1
|
Li Y, Zhang Y, Zhang J, Zhan Z, Mao W. Development of novel focal adhesion kinase (FAK) inhibitors for targeting cancer: Structural insights and therapeutic potential. Eur J Med Chem 2024; 279:116913. [PMID: 39357313 DOI: 10.1016/j.ejmech.2024.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase frequently overexpressed in various cancer cells, facilitating tumor growth through the regulation of cell adhesion, migration, and proliferation. Consequently, targeting FAK is considered a promising anti-tumor strategy, particularly for invasive cancers. Numerous potent small-molecule inhibitors have progressed to clinical trials. Among these, Defactinib is under evaluation for regulatory approval as a treatment for ovarian serous tumors. Furthermore, novel FAK inhibitors, including PROTACs, have emerged as key research focuses, anticipated to overcome the limitations of traditional inhibitors. In this Perspective, we highlight the protein structure, biological functions, relevant signaling pathways, and associations of FAK with cancer development. We also analyze the clinical status of FAK inhibitors, paying special attention to the various classes of FAK inhibitors, with detailed analyses of their chemical structures, structure-activity relationships (SARs), bioactivity profiles, selectivity profiles, and therapeutic potentials.
Collapse
Affiliation(s)
- Yingnan Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Yuming Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China; West China College of Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| | - Wuyu Mao
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Neuro-system and Multimorbidity Laboratory, State Key Laboratory of Biotherapy and Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, 610041, Sichuan, China.
| |
Collapse
|
2
|
Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188869. [PMID: 36842767 DOI: 10.1016/j.bbcan.2023.188869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Pancreatic cancer (PC) is very deadly and difficult to treat. The presence of hypoxia has been shown to increase the probability of cancer developing and spreading. Pancreatic ductal adenocarcinoma (PDAC/PC) has traditionally viewed a highly lethal form of cancer due to its high occurrence of early metastases. Desmoplasia/stroma is often thick and collagenous, with pancreatic stellate cells as the primary source (PSCs). Cancer cells and other stromal cells interact with PSCs, promoting disease development. The hepatocyte growth factor (HGF)/c-MET pathway have been proposed as a growth factor mechanism mediating this interaction. Human growth factor (HGF) is secreted by pancreatic stellate cells (PSCs), and its receptor, c-MET, is generated by pancreatic cancer cells and endothelial cells. Hypoxia is frequent in malignant tumors, particularly pancreatic (PC). Hypoxia results from limitless tumor development and promotes survival, progression, and invasion. Hypoxic is becoming a critical driver and therapeutic target of pancreatic cancer as its hypoxia microenvironment is defined. Recent breakthroughs in cancer biology show that hypoxia promotes tumor proliferation, aggressiveness, and therapeutic resistance. Hypoxia-inducible factors (HIFs) stabilize hypoxia signaling. Hypoxia cMet is a key component of pancreatic tumor microenvironments, which also have a fibrotic response, that hypoxia, promotes and modulates. c-Met is a tyrosine-protein kinase. As describe it simply, the MET gene in humans' codes for a protein called hepatocyte growth factor receptor (HGFR). Most cancerous tumors and pancreatic cancer in particular, suffer from a lack of oxygen (PC). Due to unrestrained tumor development, hypoxia develops, actively contributing to tumor survival, progression, and invasion. As the processes by which hypoxia signaling promotes invasion and metastasis become clear, c-MET has emerged as an important determinant of pancreatic cancer malignancy and a potential pharmacological target. This manuscript provides the most current findings on the role of hypoxia and HGF/c-MET expression in the treatment of pancreatic cancer.
Collapse
|
3
|
Wang Z, Huang W, Zhou K, Ren X, Ding K. Targeting the Non-Catalytic Functions: a New Paradigm for Kinase Drug Discovery? J Med Chem 2022; 65:1735-1748. [PMID: 35000385 DOI: 10.1021/acs.jmedchem.1c01978] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinases have been highly fruitful targets for cancer drug discovery in the past two decades, while most of these drugs bind to the "adenosine triphosphate (ATP)-site" and inhibit kinase catalytic activity. Recently, accumulated evidence suggests that kinases possess functions beyond catalysis through their scaffolds, and the scaffolding functions could play critical roles in multiple cellular signaling and cell fate controls. Small molecules modulating the noncatalytic functions of kinases are rarely reported but emerge as new promising therapeutic strategies for various diseases. Herein, we summarize the characterized noncatalytic functions of kinases, and highlight the recent progress on developing small-molecule modulators of the noncatalytic functions of kinases. Mechanisms and characteristics of different kinds of modulators are also discussed. It is also speculated that targeting the noncatalytic functions would represent a new direction for kinase-based drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Weixue Huang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Kaijie Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China
| | - Ke Ding
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Ling Ling Road, Shanghai 200032, People's Republic of China.,International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, People's Republic of China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| |
Collapse
|
4
|
Michael E, Polydorides S, Archontis G. Computational Design of Peptides with Improved Recognition of the Focal Adhesion Kinase FAT Domain. Methods Mol Biol 2022; 2405:383-402. [PMID: 35298823 DOI: 10.1007/978-1-0716-1855-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We describe a two-stage computational protein design (CPD) methodology for the design of peptides binding to the FAT domain of the protein focal adhesion kinase. The first stage involves high-throughput CPD calculations with the Proteus software. The energies of the folded state are described by a physics-based energy function and of the unfolded peptides by a knowledge-based model that reproduces aminoacid compositions consistent with a helicity scale. The obtained sequences are filtered in terms of the affinity and the stability of the complex. In the second stage, design sequences are further evaluated by all-atom molecular dynamics simulations and binding free energy calculations with a molecular mechanics/implicit solvent free energy function.
Collapse
Affiliation(s)
- Eleni Michael
- Department of Physics, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
5
|
Abstract
FAK, a nonreceptor tyrosine kinase, has been recognized as a novel target class for the development of targeted anticancer agents. Overexpression of FAK is a common occurrence in several solid tumors, in which the kinase has been implicated in promoting metastases. Consequently, designing and developing potent FAK inhibitors is becoming an attractive goal, and FAK inhibitors are being recognized as a promising tool in our armamentarium for treating diverse cancers. This review comprehensively summarizes the different classes of synthetically derived compounds that have been reported as potent FAK inhibitors in the last three decades. Finally, the future of FAK-targeting smart drugs that are designed to slow down the emergence of drug resistance is discussed.
Collapse
|
6
|
Antoniades I, Kyriakou M, Charalambous A, Kalalidou K, Christodoulou A, Christoforou M, Skourides PA. FAK displacement from focal adhesions: a promising strategy to target processes implicated in cancer progression and metastasis. Cell Commun Signal 2021; 19:3. [PMID: 33413438 PMCID: PMC7791867 DOI: 10.1186/s12964-020-00671-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is overexpressed or activated in several advanced-stage solid cancers. It is known to play both kinase-dependent and -independent roles in promoting tumor progression and metastasis. Numerous inhibitors, targeting either the enzymatic or scaffolding activities of FAK have been generated, with varying degree of success. Here, we describe a novel approach to site-specifically target both kinase-dependent and -independent FAK functions at focal adhesions (FAs), the primary sites at which the kinase exerts its activity. METHODS We took advantage of the well-characterized interactions between the paxillin LD motifs and the FAK FAT domain and generated a polypeptide (LD2-LD3-LD4) expected to compete with interactions with paxillin. Co-immunoprecipitation experiments were performed to examine the interaction between the LD2-LD3-LD4 polypeptide and FAK. The effects of LD2-LD3-LD4 in the localization and functions of FAK, as well as FA composition, were evaluated using quantitative immunofluorescence, cell fractionation, FA isolation and Western Blot analysis. Live cell imaging, as well as 2-D migration and cell invasion assays were used to examine the effects on FA turnover and tumor cell migration and invasion. RESULTS Expression of the LD2-LD3-LD4 polypeptide prevents FAK localization at FAs, in a controlled and dose-dependent manner, by competing with endogenous paxillin for FAK binding. Importantly, the LD2-LD3-LD4 peptide did not otherwise affect FA composition or integrin activation. LD2-LD3-LD4 inhibited FAK-dependent downstream integrin signaling and, unlike existing inhibitors, also blocked FAK's scaffolding functions. We further show that LD2-LD3-LD4 expression markedly reduces FA turnover and inhibits tumor cell migration and invasion. Finally, we show that dimers of a single motif, linked through a flexible linker of the proper size, are sufficient for the displacement of FAK from FAs and for inhibition of tumor cell migration. This work raises the possibility of using a synthetic peptide as an antimetastatic agent, given that effective displacement of FAK from FAs only requires dimers of a single LD motif linked by a short flexible linker. CONCLUSION In conclusion, these results suggest that FAK displacement from FAs is a promising new strategy to target critical processes implicated in cancer progression and metastasis. Video abstract.
Collapse
Affiliation(s)
- Ioanna Antoniades
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Maria Kyriakou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Anna Charalambous
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Katerina Kalalidou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Andri Christodoulou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Maria Christoforou
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| | - Paris A. Skourides
- Department of Biological Sciences, University of Cyprus, P.O. Box 20537, 2109 Nicosia, Cyprus
| |
Collapse
|
7
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
8
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
9
|
Michael E, Polydorides S, Promponas VJ, Skourides P, Archontis G. Recognition of LD motifs by the focal adhesion targeting domains of focal adhesion kinase and proline-rich tyrosine kinase 2-beta: Insights from molecular dynamics simulations. Proteins 2020; 89:29-52. [PMID: 32776636 DOI: 10.1002/prot.25992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/21/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The focal adhesion kinase (FAK) and the proline-rich tyrosine kinase 2-beta (PYK2) are implicated in cancer progression and metastasis and represent promising biomarkers and targets for cancer therapy. FAK and PYK2 are recruited to focal adhesions (FAs) via interactions between their FA targeting (FAT) domains and conserved segments (LD motifs) on the proteins Paxillin, Leupaxin, and Hic-5. A promising new approach for the inhibition of FAK and PYK2 targets interactions of the FAK domains with proteins that promote localization at FAs. Advances toward this goal include the development of surface plasmon resonance, heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) and fluorescence polarization assays for the identification of fragments or compounds interfering with the FAK-Paxillin interaction. We have recently validated this strategy, showing that Paxillin mimicking polypeptides with 2 to 3 LD motifs displace FAK from FAs and block kinase-dependent and independent functions of FAK, including downstream integrin signaling and FA localization of the protein p130Cas. In the present work we study by all-atom molecular dynamics simulations the recognition of peptides with the Paxillin and Leupaxin LD motifs by the FAK-FAT and PYK2-FAT domains. Our simulations and free-energy analysis interpret experimental data on binding of Paxillin and Leupaxin LD motifs at FAK-FAT and PYK2-FAT binding sites, and assess the roles of consensus LD regions and flanking residues. Our results can assist in the design of effective inhibitory peptides of the FAK-FAT: Paxillin and PYK2-FAT:Leupaxin complexes and the construction of pharmacophore models for the discovery of potential small-molecule inhibitors of the FAK-FAT and PYK2-FAT focal adhesion based functions.
Collapse
Affiliation(s)
- Eleni Michael
- Department of Physics, University of Cyprus, Nicosia, Cyprus
| | | | - Vasilis J Promponas
- Bioinformatics Research Laboratory, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Paris Skourides
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | |
Collapse
|
10
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
11
|
Lu GH, Shang WT, Deng H, Han ZY, Hu M, Liang XY, Fang CH, Zhu XH, Fan YF, Tian J. Targeting carbon nanotubes based on IGF-1R for photothermal therapy of orthotopic pancreatic cancer guided by optical imaging. Biomaterials 2019; 195:13-22. [DOI: 10.1016/j.biomaterials.2018.12.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023]
|
12
|
Fang Y, Wang D, Xu X, Dava G, Liu J, Li X, Xue Q, Wang H, Zhang J, Zhang H. Preparation, in vitro and in vivo evaluation, and molecular dynamics (MD) simulation studies of novel F-18 labeled tumor imaging agents targeting focal adhesion kinase (FAK). RSC Adv 2018; 8:10333-10345. [PMID: 35540451 PMCID: PMC9078890 DOI: 10.1039/c8ra00652k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Coronal micro-PET images of mice bearing S180 tumor at 30 min post-injection of [18F]2.
Collapse
|
13
|
Pothula SP, Xu Z, Goldstein D, Merrett N, Pirola RC, Wilson JS, Apte MV. Targeting the HGF/c-MET pathway: stromal remodelling in pancreatic cancer. Oncotarget 2017; 8:76722-76739. [PMID: 29100344 PMCID: PMC5652738 DOI: 10.18632/oncotarget.20822] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
Stromal-tumor interactions in pancreatic cancer (PC) impact on treatment outcomes. Pancreatic stellate cells (PSCs) produce the collagenous stroma of PC and interact with cancer cells to facilitate disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells. We studied the effects on PC progression of inhibiting the HGF/c-MET pathway in the presence and absence of a representative chemotherapeutic agent, gemcitabine. Using an orthotopic model of PC we have shown that "triple therapy" (inhibition of both HGF and c-MET combined with gemcitabine) resulted in the greatest reduction in tumor volume compared to each of the treatments alone or in dual combinations. Importantly, metastasis was virtually eliminated in mice receiving triple therapy. Our in vivo findings were supported by in vitro studies showing that the increase in cancer cell proliferation and migration in response to PSC secretions was significantly inhibited by the triple regimen. Our studies suggest that a combined approach, that targets tumor cells by chemotherapy while inhibiting specific pathways that mediate stromal-tumor interactions, may represent a novel therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Neil Merrett
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Faculty of Medicine, The University of New South Wales, Sydney, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| |
Collapse
|
14
|
Fang Y, Wang D, Xu X, Liu J, Wu A, Li X, Xue Q, Wang H, Wang H, Zhang H. Synthesis, biological evaluation, and molecular dynamics (MD) simulation studies of three novel F-18 labeled and focal adhesion kinase (FAK) targeted 5-bromo pyrimidines as radiotracers for tumor. Eur J Med Chem 2017; 127:493-508. [DOI: 10.1016/j.ejmech.2017.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
15
|
TOMIZAWA MINORU, SHINOZAKI FUMINOBU, MOTOYOSHI YASUFUMI, SUGIYAMA TAKAO, YAMAMOTO SHIGENORI, ISHIGE NAOKI. SU11274 suppresses proliferation and motility of pancreatic cancer cells. Oncol Lett 2015; 10:1468-1472. [PMID: 26622692 PMCID: PMC4533741 DOI: 10.3892/ol.2015.3452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal-epithelial transition factor (c-Met) is associated with the proliferation and motility of cancer cells. c-Met expression has been detected in surgical pancreatic cancer specimens, and its overexpression is associated with a poor prognosis. SU11274 is a specific inhibitor of c-Met. In the present study, the cell proliferation and motility of pancreatic cancer cells treated with SU11274 was investigated. The PANC-1, MIA-Paca2, NOR-P1, PK-45H, PK-1 and PK-59 pancreatic cancer cell lines were used. The expression of c-Met and cyclin D1 was analyzed by quantitative polymerase chain reaction. In addition, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt assay was performed to assess cell proliferation, and a scratch assay was performed to assess cell motility. c-Met expression was higher in PANC-1, PK-45H, PK-1 and PK-59 cell lines compared with that in normal pancreatic tissue. Following treatment with 30 µM SU11274, the proliferation of MIA-Paca2 and PK-45H cells was suppressed to 19.8±10.7% (P<0.05) and 45.8±14.8% (P<0.05) of the control level, respectively. Furthermore, cyclin D1 expression was downregulated to 43.7±17.9% (P<0.05) and 53.2±18.6% (P<0.05) of the control level in the MIA-Paca2 and PK-45H cell lines, respectively, following treatment with 30 µM SU11274. In addition, cell motility was reduced to 1.0±0.3% in MIA-Paca2 (P<0.05) and 14.7±3.5% in PK-45H (P<0.05) following treatment with 30 µM SU11274, compared with the motility of untreated cells. These results indicated that SU11274 suppresses the proliferation of pancreatic cancer cells via the downregulation of cyclin D1. The present study also demonstrated that cell motility was suppressed by treatment with SU11274.
Collapse
Affiliation(s)
- MINORU TOMIZAWA
- Department of Gastroenterology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - FUMINOBU SHINOZAKI
- Department of Radiology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - YASUFUMI MOTOYOSHI
- Department of Neurology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - TAKAO SUGIYAMA
- Department of Rheumatology, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - SHIGENORI YAMAMOTO
- Department of Pediatrics, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| | - NAOKI ISHIGE
- Department of Neurosurgery, National Hospital Organization, Shimoshizu Hospital, Yotsukaido, Chiba 284-0003, Japan
| |
Collapse
|
16
|
Focal adhesion kinase-promoted tumor glucose metabolism is associated with a shift of mitochondrial respiration to glycolysis. Oncogene 2015; 35:1926-42. [PMID: 26119934 PMCID: PMC4486081 DOI: 10.1038/onc.2015.256] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 12/11/2022]
Abstract
Cancer cells often gains a growth advantage by taking up glucose at a high rate and undergoing aerobic glycolysis through intrinsic cellular factors that reprogram glucose metabolism. Focal adhesion kinase (FAK), a key transmitter of growth factor and anchorage stimulation, is aberrantly overexpressed or activated in most solid tumors, including pancreatic ductal adenocarcinomas (PDACs). We determined whether FAK can act as an intrinsic driver to promote aerobic glycolysis and tumorigenesis. FAK inhibition decreases and overexpression increases intracellular glucose levels during unfavorable conditions, including growth factor deficiency and cell detachment. Amplex glucose assay, fluorescence and carbon-13 tracing studies demonstrate that FAK promotes glucose consumption and glucose-to-lactate conversion. Extracellular flux analysis indicates that FAK enhances glycolysis and decreases mitochondrial respiration. FAK increases key glycolytic proteins, including enolase, pyruvate kinase M2 (PKM2), lactate dehydrogenase and monocarboxylate transporter. Furthermore, active/tyrosine-phosphorylated FAK directly binds to PKM2 and promotes PKM2-mediated glycolysis. On the other hand, FAK-decreased levels of mitochondrial complex I can result in reduced oxidative phosphorylation (OXPHOS). Attenuation of FAK-enhanced glycolysis re-sensitizes cancer cells to growth factor withdrawal, decreases cell viability and reduces growth of tumor xenografts. These observations, for the first time, establish a vital role of FAK in cancer glucose metabolism through alterations in the OXPHOS-to-glycolysis balance. Broadly targeting the common phenotype of aerobic glycolysis and more specifically FAK-reprogrammed glucose metabolism will disrupt the bioenergetic and biosynthetic supply for uncontrolled growth of tumors, particularly glycolytic PDAC.
Collapse
|
17
|
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21:6127-6145. [PMID: 26034349 PMCID: PMC4445091 DOI: 10.3748/wjg.v21.i20.6127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Collapse
|
18
|
Booy S, van Eijck CHJ, Janssen JAMJL, Dogan F, van Koetsveld PM, Hofland LJ. IFN-β is a potent inhibitor of insulin and insulin like growth factor stimulated proliferation and migration in human pancreatic cancer cells. Am J Cancer Res 2015; 5:2035-2046. [PMID: 26269762 PMCID: PMC4529622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/10/2015] [Indexed: 06/04/2023] Open
Abstract
INTRODUCTION Pancreatic cancer is a highly aggressive malignancy with few treatment options. The overexpression of several growth factors, including insulin and insulin-like growth factors (IGFs), can underlie the aggressive nature of this disease. Previous research has demonstrated potent effects of interferon (IFN)-β on pancreatic cancer cell growth, however up till now it is unknown whether IFN-β is able to counteract IGF1, IGF2 and insulin-induced pancreatic cancer cell proliferation and migration. METHODS Expression of IGF- and insulin receptors was determined and the stimulatory effects of IGF1, IGF2 and insulin on cell proliferation and migration, as well as the inhibitory effects of IFN-β were evaluated in 3 human pancreatic adenocarcinoma cell lines. RESULTS Both the insulin- and the IGF1 receptor were variably expressed in the cell lines. IGF1, IGF2 and insulin were capable of stimulating cell proliferation in all three cell lines, however cell migration was significantly enhanced only in the BxPC-3 cell line. IFN-β significantly inhibited IGF1-, IGF2- and insulin-stimulated proliferation in all three cell lines in a dose and time dependent manner. Furthermore, in the BxPC-3 cell line IFN-β significantly inhibited both basal and IGF1-, IGF2- and insulin-stimulated cell migration. CONCLUSION Both IGF1, -2 and insulin were capable of stimulating proliferation and migration in human pancreatic cancer cells irrespective of the type of receptor expressed. This study demonstrates that insulin, in addition to IGF1 and IGF2, may play an important role in the progression of pancreatic cancer. Moreover, IFN-β strongly inhibits growth factor stimulated cell proliferation and migration. Our study supports previous findings which have suggested that IFN-β can be a potential promising anti-cancer agent in pancreatic cancer.
Collapse
Affiliation(s)
- Stephanie Booy
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical CenterRotterdam, The Netherlands
- Department of Surgery, Erasmus Medical CenterRotterdam, The Netherlands
| | | | - Joseph AMJL Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical CenterRotterdam, The Netherlands
| | - Fadime Dogan
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical CenterRotterdam, The Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical CenterRotterdam, The Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical CenterRotterdam, The Netherlands
| |
Collapse
|
19
|
Béraud C, Dormoy V, Danilin S, Lindner V, Béthry A, Hochane M, Coquard C, Barthelmebs M, Jacqmin D, Lang H, Massfelder T. Targeting FAK scaffold functions inhibits human renal cell carcinoma growth. Int J Cancer 2015; 137:1549-59. [PMID: 25809490 DOI: 10.1002/ijc.29522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/06/2015] [Indexed: 11/07/2022]
Abstract
Human conventional renal cell carcinoma (CCC) remains resistant to current therapies. Focal Adhesion Kinase (FAK) is upregulated in many epithelial tumors and clearly implicated in nearly all facets of cancer. However, only few reports have assessed whether FAK may be associated with renal tumorigenesis. In this study, we investigated the potential role of FAK in the growth of human CCC using a panel of CCC cell lines expressing or not the von Hippel-Lindau (VHL) tumor suppressor gene as well as normal/tumoral renal tissue pairs. FAK was found constitutively expressed in human CCC both in culture cells and freshly harvested tumors obtained from patients. We showed that CCC cell growth was dramatically reduced in FAK-depleted cells or after FAK inhibition with various inhibitors and this effect was obtained through inhibition of cell proliferation and induction of cell apoptosis. Additionally, our results indicated that FAK knockdown decreased CCC cell migration and invasion. More importantly, depletion or pharmacological inhibition of FAK substantially inhibited tumor growth in vivo. Interestingly, investigations of the molecular mechanism revealed loss of FAK phosphorylation during renal tumorigenesis impacting multiple signaling pathways. Taken together, our findings reveal a previously uncharacterized role of FAK in CCC whereby FAK exerts oncogenic properties through a non canonical signaling pathway involving its scaffolding kinase-independent properties. Therefore, targeting the FAK scaffold may represent a promising approach for developing innovative and highly specific therapies in human CCC.
Collapse
Affiliation(s)
- Claire Béraud
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | | | | | - Véronique Lindner
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Audrey Béthry
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | - Mazène Hochane
- Inserm U1113, University of Strasbourg, Strasbourg, France
| | | | | | - Didier Jacqmin
- Department of Urology, Nouvel Hôpital Civil De Strasbourg, Strasbourg, France
| | - Hervé Lang
- Department of Urology, Nouvel Hôpital Civil De Strasbourg, Strasbourg, France
| | | |
Collapse
|
20
|
Targeting cMET with INC280 impairs tumour growth and improves efficacy of gemcitabine in a pancreatic cancer model. BMC Cancer 2015; 15:71. [PMID: 25884642 PMCID: PMC4340491 DOI: 10.1186/s12885-015-1064-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/30/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Expression and activation of the cMET receptor have been implicated in tumor progression and resistance to chemotherapy in human pancreatic cancer. In this regard we assessed the effects of targeting cMET in pancreatic cancer models in vitro and in vivo. METHODS Human (L3.6pl, BxP3, HPAF-II, MiaPaCa2) and murine (Panc02) pancreatic cancer cell lines, endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) were used for the experiments. Furthermore, the human pancreatic cancer cell line MiaPaCa2 with acquired resistance to gemcitabine was employed (MiaPaCa2(G250)). For targeting the cMET receptor, the oral available, ATP-competitive inhibitor INC280 was used. Effects of cMET inhibition on cancer and stromal cells were determined by growth assays, western blotting, motility assays and ELISA. Moreover, orthotopic xenogeneic and syngeneic mouse (BALB-C nu/nu; C57BL/6) models were used to assess in vivo efficacy of targeting cMET alone and in combination with gemcitabine. RESULTS Treatment with INC280 impairs activation of signaling intermediates in pancreatic cancer cells and ECs, particularly when cells were stimulated with hepatocyte growth factor (HGF). Moreover, motility of cancer cells and ECs in response to HGF was reduced upon treatment with INC280. Only minor effects on VSMCs were detected. Interestingly, MiaPaCa2(G250) showed an increase in cMET expression and cMET inhibition abrogated HGF-induced effects on growth, motility and signaling as well as DFX-hypoxia HIF-1alpha and MDR-1 expression in vitro. In vivo, therapy with INC280 alone led to inhibition of orthotopic tumor growth in xenogeneic and syngeneic models. Similar to in vitro results, cMET expression was increased upon treatment with gemcitabine, and combination of the cMET inhibitor with gemcitabine improved anti-neoplastic capacity in an orthotopic syngeneic model. Immunohistochemical analysis revealed a significant inhibition of tumor cell proliferation (Ki67) and tumor vascularization (CD31). Finally, combination of gemcitabine with INC280 significantly prolonged survival in the orthotopic syngeneic tumor model even when treatment with the cMET inhibitor was initiated at an advanced stage of disease. CONCLUSIONS These data provide evidence that targeting cMET in combination with gemcitabine may be effective in human pancreatic cancer and warrants further clinical evaluation.
Collapse
|
21
|
FAK signaling in human cancer as a target for therapeutics. Pharmacol Ther 2014; 146:132-49. [PMID: 25316657 DOI: 10.1016/j.pharmthera.2014.10.001] [Citation(s) in RCA: 315] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 02/08/2023]
Abstract
Focal adhesion kinase (FAK) is a key regulator of growth factor receptor- and integrin-mediated signals, governing fundamental processes in normal and cancer cells through its kinase activity and scaffolding function. Increased FAK expression and activity occurs in primary and metastatic cancers of many tissue origins, and is often associated with poor clinical outcome, highlighting FAK as a potential determinant of tumor development and metastasis. Indeed, data from cell culture and animal models of cancer provide strong lines of evidence that FAK promotes malignancy by regulating tumorigenic and metastatic potential through highly-coordinated signaling networks that orchestrate a diverse range of cellular processes, such as cell survival, proliferation, migration, invasion, epithelial-mesenchymal transition, angiogenesis and regulation of cancer stem cell activities. Such an integral role in governing malignant characteristics indicates that FAK represents a potential target for cancer therapeutics. While pharmacologic targeting of FAK scaffold function is still at an early stage of development, a number of small molecule-based FAK tyrosine kinase inhibitors are currently undergoing pre-clinical and clinical testing. In particular, PF-00562271, VS-4718 and VS-6063 show promising clinical activities in patients with selected solid cancers. Clinical testing of rationally designed FAK-targeting agents with implementation of predictive response biomarkers, such as merlin deficiency for VS-4718 in mesothelioma, may help improve clinical outcome for cancer patients. In this article, we have reviewed the current knowledge regarding FAK signaling in human cancer, and recent developments in the generation and clinical application of FAK-targeting pharmacologic agents.
Collapse
|
22
|
Abrantes JLF, Tornatore TF, Pelizzaro-Rocha KJ, de Jesus MB, Cartaxo RT, Milani R, Ferreira-Halder CV. Crosstalk between kinases, phosphatases and miRNAs in cancer. Biochimie 2014; 107 Pt B:167-87. [PMID: 25230087 DOI: 10.1016/j.biochi.2014.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Reversible phosphorylation of proteins, performed by kinases and phosphatases, is the major post translational protein modification in eukaryotic cells. This intracellular event represents a critical regulatory mechanism of several signaling pathways and can be related to a vast array of diseases, including cancer. Cancer research has produced increasing evidence that kinase and phosphatase activity can be compromised by mutations and also by miRNA silencing, performed by small non-coding and endogenously produced RNA molecules that lead to translational repression. miRNAs are believed to target about one-third of human mRNAs while a single miRNA may target about 200 transcripts simultaneously. Regulation of the phosphorylation balance by miRNAs has been a topic of intense research over the last years, spanning topics going as far as cancer aggressiveness and chemotherapy resistance. By addressing recent studies that have shown miRNA expression patterns as phenotypic signatures of cancers and how miRNA influence cellular processes such as apoptosis, cell cycle control, angiogenesis, inflammation and DNA repair, we discuss how kinases, phosphatases and miRNAs cooperatively act in cancer biology.
Collapse
Affiliation(s)
- Júlia L F Abrantes
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Thaís F Tornatore
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | | - Marcelo B de Jesus
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Rodrigo T Cartaxo
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | - Renato Milani
- Department of Biochemistry, Institute of Biology, UNICAMP, 13083-970 Campinas, Brazil
| | | |
Collapse
|
23
|
Ma W, Zhang T, Pan J, Shi N, Fan Q, Wang L, Lu SH. Assessment of insulin-like growth factor 1 receptor as an oncogene in esophageal squamous cell carcinoma and its potential implication in chemotherapy. Oncol Rep 2014; 32:1601-9. [PMID: 25175038 DOI: 10.3892/or.2014.3348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/27/2014] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) is a tyrosine kinase receptor implicated in the pathogenesis of multiple cancers. After ligand binding, IGF-1R can initiate the activation of the PI3K/AKT/mTOR and Ras/Raf/MEK/MAPK pathways to modulate cell proliferation, survival, differentiation, motility, invasion and angiogenesis. IGF-1R is a prerequisite for tumor progression and is one of the most attractive targets for therapeutic interventions in several types of cancer. In the present study, we determined the expression of IGF-1R in an esophageal squamous cell carcinoma (ESCC) cohort, investigated the detailed function of IGF-1R and screened the potential application of IGF-1R in the clinic. We verified the higher expression of IGF-1R in ESCC tumor tissues as compared to adjacent normal tissues. We also found that high expression of IGF-1R was associated with advanced tumor progression. We used ESCC cell lines and a mouse xenograft model to detect the function of IGF-1R in vitro and in vivo. Our results suggest the oncogenic function of IGF-1R in regulating cell proliferation, clonogenesis, the cell cycle and apoptosis. In addition, we found that IGF-1R was associated with the response to standard chemotherapy drugs 5-FU and cisplatin in an ESCC cell line. More importantly, we confirmed that the serum concentration of IGF-1/IGFBP3 can be used for predicting response to chemotherapy, and increased serum levels of IGF-1 and IGFBP-3 are associated with significantly higher rates of tumor response. In the present study, we demonstrated that IGF-1R is an important oncogene in ESCC and can be used to detect the chemotherapeutic response.
Collapse
Affiliation(s)
- Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Tengfei Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jian Pan
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu, P.R. China
| | - Ni Shi
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Qingxia Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Liuxing Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Shih Hsin Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
24
|
Golubovskaya VM. Targeting FAK in human cancer: from finding to first clinical trials. Front Biosci (Landmark Ed) 2014; 19:687-706. [PMID: 24389213 DOI: 10.2741/4236] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is twenty years since Focal Adhesion Kinase (FAK) was found to be overexpressed in many types of human cancer. FAK plays an important role in adhesion, spreading, motility, invasion, metastasis, survival, angiogenesis, and recently has been found to play an important role as well in epithelial to mesenchymal transition (EMT), cancer stem cells and tumor microenvironment. FAK has kinase-dependent and kinase independent scaffolding, cytoplasmic and nuclear functions. Several years ago FAK was proposed as a potential therapeutic target; the first clinical trials were just reported, and they supported further studies of FAK as a promising therapeutic target. This review discusses the main functions of FAK in cancer, and specifically focuses on recent novel findings on the role of FAK in cancer stem cells, microenvironment, epithelial-to-mesenchymal transition, invasion, metastasis, and also highlight new approaches of targeting FAK and critically discuss challenges that lie ahead for its targeted therapeutics. The review provides a summary of translational approaches of FAK-targeted and combination therapies and outline perspectives and future directions of FAK research.
Collapse
|
25
|
Zhang J, Hochwald SN. The role of FAK in tumor metabolism and therapy. Pharmacol Ther 2013; 142:154-63. [PMID: 24333503 DOI: 10.1016/j.pharmthera.2013.12.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023]
Abstract
Focal adhesion kinase (FAK) plays a vital role in tumor cell proliferation, survival and migration. Altered metabolic pathways fuel rapid tumor growth by accelerating glucose, lipid and glutamine processing. Besides the mitogenic effects of FAK, evidence is accumulating supporting the association between hyper-activated FAK and aberrant metabolism in tumorigenesis. FAK can promote glucose consumption, lipogenesis, and glutamine dependency to promote cancer cell proliferation, motility, and survival. Clinical studies demonstrate that FAK-related alterations of tumor metabolism are associated with increased risk of developing solid tumors. Since FAK contributes to the malignant phenotype, small molecule inhibition of FAK-stimulated bioenergetic and biosynthetic processes can provide a novel approach for therapeutic intervention in tumor growth and invasion.
Collapse
Affiliation(s)
- Jianliang Zhang
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States
| | - Steven N Hochwald
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|