the cause-effect relationships between hyperinsulinemia and numerous consequences of metabolic dysfunctions. Here, we review recent evidence demonstrating that hyperinsulinemia may play a role in inflammation, aging and development of cancers. In this review, we will focus on the consequences and mechanisms of excess insulin production and action, placing recent findings that have challenged dogma in the context of the existing body of literature. Where relevant, we elaborate on the role of specific signal transduction components in the actions of insulin and consequences of chronic hyperinsulinemia. By discussing the involvement of hyperinsulinemia in various metabolic and other chronic diseases, we may identify more effective therapeutics or lifestyle interventions for preventing or treating obesity, diabetes and cancer. We also seek to identify pertinent questions that are ripe for future investigation.
Collapse
Affiliation(s)
- Anni M.Y. Zhang
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| | - Janel L. Kopp
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
40
|
Barca I, Mignogna C, Donato G, Cristofaro MG. Expression of PLAG1, HMGA1 and HMGA2 in minor salivary glands tumours. Gland Surg 2021; 10:1609-1617. [PMID: 34164305 DOI: 10.21037/gs-20-667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Diagnosis of minor salivary gland (MSG) tumours is often difficult, due to the scarce tissue obtained from bioptic excision and complex histopathological differential diagnosis. In our study we performed an immunohistochemical analysis of PLAG1, HMGA1 and HMGA2 on a series of MSG tumours, in order to develop a new helpful diagnostic panel. Methods A retrospective series of 17 surgical specimens of MSG tumours were analysed for the expression of PLAG1, HMGA1 and HMGA2. Three control cases were enrolled and analysed. An intensity and percentage-based approach was performed, creating a combined score panel. Results PLAG1 facilitate the diagnosis of benign tumours, discriminating it from malignant histotypes, with a defined cut-off value. Similarly, HMGA1 is significantly higher in benign histotypes than in malignant ones. HMGA2 in our series, did not reveal any association in identifying benign from malignant histotypes. Conclusions In this study we assessed the diagnostic role of PLAG1, HMGA1 and HMGA2 immunohistochemical analysis. The score panel facilitate histopathological diagnosis of these rare tumours, helping to distinguish benign tumours from malignant ones and ameliorating the differential diagnosis of specific histotypes.
Collapse
Affiliation(s)
- Ida Barca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Chiara Mignogna
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe Donato
- Department of Health Science, Magna Græcia University, Catanzaro, Italy
| | | |
Collapse
|
41
|
Fiscon G, Pegoraro S, Conte F, Manfioletti G, Paci P. Gene network analysis using SWIM reveals interplay between the transcription factor-encoding genes HMGA1, FOXM1, and MYBL2 in triple-negative breast cancer. FEBS Lett 2021; 595:1569-1586. [PMID: 33835503 DOI: 10.1002/1873-3468.14085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/26/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
Among breast cancer subtypes, triple-negative breast cancer (TNBC) is the most aggressive with the worst prognosis and the highest rates of metastatic disease. To identify TNBC gene signatures, we applied the network-based methodology implemented by the SWIM software to gene expression data of TNBC patients in The Cancer Genome Atlas (TCGA) database. SWIM enables to predict key (switch) genes within the co-expression network, whose perturbations in expression pattern and abundance may contribute to the (patho)biological phenotype. Here, SWIM analysis revealed an interesting interplay between the genes encoding the transcription factors HMGA1, FOXM1, and MYBL2, suggesting a potential cooperation among these three switch genes in TNBC development. The correlative nature of this interplay in TNBC was assessed by in vitro experiments, demonstrating how they may actually modulate the expression of each other.
Collapse
Affiliation(s)
- Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.,Fondazione per la Medicina Personalizzata, Genova, Italy
| | | | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | | | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.,Department of Computer, Control and Management Engineering, Sapienza University of Rome, Italy
| |
Collapse
|
42
|
Baumann C, Zhang X, De La Fuente R. Loss of CBX2 induces genome instability and senescence-associated chromosomal rearrangements. J Cell Biol 2021; 219:152063. [PMID: 32870972 PMCID: PMC7594495 DOI: 10.1083/jcb.201910149] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/08/2020] [Accepted: 08/02/2020] [Indexed: 01/05/2023] Open
Abstract
The polycomb group protein CBX2 is an important epigenetic reader involved in cell proliferation and differentiation. While CBX2 overexpression occurs in a wide range of human tumors, targeted deletion results in homeotic transformation, proliferative defects, and premature senescence. However, its cellular function(s) and whether it plays a role in maintenance of genome stability remain to be determined. Here, we demonstrate that loss of CBX2 in mouse fibroblasts induces abnormal large-scale chromatin structure and chromosome instability. Integrative transcriptome analysis and ATAC-seq revealed a significant dysregulation of transcripts involved in DNA repair, chromocenter formation, and tumorigenesis in addition to changes in chromatin accessibility of genes involved in lateral sclerosis, basal transcription factors, and folate metabolism. Notably, Cbx2−/− cells exhibit prominent decondensation of satellite DNA sequences at metaphase and increased sister chromatid recombination events leading to rampant chromosome instability. The presence of extensive centromere and telomere defects suggests a prominent role for CBX2 in heterochromatin homeostasis and the regulation of nuclear architecture.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA.,Regenerative Bioscience Center, University of Georgia, Athens, GA
| |
Collapse
|
43
|
Wang Q, Li J, Wang S, Deng Q, Wang K, Dai X, An Y, Dong G, Ke W, Chen F, Liu L, Yang H, Du Y, Zhao W, Shang Z. Single-cell transcriptome profiling reveals molecular heterogeneity in human umbilical cord tissue and culture-expanded mesenchymal stem cells. FEBS J 2021; 288:5311-5330. [PMID: 33763993 DOI: 10.1111/febs.15834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Human umbilical cord-derived mesenchymal stem/stromal cells (UMSCs) demonstrate great therapeutic potential in regenerative medicine. The use of UMSCs for clinical applications requires high quantity and good quality of cells usually by in vitro expansion. However, the heterogeneity and the characteristics of cultured UMSCs and the cognate human umbilical cord tissue at single-cell resolution remain poorly defined. In this study, we created a single-cell transcriptome profile of human umbilical cord tissue and the cognate culture-expanded UMSCs. Based on the inferred characteristics of cell clusters and trajectory analysis, we identified three subgroups in culture-expanded UMSCs and putative novel transcription factors (TFs) in regulating UMSC state transition. Further, putative ligand-receptor interaction analysis demonstrated that cellular interactions most frequently occurred in epithelial-like cells with other cell groups in umbilical cord tissue. Moreover, we dissected the transcriptomic differences of in vitro and in vivo subgroups and inferred the telomere-related molecules and pathways that might be activated in UMSCs for cell expansion in vitro. Our study provides a comprehensive and integrative study of the transcriptomics of human umbilical cord tissue and their cognate-cultured counterparts, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of UMSCs-based cell therapy.
Collapse
Affiliation(s)
- Quanlei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China
| | - Jinlu Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Shengpeng Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Kuixing Wang
- BGI-Shenzhen, China.,Shenzhen BGI Cell Technology Co., Ltd, China
| | - Xi Dai
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | | | - Guoyi Dong
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Weilin Ke
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, China
| | - Fang Chen
- BGI-Shenzhen, China.,MGI, BGI-Shenzhen, China
| | | | - Huanming Yang
- BGI-Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Weihua Zhao
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, China
| | - Zhouchun Shang
- BGI-Shenzhen, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China.,MGI, BGI-Shenzhen, China.,BGI College, Northwest University, Xi'an, China
| |
Collapse
|
44
|
Jia Y, Yi L, Li Q, Liu T, Yang S. LncRNA MALAT1 aggravates oxygen-glucose deprivation/reoxygenation-induced neuronal endoplasmic reticulum stress and apoptosis via the miR-195a-5p/HMGA1 axis. Biol Res 2021; 54:8. [PMID: 33750458 PMCID: PMC7941907 DOI: 10.1186/s40659-021-00331-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND This study aimed to investigate the potential role and molecular mechanism of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) in cerebral ischemia/reperfusion injury. RESULTS Using an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model, we determined that the expression of MALAT1 was significantly increased during OGD/R. MALAT1 knockdown reversed OGD/R-induced apoptosis and ER stress. Mechanistically, MALAT1 promoted OGD/R-induced neuronal injury through sponging miR-195a-5p to upregulating high mobility group AT-hook1 (HMGA1). CONCLUSIONS Collectively, these data demonstrate the mechanism underlying the invovlvement of MALAT1 in cerebral ischemia/reperfusion injury, thus providing translational evidence that MALAT1 may serve as a novel biomarker and therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Ying Jia
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Lian Yi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Qianqian Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tingjiao Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Shanshan Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, No.23 Youzheng Street, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
45
|
Jung Y, Lee HS, Ha JM, Jin SY, Kum HJ, Vafaeinik F, Ha HK, Song SH, Kim CD, Bae SS. Modulation of Vascular Smooth Muscle Cell Phenotype by High Mobility Group AT-Hook 1. J Lipid Atheroscler 2021; 10:99-110. [PMID: 33537257 PMCID: PMC7838509 DOI: 10.12997/jla.2021.10.1.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
Objective The purpose of this study is to examine the effect of high mobility group AT-hook 1 (HMGA1) on the phenotyptic change of vascular smooth muscle cells (VSMCs). Methods Gene silencing and overexpression of HMGA1 were introduced to evaluate the effect of HMGA1 expression on the phenotypic change of VSMCs. Marker gene expression of VSMCs was measured by promoter assay, quantitative polymerase chain reaction, and western blot analysis. Common left carotid artery ligation model was used to establish in vivo neointima formation. Results HMGA1 was expressed strongly in the synthetic type of VSMCs and significantly downregulated during the differentiation of VSMCs. Silencing of HMGA1 in the synthetic type of VSMCs enhanced the expression of contractile marker genes thereby enhanced angiotensin II (Ang II)-dependent contraction, however, significantly suppressed proliferation and migration. Stimulation of contractile VSMCs with platelet-derived growth factor (PDGF) enhanced HMGA1 expression concomitant with the downregulation of marker gene expression which was blocked significantly by the silencing of HMGA1. Silencing of HMGA1 retained the Ang II-dependent contractile function, which was curtailed by PDGF stimulation, however, overexpression of HMGA1 in the contractile type of VSMCs suppressed marker gene expression. Proliferation and migration were enhanced significantly by the overexpression of HMGA1. Furthermore, the Ang II-dependent contraction was reduced significantly by the overexpression of HMGA1. Finally, the expression of HMGA1 was enhanced significantly in the ligated artery, especially in the neointima area. Conclusion HMGA1 plays an essential role in the phenotypic modulation of VSMCs. Therefore, paracrine factors such as PDGF may affect vascular remodeling through the regulation of HMGA1.
Collapse
Affiliation(s)
- Yoojin Jung
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hae Sun Lee
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Jung Min Ha
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Seo Yeon Jin
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hye Jin Kum
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Farzaneh Vafaeinik
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Hong Koo Ha
- Department of Urology, Pusan National University Hospital, Busan, Republic of Korea
| | - Sang Heon Song
- Department of Internal Medicine, Pusan National University Hospital, Busan, Korea
| | - Chi Dae Kim
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| | - Sun Sik Bae
- Gene and Cell Therapy Center for Vessel-Associated Disease, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
46
|
Zhang C, Na N, Liu L, Qiu Y. CircRNA hsa_circ_0005909 Promotes Cell Proliferation of Osteosarcoma Cells by Targeting miR-338-3p/HMGA1 Axis. Cancer Manag Res 2021; 13:795-803. [PMID: 33536787 PMCID: PMC7850455 DOI: 10.2147/cmar.s285118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023] Open
Abstract
Objective Osteosarcoma (OS) is the most common malignant bone tumor in the pediatric population. The main goal of this study is to investigate the role of hsa_circ_0005909 and the underlying signaling pathway involved in OS. Methods Cell proliferation was measured using a CCK-8 assay kit and clone formation assay. Change of RNA and protein expression was determined using RNA extract and quantitative real time PCR (RT-qPCR) assay and Western blotting, respectively. CircInteractome was used to predict the target of circRNA and starBase v2.0 was used to predict the target of miRNAs. Luciferase assay was used to confirm the predicted results from CircInteractome, starBase v2.0, and MirTarget2. Results Expression of circ_0005909 was upregulated in both OS tissues and cell lines. The predicted results from CircInteractome, starBase v2.0, and MirTarget2 demonstrated that circ_0005909 could sponge miR-338-3p and that HGMA1 was the direct target of miR-338-3p. Cell viability and cell clones were inhibited by knockdown of circ_0005909 but increased by dual inhibition of circ_0005909 and miR-338-3p. Phosphorylation of ERK, Akt, and PI3K was inhibited by sh-circ_0005909, while this inhibition was repressed by co-transfection of sh-circ_0005909 and HGMA1. Conclusion Expression of circ_0005909 was upregulated in both OS tissues and cell lines which upregulated expression of HGMA1 through sponging miR-338-3p, resulting in the activation of MAPK-ERK and PI3K-Akt signaling pathways to promote the development of OS.
Collapse
Affiliation(s)
- Cailong Zhang
- Department of Arthrology Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Na Na
- Department of Obstetrics, Qingdao Eighth People's Hospital, Qingdao 266000, People's Republic of China
| | - Li Liu
- Department of Stereotactic Radiotherapy, Qingdao Central Hospital, Qingdao 266000, People's Republic of China
| | - Yingzhu Qiu
- Department of Spine Surgery, Zibo Central Hospital, Zibo 255000, People's Republic of China
| |
Collapse
|
47
|
Li G, Luo W, Wang B, Qian C, Ye Y, Li Y, Zhang S. HMGA1 Induction of miR-103/107 Forms a Negative Feedback Loop to Regulate Autophagy in MPTP Model of Parkinson's Disease. Front Cell Neurosci 2021; 14:620020. [PMID: 33536877 PMCID: PMC7847849 DOI: 10.3389/fncel.2020.620020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 11/18/2022] Open
Abstract
Autophagy dysfunction has been directly linked with the onset and progression of Parkinson’s disease (PD), but the underlying mechanisms are not well understood. High-mobility group A1 (HMGA1), well-known chromatin remodeling proteins, play pivotal roles in diverse biological processes and diseases. Their function in neural cell death in PD, however, have not yet been fully elucidated. Here, we report that HMGA1 is highly induced during dopaminergic cell death in vitro and mice models of PD in vivo. Functional studies using genetic knockdown of endogenous HMGA1 show that HMGA1 signaling inhibition accelerates neural cell death, at least partially through aggravating MPP+-induced autophagic flux reduction resulting from partial block in autophagic flux at the terminal stages, indicating a novel potential neuroprotective role for HMGA1 in dopaminergic neurons death. MicroRNA-103/107 (miR-103/107) family, which is highly expressed in neuron, coordinately ensures proper end-stage autophagy. We further illustrate that MPP+/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced HMGA1 elevation counterparts the effect of miR-103/107 downregulation by directly binding to their promoters, respectively, sustaining their expression in MPP+-damaged MN9D cells and modulates autophagy through CDK5R1/CDK5 signaling pathway. We also find that HMGA1 is a direct target of miR-103/107 family. Thus, our results suggest that HMGA1 forms a negative feedback loop with miR-103/107-CDK5R1/CDK5 signaling to regulate the MPP+/MPTP-induced autophagy impairment and neural cell death. Collectively, we identify a paradigm for compensatory neuroprotective HMGA1 signaling in dopaminergic neurons that could have important therapeutic implications for PD.
Collapse
Affiliation(s)
- Gehui Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wanxian Luo
- Department of Medicine Ultrasonics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoyan Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chen Qian
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyi Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuantao Li
- Department of Anesthesiology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shizhong Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The National Key Clinical Specialty, Department of Neurosurgery, The Engineering Technology Research Center of Education Ministry of China, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
48
|
Stewart GL, Sage AP, Enfield KSS, Marshall EA, Cohn DE, Lam WL. Deregulation of a Cis-Acting lncRNA in Non-small Cell Lung Cancer May Control HMGA1 Expression. Front Genet 2021; 11:615378. [PMID: 33505435 PMCID: PMC7831742 DOI: 10.3389/fgene.2020.615378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have long been implicated in cancer-associated phenotypes. Recently, a class of lncRNAs, known as cis-acting, have been shown to regulate the expression of neighboring protein-coding genes and may represent undiscovered therapeutic action points. The chromatin architecture modification gene HMGA1 has recently been described to be aberrantly expressed in lung adenocarcinoma (LUAD). However, the mechanisms mediating the expression of HMGA1 in LUAD remain unknown. Here we investigate the deregulation of a putative cis-acting lncRNA in LUAD, and its effect on the oncogene HMGA1. Methods LncRNA expression was determined from RNA-sequencing data of tumor and matched non-malignant tissues from 36 LUAD patients. Transcripts with significantly deregulated expression were identified and validated in a secondary LUAD RNA-seq dataset (TCGA). SiRNA-mediated knockdown of a candidate cis-acting lncRNA was performed in BEAS-2B cells. Quantitative real-time PCR was used to observe the effects of lncRNA knockdown on the expression of HMGA1. Results We identified the lncRNA RP11.513I15.6, which we refer to as HMGA1-lnc, neighboring HMGA1 to be significantly downregulated in both LUAD cohorts. Conversely, we found HMGA1 significantly overexpressed in LUAD and anticorrelated with HMGA1-lnc. In vitro experiments demonstrated siRNA-mediated inhibition of HMGA1-lnc in immortalized non-malignant lung epithelial cells resulted in a significant increase in HMGA1 gene expression. Conclusion Our results suggest that HMGA1-lnc is a novel cis-acting lncRNA that negatively regulates HMGA1 gene expression in lung cells. Further characterization of this regulatory mechanism may advance our understanding of the maintenance of lung cancer phenotypes and uncover a novel therapeutic intervention point for tumors driven by HMGA1.
Collapse
Affiliation(s)
- Greg L Stewart
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Adam P Sage
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Katey S S Enfield
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Erin A Marshall
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - David E Cohn
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Wan L Lam
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| |
Collapse
|
49
|
Cai Y, Hao M, Chang Y, Liu Y. LINC00665 enhances tumorigenicity of endometrial carcinoma by interacting with high mobility group AT-hook 1. Cancer Cell Int 2021; 21:8. [PMID: 33407473 PMCID: PMC7789558 DOI: 10.1186/s12935-020-01657-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022] Open
Abstract
Background Endometrial carcinoma is a frequently diagnosed cancer among females. LncRNAs are reported to be associated with various cancers. Their biological roles in endometrial carcinoma progression is an emerging scientific area. LINC00665 can exert a significant role in many cancers. However, its potential function in endometrial carcinoma is still poorly known. Method qRT-PCR was carried out to test expression of LINC00665 and HMGA1. Western blot analysis was carried out to detect protein expression of HMGA1. Cell proliferation was evaluated using Cell Counting Kit-8 (CCK-8) and EdU assay. Flow cytometry assay was used to determine cell apoptosis and cell cycle. Wound healing and transwell invasion assay was carried out to test cell migration and invasion. Immunohistochemical staining and HE staining were conducted to assess Ki-67 and tumor growth respectively. Results Expression of LINC00665 in clinical endometrial carcinoma tissues and cells was obviously up-regulated. Loss of LINC00665 could repress endometrial carcinoma cell viability, induce cell apoptosis and block cell cycle in G1 phase. KLE and HHUA cell migration and invasion ability were depressed by LINC00665 shRNA. Decrease of LINC00665 suppressed endometrial carcinoma tumorigenicity in vivo. RIP assay proved that LINC00665 directly bound with HMGA1 protein. shRNA of HMGA1 obviously restrained endometrial carcinoma cell growth and cell invasion. Conclusions LINC00665 might promote endometrial carcinoma progression by positively modulating HMGA1.
Collapse
Affiliation(s)
- Yixuan Cai
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Min Hao
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yue Chang
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China
| | - Yun Liu
- Department of Obstetrics and Gynecology, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing, China.
| |
Collapse
|
50
|
Hub gene identification and prognostic model construction for isocitrate dehydrogenase mutation in glioma. Transl Oncol 2020; 14:100979. [PMID: 33290989 PMCID: PMC7720094 DOI: 10.1016/j.tranon.2020.100979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
We identified ten hub genes which were driving IDH status in GBM and LGG. We constructed a prognostic model for IDH-mutant patients. Our findings have important clinical implications for accurate treatment in glioma.
Our study attempted to identify hub genes related to isocitrate dehydrogenase (IDH) mutation in glioma and develop a prognostic model for IDH-mutant glioma patients. In a first step, ten hub genes significantly associated with the IDH status were identified by weighted gene coexpression analysis (WGCNA). The functional enrichment analysis demonstrated that the most enriched terms of these hub genes were cadherin binding and glutathione metabolism. Three of these hub genes were significantly linked with the survival of glioma patients. 328 samples of IDH-mutant glioma were separated into two datasets: a training set (N = 228) and a test set (N = 100). Based on the training set, we identified two IDH-mutant subtypes with significantly different pathological features by using consensus clustering. A 31 gene-signature was identified by the least absolute shrinkage and selection operator (LASSO) algorithm and used for establishing a differential prognostic model for IDH-mutant patients. In addition, the test set was employed for validating the prognostic model, and the model was proven to be of high value in classifying prognostic information of samples. The functional annotation revealed that the genes related to the model were mainly enriched in nuclear division, DNA replication, and cell cycle. Collectively, this study provided novel insights into the molecular mechanism of IDH mutation in glioma, and constructed a prognostic model which can be effective for predicting prognosis of glioma patients with IDH-mutation, which might promote the development of IDH target agents in glioma therapies and contribute to accurate prognostication and management in IDH-mutant glioma patients.
Collapse
|