1
|
Sandhu P, Nunez-Garcia J, Berg S, Wheeler J, Dale J, Upton P, Gibbens J, Hewinson RG, Downs SH, Ellis RJ, Palkopoulou E. Enhanced analysis of the genomic diversity of Mycobacterium bovis in Great Britain to aid control of bovine tuberculosis. Front Microbiol 2025; 16:1515906. [PMID: 40201440 PMCID: PMC11975571 DOI: 10.3389/fmicb.2025.1515906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/04/2025] [Indexed: 04/10/2025] Open
Abstract
Bovine tuberculosis (bTB) is an endemic disease in Great Britain (GB) that affects mainly cattle but also other livestock and wild mammal species, leading to significant economic and social impact. Traditional genotyping of Mycobacterium bovis (M. bovis) isolates, which cause bTB, had been used routinely since the late 1990s as the main resource of genetic information in GB to describe their population and to understand their epidemiology. Since 2017, whole-genome sequencing (WGS) has been implemented on M. bovis isolates collected during routine surveillance. In this study, we analysed genome sequences from 3,052 M. bovis isolates from across GB to characterise their diversity and population structure in more detail. Our findings show that the M. bovis population in GB, based on WGS, is more diverse than previously indicated by traditional genotyping and can be divided into seven major clades, with one of them subdivided further into 29 clades that differ from each other by at least 70 single-nucleotide polymorphisms (SNPs). Based on the observed phylogenetic structure, we present a SNP-based classification system that replaces the genotype scheme that had been used until recently in GB. The predicted function and associated processes of the genes harbouring these SNPs are discussed with potential implications for phenotypic/functional differences between the identified clades. At the local scale, we show that WGS provides greater discriminatory power and that it can reveal the origin of infection and associated risk pathways even in areas of high bTB prevalence. The difficulty in determining transmission pathways due to the limited discrimination of isolates by traditional typing methods has compromised bTB control, as without such information it is harder to determine the relative efficacy of potential intervention measures. This study demonstrates that the higher resolution provided by WGS data can improve determination of infection sources and transmission pathways, provide important insights that will inform and shape bTB control policies in GB, as well as improve farm specific advice on interventions that are likely to be effective.
Collapse
Affiliation(s)
- Prizam Sandhu
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Stefan Berg
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jo Wheeler
- Field Epidemiology, Animal Health and Welfare Advice Team, Professional Advice and Standards Directorate, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - James Dale
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Paul Upton
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jane Gibbens
- Consultant Veterinary Epidemiologist, London, United Kingdom
| | - R. Glyn Hewinson
- Sêr Cymru Centre of Excellence for Bovine TB, Aberystwyth University, Aberystwyth, United Kingdom
| | - Sara H. Downs
- Department of Epidemiological Sciences, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Richard J. Ellis
- Department of Surveillance and Laboratory Services, Animal and Plant Health Agency, Addlestone, United Kingdom
| | | |
Collapse
|
2
|
R R, Thakur P, Kumar N, Saini N, Banerjee S, Singh RP, Patel M, Kumaran S. Multi-oligomeric and catalytically compromised serine acetyltransferase and cysteine regulatory complex of Mycobacterium tuberculosis. Biochimie 2024; 221:110-124. [PMID: 38311199 DOI: 10.1016/j.biochi.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
l-cysteine, a primary building block of mycothiol, plays an essential role in the defense mechanism of Mycobacterium tuberculosis (Mtb). However, it is unclear how Mtb regulates cysteine biosynthesis as no study has reported the cysteine regulatory complex (CRC) in Mtb. Serine acetyltransferase (SAT) and cysteine synthase (CS) interact to form CRC. Although MtCS has been characterized well, minimal information is available on MtSAT, which synthesizes, O-acetylserine (OAS), the precursor of cysteine. This study fills the gap and provides experimental evidence for the presence of MtCRC and a non-canonical multi-oligomeric MtSAT. We employed multiple analytical methods to characterize the oligomeric and kinetic properties of MtSAT and MtCRC. Results show that MtSAT, lacking >75 N-terminal amino acids exists in three different assembly states; trimer, hexamer, and dodecamer, compared to the single hexameric state of SAT of other bacteria. While hexamers display the highest catalytic turnover, the trimer is the least active. The predominance of trimers at low physiologically relevant concentrations suggests that MtSAT displays the lowest catalytic potential known. Further, the catalytic potential of MtSAT is also significantly reduced in CRC state, in contrast to enhanced activity of SAT in CRC of other organisms. Our study provides insights into multi-oligomeric MtSAT with reduced catalytic potential and demonstrates that both MtSAT and MtCS of Mycobacterium interact to form CRC, although with altered catalytic properties. We discuss our results in light of the altered biochemistry of the last step of canonical sulfate-dependent cysteine biosynthesis of Mycobacterium.
Collapse
Affiliation(s)
- Rahisuddin R
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Payal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Narender Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Neha Saini
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Shrijta Banerjee
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Ravi Pratap Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - Madhuri Patel
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
| | - S Kumaran
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
3
|
Xu R, Zhang W, Xi X, Chen J, Wang Y, Du G, Li J, Chen J, Kang Z. Engineering sulfonate group donor regeneration systems to boost biosynthesis of sulfated compounds. Nat Commun 2023; 14:7297. [PMID: 37949843 PMCID: PMC10638397 DOI: 10.1038/s41467-023-43195-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sulfonation as one of the most important modification reactions in nature is essential for many biological macromolecules to function. Development of green sulfonate group donor regeneration systems to efficiently sulfonate compounds of interest is always attractive. Here, we design and engineer two different sulfonate group donor regeneration systems to boost the biosynthesis of sulfated compounds. First, we assemble three modules to construct a 3'-phosphoadenosine-5'-phosphosulfate (PAPS) regeneration system and demonstrate its applicability for living cells. After discovering adenosine 5'-phosphosulfate (APS) as another active sulfonate group donor, we engineer a more simplified APS regeneration system that couples specific sulfotransferase. Next, we develop a rapid indicating system for characterizing the activity of APS-mediated sulfotransferase to rapidly screen sulfotransferase variants with increased activity towards APS. Eventually, the active sulfonate group equivalent values of the APS regeneration systems towards trehalose and p-coumaric acid reach 3.26 and 4.03, respectively. The present PAPS and APS regeneration systems are environmentally friendly and applicable for scaling up the biomanufacturing of sulfated products.
Collapse
Affiliation(s)
- Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xintong Xi
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jiamin Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Toyomoto T, Ono K, Shiba T, Momitani K, Zhang T, Tsutsuki H, Ishikawa T, Hoso K, Hamada K, Rahman A, Wen L, Maeda Y, Yamamoto K, Matsuoka M, Hanaoka K, Niidome T, Akaike T, Sawa T. Alkyl gallates inhibit serine O-acetyltransferase in bacteria and enhance susceptibility of drug-resistant Gram-negative bacteria to antibiotics. Front Microbiol 2023; 14:1276447. [PMID: 37965540 PMCID: PMC10641863 DOI: 10.3389/fmicb.2023.1276447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
A principal concept in developing antibacterial agents with selective toxicity is blocking metabolic pathways that are critical for bacterial growth but that mammalian cells lack. Serine O-acetyltransferase (CysE) is an enzyme in many bacteria that catalyzes the first step in l-cysteine biosynthesis by transferring an acetyl group from acetyl coenzyme A (acetyl-CoA) to l-serine to form O-acetylserine. Because mammalian cells lack this l-cysteine biosynthesis pathway, developing an inhibitor of CysE has been thought to be a way to establish a new class of antibacterial agents. Here, we demonstrated that alkyl gallates such as octyl gallate (OGA) could act as potent CysE inhibitors in vitro and in bacteria. Mass spectrometry analyses indicated that OGA treatment markedly reduced intrabacterial levels of l-cysteine and its metabolites including glutathione and glutathione persulfide in Escherichia coli to a level similar to that found in E. coli lacking the cysE gene. Consistent with the reduction of those antioxidant molecules in bacteria, E. coli became vulnerable to hydrogen peroxide-mediated bacterial killing in the presence of OGA. More important, OGA treatment intensified susceptibilities of metallo-β-lactamase-expressing Gram-negative bacteria (E. coli and Klebsiella pneumoniae) to carbapenem. Structural analyses showed that alkyl gallate bound to the binding site for acetyl-CoA that limits access of acetyl-CoA to the active site. Our data thus suggest that CysE inhibitors may be used to treat infectious diseases caused by drug-resistant Gram-negative bacteria not only via direct antibacterial activity but also by enhancing therapeutic potentials of existing antibiotics.
Collapse
Affiliation(s)
- Touya Toyomoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kenta Momitani
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Ishikawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima, Japan
| | - Kanae Hoso
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koma Hamada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Azizur Rahman
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Liping Wen
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yosuke Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Yamamoto
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Rheumatology, and Infectious Diseases, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Baatjies L, van Rensberg IC, Snyders C, Gutschmidt A, Loxton AG, Williams MJ. Investigating Mycobacterium tuberculosis sufR (rv1460) in vitro and ex vivo expression and immunogenicity. PLoS One 2023; 18:e0286965. [PMID: 37319185 PMCID: PMC10270350 DOI: 10.1371/journal.pone.0286965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Iron is vital metal for Mycobacterium tuberculosis infection, survival, and persistence within its human host. The mobilization of sulphur (SUF) operon encodes the primary iron-sulphur (Fe-S) biogenesis system in M. tuberculosis and is induced during iron limitation and intracellular growth of M. tuberculosis, pointing to its importance during infection. To study sufR expression at single cell level during intracellular growth of M. tuberculosis a fluorescent reporter was generated by cloning a 123 bp sufR promoter region upstream of a promotorless mcherry gene in an integrating vector. Expression analysis and fluorescence measurements during in vitro culture revealed that the reporter was useful for measuring induction of the promoter but was unable to detect subsequent repression due to the stability of mCherry. During intracellular growth in THP-1 macrophages, increased fluorescence was observed in the strain harbouring the reporter relative to the control strain, however this induction was only observed in a small sub-set of the population. Since SufR levels are predicted to be elevated during infection we hypothesize that it is immunogenic and may induce an immune response in M. tuberculosis infected individuals. The immune response elicited by SufR for both whole blood assay (WBA, a short term 12-hr stimulation to characterise the production of cytokines/growth factors suggestive of an effector response) and lymphocyte proliferation assay (LPA, a longer term 7-day stimulation to see if SufR induces a memory type immune response) were low and did not show a strong immune response for the selected Luminex analytes (MCP-1, RANTES, IL-1b, IL-8, MIP-1b, IFN-g, IL-6 and MMP-9) measured in three clinical groups, namely active TB, QuantiFERON positive (QFN pos) and QFN negative (QFN neg) individuals.
Collapse
Affiliation(s)
- Lucinda Baatjies
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ilana C. van Rensberg
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Candice Snyders
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andrea Gutschmidt
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- Division of Molecular Biology and Human Genetics, Department of Science and Innovation (DSI)-National Research Foundation (NRF) Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Monique J. Williams
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Zhao F, Xu H, Chen Y, Xiao J, Zhang M, Li Z, Liu J, Qi C. Actinobacillus pleuropneumoniae FliY and YdjN are involved in cysteine/cystine utilization, oxidative resistance, and biofilm formation but are not determinants of virulence. Front Microbiol 2023; 14:1169774. [PMID: 37250053 PMCID: PMC10213525 DOI: 10.3389/fmicb.2023.1169774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a member of Actinobacillus in family Pasteurellaceae. It is the causative agent of porcine pleuropneumonia, which has caused huge economic losses to pig industry over the world. Cysteine is a precursor of many important biomolecules and defense compounds in the cell. However, molecular mechanisms of cysteine transport in A. pleuropneumoniae are unclear. Methods In this study, gene-deleted mutants were generated and investigated, to reveal the roles of potential cysteine/cystine transport proteins FliY and YdjN of A. pleuropneumoniae. Results Our results indicated that the growth of A. pleuropneumoniae was not affected after fliY or ydjN single gene deletion, but absence of both FliY and YdjN decreased the growth ability significantly, when cultured in the chemically defined medium (CDM) supplemented with cysteine or cystine as the only sulfur source. A. pleuropneumoniae double deletion mutant ΔfliYΔydjN showed increased sensitivity to oxidative stress. Besides, trans-complementation of YdjN into ΔfliYΔydjN and wild type leads to increased biofilm formation in CDM. However, the virulence of ΔfliYΔydjN was not attenuated in mice or pigs. Discussion These findings suggest that A. pleuropneumoniae FliY and YdjN are involved in the cysteine/cystine acquisition, oxidative tolerance, and biofilm formation, but not contribute to the pathogenicity of A. pleuropneumoniae.
Collapse
|
7
|
Kaur K, Sharma S, Abhishek S, Kaur P, Saini UC, Dhillon MS, Karakousis PC, Verma I. Metabolic switching and cell wall remodelling of Mycobacterium tuberculosis during bone tuberculosis. J Infect 2023; 86:134-146. [PMID: 36549425 DOI: 10.1016/j.jinf.2022.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Bone tuberculosis (TB) is the third most common types of extrapulmonary tuberculosis. It is critical to understand mycobacterial adaptive strategies within bone lesions to identify mycobacterial factors that may have role in disease pathogenesis. METHODS Whole genome microarray was used to characterize the in-vivo transcriptome of Mycobacterium tuberculosis (M.tb) within bone TB specimens. Mycobacterial virulent proteins were identified by bioinformatic software. An in vitro osteoblast cell line model was used to study the role of these proteins in bone TB pathogenesis. RESULTS 914 mycobacterial genes were significantly overexpressed and 1688 were repressed in bone TB specimens. Pathway analysis of differentially expressed genes demonstrated a non-replicative and hypometabolic state of M.tb, reinforcement of the mycobacterial cell wall and induction of DNA damage repair responses, suggesting possible survival strategies of M.tb within bone. Bioinformatics mining of microarray data led to identification of five virulence proteins. The genes encoding these proteins were also upregulated in the in vitro MC3T3 osteoblast cell line model of bone TB. Further, exposure of osteoblast cells to two of these virulence proteins (Rv1046c and Rv3663c) significantly inhibited osteoblast differentiation. CONCLUSION M.tb alters its transcriptome to establish infection in bone by upregulating certain virulence genes which play a key role in disturbing bone homeostasis.
Collapse
Affiliation(s)
- Khushpreet Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumedha Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudhanshu Abhishek
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Prabhdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uttam Chand Saini
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Petros C Karakousis
- Centers for Tuberculosis Research and Systems Approaches for Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
8
|
Design, Synthesis and Antimicrobial Properties of New Tetracyclic Quinobenzothiazine Derivatives. Int J Mol Sci 2022; 23:ijms232315078. [PMID: 36499402 PMCID: PMC9736374 DOI: 10.3390/ijms232315078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
A new method for modifying the structure of tetracyclic quinobenzothiazinium derivatives has been developed, allowing introduction of various substituents at different positions of the benzene ring. The method consists of reacting appropriate aniline derivatives with 5,12-(dimethyl)thioquinantrenediinium bis-chloride. A series of new quinobenzothiazine derivatives was obtained with propyl, allyl, propargyl and benzyl substituents in 9, 10 and 11 positions, respectively. The structure of the obtained compounds was analyzed by 1H and 13C NMR (HSQC, HMBC) and X-ray analysis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212, and representatives of multidrug-resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). In addition, all the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. 9-Benzyloxy-5-methyl-12H-quino [3,4-b][1,4]benzothiazinium chloride (6j), 9-propoxy-5-methyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (6a) and 9-allyloxy-5-methyl-12H-quino[3,4-b][1,4]benzothiazinium chloride (6d) demonstrated high activity against the entire tested microbial spectrum. The activities of the compounds were comparable with oxacillin, tetracycline and ciprofloxacinagainst staphylococcal strains and with rifampicin against both mycobacterial strains. Compound 6j had a significant effect on the inhibition of bacterial respiration as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity, but also bactericidal activity. Preliminary in vitro cytotoxicity screening of the compounds performed using normal human dermal fibroblasts (NHDF) proved that the tested compounds showed an insignificant cytotoxic effect on human cells (IC50 > 37 µM), making these compounds interesting for further investigation. Moreover, the intermolecular similarity of novel compounds was analyzed in the multidimensional space (mDS) of the structure/property-related in silico descriptors by means of principal component analysis (PCA) and hierarchical clustering analysis (HCA), respectively. The distance-oriented structure/property distribution was related with the experimental lipophilic data.
Collapse
|
9
|
Bongaerts N, Edoo Z, Abukar AA, Song X, Sosa-Carrillo S, Haggenmueller S, Savigny J, Gontier S, Lindner AB, Wintermute EH. Low-cost anti-mycobacterial drug discovery using engineered E. coli. Nat Commun 2022; 13:3905. [PMID: 35798732 PMCID: PMC9262897 DOI: 10.1038/s41467-022-31570-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/23/2022] [Indexed: 12/29/2022] Open
Abstract
Whole-cell screening for Mycobacterium tuberculosis (Mtb) inhibitors is complicated by the pathogen's slow growth and biocontainment requirements. Here we present a synthetic biology framework for assaying Mtb drug targets in engineered E. coli. We construct Target Essential Surrogate E. coli (TESEC) in which an essential metabolic enzyme is deleted and replaced with an Mtb-derived functional analog, linking bacterial growth to the activity of the target enzyme. High throughput screening of a TESEC model for Mtb alanine racemase (Alr) revealed benazepril as a targeted inhibitor, a result validated in whole-cell Mtb. In vitro biochemical assays indicated a noncompetitive mechanism unlike that of clinical Alr inhibitors. We establish the scalability of TESEC for drug discovery by characterizing TESEC strains for four additional targets.
Collapse
Affiliation(s)
- Nadine Bongaerts
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Zainab Edoo
- Sorbonne Université, Université Paris Cité, Inserm, Centre de Recherche des Cordeliers (CRC), Paris, France
| | - Ayan A Abukar
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Xiaohu Song
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Sebastián Sosa-Carrillo
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- Institut Pasteur, Inria de Paris, Université Paris Cité, InBio, Paris, France
| | - Sarah Haggenmueller
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Juline Savigny
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Sophie Gontier
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France
- CRI, Paris, France
| | - Ariel B Lindner
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France.
- CRI, Paris, France.
| | - Edwin H Wintermute
- Université Paris Cité, Inserm, System Engineering and Evolution Dynamics, Paris, France.
- CRI, Paris, France.
| |
Collapse
|
10
|
Alvarez-Eraso KLF, Muñoz-Martínez LM, Alzate JF, Barrera LF, Baena A. Modulatory Impact of the sRNA Mcr11 in Two Clinical Isolates of Mycobacterium tuberculosis. Curr Microbiol 2022; 79:39. [PMID: 34982251 DOI: 10.1007/s00284-021-02733-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a successful pathogen causing tuberculosis (TB) disease in humans. It has been shown, that some circulating strains of Mtb in TB endemic populations, are more virulent and more transmissible than others, which may be related to their evolved adaptations to modulate the host immune responses. Underlying these adaptations to the stressful conditions, different genetic regulatory networks involved sRNAs that are mostly unknown for Mtb. We have previously shown that Mcr11 is one of the main sRNAs that determine transcriptomic differences among the Colombian clinical isolates UT127 and UT205 compared to the laboratory strain H37Rv. We found that the knock-down of mcr11 using CRISPRi has a major impact on phenotypic traits, especially in the clinical isolate UT205. Through the analysis of RNA-seq during the knock-down of mcr11 in UT205, we found a downregulation of genes mainly involved in lipid synthesis, lipid metabolism, ribosomal proteins, transport systems, respiratory and energy systems, membrane and cell wall components, intermediary metabolism, lipoproteins and virulence genes. One of the most interesting genes showing transcriptomic changes is OprA (encoded by the gene rv0516c), which has been involved in the K+ regulation. Overall, our data may suggest that one of the prominent roles of the sRNA Mcr11 is to regulate genes that control Mtb growth and osmoregulation.
Collapse
Affiliation(s)
| | | | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia
- Centro Nacional de Secuenciación Genómica-CNSG, Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
| | - Luis F Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia
- Sede de Investigación Universitaria-SIU, Medellín, Colombia
- Instituto de Investigaciones Médicas, Universidad de Antioquia, Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Medellín, Colombia.
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Carrera 53 No. 61-30, Medellín, Colombia.
- Sede de Investigación Universitaria-SIU, Medellín, Colombia.
| |
Collapse
|
11
|
Biodesulfurization Induces Reprogramming of Sulfur Metabolism in Rhodococcus qingshengii IGTS8: Proteomics and Untargeted Metabolomics. Microbiol Spectr 2021; 9:e0069221. [PMID: 34468196 PMCID: PMC8557817 DOI: 10.1128/spectrum.00692-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sulfur metabolism in fuel-biodesulfurizing bacteria and the underlying physiological adaptations are not understood, which has impeded the development of a commercially viable bioprocess for fuel desulfurization. To fill these knowledge gaps, we performed comparative proteomics and untargeted metabolomics in cultures of the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 grown on either inorganic sulfate or the diesel-borne organosulfur compound dibenzothiophene as a sole sulfur source. Dibenzothiophene significantly altered the biosynthesis of many sulfur metabolism proteins and metabolites in a growth phase-dependent manner, which enabled us to reconstruct the first experimental model for sulfur metabolism in a fuel-biodesulfurizing bacterium. All key pathways related to assimilatory sulfur metabolism were represented in the sulfur proteome, including uptake of the sulfur sources, sulfur acquisition, and assimilatory sulfate reduction, in addition to biosynthesis of key sulfur-containing metabolites such as S-adenosylmethionine, coenzyme A, biotin, thiamin, molybdenum cofactor, mycothiol, and ergothioneine (low-molecular weight thiols). Fifty-two proteins exhibited significantly different abundance during at least one growth phase. Sixteen proteins were uniquely detected and 47 proteins were significantly more abundant in the dibenzothiophene culture during at least one growth phase. The sulfate-free dibenzothiophene-containing culture reacted to sulfate starvation by restricting sulfur assimilation, enforcing sulfur-sparing, and maintaining redox homeostasis. Biodesulfurization triggered alternative pathways for sulfur assimilation different from those operating in the inorganic sulfate culture. Sulfur metabolism reprogramming and metabolic switches in the dibenzothiophene culture were manifested in limiting sulfite reduction and biosynthesis of cysteine, while boosting the production of methionine via the cobalamin-independent pathway, as well as the biosynthesis of the redox buffers mycothiol and ergothioneine. The omics data underscore the key role of sulfur metabolism in shaping the biodesulfurization phenotype and highlight potential targets for improving the biodesulfurization catalytic activity via metabolic engineering. IMPORTANCE For many decades, research on biodesulfurization of fossil fuels was conducted amid a large gap in knowledge of sulfur metabolism and its regulation in fuel-biodesulfurizing bacteria, which has impeded the development of a commercially viable bioprocess. In addition, lack of understanding of biodesulfurization-associated metabolic and physiological adaptations prohibited the development of efficient biodesulfurizers. Our integrated omics-based findings reveal the assimilatory sulfur metabolism in the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 and show how sulfur metabolism and oxidative stress response were remodeled and orchestrated to shape the biodesulfurization phenotype. Our findings not only explain the frequently encountered low catalytic activity of native fuel-biodesulfurizing bacteria but also uncover unprecedented potential targets in sulfur metabolism that could be exploited via metabolic engineering to boost the biodesulfurization catalytic activity, a prerequisite for commercial application.
Collapse
|
12
|
Abstract
Nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) colonize diverse anoxic environments, including soil subsurface, groundwater, and wastewater. NRB and SRB compete for resources, and their interplay has major implications on the global cycling of nitrogen and sulfur species, with undesirable outcomes in some contexts. Competition between nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) for resources in anoxic environments is generally thought to be governed largely by thermodynamics. It is now recognized that intermediates of nitrogen and sulfur cycling (e.g., hydrogen sulfide, nitrite, etc.) can also directly impact NRB and SRB activities in freshwater, wastewater, and sediment and therefore may play important roles in competitive interactions. Here, through comparative transcriptomic and metabolomic analyses, we have uncovered mechanisms of hydrogen sulfide- and cysteine-mediated inhibition of nitrate respiratory growth for the NRB Intrasporangium calvum C5. Specifically, the systems analysis predicted that cysteine and hydrogen sulfide inhibit growth of I. calvum C5 by disrupting distinct steps across multiple pathways, including branched-chain amino acid (BCAA) biosynthesis, utilization of specific carbon sources, and cofactor metabolism. We have validated these predictions by demonstrating that complementation with BCAAs and specific carbon sources relieves the growth inhibitory effects of cysteine and hydrogen sulfide. We discuss how these mechanistic insights give new context to the interplay and stratification of NRB and SRB in diverse environments. IMPORTANCE Nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB) colonize diverse anoxic environments, including soil subsurface, groundwater, and wastewater. NRB and SRB compete for resources, and their interplay has major implications on the global cycling of nitrogen and sulfur species, with undesirable outcomes in some contexts. For instance, the removal of reactive nitrogen species by NRB is desirable for wastewater treatment, but in agricultural soils, NRB can drive the conversion of nitrates from fertilizers into nitrous oxide, a potent greenhouse gas. Similarly, the hydrogen sulfide produced by SRB can help sequester and immobilize toxic heavy metals but is undesirable in oil wells where competition between SRB and NRB has been exploited to suppress hydrogen sulfide production. By characterizing how reduced sulfur compounds inhibit growth and activity of NRB, we have gained systems-level and mechanistic insight into the interplay of these two important groups of organisms and drivers of their stratification in diverse environments.
Collapse
|
13
|
Khusro A, Aarti C, Elghandour MM, Salem AZ. Potential targets in quest for new antitubercular drugs: Implications of computational approaches for end-TB strategy. A MECHANISTIC APPROACH TO MEDICINES FOR TUBERCULOSIS NANOTHERAPY 2021:229-260. [DOI: 10.1016/b978-0-12-819985-5.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Gao L, Zhang L, Xu H, Zhao F, Ke W, Chen J, Yang J, Qi C, Liu J. The Actinobacillus pleuropneumoniae sulfate-binding protein is required for the acquisition of sulfate and methionine, but is not essential for virulence. Vet Microbiol 2020; 245:108704. [DOI: 10.1016/j.vetmic.2020.108704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
|
15
|
Aswal M, Garg A, Singhal N, Kumar M. Comparative in-silico proteomic analysis discerns potential granuloma proteins of Yersinia pseudotuberculosis. Sci Rep 2020; 10:3036. [PMID: 32080254 PMCID: PMC7033130 DOI: 10.1038/s41598-020-59924-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/03/2020] [Indexed: 11/29/2022] Open
Abstract
Yersinia pseudotuberculosis is one of the three pathogenic species of the genus Yersinia. Most studies regarding pathogenesis of Y. pseudotuberculosis are based on the proteins related to Type III secretion system, which is a well-known primary virulence factor in pathogenic Gram-negative bacteria, including Y. pseudotuberculosis. Information related to the factors involved in Y. pseudotuberculosis granuloma formation is scarce. In the present study we have used a computational approach to identify proteins that might be potentially involved in formation of Y. pseudotuberculosis granuloma. A comparative proteome analysis and conserved orthologous protein identification was performed between two different genera of bacteria - Mycobacterium and Yersinia, their only common pathogenic trait being ability to form necrotizing granuloma. Comprehensive analysis of orthologous proteins was performed in proteomes of seven bacterial species. This included M. tuberculosis, M. bovis and M. avium paratuberculosis - the known granuloma forming Mycobacterium species, Y. pestis and Y. frederiksenii - the non-granuloma forming Yersinia species and, Y. enterocolitica - that forms micro-granuloma and, Y. pseudotuberculosis - a prominent granuloma forming Yersinia species. In silico proteome analysis indicated that seven proteins (UniProt id A0A0U1QT64, A0A0U1QTE0, A0A0U1QWK3, A0A0U1R1R0, A0A0U1R1Z2, A0A0U1R2S7, A7FMD4) might play some role in Y. pseudotuberculosis granuloma. Validation of the probable involvement of the seven proposed Y. pseudotuberculosis granuloma proteins was done using transcriptome data analysis and, by mapping on a composite protein-protein interaction map of experimentally proved M. tuberculosis granuloma proteins (RD1 locus proteins, ESAT-6 secretion system proteins and intra-macrophage secreted proteins). Though, additional experiments involving knocking out of each of these seven proteins are required to confirm their role in Y. pseudotuberculosis granuloma our study can serve as a basis for further studies on Y. pseudotuberculosis granuloma.
Collapse
Affiliation(s)
- Manisha Aswal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
16
|
Rojony R, Martin M, Campeau A, Wozniak JM, Gonzalez DJ, Jaiswal P, Danelishvili L, Bermudez LE. Quantitative analysis of Mycobacterium avium subsp . hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin Proteomics 2019; 16:39. [PMID: 31749666 PMCID: PMC6852889 DOI: 10.1186/s12014-019-9260-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) belongs to the clinically important non-tuberculous mycobacterial group that infects immunocompromised patients and individuals with underling lung conditions. The need for prolonged therapy is a major challenge of MAH treatment, influencing the development of persistent and drug-resistant infections. The reason why bactericidal drugs take several months to eliminate MAH is unknown. To investigate MAH proteome remodeling under aerobic, anaerobic and biofilm conditions (as it is encountered in patient lungs) and identify metabolic changes potentially associated with bacterial persistent state, we performed the relative protein quantitative analysis using Tandem Mass Tag Mass Spectrometry sequencing. MAH was exposed to amikacin (4 μg/ml) and clarithromycin (16 μg/ml) under aerobic, anaerobic or biofilm condition for 24 h and the response was compared with bacterial proteomics of the corresponding conditions. Overall, 4000 proteins were identified out of 5313 MAH proteome of across all experimental groups. Numerous sets of de novo synthesized proteins belonging to metabolic pathways not evidenced in aerobic condition were found commonly enriched in both anaerobic and biofilm conditions, including pantothenate and CoA biosynthesis, glycerolipid metabolism, nitrogen metabolism and chloroalkene degradation, known to be associated with bacterial tolerance in M. tuberculosis. The common pathways observed in anaerobic and biofilm conditions following drug treatments were peptidoglycan biosynthesis, glycerophospholipid metabolism and protein export. The LprB lipoprotein, highly synthesized in MAH biofilms during drug treatments and shown to be essential for M. tuberculosis virulence and survival in vivo, was selected and overexpressed in MAH. Results demonstrate that LprB is secreted in MAH biofilms and the overexpression clone is more tolerant to antimicrobials than the wild-type strain. Our study identified promising metabolic pathways that can be targeted to prevent the bacterial tolerance mechanism and, subsequently, reduce the length of MAH therapy.
Collapse
Affiliation(s)
- Rajoana Rojony
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Matthew Martin
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - Anaamika Campeau
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Jacob M. Wozniak
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - L. Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, USA
| |
Collapse
|
17
|
1 H-Benzo[ d]Imidazole Derivatives Affect MmpL3 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.00441-19. [PMID: 31332069 DOI: 10.1128/aac.00441-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022] Open
Abstract
1H-benzo[d]imidazole derivatives exhibit antitubercular activity in vitro at a nanomolar range of concentrations and are not toxic to human cells, but their mode of action remains unknown. Here, we showed that these compounds are active against intracellular Mycobacterium tuberculosis To identify their target, we selected drug-resistant M. tuberculosis mutants and then used whole-genome sequencing to unravel mutations in the essential mmpL3 gene, which encodes the integral membrane protein that catalyzes the export of trehalose monomycolate, a precursor of the mycobacterial outer membrane component trehalose dimycolate (TDM), as well as mycolic acids bound to arabinogalactan. The drug-resistant phenotype was also observed in the parental strain overexpressing the mmpL3 alleles carrying the mutations identified in the resistors. However, no cross-resistance was observed between 1H-benzo[d]imidazole derivatives and SQ109, another MmpL3 inhibitor, or other first-line antitubercular drugs. Metabolic labeling and quantitative thin-layer chromatography (TLC) analysis of radiolabeled lipids from M. tuberculosis cultures treated with the benzoimidazoles indicated an inhibition of trehalose dimycolate (TDM) synthesis, as well as reduced levels of mycolylated arabinogalactan, in agreement with the inhibition of MmpL3 activity. Overall, this study emphasizes the pronounced activity of 1H-benzo[d]imidazole derivatives in interfering with mycolic acid metabolism and their potential for therapeutic application in the fight against tuberculosis.
Collapse
|
18
|
Chen C, Yan Q, Tao M, Shi H, Han X, Jia L, Huang Y, Zhao L, Wang C, Ma X, Ma Y. Characterization of serine acetyltransferase (CysE) from methicillin-resistant Staphylococcus aureus and inhibitory effect of two natural products on CysE. Microb Pathog 2019; 131:218-226. [PMID: 30974158 DOI: 10.1016/j.micpath.2019.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/19/2019] [Accepted: 04/01/2019] [Indexed: 01/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital-acquired infective pathogen that has developed resistance to many antibiotics. It is imperious to develop novel anti-MRSA drugs to control the emergence of drug resistance. The biosynthesis of cysteine in bacteria is catalyzed by CysE and CysK. CysE was predicted to be important for bacterial viability, it could be a potential drug target. The serine acetyltransferase activity of CysE was detected and its catalytic properties were also determined. CysE homology model was built to investigate interaction sites between CysE and substrate L-Ser or inhibitors by molecular docking. Docking data showed that residues Asp94 and His95 were essential for serine acetyltransferase activity of CysE, which were confirmed by site-directed mutagenesis. Colorimetric assay was used to screen natural products and six compounds which inhibited CysE activity (IC50 ranging from 29.83 μM to 203.13 μM) were found. Inhibition types of two compounds 4 (11-oxo-ebracteolatanolide B) and 30 ((4R,4aR)-dihydroxy-3-hydroxymethyl-7,7,10a-trimethyl-2,4,4a,5,6,6a,7,8,9,10,10a,l0b-dodecahydrophenanthro[3,2-b]furan-2-one) on CysE were determined. Compounds 4 and 30 showed inhibitory effect on MRSA growth (MIC at 12.5 μg/ml and 25 μg/ml) and mature biofilm. The established colorimetric assay will facilitate further high-throughput screening of CysE inhibitors from different compound libraries. The compounds 4 and 30 may offer structural basis for developing new anti-MRSA drugs.
Collapse
Affiliation(s)
- Changming Chen
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Qiulong Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Mengxing Tao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Huaying Shi
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Xiuyan Han
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Yukun Huang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Lizhe Zhao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
19
|
Nzungize L, Ali MK, Wang X, Huang X, Yang W, Duan X, Yan S, Li C, Abdalla AE, Jeyakkumar P, Xie J. Mycobacterium tuberculosis metC (Rv3340) derived hydrogen sulphide conferring bacteria stress survival. J Drug Target 2019; 27:1004-1016. [DOI: 10.1080/1061186x.2019.1579820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lambert Nzungize
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoyu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman, Islamic University, Omdurman, Sudan
| | - Ponmani Jeyakkumar
- Institute of Bioorganic and Medical Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
21
|
Mishra A, Surolia A. Mycobacterium tuberculosis: Surviving and Indulging in an Unwelcoming Host. IUBMB Life 2018; 70:917-925. [DOI: 10.1002/iub.1882] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Archita Mishra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
22
|
Pavić K, Perković I, Pospíšilová Š, Machado M, Fontinha D, Prudêncio M, Jampilek J, Coffey A, Endersen L, Rimac H, Zorc B. Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur J Med Chem 2017; 143:769-779. [PMID: 29220797 DOI: 10.1016/j.ejmech.2017.11.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Four series of primaquine (PQ) derivatives were screened for antitubercular and antiplasmodial activity: amides 1a-k, ureas 2a-s, semicarbazides 3a-c and bis-ureas 4a-u. Antimycobacterial activity of PQ derivatives against Mycobacterium tuberculosis (MTB), M. avium complex (MAC) and M. avium subsp. paratuberculosis (MAP) were evaluated in vitro and compared with PQ and the standard antitubercular drugs. In general, the PQ derivatives showed higher potency than the parent compound. Most of the compounds of series 1 and 2 showed high activity against MAP, comparable or even higher than the relevant drug ciprofloxacin, and weak or no activity against MTB and MAC. bis-Trifluoromethylated cinnamamide 1k showed low cytotoxicity and high activity against all three Mycobacterium species and their activities were comparable or slightly higher than those of the reference drugs. PQ urea derivatives with hydroxyl, halogen and trifluoromethyl substituents on benzene ring 2f-p exerted very strong antimycobacterial activity towards all tested mycobacteria, stronger than PQ and the relevant standard drug(s). Unfortunately, these compounds had relatively high cytotoxicity, except bromo 2l and trifluoromethyl 2m, 2n derivatives. In general, meta-substituted derivatives were more active than analogues para-derivatives. Phenyl ureas were also more active than cycloalkyl or hydroxyalkyl ureas. Semicarbazide 3a showed similar activity as PQ, while the other two semicarbazides were inactive. Bis-urea derivatives 4 were generally less active than the urea derivatives sharing the same scaffold, differing only in the spacer type. Out of 21 evaluated bis-urea derivatives, only p-Cl/m-CF3 phenyl derivative 4p, benzhydryl derivatives 4t and 4u and bis-PQ derivative 4s showed high activity, higher than all three reference drugs. After comparison of activity and cytotoxicity, urea 2m and bis-urea 4u could be considered as the most promising agents. Antimalarial potential of PQ derivatives in vitro against the liver stage of P. berghei was evaluated as well. 3-(4-Chlorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea (4l) was the most active compound (IC50 = 42 nM; cytotoxicity/activity ratio >2000). Our results bring new insights into development of novel anti-TB and antimalarial compounds.
Collapse
Affiliation(s)
- Kristina Pavić
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Ivana Perković
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Šárka Pospíšilová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Lorraine Endersen
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Hrvoje Rimac
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Branka Zorc
- University of Zagreb, Faculty of Pharmacy and Biochemistry, A. Kovačića 1, 10 000 Zagreb, Croatia.
| |
Collapse
|
23
|
A Comprehensive Computational Analysis of Mycobacterium Genomes Pinpoints the Genes Co-occurring with YczE, a Membrane Protein Coding Gene Under the Putative Control of a MocR, and Predicts its Function. Interdiscip Sci 2017; 10:111-125. [PMID: 29098594 DOI: 10.1007/s12539-017-0266-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 10/18/2022]
Abstract
Bacterial proteins belonging to the YczE family are predicted to be membrane proteins of yet unknown function. In many bacterial species, the yczE gene coding for the YczE protein is divergently transcribed with respect to an adjacent transcriptional regulator of the MocR family. According to in silico predictions, proteins named YczR are supposed to regulate the expression of yczE genes. These regulators linked to the yczE genes are predicted to constitute a subfamily within the MocR family. To put forward hypotheses amenable to experimental testing about the possible function of the YczE proteins, a phylogenetic profile strategy was applied. This strategy consists in searching for those genes that, within a set of genomes, co-occur exclusively with a certain gene of interest. Co-occurrence can be suggestive of a functional link. A set of 30 mycobacterial complete proteomes were collected. Of these, only 16 contained YczE proteins. Interestingly, in all cases each yczE gene was divergently transcribed with respect to a yczR gene. Two orthology clustering procedures were applied to find proteins co-occurring exclusively with the YczE proteins. The reported results suggest that YczE may be involved in the membrane translocation and metabolism of sulfur-containing compounds mostly in rapidly growing, low pathogenicity mycobacterial species. These observations may hint at potential targets for therapies to treat the emerging opportunistic infections provoked by the widespread environmental mycobacterial species and may contribute to the delineation of the genomic and physiological differences between the pathogenic and non-pathogenic mycobacterial species.
Collapse
|
24
|
Pereira CT, Roesler C, Faria JN, Fessel MR, Balan A. Sulfate-Binding Protein (Sbp) from Xanthomonas citri: Structure and Functional Insights. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:578-588. [PMID: 28562158 DOI: 10.1094/mpmi-02-17-0032-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The uptake and transport of sulfate in bacteria is mediated by an ATP-binding cassette transporter (ABC transporter) encoded by sbpcysUWA genes, whose importance has been widely demonstrated due to their relevance in cysteine synthesis and bacterial growth. In Xanthomonas citri, the causative agent of canker disease, the expression of components from this ABC transporter and others related to uptake of organic sulfur sources has been shown during in vitro growth cultures. In this work, based on gene reporter and proteomics analyses, we showed the activation of the promoter that controls the sbpcysUWA operon in vitro and in vivo and the expression of sulfate-binding protein (Sbp), a periplasmic-binding protein, indicating that this protein plays an important function during growth and that the transport system is active during Citrus sinensis infection. To characterize Sbp, we solved its three-dimensional structure bound to sulfate at 1.14 Å resolution and performed biochemical and functional characterization. The results revealed that Sbp interacts with sulfate without structural changes, but the interaction induces a significant increasing of protein thermal stability. Altogether, the results presented in this study show the evidence of the functionality of the ABC transporter for sulfate in X. citri and its relevance during infection.
Collapse
Affiliation(s)
- Cristiane Tambascia Pereira
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cássia Roesler
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Jéssica Nascimento Faria
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
- 2 Universidade de Campinas-UNICAMP, Instituto de Biologia, Campinas São Paulo, Brazil; and
| | - Melissa Regina Fessel
- 1 Laboratório Nacional de Biociências (LNBio), Centro de Pesquisas em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | - Andrea Balan
- 3 Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
25
|
Paritala H, Palde PB, Carroll KS. Functional Site Discovery in a Sulfur Metabolism Enzyme by Using Directed Evolution. Chembiochem 2016; 17:1873-1878. [PMID: 27411165 DOI: 10.1002/cbic.201600264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/07/2022]
Abstract
In human pathogens, the sulfate assimilation pathway provides reduced sulfur for biosynthesis of essential metabolites, including cysteine and low-molecular-weight thiol compounds. Sulfonucleotide reductases (SRs) catalyze the first committed step of sulfate reduction. In this reaction, activated sulfate in the form of adenosine-5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is reduced to sulfite. Gene knockout, transcriptomic and proteomic data have established the importance of SRs in oxidative stress-inducible antimicrobial resistance mechanisms. In previous work, we focused on rational and high-throughput design of small-molecule inhibitors that target the active site of SRs. However, another critical goal is to discover functionally important regions in SRs beyond the traditional active site. As an alternative to conservation analysis, we used directed evolution to rapidly identify functional sites in PAPS reductase (PAPR). Four new regions were discovered that are essential to PAPR function and lie outside the substrate binding pocket. Our results highlight the use of directed evolution as a tool to rapidly discover functionally important sites in proteins.
Collapse
Affiliation(s)
- Hanumantharao Paritala
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA
| | - Prakash B Palde
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA.
| |
Collapse
|
26
|
Lin K, O'Brien KM, Trujillo C, Wang R, Wallach JB, Schnappinger D, Ehrt S. Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense. PLoS Pathog 2016; 12:e1005675. [PMID: 27249779 PMCID: PMC4889078 DOI: 10.1371/journal.ppat.1005675] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) must cope with exogenous oxidative stress imposed by the host. Unlike other antioxidant enzymes, Mtb's thioredoxin reductase TrxB2 has been predicted to be essential not only to fight host defenses but also for in vitro growth. However, the specific physiological role of TrxB2 and its importance for Mtb pathogenesis remain undefined. Here we show that genetic inactivation of thioredoxin reductase perturbed several growth-essential processes, including sulfur and DNA metabolism and rapidly killed and lysed Mtb. Death was due to cidal thiol-specific oxidizing stress and prevented by a disulfide reductant. In contrast, thioredoxin reductase deficiency did not significantly increase susceptibility to oxidative and nitrosative stress. In vivo targeting TrxB2 eradicated Mtb during both acute and chronic phases of mouse infection. Deliberately leaky knockdown mutants identified the specificity of TrxB2 inhibitors and showed that partial inactivation of TrxB2 increased Mtb's susceptibility to rifampicin. These studies reveal TrxB2 as essential thiol-reducing enzyme in Mtb in vitro and during infection, establish the value of targeting TrxB2, and provide tools to accelerate the development of TrxB2 inhibitors.
Collapse
Affiliation(s)
- Kan Lin
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
| | - Kathryn M. O'Brien
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Carolina Trujillo
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
| | - Joshua B. Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (DS); (SE)
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, New York, United States of America
- * E-mail: (DS); (SE)
| |
Collapse
|
27
|
Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, Pezzotti A, Bettati S, Campanini B, Mozzarelli A. Structural insight into the interaction ofO-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett 2016; 590:943-53. [DOI: 10.1002/1873-3468.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Thelma A. Pertinhez
- Department of Oncology and Advanced Techniques; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences; Section of General and Organic Chemistry ‘A. Marchesini’; University of Milan; Italy
| | | | | | - Stefano Bettati
- Department of Neurosciences; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
- Institute of Biophysics; CNR; Pisa Italy
| |
Collapse
|
28
|
Erickson AI, Sarsam RD, Fisher AJ. Crystal Structures of Mycobacterium tuberculosis CysQ, with Substrate and Products Bound. Biochemistry 2015; 54:6830-41. [PMID: 26512869 DOI: 10.1021/acs.biochem.5b01000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In many organisms, 3'-phosphoadenosine 5'-phosphate (PAP) is a product of two reactions in the sulfur activation pathway. The sulfurylation of biomolecules, catalyzed by sulfotransferases, uses 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfate donor, producing the sulfated biomolecule and PAP product. Additionally, the first step in sulfate reduction for many bacteria and fungi reduces the sulfate moiety of PAPS, producing PAP and sulfite, which is subsequently reduced to sulfide. PAP is removed by the phosphatase activity of CysQ, a 3',5'-bisphosphate nucleotidase, yielding AMP and phosphate. Because excess PAP alters the equilibrium of the sulfur pathway and inhibits sulfotransferases, PAP concentrations can affect the levels of sulfur-containing metabolites. Therefore, CysQ, a divalent cation metal-dependent phosphatase, is a major regulator of this pathway. CysQ (Rv2131c) from Mycobacterium tuberculosis (Mtb) was successfully expressed, purified, and crystallized in a variety of ligand-bound states. Here we report six crystal structures of Mtb CysQ, including a ligand-free structure, a lithium-inhibited state with substrate PAP bound, and a product-bound complex with AMP, phosphate, and three Mg(2+) ions bound. Comparison of these structures together with homologues of the superfamily has provided insight into substrate specificity, metal coordination, and catalytic mechanism.
Collapse
Affiliation(s)
- Anna I Erickson
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Graduate Program in Biochemistry and Molecular, Cellular and Developmental Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Reta D Sarsam
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Graduate Program in Biochemistry and Molecular, Cellular and Developmental Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Andrew J Fisher
- Department of Chemistry, ‡Department of Molecular and Cellular Biology, and §Graduate Program in Biochemistry and Molecular, Cellular and Developmental Biology, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
29
|
Paritala H, Suzuki Y, Carroll KS. Design, synthesis and evaluation of Fe-S targeted adenosine 5'-phosphosulfate reductase inhibitors. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:199-220. [PMID: 25710356 DOI: 10.1080/15257770.2014.978012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Adenosine 5'-phosphosulfate reductase (APR) is an iron-sulfur enzyme that is vital for survival of Mycobacterium tuberculosis during dormancy and is an attractive target for the treatment of latent tuberculosis (TB) infection. The 4Fe-4S cluster is coordinated to APR by sulfur atoms of four cysteine residues, is proximal to substrate, adenosine 5'-phopsphosulfate (APS), and is essential for catalytic activity. Herein, we present an approach for the development of a new class of APR inhibitors. As an initial step, we have employed an improved solid-phase chemistry method to prepare a series of N(6)-substituted adenosine analogues and their 5'-phosphates as well as adenosine 5'-phosphate diesters bearing different Fe and S binding groups, such as thiols or carboxylic and hydroxamic acid moieties. Evaluation of the resulting compounds indicates a clearly defined spacing requirement between the Fe-S targeting group and adenosine scaffold and that smaller Fe-S targeting groups are better tolerated. Molecular docking analysis suggests that the S atom of the most potent inhibitor may establish a favorable interaction with an S atom in the cluster. In summary, this study showcases an improved solid-phase method that expedites the preparation of adenosine and related 5'-phosphate derivatives and presents a unique Fe-S targeting strategy for the development of APR inhibitors.
Collapse
|
30
|
Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O'Mahony J, Liptaj T, Kralova K, Jampilek J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg Med Chem 2015; 23:4188-4196. [PMID: 26183541 DOI: 10.1016/j.bmc.2015.06.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/14/2023]
Abstract
In this study, a series of twenty-two ring-substituted 8-hydroxyquinoline-2-carboxanilides was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, Mycobacterium avium complex and M. avium subsp. paratuberculosis. Some of the tested compounds showed the antimycobacterial activity against M. avium subsp. paratuberculosis comparable with or higher than that of rifampicin. 8-Hydroxy-N-[3-(trifluoromethyl)phenyl]- and 8-hydroxy-N-[4-(trifluoromethyl)phenyl]quinoline-2-carboxamide showed MIC=24 μM against all tested mycobacterial strains. 3-Methoxyphenyl- and 3-methylphenyl derivatives expressed MIC=27 or 29 μM also against all the tested strains. Their activity against M. avium subsp. paratuberculosis was 4-fold higher than that of rifampicin. 2-Bromophenyl- and 2-(trifluoromethyl)phenyl derivatives had MIC=23 or 24 μM against M. tuberculosis. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT assay. Screening of cytotoxicity of the compounds was performed using the THP-1 cells, and no significant lethal effect was observed up to tested concentration 30 μM. The structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Jiri Kos
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Iveta Zadrazilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Eoghan Nevin
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Michal Soral
- Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Centre AS CR, Belidla 986/4a, 603 00 Brno, Czech Republic
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Tibor Liptaj
- Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina Ch-2, 842 15 Bratislava, Slovakia
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic.
| |
Collapse
|
31
|
Campanini B, Benoni R, Bettati S, Beck CM, Hayes CS, Mozzarelli A. Moonlighting O-acetylserine sulfhydrylase: New functions for an old protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1184-93. [PMID: 25731080 DOI: 10.1016/j.bbapap.2015.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
O-acetylserine sulfhydrylase A (CysK) is the pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final reaction of cysteine biosynthesis in bacteria. CysK was initially identified in a complex with serine acetyltransferase (CysE), which catalyzes the penultimate reaction in the synthetic pathway. This "cysteine synthase" complex is stabilized by insertion of the CysE C-terminus into the active-site of CysK. Remarkably, the CysK/CysE binding interaction is conserved in most bacterial and plant systems. For the past 40years, CysK was thought to function exclusively in cysteine biosynthesis, but recent studies have revealed a repertoire of additional "moonlighting" activities for this enzyme. CysK and its paralogs influence transcription in both Gram-positive bacteria and the nematode Caenorhabditis elegans. CysK also activates an antibacterial nuclease toxin produced by uropathogenic Escherichia coli. Intriguingly, each moonlighting activity requires a binding partner that invariably mimics the C-terminus of CysE to interact with the CysK active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
| | - Roberto Benoni
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Bettati
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Christina M Beck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Andrea Mozzarelli
- Dipartimento di Farmacia, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy; Institute of Biophysics, CNR, Pisa, Italy
| |
Collapse
|
32
|
Schnell R, Sriram D, Schneider G. Pyridoxal-phosphate dependent mycobacterial cysteine synthases: Structure, mechanism and potential as drug targets. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:1175-83. [PMID: 25484279 DOI: 10.1016/j.bbapap.2014.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/23/2023]
Abstract
The alarming increase of drug resistance in Mycobacterium tuberculosis strains poses a severe threat to human health. Chemotherapy is particularly challenging because M. tuberculosis can persist in the lungs of infected individuals; estimates of the WHO indicate that about 1/3 of the world population is infected with latent tuberculosis providing a large reservoir for relapse and subsequent spread of the disease. Persistent M. tuberculosis shows considerable tolerance towards conventional antibiotics making treatment particularly difficult. In this phase the bacilli are exposed to oxygen and nitrogen radicals generated as part of the host response and redox-defense mechanisms are thus vital for the survival of the pathogen. Sulfur metabolism and de novo cysteine biosynthesis have been shown to be important for the redox homeostasis in persistent M. tuberculosis and these pathways could provide promising targets for novel antibiotics for the treatment of the latent form of the disease. Recent research has provided evidence for three de novo metabolic routes of cysteine biosynthesis in M. tuberculosis, each with a specific PLP dependent cysteine synthase with distinct substrate specificities. In this review we summarize our present understanding of these pathways, with a focus on the advances on functional and mechanistic characterization of mycobacterial PLP dependent cysteine synthases, their role in the various pathways to cysteine, and first attempts to develop specific inhibitors of mycobacterial cysteine biosynthesis. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Dharmarajan Sriram
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad-500078, Andhra Pradesh, India
| | - Gunter Schneider
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
33
|
Erickson AI, Sarsam RD, Fisher AJ. Expression, purification and preliminary crystallographic analysis of Mycobacterium tuberculosis CysQ, a phosphatase involved in sulfur metabolism. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:750-3. [PMID: 24915085 DOI: 10.1107/s2053230x14008619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/16/2014] [Indexed: 11/10/2022]
Abstract
CysQ is part of the sulfur-activation pathway that dephosphorylates 3'-phosphoadenosine 5'-monophosphate (PAP) to regenerate adenosine 5'-monophosphate (AMP) and free phosphate. PAP is the product of sulfate-transfer reactions from sulfotransferases that use the universal sulfate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). In some organisms PAP is also the product of PAPS reductases that reduce sulfate from PAPS to sulfite. CysQ from Mycobacterium tuberculosis, which plays an important role in the biosynthesis of sulfated glycoconjugates, was successfully purified and crystallized in 24% PEG 1500, 20% glycerol. X-ray diffraction data were collected to 1.7 Å resolution using a synchrotron-radiation source. Crystals grew in the orthorhombic space group P2₁2₁2₁, with unit-cell parameters a=40.3, b=57.9, c=101.7 Å and with one monomer per asymmetric unit.
Collapse
Affiliation(s)
- Anna I Erickson
- Graduate Program in Biochemistry, Molecular, Cellular and Developmental Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Reta D Sarsam
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew J Fisher
- Graduate Program in Biochemistry, Molecular, Cellular and Developmental Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|