1
|
Makwana R, Christ C, Patel R, Marchi E, Harpell R, Lyon GJ. Natural History of NAA15 -Related Neurodevelopmental Disorder Through Adolescence. Am J Med Genet A 2025; 197:e64009. [PMID: 39991982 PMCID: PMC12052496 DOI: 10.1002/ajmg.a.64009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/08/2025] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
The NatA N-terminal acetyltransferase complex is composed of the NAA10 catalytic subunit and the auxiliary subunits NAA15 and HYPK. While those with variants in the enzymatic subunit develop Ogden Syndrome, individuals with variants in the NAA15 coding region develop NAA15-related neurodevelopmental syndrome, which presents with a wide array of manifestations that affect the heart, brain, musculoskeletal system, and behavioral and cognitive development. We tracked a cohort of 27 participants (9 females and 18 males) with pathogenic NAA15 variants over time and administered the Vineland-3 assessment to assess their adaptive functioning. We found that this cohort performed significantly worse compared to the normalized Vineland values. On average, females performed better than males, and they performed significantly better on the motor domain and fine motor sub-domain portions of the assessment. Over time, females showed a significant decrease in adaptive functioning, primarily in the daily living skills and motor domains. Males (after excluding one outlier) showed a moderate positive correlation between age and adaptive behavior composite (ABC) standard score. Despite a similar etiology caused by dysfunction in the NatA complex, NAA15-related neurodevelopmental disorder appears to have a weaker effect on adaptive behavior than Ogden Syndrome. However, these differences are based on comparisons to similar literature, as opposed to head-to-head testing. Lastly, comparisons between probands with loss of function variants in NAA15 and those with missense variants showed no significant differences in adaptive behavior metrics. Ultimately, additional longitudinal data should be collected to determine the validity of the between sex differences and to better understand the change in adaptive behavioral outcomes of individuals with NAA15-neurodevelopmental disorder as they age.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Rahi Patel
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
2
|
Fazna A, Hagerman RJ. Prevalence of fragile X syndrome in South Asia, and importance of diagnosis. MEDICAL REVIEW (2021) 2025; 5:164-173. [PMID: 40224363 PMCID: PMC11987505 DOI: 10.1515/mr-2024-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/05/2024] [Indexed: 04/15/2025]
Abstract
Fragile X syndrome (FXS) is a genetic disorder caused by a mutation in the FMR1 gene on the X chromosome, leading to a range of developmental and intellectual disabilities. FXS is characterized by intellectual disability, behavior challenges, and distinct physical features such as an elongated face, large ears, and hyperflexible joints; FXS remains the most common inherited cause of intellectual disability. Behavioral manifestations often include attention deficits, hyperactivity, anxiety, and features of autism spectrum disorder. The prevalence of FXS in the South Asian population is not well-documented, but existing studies suggest it may be comparable to global prevalence rates, which are approximately 1 in 4,000 males and 1 in 8,000 females. Accurate diagnosis of FXS in South Asians is crucial due to the implications for early intervention and treatment, which can significantly improve the quality of life and developmental outcomes for affected individuals. Early diagnosis also facilitates genetic counselling and family planning, helping to reduce the risk of recurrence in families. Increased awareness and screening in South Asian communities are essential to address the diagnostic gap and ensure timely support for individuals with FXS or disorders associated with the premutation of FMR1.
Collapse
Affiliation(s)
- Aminath Fazna
- Indira Gandhi Memorial Hospital, Male, Maldives
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| | - Randi Jenssen Hagerman
- MIND Institute, University of California Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
3
|
Ferraguto C, Piquemal-Lagoueillat M, Lemaire V, Moreau MM, Trazzi S, Uguagliati B, Ciani E, Bertrand SS, Louette E, Bontempi B, Pietropaolo S. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacology 2024; 49:2032-2041. [PMID: 39223257 PMCID: PMC11480417 DOI: 10.1038/s41386-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | - Valerie Lemaire
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Bruno Bontempi
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
4
|
Juárez JCC, Gómez AA, Díaz AES, Arévalo GS. Understanding pathophysiology in fragile X syndrome: a comprehensive review. Neurogenetics 2024; 26:6. [PMID: 39585476 DOI: 10.1007/s10048-024-00794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Fragile X syndrome (FXS) is the leading hereditary cause of intellectual disability and the most commonly associated genetic cause of autism. Historically, research into its pathophysiology has focused predominantly on neurons; however, emerging evidence suggests involvement of additional cell types and systems. The objective of this study was to review and synthesize current evidence regarding the pathophysiology of Fragile X syndrome. A comprehensive literature review was conducted using databases such as PubMed and Google Scholar, employing MeSH terms including "Fragile X Syndrome," "FMR1 gene," and "FMRP." Studies on both human and animal models, from inception to 2022, published in recognized journals were included. The evidence supports those neurons, glial cells, stem cells, the immune system, and lipid metabolism pathways contribute to the pathophysiology of Fragile X syndrome. Further research is necessary to explore these fields independently and to elucidate their interactions.
Collapse
Affiliation(s)
| | - Alejandro Aguilar Gómez
- Faculty of Medical Sciences, Universidad of San Carlos of Guatemala, Guatemala City, Guatemala
| | | | - Gabriel Silva Arévalo
- Genetics and Metabolic Clinic Coordinator, Hospital Obras Sociales del Santo Hermano Pedro, Antigua Guatemala City, Guatemala
| |
Collapse
|
5
|
McCarthy DM, Vied C, Trupiano MX, Canekeratne AJ, Wang Y, Schatschneider C, Bhide PG. Behavioral, neurotransmitter and transcriptomic analyses in male and female Fmr1 KO mice. Front Behav Neurosci 2024; 18:1458502. [PMID: 39308631 PMCID: PMC11412825 DOI: 10.3389/fnbeh.2024.1458502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Fragile X syndrome is an inherited X-linked disorder associated with intellectual disabilities that begin in childhood and last a lifetime. The symptoms overlap with autism spectrum disorder, and the syndrome predominantly affects males. Consequently, FXS research tends to favor analysis of social behaviors in males, leaving a gap in our understanding of other behavioral traits, especially in females. Methods We used a mouse model of FXS to analyze developmental, behavioral, neurochemical, and transcriptomic profiles in males and females. Results Our behavioral assays demonstrated locomotor hyperactivity, motor impulsivity, increased "approach" behavior in an approach-avoidance assay, and deficits in nest building behavior. Analysis of brain neurotransmitter content revealed deficits in striatal GABA, glutamate, and serotonin content. RNA sequencing of the ventral striatum unveiled expression changes associated with neurotransmission as well as motivation and substance use pathways. Sex differences were identified in nest building behavior, striatal neurotransmitter content, and ventral striatal gene expression. Discussion In summary, our study identified sex differences in specific behavioral, neurotransmitter, and gene expression phenotypes and gene set enrichment analysis identified significant enrichment of pathways associated with motivation and drug reward.
Collapse
Affiliation(s)
- Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Cynthia Vied
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Translational Science Laboratory, Florida State University College of Medicine Tallahassee, FL, United States
| | - Mia X. Trupiano
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Angeli J. Canekeratne
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Yuan Wang
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
- Department of Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, United States
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- FSU Institute for Pediatric Rare Diseases, Florida State University College of Medicine, Tallahassee, FL, United States
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
6
|
Kaczmarek KT, Protokowicz K, Kaczmarek L. Matrix metalloproteinase-9: A magic drug target in neuropsychiatry? J Neurochem 2024; 168:1842-1853. [PMID: 37791997 DOI: 10.1111/jnc.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Neuropsychiatric conditions represent a major medical and societal challenge. The etiology of these conditions is very complex and combines genetic and environmental factors. The latter, for example, excessive maternal or early postnatal inflammation, as well as various forms of psychotrauma, often act as triggers leading to mental illness after a prolonged latent period (sometimes years). Matrix metalloproteinase-9 (MMP-9) is an extracellularly and extrasynaptic operating protease that is markedly activated in response to the aforementioned environmental insults. MMP-9 has also been shown to play a pivotal role in the plasticity of excitatory synapses, which, in its aberrant form, has repeatedly been implicated in the etiology of mental illness. In this conceptual review, we evaluate the experimental and clinical evidence supporting the claim that MMP-9 is uniquely positioned to be considered a drug target for ameliorating the adverse effects of environmental insults on the development of a variety of neuropsychiatric conditions, such as schizophrenia, bipolar disorder, major depression, autism spectrum disorders, addiction, and epilepsy. We also identify specific challenges and bottlenecks hampering the translation of knowledge on MMP-9 into new clinical treatments for the conditions above and suggest ways to overcome these barriers.
Collapse
|
7
|
Makwana R, Christ C, Patel R, Marchi E, Harpell R, Lyon GJ. A Natural History of NAA15 -related Neurodevelopmental Disorder Through Adolescence. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.20.24306120. [PMID: 38712024 PMCID: PMC11071585 DOI: 10.1101/2024.04.20.24306120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
NAA15 is a member of the NatA N-terminal acetyltransferase complex, which also includes the NAA10 enzymatic sub-unit. Individuals with variants in the NAA15 coding region develop NAA15 -related neurodevelopmental syndrome, which presents with a wide array of manifestations that affect the heart, brain, musculoskeletal system, and behavioral and cognitive development. We tracked a cohort of 27 participants (9 females and 18 males) over time, each with a pathogenic NAA15 variant, and administered the Vineland-3 assessment to assess their adaptive functioning. We found that the cohort performed significantly worse compared to the normalized Vineland values. On average, females performed better than males, and they performed significantly better on the Motor Domain and Fine Motor Sub-Domain portions of the assessment. Over time, females showed a decrease in adaptive functioning, with the decline being especially correlated at the Coping, Domestic, and Fine motor sub-domains. Males (after excluding one outlier) showed a moderate positive correlation between age and ABC standard score. Ultimately, additional longitudinal data should be collected to determine the validity of the between sex-differences and to better understand the change in adaptive behavioral outcomes of individuals with NAA15 -neurodevelopmental disorder as they age.
Collapse
|
8
|
Milojevic S, Ghosh A, Makevic V, Stojkovic M, Capovilla M, Tosti T, Budimirovic D, Protic D. Circadian Rhythm and Sleep Analyses in a Fruit Fly Model of Fragile X Syndrome Using a Video-Based Automated Behavioral Research System. Int J Mol Sci 2024; 25:7949. [PMID: 39063191 PMCID: PMC11277495 DOI: 10.3390/ijms25147949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation in the FMR1 gene on the Xq27.3 chromosome region. It is the most common monogenic cause of autism spectrum disorder (ASD) and inherited intellectual disability (ID). Besides ASD and ID and other symptoms, individuals with FXS may exhibit sleep problems and impairment of circadian rhythm (CR). The Drosophila melanogaster models of FXS, such as dFMR1B55, represent excellent models for research in the FXS field. During this study, sleep patterns and CR in dFMR1B55 mutants were analyzed, using a new platform based on continuous high-resolution videography integrated with a highly-customized version of an open-source software. This methodology provides more sensitive results, which could be crucial for all further research in this model of fruit flies. The study revealed that dFMR1B55 male mutants sleep more and can be considered weak rhythmic flies rather than totally arrhythmic and present a good alternative animal model of genetic disorder, which includes impairment of CR and sleep behavior. The combination of affordable videography and software used in the current study is a significant improvement over previous methods and will enable broader adaptation of such high-resolution behavior monitoring methods.
Collapse
Affiliation(s)
- Sara Milojevic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.); (M.S.)
| | - Arijit Ghosh
- Chronobiology and Behavioral Neurogenetics Laboratory, Neuroscience Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064, India;
| | - Vedrana Makevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Maja Stojkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.); (M.S.)
| | - Maria Capovilla
- UMR7275 CNRS-INSERM-UniCA, Institute of Cellular and Molecular Pharmacology Institute, Sophia Antipolis, 06560 Valbonne, France;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Dejan Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (S.M.); (M.S.)
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Donoghue SE, Amor DJ. Intellectual disability: A potentially treatable condition. J Paediatr Child Health 2024; 60:273-278. [PMID: 38887130 DOI: 10.1111/jpc.16598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The application of genomics has greatly increased the diagnosis of specific monogenic causes of intellectual disability and improved our understanding of the neuronal processes that result in cognitive impairment. Meanwhile, families are building rare disease communities and seeking disease-specific treatments to change the trajectory of health and developmental outcomes for their children. To date, treatments for intellectual disability have focussed on metabolic disorders, where early treatment has improved cognition and neurodevelopmental outcomes. In this article, we discuss the treatment strategies that may be possible to change the neurodevelopmental outcome in a broader range of genetic forms of intellectual disability. These strategies include substrate modification, enzyme replacement therapy, gene therapy and molecular therapies. We argue that intellectual disability should now be considered a potentially treatable condition and a strong candidate for precision medicine.
Collapse
Affiliation(s)
- Sarah E Donoghue
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemical Genetics, Victorian Clinical Genetics Services, Melbourne, Victoria, Australia
| | - David J Amor
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Makwana R, Christ C, Marchi E, Harpell R, Lyon GJ. Longitudinal Adaptive Behavioral Outcomes in Ogden Syndrome by Seizure Status and Therapeutic Intervention. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.23.24303144. [PMID: 38585745 PMCID: PMC10996826 DOI: 10.1101/2024.02.23.24303144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Ogden syndrome, also known as NAA10-related neurodevelopmental syndrome, is a rare genetic condition associated with pathogenic variants in the NAA10 N-terminal acetylation family of proteins. The condition was initially described in 2011, and is characterized by a range of neurologic symptoms, including intellectual disability and seizures, as well as developmental delays, psychiatric symptoms, congenital heart abnormalities, hypotonia and others. Previously published articles have described the etiology and phenotype of Ogden syndrome, mostly with retrospective analyses; herein, we report prospective data concerning its progress over time. Additionally, we describe the nature of seizures in this condition in greater detail, as well as investigate how already-available non-pharmaceutical therapies impact individuals with NAA10-related neurodevelopmental syndrome. Using Vineland-3 scores, we show decline in cognitive function over time in individuals with Ogden syndrome. Sub-domain analysis found the decline to be present across all modalities. Additional investigation between seizure and non-seizure groups showed no significant difference in adaptive behavior outcomes. Therapy investigation showed speech therapy to be the most commonly used therapy by individuals with NAA10-related neurodevelopmental syndrome, followed by occupational and physical therapy. with more severely affected individuals receiving more types of therapy than their less-severe counterparts. Early intervention analysis was only significantly effective for speech therapy, with analyses of all other therapies being non-significant. Our study portrays the decline in cognitive function over time of individuals within our cohort, independent of seizure status and therapies being received, and highlights the urgent need for the development of effective treatments for Ogden syndrome.
Collapse
Affiliation(s)
- Rikhil Makwana
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Carolina Christ
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Randie Harpell
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Gholson J. Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- George A. Jervis Clinic, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Biology PhD Program, The Graduate Center, The City University of New York, New York, United States of America
| |
Collapse
|
11
|
Picciuca C, Assogna M, Esposito R, D’Acunto A, Ferraresi M, Picazio S, Borghi I, Martino Cinnera A, Bonnì S, Chiurazzi P, Koch G. Transcranial direct current stimulation combined with speech therapy in Fragile X syndrome patients: a pilot study. Front Neurol 2023; 14:1268165. [PMID: 38116107 PMCID: PMC10729003 DOI: 10.3389/fneur.2023.1268165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the leading cause of genetic intellectual disability. Among the neurobehavioral dysfunctions in FXS individuals, language development and literacy are compromised. Recent evidence hypothesized that the disruption of excitatory glutamatergic and GABAergic inhibitory neurotransmission balance might be responsible for impairment in cognitive function. In this study, we evaluated for the first time, the safety, tolerability, and efficacy of anodal prefrontal transcranial direct current stimulation (tDCS) combined with standard speech therapy to enhance language function in FXS patients. Methods In total, 16 adult FXS patients were enrolled. Participants underwent 45 min of anodic tDCS combined with speech therapy for 5 weeks (3 times per week). Language function was evaluated using the Test for Reception of Grammar-Version 2 (TROG-2) and subtests of the Italian Language Examination (Esame del Linguaggio - II, EDL-II). Right and left dorsolateral prefrontal cortex transcranial magnetic stimulation and concurrent electroencephalography (TMS-EEG) recordings were collected at baseline and after the treatment to evaluate cortical reactivity and connectivity changes. Results After 5 weeks of combined therapy, we observed a significant improvement in the writing (7.5%), reading (20.3%), repetition (13.3%), and TROG-2 (10.2%) tests. Parallelly with clinical change, TMS-EEG results showed a significant difference in TMS-evoked potential amplitude over the left frontal cortex after treatment (-0.73 ± 0.87 μV) compared to baseline (0.18 ± 0.84 μV). Conclusion Our study provides novel evidence that left anodal prefrontal tDCS combined with standard speech therapy could be effective in enhancing language function in FXS patients, mainly by inducing a rebalance of the dysfunctional prefrontal cortical excitability.
Collapse
Affiliation(s)
- Chiara Picciuca
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Martina Assogna
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Romina Esposito
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alessia D’Acunto
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Matteo Ferraresi
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Silvia Picazio
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Ilaria Borghi
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | - Alex Martino Cinnera
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Sonia Bonnì
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina genomica, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy
- UOC Genetica Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Giacomo Koch
- Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Aishworiya R, Chi MH, Zafarullah M, Mendoza G, Ponzini MD, Kim K, Biag HMB, Thurman AJ, Abbeduto L, Hessl D, Randol JL, Bolduc FV, Jacquemont S, Lippé S, Hagerman P, Hagerman R, Schneider A, Tassone F. Intercorrelation of Molecular Biomarkers and Clinical Phenotype Measures in Fragile X Syndrome. Cells 2023; 12:1920. [PMID: 37508583 PMCID: PMC10377864 DOI: 10.3390/cells12141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This study contributes to a greater understanding of the utility of molecular biomarkers to identify clinical phenotypes of fragile X syndrome (FXS). Correlations of baseline clinical trial data (molecular measures-FMR1 mRNA, CYFIP1 mRNA, MMP9 and FMRP protein expression levels, nonverbal IQ, body mass index and weight, language level, NIH Toolbox, adaptive behavior rating, autism, and other mental health correlates) of 59 participants with FXS ages of 6-32 years are reported. FMR1 mRNA expression levels correlated positively with adaptive functioning levels, expressive language, and specific NIH Toolbox measures. The findings of a positive correlation of MMP-9 levels with obesity, CYFIP1 mRNA with mood and autistic symptoms, and FMR1 mRNA expression level with better cognitive, language, and adaptive functions indicate potential biomarkers for specific FXS phenotypes. These may be potential markers for future clinical trials for targeted treatments of FXS.
Collapse
Affiliation(s)
- Ramkumar Aishworiya
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore 119074, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mei-Hung Chi
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| | - Guadalupe Mendoza
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| | - Matthew Dominic Ponzini
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Kyoungmi Kim
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Public Health Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Hazel Maridith Barlahan Biag
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Angela John Thurman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - David Hessl
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Jamie Leah Randol
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
- Integrative Genetics and Genomics Graduate Group, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
- UC Davis Biotechnology Program, University of California Davis, Davis, CA 95616, USA
| | - Francois V. Bolduc
- Department of Pediatrics, Department of Medical Genetics, Women and Children Health Research Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sebastien Jacquemont
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sarah Lippé
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Psychology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Paul Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| | - Randi Hagerman
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Andrea Schneider
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Medical Center, Sacramento, CA 95817, USA; (R.A.); (M.D.P.); (H.M.B.B.)
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA (G.M.)
| |
Collapse
|
13
|
Elhawary NA, AlJahdali IA, Abumansour IS, Azher ZA, Falemban AH, Madani WM, Alosaimi W, Alghamdi G, Sindi IA. Phenotypic variability to medication management: an update on fragile X syndrome. Hum Genomics 2023; 17:60. [PMID: 37420260 PMCID: PMC10329374 DOI: 10.1186/s40246-023-00507-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
This review discusses the discovery, epidemiology, pathophysiology, genetic etiology, molecular diagnosis, and medication-based management of fragile X syndrome (FXS). It also highlights the syndrome's variable expressivity and common comorbid and overlapping conditions. FXS is an X-linked dominant disorder associated with a wide spectrum of clinical features, including but not limited to intellectual disability, autism spectrum disorder, language deficits, macroorchidism, seizures, and anxiety. Its prevalence in the general population is approximately 1 in 5000-7000 men and 1 in 4000-6000 women worldwide. FXS is associated with the fragile X messenger ribonucleoprotein 1 (FMR1) gene located at locus Xq27.3 and encodes the fragile X messenger ribonucleoprotein (FMRP). Most individuals with FXS have an FMR1 allele with > 200 CGG repeats (full mutation) and hypermethylation of the CpG island proximal to the repeats, which silences the gene's promoter. Some individuals have mosaicism in the size of the CGG repeats or in hypermethylation of the CpG island, both produce some FMRP and give rise to milder cognitive and behavioral deficits than in non-mosaic individuals with FXS. As in several monogenic disorders, modifier genes influence the penetrance of FMR1 mutations and FXS's variable expressivity by regulating the pathophysiological mechanisms related to the syndrome's behavioral features. Although there is no cure for FXS, prenatal molecular diagnostic testing is recommended to facilitate early diagnosis. Pharmacologic agents can reduce some behavioral features of FXS, and researchers are investigating whether gene editing can be used to demethylate the FMR1 promoter region to improve patient outcomes. Moreover, clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 and developed nuclease defective Cas9 (dCas9) strategies have promised options of genome editing in gain-of-function mutations to rewrite new genetic information into a specified DNA site, are also being studied.
Collapse
Affiliation(s)
- Nasser A. Elhawary
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Imad A. AlJahdali
- Department of Community Medicine, College of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Iman S. Abumansour
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Zohor A. Azher
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Alaa H. Falemban
- Department of Pharmacology and Toxicology, College of Medicine, Umm Al-Qura University, Mecca, 24382 Saudi Arabia
| | - Wefaq M. Madani
- Department of Hematology and Immunology, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Wafaa Alosaimi
- Department of Hematology, Maternity and Children Hospital, Mecca, Saudi Arabia
| | - Ghydda Alghamdi
- Department of Medical Genetics, College of Medicine, Umm Al-Qura University, Mecca, 21955 Saudi Arabia
| | - Ikhlas A. Sindi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Preparatory Year Program, Batterjee Medical College, Jeddah, 21442 Saudi Arabia
| |
Collapse
|
14
|
Life B, Bettio LE, Gantois I, Christie BR, Leavitt BR. Progranulin is an FMRP target that influences macroorchidism but not behaviour in a mouse model of Fragile X Syndrome. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100094. [PMID: 37416094 PMCID: PMC10319828 DOI: 10.1016/j.crneur.2023.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
A growing body of evidence has implicated progranulin in neurodevelopment and indicated that aberrant progranulin expression may be involved in neurodevelopmental disease. Specifically, increased progranulin expression in the prefrontal cortex has been suggested to be pathologically relevant in male Fmr1 knockout (Fmr1 KO) mice, a mouse model of Fragile X Syndrome (FXS). Further investigation into the role of progranulin in FXS is warranted to determine if therapies that reduce progranulin expression represent a viable strategy for treating patients with FXS. Several key knowledge gaps remain. The mechanism of increased progranulin expression in Fmr1 KO mice is poorly understood and the extent of progranulin's involvement in FXS-like phenotypes in Fmr1 KO mice has been incompletely explored. To this end, we have performed a thorough characterization of progranulin expression in Fmr1 KO mice. We find that the phenomenon of increased progranulin expression is post-translational and tissue-specific. We also demonstrate for the first time an association between progranulin mRNA and FMRP, suggesting that progranulin mRNA is an FMRP target. Subsequently, we show that progranulin over-expression in Fmr1 wild-type mice causes reduced repetitive behaviour engagement in females and mild hyperactivity in males but is largely insufficient to recapitulate FXS-associated behavioural, morphological, and electrophysiological abnormalities. Lastly, we determine that genetic reduction of progranulin expression on an Fmr1 KO background reduces macroorchidism but does not alter other FXS-associated behaviours or biochemical phenotypes.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 0B3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
| | - Luis E.B. Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Ilse Gantois
- Department of Biochemistry, McGill University, Montreal, H3A 2T5, Quebec, Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, H3A 2T5, Quebec, Canada
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC, V8P 5C2, Canada
- Island Medical Program, University of British Columbia, Victoria, BC, V8P 5C2, Canada
- Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Blair R. Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6H 0B3, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, V5Z 4H4, Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC, V6T 2B5, Canada
- Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
15
|
Yang S, Kim SH, Kang M, Joo JY. Harnessing deep learning into hidden mutations of neurological disorders for therapeutic challenges. Arch Pharm Res 2023:10.1007/s12272-023-01450-5. [PMID: 37261600 DOI: 10.1007/s12272-023-01450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
The relevant study of transcriptome-wide variations and neurological disorders in the evolved field of genomic data science is on the rise. Deep learning has been highlighted utilizing algorithms on massive amounts of data in a human-like manner, and is expected to predict the dependency or druggability of hidden mutations within the genome. Enormous mutational variants in coding and noncoding transcripts have been discovered along the genome by far, despite of the fine-tuned genetic proofreading machinery. These variants could be capable of inducing various pathological conditions, including neurological disorders, which require lifelong care. Several limitations and questions emerge, including the use of conventional processes via limited patient-driven sequence acquisitions and decoding-based inferences as well as how rare variants can be deduced as a population-specific etiology. These puzzles require harnessing of advanced systems for precise disease prediction, drug development and drug applications. In this review, we summarize the pathophysiological discoveries of pathogenic variants in both coding and noncoding transcripts in neurological disorders, and the current advantage of deep learning applications. In addition, we discuss the challenges encountered and how to outperform them with advancing interpretation.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-Ro, Sangnok-Gu Ansan, Ansan, Gyeonggi-Do, 15588, Republic of Korea.
| |
Collapse
|
16
|
Acero-Garcés DO, Saldarriaga W, Cabal-Herrera AM, Rojas CA, Hagerman RJ. Fragile X Syndrome in children. Colomb Med (Cali) 2023; 54:e4005089. [PMID: 37664646 PMCID: PMC10469670 DOI: 10.25100/cm.v54i2.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/28/2022] [Accepted: 05/14/2023] [Indexed: 09/05/2023] Open
Abstract
Fragile X syndrome is caused by the expansion of CGG triplets in the FMR1 gene, which generates epigenetic changes that silence its expression. The absence of the protein coded by this gene, FMRP, causes cellular dysfunction, leading to impaired brain development and functional abnormalities. The physical and neurologic manifestations of the disease appear early in life and may suggest the diagnosis. However, it must be confirmed by molecular tests. It affects multiple areas of daily living and greatly burdens the affected individuals and their families. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism spectrum disorder; the diagnosis should be suspected in every patient with neurodevelopmental delay. Early interventions could improve the functional prognosis of patients with Fragile X syndrome, significantly impacting their quality of life and daily functioning. Therefore, healthcare for children with Fragile X syndrome should include a multidisciplinary approach.
Collapse
Affiliation(s)
| | - Wilmar Saldarriaga
- Universidad del Valle, Facultad de Salud, Escuela de Medicina, Cali, Colombia
- Universidad del Valle, Facultad de Salud, Escuela de Ciencias Básicas, Cali, Colombia
| | | | - Christian A. Rojas
- Universidad del Valle, Facultad de Salud, Escuela de Medicina, Cali, Colombia
| | - Randi J. Hagerman
- University of California, Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA, USA
- Davis Medical Center, Sacramento, CA, USA
- University of California, Department of Pediatrics, Davis, CA, USA
| |
Collapse
|
17
|
Chadman KK, Adayev T, Udayan A, Ahmed R, Dai CL, Goodman JH, Meeker H, Dolzhanskaya N, Velinov M. Efficient Delivery of FMR1 across the Blood Brain Barrier Using AAVphp Construct in Adult FMR1 KO Mice Suggests the Feasibility of Gene Therapy for Fragile X Syndrome. Genes (Basel) 2023; 14:505. [PMID: 36833432 PMCID: PMC9957373 DOI: 10.3390/genes14020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. Gene therapy may offer an efficient method to ameliorate the symptoms of this disorder. Methods An AAVphp.eb-hSyn-mFMR1IOS7 vector and an empty control were injected into the tail vein of adult Fmr1 knockout (KO) mice and wildtype (WT) controls. The KO mice were injected with 2 × 1013 vg/kg of the construct. The control KO and WT mice were injected with an empty vector. Four weeks following treatment, the animals underwent a battery of tests: open field, marble burying, rotarod, and fear conditioning. The mouse brains were studied for levels of the Fmr1 product FMRP. Results: No significant levels of FMRP were found outside the CNS in the treated animals. The gene delivery was highly efficient, and it exceeded the control FMRP levels in all tested brain regions. There was also improved performance in the rotarod test and partial improvements in the other tests in the treated KO animals. Conclusion: These experiments demonstrate efficient, brain-specific delivery of Fmr1 via peripheral administration in adult mice. The gene delivery led to partial alleviation of the Fmr1 KO phenotypical behaviors. FMRP oversupply may explain why not all behaviors were significantly affected. Since AAV.php vectors are less efficient in humans than in the mice used in the current experiment, studies to determine the optimal dose using human-suitable vectors will be necessary to further demonstrate feasibility.
Collapse
Affiliation(s)
- Kathryn K. Chadman
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Tatyana Adayev
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Aishwarya Udayan
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Rida Ahmed
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Macaulay Honors College at Hunter CUNY, New York, NY 10065, USA
| | - Chun-Ling Dai
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Jeffrey H. Goodman
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Harry Meeker
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Natalia Dolzhanskaya
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - Milen Velinov
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
18
|
"Corp-Osa-Mente", a Combined Psychosocial-Neuropsychological Intervention for Adolescents and Young Adults with Fragile X Syndrome: An Explorative Study. Brain Sci 2023; 13:brainsci13020277. [PMID: 36831819 PMCID: PMC9953950 DOI: 10.3390/brainsci13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/12/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Fragile X Syndrome is the most known inherited form of intellectual disability due to an expansion in the full mutation range (>200 CGG repeats) of the promoter region of the FMR1 gene located on X chromosomes leading to gene silencing. Despite clear knowledge of the cognitive-behavioral phenotype of FXS and the necessity of tailored interventions, empirical research on the effectiveness of behavioral treatments among patients with FXS is still lacking, with studies on adolescents and young adults even more insufficient. Here we present "Corposamente", a combined psychosocial-neuropsychological intervention conducted with a group of ten adolescents/young adults with FXS, who are non-ASD and without significant behavioral problems. In total, 20 sessions were performed, alternating between online and face-to-face meetings. At the end of the intervention, participants, family members and participants' educators anonymously completed a survey that was designed around key areas of improvement as well as treatment satisfaction. The survey results indicated that participants improved mostly in their ability to cope with negative emotions and that occupational intervention was considered the most effective technique both from families and participants. Our exploratory study suggests that group therapy for the management of the FXS cognitive-behavioral phenotype may be a promising approach to continue to pursue, mostly in adolescence when the environmental demands increase.
Collapse
|
19
|
Johnson D, Hagerman R. Medical use of cannabidiol in fragile X syndrome. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:415-426. [DOI: 10.1016/b978-0-323-90036-2.00029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, Pedapati EV. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Mol Autism 2022; 13:47. [PMID: 36494861 PMCID: PMC9733336 DOI: 10.1186/s13229-022-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and autism spectrum disorder. Executive function (EF), necessary for adaptive goal-oriented behavior and dependent on frontal lobe function, is impaired in individuals with FXS. Yet, little is known how alterations in frontal lobe neural activity is related to EF deficits in FXS. METHODS Sixty-one participants with FXS (54% males) and 71 age- and sex-matched typically-developing controls (TDC; 58% males) completed a five-minute resting state electroencephalography (EEG) protocol and a computerized battery of tests of EF, the Test of Attentional Performance for Children (KiTAP). Following source localization (minimum-norm estimate), we computed debiased weighted phase lag index (dWPLI), a phase connectivity value, for pairings between 18 nodes in frontal regions for gamma (30-55 Hz) and alpha (10.5-12.5 Hz) bands. Linear models were generated with fixed factors of group, sex, frequency, and connection. Relationships between frontal connectivity and EF variables also were examined. RESULTS Individuals with FXS demonstrated increased gamma band and reduced alpha band connectivity across all frontal regions and across hemispheres compared to TDC. After controlling for nonverbal IQ, increased error rates on EF tasks were associated with increased gamma band and reduced alpha band connectivity. LIMITATIONS Frontal connectivity findings are limited to intrinsic brain activity during rest and may not generalize to frontal connectivity during EF tasks or everyday function. CONCLUSIONS We report gamma hyper-connectivity and alpha hypo-connectivity within source-localized frontal brain regions in FXS compared to TDC during resting-state EEG. For the first time in FXS, we report significant associations between EF and altered frontal connectivity, with increased error rate relating to increased gamma band connectivity and reduced alpha band connectivity. These findings suggest increased phase connectivity within gamma band may impair EF performance, whereas greater alpha band connectivity may provide compensatory support for EF. Together, these findings provide important insight into neurophysiological mechanisms of EF deficits in FXS and provide novel targets for treatment development.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joy Li
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rui Liu
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA
| | - Paul S. Horn
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
21
|
Domingos LB, Silva NR, Chaves Filho AJM, Sales AJ, Starnawska A, Joca S. Regulation of DNA Methylation by Cannabidiol and Its Implications for Psychiatry: New Insights from In Vivo and In Silico Models. Genes (Basel) 2022; 13:2165. [PMID: 36421839 PMCID: PMC9690868 DOI: 10.3390/genes13112165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2023] Open
Abstract
Cannabidiol (CBD) is a non-psychotomimetic compound present in cannabis sativa. Many recent studies have indicated that CBD has a promising therapeutic profile for stress-related psychiatric disorders, such as anxiety, schizophrenia and depression. Such a diverse profile has been associated with its complex pharmacology, since CBD can target different neurotransmitter receptors, enzymes, transporters and ion channels. However, the precise contribution of each of those mechanisms for CBD effects is still not yet completely understood. Considering that epigenetic changes make the bridge between gene expression and environment interactions, we review and discuss herein how CBD affects one of the main epigenetic mechanisms associated with the development of stress-related psychiatric disorders: DNA methylation (DNAm). Evidence from in vivo and in silico studies indicate that CBD can regulate the activity of the enzymes responsible for DNAm, due to directly binding to the enzymes and/or by indirectly regulating their activities as a consequence of neurotransmitter-mediated signaling. The implications of this new potential pharmacological target for CBD are discussed in light of its therapeutic and neurodevelopmental effects.
Collapse
Affiliation(s)
- Luana B. Domingos
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Nicole R. Silva
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Adriano J. M. Chaves Filho
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Amanda J. Sales
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14049-900, SP, Brazil
| | - Anna Starnawska
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8000 Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Center for Integrative Sequencing, iSEQ, 8000 Aarhus, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
22
|
Condy EE, Becker L, Farmer C, Kaat AJ, Chlebowski C, Kozel BA, Thurm A. NIH Toolbox Cognition Battery Feasibility in Individuals With Williams Syndrome. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2022; 127:473-484. [PMID: 36306408 PMCID: PMC11613575 DOI: 10.1352/1944-7558-127.6.473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/25/2022] [Indexed: 06/16/2023]
Abstract
The NIH Toolbox Cognition Battery (NIHTB-CB) was developed for epidemiological and longitudinal studies across a wide age span. Such a tool may be useful for intervention trials in conditions characterized by intellectual disability (ID), such as Williams syndrome (WS). Three NIHTB-CB tasks, including two executive functioning (Flanker, Dimensional Change Card Sort) and one episodic memory (Picture Sequence Memory) task, were given to 47 individuals with WS, ages 4 to 50, to evaluate feasibility (i.e., proportion of valid administrations) in this population. Findings indicated that NIHTB-CB tests showed good feasibility. Flanker and DCCS age-corrected scores were negatively correlated with age and showed floor effects, indicating these scores may not be useful for quantifying performance on these NIHTB-CB tests in ID.
Collapse
Affiliation(s)
- Emma E Condy
- Emma E. Condy, National Institute of Mental Health
| | - Lindsey Becker
- Lindsey Becker, Eunice Kennedy Shriver National Institute of Child Health & Human Development
| | | | - Aaron J Kaat
- Aaron J. Kaat, Northwestern University Feinberg School of Medicine
| | | | - Beth A Kozel
- Beth A. Kozel, National Heart, Lung, and Blood Institute
| | - Audrey Thurm
- Audrey Thurm, National Institute of Mental Health
| |
Collapse
|
23
|
Gene therapy using human FMRP isoforms driven by the human FMR1 promoter rescues fragile X syndrome mouse deficits. Mol Ther Methods Clin Dev 2022; 27:246-258. [PMID: 36320413 PMCID: PMC9593309 DOI: 10.1016/j.omtm.2022.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
Abstract
Fragile X syndrome (FXS) is caused by the loss of the fragile X messenger ribonucleoprotein 1 (FMRP) encoded by the FMR1 gene. Gene therapy using adeno-associated virus (AAV) to restore FMRP expression is a promising therapeutic strategy. However, so far AAV gene therapy tests for FXS only utilized rodent FMRPs driven by promoters other than the human FMR1 promoter. Restoration of human FMRP in appropriate cell types and at physiological levels, preferably driven by the human FMR1 promoter, would be more suitable for its clinical use. Herein, we generated two human FMR1 promoter subdomains that effectively drive gene expression. When AAVs expressing two different human FMRP isoforms under the control of a human FMR1 promoter subdomain were administered into bilateral ventricles of neonatal Fmr1 -/y and wild-type (WT) mice, both human FMRP isoforms were expressed throughout the brain in a pattern reminiscent to that of mouse FMRP. Importantly, human FMRP expression attenuated social behavior deficits and stereotyped and repetitive behavior, and reversed dysmorphological dendritic spines in Fmr1 -/y mice, without affecting WT mouse behaviors. Our results demonstrate that human FMR1 promoter can effectively drive human FMRP expression in the brain to attenuate Fmr1 -/y mouse deficits, strengthening the notion of using AAV gene therapy for FXS treatment.
Collapse
|
24
|
Maertens M, Silver H, Dixon Weber J, Rosselot H, Lozano R. Parent and Caregiver Perspectives towards Cannabidiol as a Treatment for Fragile X Syndrome. Genes (Basel) 2022; 13:genes13091594. [PMID: 36140762 PMCID: PMC9498854 DOI: 10.3390/genes13091594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating chemical in cannabis plants that is being investigated as a candidate for treatment in Fragile X Syndrome (FXS), a leading known cause of inherited intellectual developmental disability. Studies have shown that CBD can reduce symptoms such as anxiety, social avoidance, hyperactivity, aggression, and sleep problems. This is a qualitative study that utilized a voluntary-anonymous survey that consisted of questions regarding demographics, medical information, the form, type, brand, dose, and frequency of CBD use, the rationale for use, the perception of effects, side effects, and costs. The full survey contained a total of 34 questions, including multiple-choice, Likert-scale, and optional free-response questions. This research revealed that there are a wide range of types, brands, and doses of CBD being administered to individuals with FXS by their parents and caregivers. There were many reasons why CBD was chosen, the most common ones being that respondents had heard positive things about CBD from members of the community, the perception that CBD had fewer side effects than other medications, and because respondents felt that CBD was a more natural substance. Most of the parents and caregivers who responded agreed that CBD improved some of the symptoms of FXS and made a positive difference overall. CBD has the therapeutic potential to help relieve some FXS symptoms. Future research is necessary to understand the benefits of CBD in FXS.
Collapse
Affiliation(s)
- Madison Maertens
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hailey Silver
- Department of Counseling and Clinical Psychology, Teachers College, Columbia University, New York, NY 10027, USA
| | | | | | - Reymundo Lozano
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- National Fragile X Foundation, McLean, VA 22102, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-824-8956
| |
Collapse
|
25
|
Cuda S, Censani M, Kharofa R, Williams DR, O'Hara V, Karjoo S, Paisley J, Browne NT. Social consequences and genetics for the child with overweight and obesity: An obesity medicine association (OMA) clinical practice statement 2022. OBESITY PILLARS (ONLINE) 2022; 3:100032. [PMID: 37990726 PMCID: PMC10662046 DOI: 10.1016/j.obpill.2022.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2023]
Abstract
Background This Obesity Medicine Association (OMA) clinical practice statement (CPS) covers two topics: 1) genetics and 2) social consequences for the child with overweight and obesity. This CPS is intended to provide clinicians with an overview of clinical practices applicable to children and adolescents with body mass indices greater than or equal to the 85th percentile for their ages, particularly those with adverse consequences resulting from increased body mass. The information in this CPS is based on scientific evidence, supported by the medical literature, and derived from the clinical experiences of members of the OMA. Methods The scientific information and clinical guidance in this CPS is based upon referenced evidence and derived from the clinical perspectives of the authors. Results This OMA clinical practice statement details two topics: 1) genetics and 2) social consequences for the child with overweight and obesity. Conclusions This OMA clinical practice statement on genetics and social consequences for the child with overweight and obesity is an overview of current literature. The literature provides a roadmap to the improvement of the health of children and adolescents with obesity, especially those with metabolic, physiological, and psychological complications.
Collapse
Affiliation(s)
- Suzanne Cuda
- Alamo City Healthy Kids and Families, 1919 Oakwell Farms Parkway, Ste 145 San Antonio, TX, 78218, USA
| | - Marisa Censani
- Associate Professor of Clinical Pediatrics, Division of Pediatric Endocrinology, Department of Pediatrics, New York Presbyterian Hospital, Weill Cornell Medicine, 525 East 68th Street, Box 103, New York, NY, 10021, USA
| | - Roohi Kharofa
- Center for Better Health & Nutrition, The Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Dominique R. Williams
- The Ohio State University College of MedicineCenter for Healthy Weight and Nutrition, Nationwide Children's Hospital 700 Children's Drive LA, Suite 5F Columbus, OH, 43215, USA
| | - Valerie O'Hara
- Medical Director, WOW 4 Wellness Clinic/ PCHC, 6 Telcom Drive, Bangor, ME, 04401, USA
| | - Sara Karjoo
- Johns Hopkins All Children's Hospital Pediatric Gastroenterology, 501 6th Ave S, St. Petersburg, FL, 33701, USA
| | - Jennifer Paisley
- St Elizabeth Physician's Group Primary Care 98 Elm Street Lawrenceburg, IN, 47025-2048, USA
| | | |
Collapse
|
26
|
Davidson M, Sebastian SA, Benitez Y, Desai S, Quinonez J, Ruxmohan S, Stein JD, Cueva W. Behavioral Problems in Fragile X Syndrome: A Review of Clinical Management. Cureus 2022; 14:e21840. [PMID: 35291526 PMCID: PMC8896844 DOI: 10.7759/cureus.21840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 01/08/2023] Open
Abstract
Fragile X syndrome (FXS) is noted to be the leading cause of inherited intellectual disabilities and is caused by expansive cytosine-guanine-guanine (CGG) trinucleotide repeats in the fragile X mental retardation 1 gene (FMR1). FXS can display a wide range of behavioral problems in addition to intellectual and developmental issues. Management of these problems includes both pharmacological and non-pharmacological options and research on these different management styles has been extensive in recent years. This narrative review aimed to collate recent evidence on the various management options of behavioral problems in FXS, including the pharmacological and non-pharmacological treatments, and also to provide a review of the newer avenues in the FXS treatment.
Collapse
Affiliation(s)
| | | | | | - Shreeya Desai
- Research, Larkin Community Hospital, South Miami, USA
| | - Jonathan Quinonez
- Neurology/Osteopathic Neuromuscular Medicine, Larkin Community Hospital, South Miami, USA
| | | | - Joel D Stein
- Osteopathic Neuromuscular Medicine, Family Medicine, Sports Medicine, Pain Medicine, Lake Erie College of Osteopathic Medicine (LECOM) Bradenton, Bradenton, USA.,Pain Management, Osteopathic Neuromuscular Medicine, Sports Medicine, Larkin Community Hospital, South Miami, USA
| | - Wilson Cueva
- Neurology, Larkin Community Hospital, South Miami, USA
| |
Collapse
|
27
|
Protic D, Salcedo-Arellano MJ, Stojkovic M, Saldarriaga W, Ávila Vidal LA, Miller RM, Tabatadze N, Peric M, Hagerman R, Budimirovic DB. Raising Knowledge and Awareness of Fragile X Syndrome in Serbia, Georgia, and Colombia: A Model for Other Developing Countries? THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:559-571. [PMID: 34970093 PMCID: PMC8686783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragile X syndrome is the most common monogenetic cause of inherited intellectual disability and syndromic autism spectrum disorder. Fragile X syndrome is caused by an expansion (full mutation ≥200 CGGs repeats, normal 10-45 CGGs) of the fragile X mental retardation 1 (FMR1) gene, epigenetic silencing of the gene, which leads to reduction or lack of the gene's product: the fragile X mental retardation protein. In this cross-sectional study, we assessed general and pharmacotherapy knowledge (GK and PTK) of fragile X syndrome and satisfaction with education in neurodevelopmental disorders (NDDs) among senior medical students in Serbia (N=348), Georgia (N=112), and Colombia (N=58). A self-administered 18-item questionnaire included GK (8/18) and PTK (7/18) components and self-assessment of the participants education in NDDs (3/18). Roughly 1 in 5 respondents had correct answers on half or more facts about fragile X syndrome (GK>PTK), which ranged similarly 5-7 in Serbia, 6-8 in Georgia, and 5-8 in Colombia, respectively. No cohort had an average value greater than 9 (60%) that would represent passing score "cut-off." None of the participants answered all the questions correctly. More than two-thirds of the participants concluded that they gained inadequate knowledge of NDDs during their studies, and that their education in this field should be more intense. In conclusion, there is a major gap in knowledge regarding fragile X syndrome among senior medical students in these three developing countries. The finding could at least in part be generalized to other developing countries aimed toward increasing knowledge and awareness of NDDs and fostering an institutional collaboration between developed and developing countries.
Collapse
Affiliation(s)
- Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of
Medicine, University of Belgrade, Belgrade, Serbia
| | - Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine,
Sacramento, CA, USA,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS,
University of California Davis, Sacramento, CA, USA,Department of Pathology and Laboratory Medicine, University of California Davis
School of Medicine, Sacramento, CA, USA
| | - Maja Stojkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of
Medicine, University of Belgrade, Belgrade, Serbia
| | - Wilmar Saldarriaga
- Department of Morphology, Universidad del Valle School of Medicine, Cali,
Colombia,Department of Obstetrics and Gynecology, Hospital Universitario del Valle,
Evaristo Garcia, Cali, Colombia
| | | | | | - Nazi Tabatadze
- Fragile X Center, MediClubGeorgia Medical Center, Tbilisi, Georgia
| | | | - Randi Hagerman
- Department of Pediatrics, University of California Davis School of Medicine,
Sacramento, CA, USA,Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS,
University of California Davis, Sacramento, CA, USA
| | - Dejan B. Budimirovic
- Departments of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute,
Baltimore, MD, USA,Department of Psychiatry & Behavioral Sciences-Child Psychiatry, Johns
Hopkins School of Medicine, Baltimore, MD, USA,To whom all correspondence should be addressed: Dejan Budimirovic, MD,
Department of Psychiatry, Psychiatry Mental Health Program, Outpatient Services, Kennedy
Krieger Institute, Baltimore, MD;
| |
Collapse
|
28
|
Romagnoli A, Di Marino D. The Use of Peptides in the Treatment of Fragile X Syndrome: Challenges and Opportunities. Front Psychiatry 2021; 12:754485. [PMID: 34803767 PMCID: PMC8599826 DOI: 10.3389/fpsyt.2021.754485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disabilities and autism spectrum disorders, characterized by cognitive deficits and autistic behaviors. The silencing of the Fmr1 gene and consequent lack of FMRP protein, is the major contribution to FXS pathophysiology. FMRP is an RNA binding protein involved in the maturation and plasticity of synapses and its absence culminates in a range of morphological, synaptic and behavioral phenotypes. Currently, there are no approved medications for the treatment of FXS, with the approaches under study being fairly specific and unsatisfying in human trials. Here we propose peptides/peptidomimetics as candidates in the pharmacotherapy of FXS; in the last years this class of molecules has catalyzed the attention of pharmaceutical research, being highly selective and well-tolerated. Thanks to their ability to target protein-protein interactions (PPIs), they are already being tested for a wide range of diseases, including cancer, diabetes, inflammation, Alzheimer's disease, but this approach has never been applied to FXS. As FXS is at the forefront of efforts to develop new drugs and approaches, we discuss opportunities, challenges and potential issues of peptides/peptidomimetics in FXS drug design and development.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
29
|
Perche O, Lesne F, Patat A, Raab S, Twyman R, Ring RH, Briault S. Electroretinography and contrast sensitivity, complementary translational biomarkers of sensory deficits in the visual system of individuals with fragile X syndrome. J Neurodev Disord 2021; 13:45. [PMID: 34625026 PMCID: PMC8501595 DOI: 10.1186/s11689-021-09375-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disturbances in sensory function are an important clinical feature of neurodevelopmental disorders such as fragile X syndrome (FXS). Evidence also directly connects sensory abnormalities with the clinical expression of behavioral impairments in individuals with FXS; thus, positioning sensory function as a potential clinical target for the development of new therapeutics. Using electroretinography (ERG) and contrast sensitivity (CS), we previously reported the presence of sensory deficits in the visual system of the Fmr1-/y genetic mouse model of FXS. The goals of the current study were two-folds: (1) to assess the feasibility of measuring ERG and CS as a biomarker of sensory deficits in individuals with FXS, and (2) to investigate whether the deficits revealed by ERG and CS in Fmr1-/y mice translate to humans with FXS. METHODS Both ERG and CS were measured in a cohort of male individuals with FXS (n = 20, 18-45 years) and age-matched healthy controls (n = 20, 18-45 years). Under light-adapted conditions, and using both single flash and flicker (repeated train of flashes) stimulation protocols, retinal function was recorded from individual subjects using a portable, handheld, full-field flash ERG device (RETeval®, LKC Technologies Inc., Gaithersburg, MD, USA). CS was assessed in each subject using the LEA SYMBOLS® low-contrast test (Good-Lite, Elgin, IL, USA). RESULTS Data recording was successfully completed for ERG and assessment of CS in most individuals from both cohorts demonstrating the feasibility of these methods for use in the FXS population. Similar to previously reported findings from the Fmr1-/y genetic mouse model, individuals with FXS were found to exhibit reduced b-wave and flicker amplitude in ERG and an impaired ability to discriminate contrasts compared to healthy controls. CONCLUSIONS This study demonstrates the feasibility of using ERG and CS for assessing visual deficits in FXS and establishes the translational validity of the Fmr1-/y mice phenotype to individuals with FXS. By including electrophysiological and functional readouts, the results of this study suggest the utility of both ERG and CS (ERG-CS) as complementary translational biomarkers for characterizing sensory abnormalities found in FXS, with potential applications to the clinical development of novel therapeutics that target sensory function abnormalities to treat core symptomatology in FXS. TRIAL REGISTRATION ID-RCB number 2019-A01015-52 registered on the 17 May 2019.
Collapse
Affiliation(s)
- Olivier Perche
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | - Alain Patat
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
| | | | | | - Robert H Ring
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sylvain Briault
- Genetic Department, Centre Hospitalier Régional d'Orléans, Orléans, France.
- UMR7355, Centre National de la Recherche Scientifique (CNRS), Orléans, France.
- Experimental and Molecular Immunology and Neurogenetics, University of Orléans, Orléans, France.
- Kaerus Bioscience Ltd., London, EC1Y 4YX, UK.
| |
Collapse
|
30
|
Mody M, Petibon Y, Han P, Kuruppu D, Ma C, Yokell D, Neelamegam R, Normandin MD, Fakhri GE, Brownell AL. In vivo imaging of mGlu5 receptor expression in humans with Fragile X Syndrome towards development of a potential biomarker. Sci Rep 2021; 11:15897. [PMID: 34354107 PMCID: PMC8342610 DOI: 10.1038/s41598-021-94967-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022] Open
Abstract
Fragile X Syndrome (FXS) is a neurodevelopmental disorder caused by silencing of the Fragile X Mental Retardation (FMR1) gene. The resulting loss of Fragile X Mental Retardation Protein (FMRP) leads to excessive glutamate signaling via metabotropic glutamate subtype 5 receptors (mGluR5) which has been implicated in the pathogenesis of the disorder. In the present study we used the radioligand 3-[18F]fluoro-5-(2-pyridinylethynyl)benzonitrile ([18F]FPEB) in simultaneous PET-MR imaging of males with FXS and age- and gender-matched controls to assess the availability of mGlu5 receptors in relevant brain areas. Patients with FXS showed lower [18F]FPEB binding potential (p < 0.01), reflecting reduced mGluR5 availability, than the healthy controls throughout the brain, with significant group differences in insula, anterior cingulate, parahippocampal, inferior temporal and olfactory cortices, regions associated with deficits in inhibition, memory, and visuospatial processes characteristic of the disorder. The results are among the first to provide in vivo evidence of decreased availability of mGluR5 in the brain in individuals with FXS than in healthy controls. The consistent results across the subjects, despite the tremendous challenges with neuroimaging this population, highlight the robustness of the protocol and support for its use in drug occupancy studies; extending our radiotracer development and application efforts from mice to humans.
Collapse
Affiliation(s)
- Maria Mody
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Paul Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Darshini Kuruppu
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Daniel Yokell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Ramesh Neelamegam
- Department of Radiology, University of Texas Health Science at San Antonio, San Antonio, TX, 78229, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Anna-Liisa Brownell
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
31
|
Dionne O, Corbin F. An "Omic" Overview of Fragile X Syndrome. BIOLOGY 2021; 10:433. [PMID: 34068266 PMCID: PMC8153138 DOI: 10.3390/biology10050433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/01/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder associated with a wide range of cognitive, behavioral and medical problems. It arises from the silencing of the fragile X mental retardation 1 (FMR1) gene and, consequently, in the absence of its encoded protein, FMRP (fragile X mental retardation protein). FMRP is a ubiquitously expressed and multifunctional RNA-binding protein, primarily considered as a translational regulator. Pre-clinical studies of the past two decades have therefore focused on this function to relate FMRP's absence to the molecular mechanisms underlying FXS physiopathology. Based on these data, successful pharmacological strategies were developed to rescue fragile X phenotype in animal models. Unfortunately, these results did not translate into humans as clinical trials using same therapeutic approaches did not reach the expected outcomes. These failures highlight the need to put into perspective the different functions of FMRP in order to get a more comprehensive understanding of FXS pathophysiology. This work presents a review of FMRP's involvement on noteworthy molecular mechanisms that may ultimately contribute to various biochemical alterations composing the fragile X phenotype.
Collapse
Affiliation(s)
- Olivier Dionne
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke and Centre de Recherche du CHUS, CIUSSS de l’Estrie-CHUS, Sherbrooke, QC J1H 5H4, Canada;
| | | |
Collapse
|
32
|
Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci 2021; 22:209-222. [PMID: 33608673 PMCID: PMC8094212 DOI: 10.1038/s41583-021-00432-0] [Citation(s) in RCA: 214] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
Fragile X mental retardation protein (FMRP) is the product of the fragile X mental retardation 1 gene (FMR1), a gene that - when epigenetically inactivated by a triplet nucleotide repeat expansion - causes the neurodevelopmental disorder fragile X syndrome (FXS). FMRP is a widely expressed RNA-binding protein with activity that is essential for proper synaptic plasticity and architecture, aspects of neural function that are known to go awry in FXS. Although the neurophysiology of FXS has been described in remarkable detail, research focusing on the molecular biology of FMRP has only scratched the surface. For more than two decades, FMRP has been well established as a translational repressor; however, recent whole transcriptome and translatome analyses in mouse and human models of FXS have shown that FMRP is involved in the regulation of nearly all aspects of gene expression. The emerging mechanistic details of the mechanisms by which FMRP regulates gene expression may offer ways to design new therapies for FXS.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
33
|
Saldarriaga-Gil W, Cabal-Herrera AM, Fandiño-Losada A, Vásquez A, Hagerman R, Tassone F. Inequities in diagnosis of Fragile X syndrome in Colombia. JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES 2021; 34:830-839. [PMID: 33538083 DOI: 10.1111/jar.12863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/12/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism spectrum disorder (ASD). In Colombia, there are no screening or testing protocols established for the diagnosis of FXS. In this study, we aimed to describe the diagnostic trends of FXS in Colombia. METHODS Data were included on 1322 individuals obtained based on data from the only 2 databases available. Sociodemographic information and data related to the diagnostic process were obtained and included in this study. RESULTS The average age at the time of diagnosis for individuals with the full mutation (FM) was of 26.9 ± 2.57 years and was strongly dependent on sex and socioeconomic status. Most individuals with a molecular diagnosis were from the main cities. CONCLUSION The overall age of diagnosis of FXS is later in life than reports from other countries. Restricted access to molecular testing through the national health system might explain this discrepancy in Colombia.
Collapse
Affiliation(s)
- Wilmar Saldarriaga-Gil
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia
| | - Andrés Fandiño-Losada
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia
| | - Andrés Vásquez
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Hospital Universitario del Valle, Cali, Colombia
| | - Randi Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, USA
| | - Flora Tassone
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, USA.,Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
34
|
Sihombing NRB, Winarni TI, Utari A, van Bokhoven H, Hagerman RJ, Faradz SMH. Surveillance and prevalence of fragile X syndrome in Indonesia. Intractable Rare Dis Res 2021; 10:11-16. [PMID: 33614370 PMCID: PMC7882090 DOI: 10.5582/irdr.2020.03101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited cause of intellectual disability (ID) and autism spectrum disorder (ASD). Many studies have been conducted over the years, however, in Indonesia there is relatively less knowledge on the prevalence of FXS. We reviewed all studies involving FXS screening and cascade testing of the high-risk population in Indonesia for two decades, to elucidate the prevalence, as well as explore the presence of genetic clusters of FXS in Indonesia. The prevalence of FXS in the ID population of Indonesia ranged between 0.9-1.9%, while in the ASD population, the percentage was higher (6.15%). A screening and cascade testing conducted in a small village on Java Island showed a high prevalence of 45% in the ID population, suggesting a genetic cluster. The common ancestry of all affected individuals was suggestive of a founder effect in the region. Routine screening and subsequent cascade testing are essential, especially in cases of ID and ASD of unknown etiology in Indonesia.
Collapse
Affiliation(s)
- Nydia Rena Benita Sihombing
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Tri Indah Winarni
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
| | - Agustini Utari
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
- Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Randi J Hagerman
- MIND Institute, UC Davis Health, University of California, Davis, California, USA
| | - Sultana MH Faradz
- Division of Human Genetics, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University/Diponegoro National Hospital, Semarang, Indonesia
- Address correspondence to:Sultana MH Faradz, Center for Biomedical Research (CEBIOR), Faculty of Medicine, Diponegoro University, Jl. Prof. Soedarto SH no. 1, Semarang (50275), Central-Java, Indonesia. E-mail:
| |
Collapse
|
35
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
36
|
A Differential Effect of Lovastatin versus Simvastatin in Neurodevelopmental Disorders. eNeuro 2020; 7:ENEURO.0162-20.2020. [PMID: 32651266 PMCID: PMC7433894 DOI: 10.1523/eneuro.0162-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
|