1
|
Kanwal M, Sarwar S, Nadeem H, Alghamdi SA, Alamro AA, Malik S, Maqsood S, Alghamdi AA, Tariq MJ, Malik I, Khan AU, Muskan A. Pyrazolone-nicotinic acid derivative (4Z)-4-(2-hydroxybenzylidine)-5-methyl-2-(pyridine-3-ylcarbonyl)-2, 4-dihydro-3H-pyrazole-3-one (IIc) as multitarget inhibitor of neurodegeneration and behavioural impairment in Dementia. J Pharm Pharmacol 2025; 77:275-290. [PMID: 39403847 DOI: 10.1093/jpp/rgae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/29/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVE The study was aimed at the synthesis and pharmacological investigation of (4Z)-4-(2-hydroxybenzylidine)-5-methyl-2-(pyridine-3-ylcarbonyl)-2, 4-dihydro-3H-pyrazole-3-one (IIc) in mice model of scopolamine-induced neurodegeneration and cognition impairment. METHODS The behavioural studies included Y-Maze Test, Water Morris Test, and Novel Object Recognition Test in Albino mice (20-25 g). Scopalamine was used as an inducing agent. The acetylcholinesterase (AChE) inhibitory assay was used to assess the role of the test compounds in vitro. The Crystal Violet Staining (Nissl staining) was used to assess the neuroprotective and antiapoptotic effect through quantifying the number of neurons and viability. The expression of the anti-inflammatory enzyme cyclooxygenase-2 (COX-2), cytokine tumour necrotic factor (TNF-α), key transcription factor producing pro-inflammatory signals nuclear factor kappa B (P-NFkB), and apoptosis marker p-JNK was validated through enzyme-linked immunosorbent assay (ELISA) and immunohistochemical (IHC) analysis. The tested compound reverted cognitive and behavioural impairment through inhibiting scopolamine-induced inflammation and oxidative stress. KEY FINDINGS We found that the compound IIc improved the short-term memory and learning behaviour of the experimental animals. Further investigation into molecular mechanisms showed that this effect was the manifestation of immunomodulatory, antioxidant, and consequently, of downsizing of inflammatory cytokines. These results were further validated through docking analysis. CONCLUSION Finally, we conclude that the pyrazolone-nicotinic acid derivative IIc reversed the scopolamine-induced cognitive and behavioural deficits, attributed to acetylcholinesterase inhibition, neuronal recovery, antioxidant potential, and through downregulating the neuroinflammatory mediators p-NF-kB, cytokine TNF-α, and anti-inflammatory enzyme COX-2.
Collapse
Affiliation(s)
- Madiha Kanwal
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Sadia Sarwar
- Cell Culture Lab, Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Humaira Nadeem
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Sumra Malik
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Saima Maqsood
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Amani A Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Junaid Tariq
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Imran Malik
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Arif Ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Aleena Muskan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
2
|
Halder D, Das S, Joseph A. An insight into structure-activity relationship of naturally derived biological macromolecules for the treatment of Alzheimer's disease: a review. J Biomol Struct Dyn 2024; 42:6455-6471. [PMID: 37378526 DOI: 10.1080/07391102.2023.2230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Alzheimer's disease (AD) is a neurological disorder that affects millions of people worldwide. There are currently no cures for AD, although various drugs are used to manage the symptoms and reduce the disease's progression. AChE inhibitors such as rivastigmine, donepezil, galantamine, and the NMDA glutamate receptor antagonist memantine are currently FDA-approved drugs used in the treatment of AD. Recently, naturally derived biological macromolecules have shown promising results in the treatment of AD. Several biological macromolecules derived from natural sources are in various stages of preclinical and clinical trials. During the literature search, it was observed that there is a lack of a comprehensive review that particularly focuses on the role of naturally derived biological macromolecules (protein, carbohydrates, lipids, and nucleic acids) in the treatment of AD and the structure-activity relationship (SAR) approach for understanding the medicinal chemistry perspective. This review focuses on the SAR and probable mechanisms of action of biological macromolecules derived from natural sources for the treatment of AD, including peptides, proteins, enzymes, and polysaccharides. The paper further addresses the therapeutic possibilities of monoclonal antibodies, enzymes, and vaccines for the treatment of AD. Overall, the review provides insight into the SAR of naturally derived biological macromolecules in the treatment of AD. The ongoing research in this field holds great promise for the future development of AD treatment and provides hope for individuals affected by this devastating disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Kumari A, Patanvadiya DJ, Jain A, Patra R, Paranjothy M, Rana NK. Pyridinium Ylide-Mediated Diastereoselective Synthesis of Spirocyclopropanyl-pyrazolones via Cascade Michael/Substitution Reaction. J Org Chem 2024. [PMID: 38742411 DOI: 10.1021/acs.joc.3c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have devised a highly diastereoselective formal [2 + 1] annulation reaction of arylidene/alkylidine-pyrazolones with in situ-generated supported as well as standard pyridinium ylides to construct spirocyclopropanyl-pyrazolones. The cascade approach exhibits a wide range of functional group tolerance, gram-scale capability, and substrate versatility. A diverse range of spirocyclic cyclopropanes was synthesized extensively with both mediators, and the supported pyridine was reused in subsequent cycles. Density functional theory calculations confirmed the formation of spirocyclopropane as the lower energy pathway.
Collapse
Affiliation(s)
- Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | | | - Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Ranjan Patra
- Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, Uttar Pradesh 201303, India
| | - Manikandan Paranjothy
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
4
|
Allayeh AK, El-boghdady AH, Said MA, Saleh MGA, Abdel-Aal MT, Abouelenein MG. Discovery of Pyrano[2,3- c]pyrazole Derivatives as Novel Potential Human Coronavirus Inhibitors: Design, Synthesis, In Silico, In Vitro, and ADME Studies. Pharmaceuticals (Basel) 2024; 17:198. [PMID: 38399412 PMCID: PMC10892497 DOI: 10.3390/ph17020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The SARS-CoV-2 pandemic at the end of 2019 had major worldwide health and economic consequences. Until effective vaccination approaches were created, the healthcare sectors endured a shortage of operative treatments that might prevent the infection's spread. As a result, academia and the pharmaceutical industry prioritized the development of SARS-CoV2 antiviral medication. Pyranopyrazoles have been shown to play a prominent function in pharmaceutical chemistry and drug sighting because of their significant bioactive properties. We provide herein a novel sequence of pyranopyrazoles and their annulated systems whose antiviral efficacy and cytotoxicity were explored versus human coronavirus 229E (HCoV-229E) Vero-E6 cell lines as a model for the Coronaviridae family. Fifteen synthetic congeners pointed out miscellaneous antiviral efficacies against HCoV-229E with variable inhibition degrees. Compound 18 showed a high selectivity index (SI = 12.6) that established spectacular inhibitory capacity against human coronavirus 229E. Compounds 6, 7, and 14 exposed moderate efficacies. Compounds 6, 7, 14, and 18 exhibited substantial antiviral action through the replication phase with reduction percentages extending from 53.6%, 60.7%, and 55% to 82.2%, correspondingly. Likewise, when assessed to the positive control tipranavir (88.6%), the inhibitory efficiency of compounds 6, 7, 14, and 18 versus the SARS-CoV2 Mpro provided high percentages of 80.4%, 73.1%, 81.4% and up to 84.5%, respectively. In silico studies were performed to investigate further the biological activity and the target compounds' physical and chemical features, including molecular dynamic (MD) simulations, protein-ligand docking, ADME studies, and density functional theory (DFT) calculations. These inquiries demonstrated that this series of metabolically stable pyranopyrazoles and their annulated systems are effective human coronavirus inhibitors that inhibit the viral Mpro protein and may have emerged as a novel COVID-19 curative option.
Collapse
Affiliation(s)
- Abdou K. Allayeh
- Environmental Virology Laboratory 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre (NRC), 33 El-Behouth St., Dokki, Giza 12622, Egypt;
| | - Aliaa H. El-boghdady
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| | - Mohamed A. Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt;
| | - Mahmoud G. A. Saleh
- Department of Chemistry, College of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Mohammed T. Abdel-Aal
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| | - Mohamed G. Abouelenein
- Chemistry Department, Faculty of Science, Menofia University, Shebin El-Kom 32511, Egypt; (A.H.E.-b.); (M.T.A.-A.); (M.G.A.)
| |
Collapse
|
5
|
Khator R, Monga V. Recent advances in the synthesis and medicinal perspective of pyrazole-based α-amylase inhibitors as antidiabetic agents. Future Med Chem 2024. [PMID: 38230638 DOI: 10.4155/fmc-2023-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Diabetes is a serious health threat across the globe, claiming millions of lives worldwide. Among the various strategies employed, inhibition of α-amylase is a therapeutic protocol for the management of Type 2 diabetes mellitus. α-Amylase is a crucial enzyme involved in the breakdown of dietary starch into simpler units. However, the clinically used α-amylase inhibitors have various drawbacks. Therefore, design and development of novel α-amylase inhibitors have gained significant attention. The pyrazole motif has been identified as a versatile scaffold in medicinal chemistry, and recent studies have led to the identification of various pyrazole-based α-amylase inhibitors. This review compiles therapeutic implications of pyrazole-appended α-amylase inhibitors; their synthesis, biological activities, structure-activity relationships and molecular docking studies are discussed.
Collapse
Affiliation(s)
- Rakesh Khator
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| | - Vikramdeep Monga
- Drug Design & Molecular Synthesis Laboratory, Department of Pharmaceutical Sciences & Natural Products, Central University of Punjab, VPO-Ghudda, 151401, Bathinda, Punjab, India
| |
Collapse
|
6
|
Ramachandran AK, Das S, Shenoy GG, Mudgal J, Joseph A. Relation between Apolipoprotein E in Alzheimer's Disease and SARS-CoV-2 and their Treatment Strategy: A Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:9-20. [PMID: 36573058 DOI: 10.2174/1871527322666221226145141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 12/28/2022]
Abstract
COVID-19, which primarily affects the pulmonary system, turned out to be a global pandemic, whereas the effects on other systems are still unknown. SARS-CoV-2, binds to angiotensinconverting enzyme 2 (ACE2) receptors in the lungs, causing pneumonia-like symptoms. The same ACE receptors are also present in organs other than the lungs. Therefore, there is a need to study the impact of coronavirus on other human body organs. Recently, UK Biobank reports on the genetic risk factor of the virus attack. A double mutation in the apolipoprotein E (APOE4) allele has shown a significant role in COVID-19. The same APOE4 mutation has already been proven to hold a key role in developing early-onset Alzheimer's disease (EOAD). Despite this data, Alzheimer's disease is believed to be a comorbidity of COVID-19. Previous virus attacks on the same viral family, Coronaviridae, produced neurological effects like neurodegeneration, neuronal inflammation, and other central nervous system-related dysfunctions. Since the long-term implications of COVID-19 are unknown, more research into the impact of the virus on the central nervous system is needed. Both COVID-19 and AD share a common genetic factor, so that AD patients may have a greater risk of SARS-CoV-2. Here, in this review, we have briefly discussed the role of APOE4 in the pathogenesis of AD and SARS-CoV-2, along with their treatment strategy, current scenario, and possible future directions.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Manipal McGill Centre for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Gurupur Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
7
|
Cetin A. Recent Advances in Pyrazole-based Protein Kinase Inhibitors as Emerging Therapeutic Targets. Comb Chem High Throughput Screen 2024; 27:2791-2804. [PMID: 37946345 DOI: 10.2174/0113862073252211231024182817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Pyrazole-scaffold protein kinase inhibitors (PKIs) have emerged as promising therapeutic agents for the treatment of various diseases, such as cancer, inflammatory disorders, and neurological diseases. This review article provides an overview of the pharmacological properties of pyrazole-scaffold PKIs, including their mechanism of action, selectivity, potency, and toxicity. The article also summarizes the recent developments in the design and synthesis of pyrazole-scaffold PKIs, highlighting the structural features and modifications that contribute to their pharmacological activity. In addition, the article discusses the preclinical and clinical studies of pyrazole-scaffold PKIs, including their efficacy, safety, and pharmacokinetic properties. METHODS A comprehensive search has been conducted on several online patent databases, including the United States Patent and Trademark Office (USPTO), the European Patent Office (EPO), and the World Intellectual Property Organization (WIPO). The search was conducted using pyrazole as the keyword. The search was limited to patents filed between 2015 and 2022. Patents were included if they involved articles in the fields of protein kinase inhibitors, and included literature on some pyrazoles and their pharmacological activities. RESULTS Data were extracted from each included patent on the following variables: patent title, patent number, inventors, assignee, filing date, publication date, patent type, and field of invention. Data were extracted from each patent using a standardized form to ensure consistency and accuracy. CONCLUSION The design and pharmacological evaluation of organic compounds containing pyrazole structure as biologically active substances have been done, and the key structures from the pharmacological data obtained as protein kinase inhibitors have been addressed in detail. The review concludes with a discussion on the current challenges and future directions for the development of pyrazole-scaffold PKIs as therapeutic agents. Overall, this review article provides a comprehensive summary of the pharmacological properties of pyrazole-scaffold PKIs, which will be of interest to researchers and clinicians in the field of drug discovery and development.
Collapse
Affiliation(s)
- Adnan Cetin
- Department of Chemistry, Faculty of Education, Van Yüzüncü Yil University, Van, 65080, Turkey
| |
Collapse
|
8
|
Halder D, Das S, R S J, Joseph A. Role of multi-targeted bioactive natural molecules and their derivatives in the treatment of Alzheimer's disease: an insight into structure-activity relationship. J Biomol Struct Dyn 2023; 41:11286-11323. [PMID: 36579430 DOI: 10.1080/07391102.2022.2158136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder involving cognitive dysfunction like short-term memory and behavioral changes as the disease progresses due to other unaltered physiological factors. The solution for this problem is Multi-targeted Drugs (MTDs), which can affect multiple determinants to realize the multifunctional effects. Acetylcholinesterase (AChE) inhibitors donepezil, rivastigmine, galantamine, and N-methyl-D-aspartate (NMDA) receptor antagonist memantine are FDA-approved drugs used to treat AD symptomatically. The key objective of this review is to understand multitargeted bioactive natural molecules that could be considered as leads for further development as effective drugs for treating AD, along with understanding its pharmacology and structure-activity relationship (SAR). Understanding the molecular mechanism of the AD pathophysiology, the role of existing drugs, treatment of AD via amyloid beta (Aβ) plaque, and neurofibrillary tangle (NFT) inhibition by natural bioactive molecules were also discussed in the review. The current quest and recent advancements with natural bioactive compounds like physostigmine, resveratrol, curcumin, and catechins, along with the study of in silico SAR, were reported in the present study. This review summarises the structural properties required for bioactive natural molecules to show anti-Alzheimer's activity by emphasizing on SAR of several bioactive natural molecules targeting various AD pathologies, their key molecular interactions that are critical for target specificity, their role as multitargeted ligands, used with adjunctive therapy for AD followed by related US patents granted recently. This article highlights the significance of the structural features of natural bioactive molecules in the treatment of AD and establishes a connection between them.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jeyaprakash R S
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|