1
|
Zhang N, Tang F. A case of plateau heart disease misdiagnosed as chronic pulmonary heart disease. J Hypertens 2025:00004872-990000000-00667. [PMID: 40197691 DOI: 10.1097/hjh.0000000000004018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/15/2025] [Indexed: 04/10/2025]
Abstract
This paper reports a case of plateau heart disease in Qinghai-Tibetan plateau who had recurrent symptoms of chest tightness and shortness of breath for 6 years but was misdiagnosed as chronic pulmonary heart disease. Plateau heart disease was diagnosed by thoracic computed tomography, pulmonary arteriography, pulmonary function tests and examination of medical history. Through the detailed analysis and differential diagnosis of this case, the aim is to distinguish between high-altitude heart disease and high-altitude chronic pulmonary heart disease, with the hope of achieving new breakthroughs in the diagnosis and treatment of this condition in the future.
Collapse
Affiliation(s)
- Na Zhang
- Research Center for High Altitude Medicine Qinghai university (Key Laboratory of the Ministry of High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Applied Fundamentals of High Altitude Medicin Xining), Xining, Qinghai, China
- Qinghai Provincial People's Hospital, Xining City, Qinghai Province
| | - Feng Tang
- Research Center for High Altitude Medicine Qinghai university (Key Laboratory of the Ministry of High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory of Applied Fundamentals of High Altitude Medicin Xining), Xining, Qinghai, China
| |
Collapse
|
2
|
Yang X, Liu H, Wu X. High-altitude pulmonary hypertension: a comprehensive review of mechanisms and management. Clin Exp Med 2025; 25:79. [PMID: 40063280 PMCID: PMC11893705 DOI: 10.1007/s10238-025-01577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/26/2025] [Indexed: 03/14/2025]
Abstract
High-altitude pulmonary hypertension (HAPH) is characterized by an increase in pulmonary artery pressure due to prolonged exposure to hypoxic environment at high altitudes. The development of HAPH involves various factors such as pressure changes, inflammation, oxidative stress, gene regulation, and signal transduction. The pathophysiological mechanisms of this condition operate at molecular, cellular, and genetic levels. Diagnosis of HAPH often relies on echocardiography, cardiac catheterization, and other methods to assess pulmonary artery pressure and its impact on cardiac function. Treatment options for HAPH encompass both nondrug and drug therapies. While advancements have been made in understanding the pathological mechanisms through research on animal models and clinical trials, there are still limitations to be addressed. Future research should focus on exploring molecular targets, personalized medicine, long-term management strategies, and interdisciplinary approaches. By leveraging advanced technologies like systems biology, omics technology, big data, and artificial intelligence, a comprehensive analysis of HAPH pathogenesis can lead to the identification of new treatment targets and strategies, ultimately enhancing patient quality of life and prognosis. Furthermore, research on health monitoring and preventive measures for populations living at high altitudes should be intensified to reduce the incidence and mortality of HAPH.
Collapse
Affiliation(s)
- Xitong Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Hong Liu
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Xinhua Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China.
- The First Affiliated Hospital of Dali University, Dali, Yunnan, China.
| |
Collapse
|
3
|
Rogers RS, Mootha VK. Hypoxia as a medicine. Sci Transl Med 2025; 17:eadr4049. [PMID: 39841808 DOI: 10.1126/scitranslmed.adr4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/31/2024] [Indexed: 01/24/2025]
Abstract
Oxygen is essential for human life, yet a growing body of preclinical research is demonstrating that chronic continuous hypoxia can be beneficial in models of mitochondrial disease, autoimmunity, ischemia, and aging. This research is revealing exciting new and unexpected facets of oxygen biology, but translating these findings to patients poses major challenges, because hypoxia can be dangerous. Overcoming these barriers will require integrating insights from basic science, high-altitude physiology, clinical medicine, and sports technology. Here, we explore the foundations of this nascent field and outline a path to determine how chronic continuous hypoxia can be safely, effectively, and practically delivered to patients.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02114, USA
| |
Collapse
|
4
|
Duenas-Meza E, Severiche-Bueno DF, Santos Quintero C, Talani Ochoa J, Ronderos Dummit M, Stapper C, Granados G C. Prevalence of pulmonary hypertension in children with obstructive sleep apnea living at high altitude. Sleep Med X 2024; 7:100106. [PMID: 38356659 PMCID: PMC10864626 DOI: 10.1016/j.sleepx.2024.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction The prevalence of obstructive sleep apnea (OSA) is 1-4 %. Some reports describe its association with pulmonary hypertension (PH), but its prevalence is unknown. No studies at high altitude have determined the relationship between OSA and PH. The aim of this study was to establish the prevalence of PH in children diagnosed with OSA living in a high-altitude city at 2640 m above sea level. Methods Children between 2 and 16 years of age referred to the Sleep Laboratory of the Fundación Neumológica Colombiana in Bogotá with a positive polysomnogram for OSA were included, and a two-dimensional transthoracic echocardiogram (TTE) was performed to evaluate PH. Statistical analysis was performed using median, interquartile range, chi-squared test, and Kruskall-Wallis test. Results Of the 55 patients (n: 55), 63.6 % were male, with a median age of 6 years, 14 children (25.5 %) were overweight; 12 children (21.8 %) had mild OSA, 12 (21.8 %) had moderate OSA and 31 (56.4 %) severe OSA. In patients with severe OSA, the minimum saturation during events was 78 % with a desaturation index (DI) of 33.8/hour (p < 0.01). T90 and T85 increased proportionally with OSA severity (p < 0.05). Of the 55 patients with OSA, none had PH according to echocardiography; 4 patients (7.2 %) had pulmonary artery systolic pressure (PASP) at the upper limit of normal (ULN), and it was not related to a higher body mass index (BMI). Conclusions We found no association between OSA and PH in children with OSA at high altitude.
Collapse
Affiliation(s)
| | | | | | - Jenny Talani Ochoa
- Departamento de Pediatría, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| | | | | | - Carlos Granados G
- Departamento de Pediatría, Universidad de La Sabana, Chía, Cundinamarca, Colombia
| |
Collapse
|
5
|
Chen L, Chen X, Huang Y, Ma Z, Zeng X, Wang T. Establishment of mouse models for severe pulmonary hypertension through 'double-hit' strategies. Exp Physiol 2024; 109:2026-2030. [PMID: 39327866 DOI: 10.1113/ep091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Mouse models are crucial for understanding pulmonary hypertension (PH) mechanisms and developing therapies, but existing mouse models under hypoxia only exhibit mild PH. To address this, we established a double-hit model combining unilateral pneumonectomy (LPx) or left pulmonary artery ligation (LPAL) with hypoxia exposure in C57BL/6 mice. Our detailed haemodynamic and histological evaluations post-surgery demonstrated pronounced elevations in right ventricular systolic pressure (RVSP) (LPAL: 41.1 ± 4.63 mmHg, P = 0.005; LPx: 38.4 ± 2.95 mmHg, P = 0.002; Sham: 32.1 ± 2.21 mmHg) and pulmonary vascular wall thickness (LPAL: 56.9 ± 3.34%, P = 0.02; LPx: 54.3 ± 4.65%, P = 0.04; Sham: 44.8 ± 3.76%) compared to hypoxia-exposed sham-operated controls, reflecting a more severe PH phenotype. These novel models, which exhibit haemodynamic alterations akin to the established hypoxia with SU5416-induced PH model as per published data, could offer a substantial contribution to future PH research and therapeutic development.
Collapse
Affiliation(s)
- Lingdan Chen
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hosptial, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhang Huang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuoji Ma
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Zeng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Flores K, Almeida C, Arriaza K, Pena E, El Alam S. mTOR in the Development of Hypoxic Pulmonary Hypertension Associated with Cardiometabolic Risk Factors. Int J Mol Sci 2024; 25:11023. [PMID: 39456805 PMCID: PMC11508063 DOI: 10.3390/ijms252011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The pathophysiology of pulmonary hypertension is complex and multifactorial. It is a disease characterized by increased pulmonary vascular resistance at the level due to sustained vasoconstriction and remodeling of the pulmonary arteries, which triggers an increase in the mean pulmonary artery pressure and subsequent right ventricular hypertrophy, which in some cases can cause right heart failure. Hypoxic pulmonary hypertension (HPH) is currently classified into Group 3 of the five different groups of pulmonary hypertensions, which are determined according to the cause of the disease. HPH mainly develops as a product of lung diseases, among the most prevalent causes of obstructive sleep apnea (OSA), chronic obstructive pulmonary disease (COPD), or hypobaric hypoxia due to exposure to high altitudes. Additionally, cardiometabolic risk factors converge on molecular mechanisms involving overactivation of the mammalian target of rapamycin (mTOR), which correspond to a central axis in the development of HPH. The aim of this review is to summarize the role of mTOR in the development of HPH associated with metabolic risk factors and its therapeutic alternatives, which will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Karem Arriaza
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (K.F.); (C.A.); (E.P.); (S.E.A.)
| | | | | |
Collapse
|
7
|
Zhang Z, Chen J, Su S, Xie X, Ji L, Li Z, Lu D. Luteolin ameliorates hypoxic pulmonary vascular remodeling in rat via upregulating K V1.5 of pulmonary artery smooth muscle cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155840. [PMID: 38941817 DOI: 10.1016/j.phymed.2024.155840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND Hypoxic pulmonary vascular remodeling (HPVR) is a key pathological feature of hypoxic pulmonary hypertension (HPH). Oxygen-sensitive potassium (K+) channels in pulmonary artery smooth muscle cells (PASMCs) play a crucial role in HPVR. Luteolin (Lut) is a plant-derived flavonoid compound with variety of pharmacological actions. Our previous study found Lut alleviated HPVR in HPH rat. PURPOSE To elucidate the mechanism by which Lut mitigated HPVR, focusing on oxygen-sensitive voltage-dependent potassium channel 1.5 (Kv1.5). METHODS HPH rat model was established using hypobaric chamber to simulate 5000 m altitude. Isolated perfused/ventilated rat lung, isolated pulmonary arteriole ring was utilized to investigate the impact of Lut on K+ channels activity. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was assessed. CyclinD1, CDK4, PCNA, Bax, Bcl-2, cleaved caspase-3 levels in lung tissue of HPH rat were tested. The effect of Lut on Kv1.5, cytoplasmic free calcium concentration ([Ca2+]cyt), CyclinD1, CDK4, PCNA, Bax/Bcl-2 was examined in PASMCs under hypoxia, with DPO-1 as a Kv1.5 specific inhibitor. The binding affinity between Lut and Kv1.5 in PASMCs was detected by drug affinity responsive target stability (DARTS). The overexpression of KCNA5 gene (encoding Kv1.5) in HEK293T cells was utilized to confirm the interaction between Lut and Kv1.5. Furthermore, the impact of Lut on mitochondrial structure, SOD, GSH, GSH-Px, MDA and HIF-1α levels were evaluated in lung tissue of HPH rat and PASMCs under hypoxia. RESULTS Lut dilated pulmonary artery by directly activating Kv and Ca2+-activated K+ channels (KCa) in smooth muscle. Kv1.5 level in lung tissue and pulmonary arteriole of HPH rat was upregulated by Lut. Lut downregulated CyclinD1, CDK4, PCNA while upregulating Bax/Bcl-2/caspase-3 axis in lung tissue of HPH rat. Lut decreased [Ca2+]cyt, reduced CDK4, CyclinD1, PCNA, increased Bax/Bcl-2 ratio, in PASMCs under hypoxia, by upregulating Kv1.5. The binding affinity and the interaction between Lut and Kv1.5 was verified in PASMCs and in HEK293T cells. Lut also decreased [Ca2+]cyt and inhibited proliferation via targeting Kv1.5 of HEK293T cells under hypoxia. Furthermore, Lut protected mitochondrial structure, increased SOD, GSH, GSH-Px, decreased MDA, in lung tissue of HPH rat. Lut downregulated HIF-1α level in both lung tissue of HPH rat and PASMCs under hypoxia. CONCLUSION Lut alleviated HPVR by promoting vasodilation of pulmonary artery, reducing cellular proliferation, and inducing apoptosis through upregulating of Kv1.5 in PASMCs.
Collapse
MESH Headings
- Animals
- Kv1.5 Potassium Channel/metabolism
- Pulmonary Artery/drug effects
- Vascular Remodeling/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Male
- Hypoxia/drug therapy
- Luteolin/pharmacology
- Rats, Sprague-Dawley
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Up-Regulation/drug effects
- HEK293 Cells
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China; Qinghai Health Institute of Sciences, Xining, 810016, China
| | - Ju Chen
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Sichuan, 610086, China
| | - Shanshan Su
- Technical Center of Xining Customs, Key Laboratory of Food Safety Research in Qinghai Province, Xining, 810013, China
| | - Xin Xie
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China
| | - Lei Ji
- Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China.
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Laboratory for High Altitude Medicine of Qinghai Province, Key Laboratory for High Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining, 810001, China; Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Sichuan, 610086, China.
| |
Collapse
|
8
|
Strickland B, Stuart Harris N. Adapting nitric oxide: A review of its foundation, uses in austere medical conditions, and emerging applications. Nitric Oxide 2024; 146:58-63. [PMID: 38583684 DOI: 10.1016/j.niox.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Nitric oxide was first identified as a novel and effective treatment for persistent pulmonary hypertension of the newborn (PPHN), and has since been found to be efficacious in treating acute respiratory distress syndrome (ARDS) and pulmonary hypertension. Physicians and researchers have also found it shows promise in resource-constrained settings, both within and outside of the hospital, such as in high altitude pulmonary edema (HAPE) and COVID-19. The treatment has been well tolerated in these settings, and is both efficacious and versatile when studied across a variety of clinical environments. Advancements in inhaled nitric oxide continue, and the gas is worthy of investigation as physicians contend with new respiratory and cardiovascular illnesses, as well as unforeseen logistical challenges.
Collapse
Affiliation(s)
- Brian Strickland
- Department of Emergency Medicine, University of Colorado, Aurora, CO, USA.
| | - N Stuart Harris
- Division of Wilderness Medicine, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Aguirre-Franco C, Torres-Duque CA, Salazar G, Casas A, Jaramillo C, Gonzalez-Garcia M. Prevalence of pulmonary hypertension in COPD patients living at high altitude. Pulmonology 2024; 30:247-253. [PMID: 35151623 DOI: 10.1016/j.pulmoe.2021.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with poor prognosis for patients with chronic obstructive pulmonary disease (COPD). Most of the knowledge about PH in COPD has been generated at sea level, with limited information associated with high altitude (HA). OBJECTIVES To assess the prevalence and severity of PH in COPD patients living in a HA city (2,640 m). METHODS Cross-sectional study in COPD patients with forced expiratory volume in the first second / forced vital capacity ratio (FEV1/FVC) post-bronchodilator <0,7. Transthoracic echocardiography (TTE), spirometry, carbon monoxide diffusing capacity, and arterial blood gasses tests were performed. Patients were classified according to the severity of airflow limitation. PH was defined by TTE as an estimated systolic pulmonary artery pressure (sPAP) > 36 mmHg or indirect PH signs; severe PH as sPAP > 60 mmHg; and disproportionate PH as an sPAP > 60 mmHg with non-severe airflow limitation (FEV1 > 50% predicted). RESULTS We included 176 COPD patients. The overall estimated prevalence of PH was 56.3% and the likelihood of having PH increased according to airflow-limitation severity: mild (31.6%), moderate (54.9%), severe (59.6%) and very severe (77.8%) (p = 0.038). The PH was severe in 7.3% and disproportionate in 3.4% of patients. CONCLUSIONS The estimated prevalence of PH in patients with COPD at HA is high, particularly in patients with mild to moderate airflow limitation, and greater than that described for COPD patients at low altitude. These results suggest a higher risk of developing PH for COPD patients living at HA compared to COPD patients with similar airflow limitation living at low altitude.
Collapse
Affiliation(s)
- C Aguirre-Franco
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia.
| | - C A Torres-Duque
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| | - G Salazar
- Fundación Cardioinfantil - Instituto de Cardiología. Bogotá, Colombia
| | - A Casas
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| | - C Jaramillo
- Universidad de La Sabana. Chía, Colombia; Fundación Clínica Shaio. Bogotá, Colombia
| | - M Gonzalez-Garcia
- Fundación Neumológica Colombiana. Bogotá, Colombia; Universidad de La Sabana. Chía, Colombia
| |
Collapse
|
10
|
Zhao ML, Lu ZJ, Yang L, Ding S, Gao F, Liu YZ, Yang XL, Li X, He SY. The cardiovascular system at high altitude: A bibliometric and visualization analysis. World J Cardiol 2024; 16:199-214. [PMID: 38690218 PMCID: PMC11056872 DOI: 10.4330/wjc.v16.i4.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/14/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND When exposed to high-altitude environments, the cardiovascular system undergoes various changes, the performance and mechanisms of which remain controversial. AIM To summarize the latest research advancements and hot research points in the cardiovascular system at high altitude by conducting a bibliometric and visualization analysis. METHODS The literature was systematically retrieved and filtered using the Web of Science Core Collection of Science Citation Index Expanded. A visualization analysis of the identified publications was conducted employing CiteSpace and VOSviewer. RESULTS A total of 1674 publications were included in the study, with an observed annual increase in the number of publications spanning from 1990 to 2022. The United States of America emerged as the predominant contributor, while Universidad Peruana Cayetano Heredia stood out as the institution with the highest publication output. Notably, Jean-Paul Richalet demonstrated the highest productivity among researchers focusing on the cardiovascular system at high altitude. Furthermore, Peter Bärtsch emerged as the author with the highest number of cited articles. Keyword analysis identified hypoxia, exercise, acclimatization, acute and chronic mountain sickness, pulmonary hypertension, metabolism, and echocardiography as the primary research hot research points and emerging directions in the study of the cardiovascular system at high altitude. CONCLUSION Over the past 32 years, research on the cardiovascular system in high-altitude regions has been steadily increasing. Future research in this field may focus on areas such as hypoxia adaptation, metabolism, and cardiopulmonary exercise. Strengthening interdisciplinary and multi-team collaborations will facilitate further exploration of the pathophysiological mechanisms underlying cardiovascular changes in high-altitude environments and provide a theoretical basis for standardized disease diagnosis and treatment.
Collapse
Affiliation(s)
- Mao-Lin Zhao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Zhong-Jie Lu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Li Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Sheng Ding
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Feng Gao
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Yuan-Zhang Liu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Xue-Lin Yang
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Xia Li
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, College of Medicine, Southwest Jiaotong University, Chengdu 610083, Sichuan Province, China
| | - Si-Yi He
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan Province, China.
| |
Collapse
|
11
|
Pu Y, Li G, Zhang T, Cui Y, Li B, Liu C, Li Y. Intravascular ultrasound imaging of pulmonary artery with high-altitude pulmonary hypertension. Quant Imaging Med Surg 2024; 14:3204-3209. [PMID: 38617151 PMCID: PMC11007529 DOI: 10.21037/qims-23-1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/15/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Yunfei Pu
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
- Department of Internal Medicine, Changdu People’s Hospital, Changdu, China
| | - Gaohua Li
- Department of Internal Medicine, Changdu People’s Hospital, Changdu, China
| | - Teng Zhang
- Department of Internal Medicine, Changdu People’s Hospital, Changdu, China
| | - Yuxuan Cui
- Department of Internal Medicine, Changdu People’s Hospital, Changdu, China
| | - Bin Li
- Department of Internal Medicine, Changdu People’s Hospital, Changdu, China
| | - Chunqiu Liu
- Department of Internal Medicine, Changdu People’s Hospital, Changdu, China
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yeqing Li
- Department of Cardiology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
12
|
Kerkhof PLM, Handly N. Statistics at high-altitudes: Relevance for the interpretation of metrics that reveal cardiac morphology and performance. Echocardiography 2024; 41:e15797. [PMID: 38549393 DOI: 10.1111/echo.15797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Survey of four ratio-based metrics, commonly used to evaluate left ventricular performance. The numerator of each ratio is plotted against the corresponding denominator, implying that the slope of the colored line reflects the value of the ratio.9,11 Similar graphs can be constructed for the other cardiac compartments. Data sets obtained at various altitudes and defined with reference to sea level, based on Rao et al.6 Acronyms: E/A unitless ratio of the early (E) and late (A) diastolic wave peak velocities (cm/s); EDD, end-diastolic diameter (mm); EDV, end-diastolic volume (mL); EF, ejection fraction (%); ESD, end-systolic diameter (mm); ESV, end-systolic volume (mL); FS, fractional shortening (%).
Collapse
Affiliation(s)
- Peter L M Kerkhof
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VUmc location, Amsterdam, the Netherlands
| | - Neal Handly
- Department of Emergency Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Sun L, Yue H, Fang H, Li R, Li S, Wang J, Tu P, Meng F, Yan W, Zhang J, Bignami E, Jeon K, Kidane B, Zhang P. The role and mechanism of PDZ binding kinase in hypobaric and hypoxic acute lung injury. J Thorac Dis 2024; 16:2082-2101. [PMID: 38617778 PMCID: PMC11009593 DOI: 10.21037/jtd-24-188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Background Acute lung injury (ALI) caused by hypobaric hypoxia (HH) is frequently observed in high-altitude areas, and it is one of the leading causes of death in high-altitude-related diseases due to its rapid onset and progression. However, the pathogenesis of HH-related ALI (HHALI) remains unclear, and effective treatment approaches are currently lacking. Methods A new mouse model of HHALI developed by our laboratory was used as the study subject (Chinese patent No. ZL 2021 1 1517241 X). Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) expression levels of PDZ-binding kinase (PBK), sirtuin 1 (SIRT1), and PTEN-induced kinase 1 (PINK1) in mouse lung tissue. Hematoxylin and eosin staining was used to observe the main types of damage and damaged cells in lung tissue, and the lung injury score was used for quantification. The wet-dry (W/D) ratio was used to measure lung water content. Enzyme-linked immunosorbent assay was used to detect changes in inflammatory factors and oxidative stress markers in the lungs. Western blotting verified the expression of various mitochondrial autophagy-related proteins. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1) method was used determined the health status of mitochondria based on changes in mitochondrial membrane potential. Transmission electron microscopy was used to directly observe the morphology of mitochondria. Multicolor immunofluorescence was used to observe the levels of mitochondrial autophagy markers. Other signaling pathways and molecular mechanisms that may play a role in epithelial cells were analyzed via through RNA sequencing. Results Low pressure and hypoxia caused pathological changes in mouse lung tissue, mainly ALI, leading to increased levels of inflammatory factors and intensified oxidative stress response in the lungs. Overexpression of PBK was found to alleviate HHALI, and activation of the p53 protein was shown to abrogate this therapeutic effect, while activation of SIRT1 protein reactivated this therapeutic effect. The therapeutic effect of PBK on HHALI is achieved via the activation of mitochondrial autophagy. Finally, RNA sequencing demonstrated that besides mitochondrial autophagy, PBK also exerts other functions in HHALI. Conclusions Overexpression of PBK inhibits the expression of p53 and activates SIRT1-PINK1 axis mediated mitochondrial autophagy to alleviate HHALI.
Collapse
Affiliation(s)
- Linao Sun
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Haoran Yue
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Fang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Runze Li
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shicong Li
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianyao Wang
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Pengjie Tu
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fei Meng
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wang Yan
- Graduate College of Tianjin Medical University, Tianjin, China
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinxia Zhang
- Xianrenchang (Tianjin) Medical Technology Co., Ltd., Tianjin, China
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Biniam Kidane
- Section of Thoracic Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
14
|
Peng W, Li H, Xia C, Guo Y, Xu X, Zeng W, Liu K, Che Q, Jiang Y, Xiang K, Zhou X, Li G, Li Z. Cardiovascular indicators associated with ventricular remodeling in chronic high-altitude disease: a cardiovascular MRI study. Eur Radiol 2023; 33:6267-6277. [PMID: 37036481 DOI: 10.1007/s00330-023-09574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE This study aimed to assess biventricular function and mechanics in patients with the chronic high-altitude disease (CHAD) using cardiovascular MRI and explore the possible risk factors associated with ventricular remodeling. METHODS In this prospective study, consecutive CHAD patients and healthy controls at high-altitude (HA) and at sea level (SL) underwent cardiovascular MRI. Right ventricular (RV) and left ventricular (LV) function and global strain parameters were compared. To identify risk factors associated with ventricular remodeling, multiple linear regression analyses were used. RESULTS A total of 33 patients with CHAD (42.97 years ± 11.80; 23 men), 33 HA (41.18 years ± 8.58; 21 men), and 33 SL healthy controls (43.48 years ± 13.40; 21 men) were included. A Significantly decreased biventricular ejection fraction was observed in patients (all p < 0.05). Additionally, the HA group displayed lower magnitudes of biventricular longitudinal peak strain (PS) (RV, - 13.67% ± 4.05 vs. - 16.22% ± 3.03; LV, - 14.68% ± 2.20 vs. - 16.19% ± 2.51; both p < 0.05), but a higher LV circumferential PS (- 20.74% ± 2.02 vs. - 19.17% ± 2.34, p < 0.05) than the SL group. Moreover, multiple linear regression analyses revealed that HGB (β = 0.548) was related to the LV remodeling index, whereas BUN (β = 0.570) was associated with the RV remodeling index. CONCLUSIONS With the deterioration of RV function in patients with CHAD, LV function was also impaired concomitantly. Hypoxia-induced erythrocytosis may contribute to LV impairment, while BUN was considered an independent risk factor for RV remodeling. KEY POINTS • A significantly lower biventricular ejection fraction was observed in patients, with a decreased magnitude of left ventricular (LV) peak systolic strain rate (radial and circumferential) and peak diastolic strain rate (all p < 0.05). • High-altitude healthy natives showed a lower biventricular longitudinal peak strain (all p < 0.05). • Hemoglobin was related to LV remodeling (β = 0.548), while BUN (β = 0.570) was independently associated with RV remodeling in CHAD patients.
Collapse
Affiliation(s)
- Wanlin Peng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hongwei Li
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yingkun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# South ren Min Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Ren Min Road, Chengdu, 610041, Sichuan, China
| | - Xu Xu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wen Zeng
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Keling Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qianqiu Che
- Department of Cardiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Yuexin Jiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Kejin Xiang
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, 20# Ximianqiao Street, Chengdu, 610041, Sichuan, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, 200126, China
| | - Gang Li
- Department of Radiology, The People's Hospital of Ningnan County Sichuan Province, Ningnan, 615400, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
15
|
He Y, Cui C, Guo Y, Zheng W, Yue T, Zhang H, Ouzhuluobu, Wu T, Qi X, Su B. High Arterial Oxygen Saturation in the Acclimatized Lowlanders Living at High Altitude. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:329-332. [PMID: 37589023 PMCID: PMC10425305 DOI: 10.1007/s43657-023-00117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 08/18/2023]
Abstract
Blood oxygen saturation (SpO2) is a key indicator of oxygen availability in the body. It is known that a low SpO2 at high altitude is associated with morbidity and mortality risks due to physiological hypoxemia. Previously, it was proposed that the lowlander immigrants living at high altitude should have a lower SpO2 level compared to the highlander natives, but this proposal has not been rigorously tested due to the lack of data from the lowlander immigrants living at high altitude. In this study, we compared arterial oxygen saturation of 5929 Tibetan natives and 1034 Han Chinese immigrants living at altitudes ranging from 1120 m to 5020 m. Unexpectedly, the Han immigrants had a higher SpO2 than the Tibetan natives at the same high altitudes. At the same time, there is a higher prevalence of chronic mountain sickness in Han than in Tibetans at the same altitude. This result suggests that the relatively higher SpO2 level of the acclimatized Han is associated with a physiological cost, and the SpO2 level of Tibetans tends to be sub-optimal. Consequently, SpO2 alone is not a robust indicator of physiological performance at high altitude. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00117-x.
Collapse
Affiliation(s)
- Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Yongbo Guo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Wangshan Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Tian Yue
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000 China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810012 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| |
Collapse
|
16
|
Feng X, Yang C, Sun Z, Kan W, He X, Chen Y, Tuo Y. Risk factors for mortality in patients with acute exacerbation of cor pulmonale in plateau. BMC Pulm Med 2023; 23:238. [PMID: 37400818 PMCID: PMC10318768 DOI: 10.1186/s12890-023-02509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/03/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The risk factors for mortality might differ between patients with acute exacerbation of chronic pulmonary heart disease in plains and plateaus, while there is a lack of evidence. METHOD Patients diagnosed with cor pulmonale at Qinghai Provincial People's Hospital were retrospectively included between January 2012 and December 2021. The symptoms, physical and laboratory examination findings, and treatments were collected. Based on the survival within 50 days, we divided the patients into survival and death groups. RESULTS After 1:10 matching according to gender, age, and altitude, 673 patients were included in the study, 69 of whom died. The multivariable Cox proportional hazards analysis showed that NYHA class IV (HR = 2.03, 95%CI: 1.21-3.40, P = 0.007), type II respiratory failure (HR = 3.57, 95%CI: 1.60-7.99, P = 0.002), acid-base imbalance (HR = 1.82, 95%CI: 1.06-3.14, P = 0.031), C-reactive protein (HR = 1.04, 95%CI: 1.01-1.08, P = 0.026), and D-dimer (HR = 1.07, 95%CI: 1.01-1.13, P = 0.014) were risk factors for death in patients with cor pulmonale at high altitude. Among patients living below 2500 m, cardiac injury was a risk factor for death (HR = 2.47, 95%CI: 1.28-4.77, P = 0.007), while no significant association was observed at ≥ 2500 m (P = 0.057). On the contrary, the increase of D-dimer was only a risk factor for the death of patients living 2500 m and above (HR = 1.23, 95% CI: 1.07-1.40, P = 0.003). CONCLUSION NYHA class IV, type II respiratory failure, acid-base imbalance, and C- reactive protein may increase the risk of death in patients with cor pulmonale. Altitude modified the association between cardiac injury, D-dimer, and death in patients with cor pulmonale.
Collapse
Affiliation(s)
- Xiaokai Feng
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai Province, China
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Chenlu Yang
- Department of Epidemiology and Biostatistics, School of Basic Medicine, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zerui Sun
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai Province, China
| | - Wanrong Kan
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai Province, China
| | - Xiang He
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai Province, China
| | - Yongxin Chen
- Department of Geratology, Qinghai Red Cross Hospital, 55 South Street, Xining, 810000, Qinghai Province, China.
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, 2 Gonghe Road, Xining, 810007, Qinghai Province, China.
| |
Collapse
|
17
|
Ma Y, Hou J, Huang D, Zhang Y, Liu Z, Tian M. Expression of protein phosphatase 4 in different tissues under hypoxia. INDIAN J PATHOL MICR 2023; 66:577-583. [PMID: 37530343 DOI: 10.4103/ijpm.ijpm_1179_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Relevant research data shows that there is a certain degree of energy metabolism imbalance in highland residents. Protein phosphatase 4 (PP4) has been found as a new factor in the regulation of sugar and lipid metabolism. Here, we investigate the differential expression of PP4 at a simulated altitude of 4,500 m in the heart, lung, and brain tissues of rats. A hypoxic plateau rat model was established using an animal decompression chamber. A blood routine test was performed by an animal blood cell analyzer on rats cultured for different hypoxia periods at 4,500 m above sea level. Quantitative polymerase chain reaction (qPCR) and western blot were used to detect the changes of protein phosphatase 4 catalytic subunit (PP4C) gene and protein in heart, lung, and brain tissues. The PP4C gene with the highest expression level found in rats slowly entering the high altitude area (20 m-2200 m-7 d-4500 m-3 d) was about twice as high as the low elevation group (20 m above sea level). The simulated high-altitude hypoxia induced an increase of PP4C expression level in all tissues, and the expression in the lung tissue was twice as expressed as heart and brain tissue at high altitude (P < 0.05). These results suggest that the PP4 phosphatase complex is ubiquitously expressed in rat tissues and likely involved in adaptation to or disease associated with high-altitude hypoxia.
Collapse
Affiliation(s)
- Yanyan Ma
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Zhe Liu
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province, China
| | - Meiyuan Tian
- Central Laboratory, Affiliated Hospital of Qinghai University, Tongren Road 29, Qinghai Province; Medical College of Qinghai University, Xining, Qinghai Province, China
| |
Collapse
|
18
|
Yuan C, Zhang Q. Risk factors for microalbuminuria in adult Tibetan patients with high-altitude pulmonary hypertension: a cross-sectional study. Cardiovasc Diagn Ther 2023; 13:336-344. [PMID: 37583683 PMCID: PMC10423733 DOI: 10.21037/cdt-22-385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/10/2023] [Indexed: 08/17/2023]
Abstract
Background It has been suggested that chronic hypoxia underlies the higher prevalence of microalbuminuria in high-altitude residents than in sea-level dwellers. This study explored the risk factors for microalbuminuria in Tibetans with high-altitude pulmonary hypertension (HAPH). Methods This retrospective cross-sectional study included adult patients with HAPH admitted to the People's Hospital of Tibet Autonomous Region between November 2018 and August 2019. Results One hundred and twenty patients with HAPH were included in this study, and 69 patients (57.5%) had microalbuminuria. Compared with the patients without microalbuminuria, the microalbuminuria group had significantly higher values for age, pulmonary arterial systolic pressure (PASP), systolic blood pressure, diastolic blood pressure, blood hemoglobin concentration, glycated hemoglobin, serum creatinine, and serum uric acid, significantly lower values for heart rate, peripheral oxygen saturation (SpO2), estimated glomerular filtration rate, and 6-min walking distance, and poorer New York Heart Association functional class (P<0.05 for all variables). PASP [odds ratio (OR): 1.55; 95% CI: 1.19-2.00; P=0.001] and SpO2 (OR = 0.78; 95% CI: 0.63-0.97; P=0.02) were independently associated with microalbuminuria. Conclusions Higher PASP and lower SpO2 were independently associated with microalbuminuria in adult Tibetan patients with HAPH.
Collapse
|
19
|
Wang L, Wang F, Tuo Y, Wan H, Luo F. Clinical characteristics and predictors of pulmonary hypertension in chronic obstructive pulmonary disease at different altitudes. BMC Pulm Med 2023; 23:127. [PMID: 37072815 PMCID: PMC10111800 DOI: 10.1186/s12890-023-02405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication in patients with chronic obstructive pulmonary disease (COPD) and is closely associated with poor prognosis. However, studies on the predictors of PH in COPD patients are limited, especially in populations living at high altitude (HA). OBJECTIVES To investigate the differences in the clinical characteristics and predictors of patients with COPD/COPD and PH (COPD-PH) from low altitude (LA, 600 m) and HA (2200 m). METHODS We performed a cross-sectional survey of 228 COPD patients of Han nationality admitted to the respiratory department of Qinghai People's Hospital (N = 113) and West China Hospital of Sichuan University (N = 115) between March 2019 and June 2021. PH was defined as a pulmonary arterial systolic pressure (PASP) > 36 mmHg measured using transthoracic echocardiography (TTE). RESULTS The proportion of PH in COPD patients living at HA was higher than that in patients living at LA (60.2% vs. 31.3%). COPD-PH patients from HA showed significantly different in baseline characteristics, laboratory tests and pulmonary function test. Multivariate logistic regression analysis indicated that the predictors of PH in COPD patients were different between the HA and LA groups. CONCLUSIONS The COPD patients living at HA had a higher proportion of PH than those living at LA. At LA, increased B-type natriuretic peptide (BNP) and direct bilirubin (DB) were predictors for PH in COPD patients. However, at HA, increased DB was a predictor of PH in COPD patients.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Faping Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yajun Tuo
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Xining, China
| | - Huajing Wan
- Laboratory of Pulmonary Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fengming Luo
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Wu XH, He YY, Chen ZR, He ZY, Yan Y, He Y, Wang GM, Dong Y, Yang Y, Sun YM, Ren YH, Zhao QY, Yang XD, Wang LY, Fu CJ, He M, Zhang SJ, Fu JF, Liu H, Jing ZC. Single-cell analysis of peripheral blood from high-altitude pulmonary hypertension patients identifies a distinct monocyte phenotype. Nat Commun 2023; 14:1820. [PMID: 37002243 PMCID: PMC10066231 DOI: 10.1038/s41467-023-37527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Immune and inflammatory responses have an important function in the pathophysiology of pulmonary hypertension (PH). However, little is known about the immune landscape in peripheral circulation in patients with high-altitude pulmonary hypertension (HAPH). We apply single-cell transcriptomics to characterize the monocytes that are significantly enriched in the peripheral blood mononuclear cells (PBMC) of HAPH patients. We discover an increase in C1 (non-classical) and C2 (intermediate) monocytes in PBMCs and a decrease in hypoxia-inducible transcription factor-1α (HIF-1α) in all monocyte subsets associated with HAPH. In addition, we demonstrate that similar immune adaptations may exist in HAPH and PH. Overall, we characterize an immune cell atlas of the peripheral blood in HAPH patients. Our data provide evidence that specific monocyte subsets and HIF-1α downregulation might be implicated in the pathogenesis of HAPH.
Collapse
Affiliation(s)
- Xin-Hua Wu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yang-Yang He
- School of Pharmacy, Henan University, Henan, China
| | - Zhang-Rong Chen
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| | - Ze-Yuan He
- Department of Cardiology, Yulong People's Hospital, Yunnan, China
| | - Yi Yan
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yangzhige He
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guang-Ming Wang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yu Dong
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Ying Yang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yi-Min Sun
- CapitalBio Technology Corporation, Beijing, China
| | | | - Qiu-Yan Zhao
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Xiao-Dan Yang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Li-Ying Wang
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Cai-Jun Fu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Miao He
- Institute of Pharmacy, Dali University, Yunnan, China
| | - Si-Jin Zhang
- Department of Cardiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Fen Fu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Hong Liu
- Department of Cardiology; Yunnan Provincial Engineering Research Center of Prevention and Treatment of Trans-plateau Cardiovascular Diseases, The First Affiliated Hospital of Dali University, Yunnan, China.
| | - Zhi-Cheng Jing
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Zeng Y, Yu Q, Maimaitiaili N, Li B, Liu P, Hou Y, Mima, Cirenguojie, Sumit G, Dejizhuoga, Liu Y, Peng W. Clinical and Predictive Value of Computed Tomography Angiography in High-Altitude Pulmonary Hypertension. JACC. ASIA 2022; 2:803-815. [PMID: 36713752 PMCID: PMC9877215 DOI: 10.1016/j.jacasi.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
Background High-altitude pulmonary hypertension (HAPH), as the group 3 pulmonary hypertension, has been less studied so far. The limited medical conditions in the high-altitude plateau are responsible for the delay of the clinical management of HAPH. Objectives This study aims to identify the imaging characteristics of HAPH and explore noninvasive assessment of mean pulmonary arterial pressure (mPAP) based on computed tomography angiography (CTA). Methods Twenty-five patients with suspected HAPH were enrolled. Right heart catheterization (RHC) and pulmonary angiography were performed. Echocardiography and CTA image data were collected for analysis. A multivariable linear regression model was fit to estimate mPAP (mPAPpredicted). A Bland-Altman plot and pathological analysis were performed to assess the diagnostic accuracy of this model. Results Patients with HAPH showed slow blood flow and coral signs in lower lobe pulmonary artery in pulmonary arteriography, and presented trend for dilated pulmonary vessels, enlarged right atrium, and compressed left atrium in CTA (P for trend <0.05). The left lower pulmonary artery-bronchus ratio (odds ratio: 1.13) and the ratio of right to left atrial diameter (odds ratio: 1.09) were significantly associated with HAPH, and showed strong correlation with mPAPRHC, respectively (r = 0.821 and r = 0.649, respectively; all P < 0.0001). The mPAPpredicted model using left lower artery-bronchus ratio and ratio of right to left atrial diameter as covariates showed high correlation with mPAPRHC (r = 0.907; P < 0.0001). Patients with predicted HAPH also had the typical pathological changes of pulmonary hypertension. Conclusions Noninvasive mPAP estimation model based on CTA image data can accurately fit mPAPRHC and is beneficial for the early diagnosis of HAPH.
Collapse
Key Words
- ABR, pulmonary artery-bronchus ratio
- HAPH, high-altitude pulmonary hypertension
- LVEF, left ventricle ejection fraction
- PASP, pulmonary arterial systolic pressure
- PH, pulmonary hypertension
- RHC, right heart catheterization
- TRPG, tricuspid regurgitation pressure gradient
- computed tomography
- mPAP, mean pulmonary arterial pressure
- plateau
- pulmonary arterial pressure
- pulmonary artery-bronchus ratio
- rPA, the ratio of main pulmonary artery to aorta diameter
- rRLA, the ratio of right to left atrial diameter
Collapse
Affiliation(s)
- Yanxi Zeng
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China,Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Yu
- Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nuerbiyemu Maimaitiaili
- Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bingyu Li
- Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Panjin Liu
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China
| | - Yongzhi Hou
- Department of Ultrasound, Shigatse People’s Hospital, Tibet, China
| | - Mima
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China
| | - Cirenguojie
- Department of Radiology, Shigatse People’s Hospital, Tibet, China
| | - Gupta Sumit
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dejizhuoga
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China,Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yong Liu
- Department of Radiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Dr. Yong Liu, Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Wenhui Peng
- Department of Cardiology, Shigatse People’s Hospital, Tibet, China,Department of Cardiology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China,Address for correspondence: Dr Wenhui Peng, Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
22
|
Gao AR, Li S, Tan XC, Huang T, Dong HJ, Xue R, Li JC, Zhang Y, Zhang YZ, Wang X. Xinyang Tablet attenuates chronic hypoxia-induced right ventricular remodeling via inhibiting cardiomyocytes apoptosis. Chin Med 2022; 17:134. [PMID: 36471367 PMCID: PMC9720925 DOI: 10.1186/s13020-022-00689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is one of the fatal pathologies developed under hypobaric hypoxia and eventually leads to right ventricular (RV) remodeling and RV failure. Clinically, the mortality rate of RV failure caused by HPH is high and lacks effective drugs. Xinyang Tablet (XYT), a traditional Chinese medicine exhibits significant efficacy in the treatment of congestive heart failure and cardiac dysfunction. However, the effects of XYT on chronic hypoxia-induced RV failure are not clear. METHODS The content of XYT was analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). Sprague-Dawley (SD) rats were housed in a hypobaric chamber (equal to the parameter in altitude 5500 m) for 21 days to obtain the RV remodeling model. Electrocardiogram (ECG) and hemodynamic parameters were measured by iWorx Acquisition & Analysis System. Pathological morphological changes in the RV and pulmonary vessels were observed by H&E staining and Masson's trichrome staining. Myocardial apoptosis was tested by TUNEL assay. Protein expression levels of TNF-α, IL-6, Bax, Bcl-2, and caspase-3 in the RV and H9c2 cells were detected by western blot. Meanwhile, H9c2 cells were induced by CoCl2 to establish a hypoxia injury model to verify the protective effect and mechanisms of XYT. A CCK-8 assay was performed to determine the viability of H9c2 cells. CoCl2-induced apoptosis was detected by Annexin-FITC/PI flow cytometry and Hoechst 33,258 staining. RESULTS XYT remarkably improved RV hemodynamic disorder and ECG parameters. XYT attenuated hypoxia-induced pathological injury in RV and pulmonary vessels. We also observed that XYT treatment decreased the expression levels of TNF-α, IL-6, Bax/Bcl-2 ratio, and the numbers of myocardial apoptosis in RV. In H9c2 myocardial hypoxia model, XYT protected H9c2 cells against Cobalt chloride (CoCl2)-induced apoptosis. We also found that XYT could antagonize CoCl2-induced apoptosis through upregulating Bcl-2, inhibiting Bax and caspase-3 expression. CONCLUSIONS We concluded that XYT improved hypoxia-induced RV remodeling and protected against cardiac injury by inhibiting apoptosis pathway in vivo and vitro models, which may be a promising therapeutic strategy for clinical management of hypoxia-induced cardiac injury.
Collapse
Affiliation(s)
- An-Ran Gao
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Shuo Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiao-Cui Tan
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Ting Huang
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China ,grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Hua-Jin Dong
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Rui Xue
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Jing-Cao Li
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yang Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - You-Zhi Zhang
- grid.410740.60000 0004 1803 4911State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Xiao Wang
- grid.411866.c0000 0000 8848 7685Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| |
Collapse
|
23
|
Krompa A, Marino P. Diagnosis and management of pulmonary hypertension related to chronic respiratory disease. Breathe (Sheff) 2022; 18:220205. [PMID: 36865930 PMCID: PMC9973528 DOI: 10.1183/20734735.0205-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/03/2022] [Indexed: 01/12/2023] Open
Abstract
Pulmonary hypertension (PH) is a recognised and significant complication of chronic lung disease (CLD) and hypoxia (referred to as group 3 PH) that is associated with increased morbidity, decreased quality of life and worse survival. The prevalence and severity of group 3 PH varies within the current literature, with the majority of CLD-PH patients tending to have non-severe disease. The aetiology of this condition is multifactorial and complex, while the prevailing pathogenetic mechanisms include hypoxic vasoconstriction, parenchymal lung (and vascular bed) destruction, vascular remodelling and inflammation. Comorbidities such as left heart dysfunction and thromboembolic disease can further confound the clinical picture. Noninvasive assessment is initially undertaken in suspected cases (e.g. cardiac biomarkers, lung function, echocardiogram), while haemodynamic evaluation with right heart catheterisation remains the diagnostic gold standard. For patients with suspected severe PH, those with a pulmonary vascular phenotype or when there is uncertainty regarding further management, referral to specialist PH centres for further investigation and definitive management is mandated. No disease-specific therapy is currently available for group 3 PH and the focus of management remains optimisation of the underlying lung therapy, along with treating hypoventilation syndromes as indicated.
Collapse
Affiliation(s)
- Anastasia Krompa
- Lane Fox Respiratory Service, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, UK
| | - Philip Marino
- Lane Fox Respiratory Service, Guy's and St Thomas’ Hospital NHS Foundation Trust, London, UK,Corresponding author: Philip Marino ()
| |
Collapse
|
24
|
Karev E. The Tibetan echoes: Unrecognized conditions in nomadic population. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1260-1261. [PMID: 36353913 DOI: 10.1002/jcu.23288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Egor Karev
- Almazov National Medical Research Centre, Federal State Budgetary Institution, Saint Petersburg, Russia
| |
Collapse
|
25
|
Inflammation in Pulmonary Hypertension and Edema Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2022; 23:ijms232012656. [PMID: 36293512 PMCID: PMC9604159 DOI: 10.3390/ijms232012656] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/06/2022] Open
Abstract
Exposure to high altitudes generates a decrease in the partial pressure of oxygen, triggering a hypobaric hypoxic condition. This condition produces pathophysiologic alterations in an organism. In the lung, one of the principal responses to hypoxia is the development of hypoxic pulmonary vasoconstriction (HPV), which improves gas exchange. However, when HPV is exacerbated, it induces high-altitude pulmonary hypertension (HAPH). Another important illness in hypobaric hypoxia is high-altitude pulmonary edema (HAPE), which occurs under acute exposure. Several studies have shown that inflammatory processes are activated in high-altitude illnesses, highlighting the importance of the crosstalk between hypoxia and inflammation. The aim of this review is to determine the inflammatory pathways involved in hypobaric hypoxia, to investigate the key role of inflammation in lung pathologies, such as HAPH and HAPE, and to summarize different anti-inflammatory treatment approaches for these high-altitude illnesses. In conclusion, both HAPE and HAPH show an increase in inflammatory cell infiltration (macrophages and neutrophils), cytokine levels (IL-6, TNF-α and IL-1β), chemokine levels (MCP-1), and cell adhesion molecule levels (ICAM-1 and VCAM-1), and anti-inflammatory treatments (decreasing all inflammatory components mentioned above) seem to be promising mitigation strategies for treating lung pathologies associated with high-altitude exposure.
Collapse
|
26
|
Liu HF, Yuan TY, Yang JW, Li F, Wang F, Fu HM. A novel de novo heterozygous variant of the KCNQ2 gene: Contribution to early‑onset epileptic encephalopathy in a female infant. Mol Med Rep 2022; 26:282. [PMID: 35856407 PMCID: PMC9364154 DOI: 10.3892/mmr.2022.12797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Early-onset epileptic encephalopathy (EOEE) represents one of the most severe epilepsies, characterized by recurrent seizures during early infancy, electroencephalogram (EEG) abnormalities and varying degrees of neurodevelopmental delay. The KCNQ2 gene has been reported to have a major role in EOEE. In the present study, a 3-month-old female infant from the Chinese Lisu minority with EOEE was analyzed. Detailed clinical evaluations and next-generation sequencing were performed to investigate the clinical and genetic characteristics of this patient, respectively. Furthermore, the three-dimensional structure of the mutant protein was predicted by SWISS-Model and the expression of KCNQ2 protein in the patient was assessed by flow cytometry. It was observed that the patient presented with typical clinical features of EOEE, including repeated non-febrile seizures and significant EEG abnormalities. A novel heterozygous missense variant c.431G>C (p.R144P) in KCNQ2 was identified in the patient and the genotyping of KCNQ2 in the patient's parents suggested that this variant was de novo. Subsequently, the breakage of hydrogen bonds between certain amino acids was predicted by structural analysis of the mutant protein. Flow cytometric analysis detected a significant reduction buts not complete loss of native KCNQ2 protein expression in the patient (25.1%). In conclusion, a novel variant in KCNQ2 was confirmed as the genetic cause for EOEE in this patient. The present study expanded the pathogenic mutation spectrum of KCNQ2, enhanced the understanding of the molecular pathogenesis of EOEE and provided novel clues for research on the genotype-phenotype correlation in this disease.
Collapse
Affiliation(s)
- Hai-Feng Liu
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital and Yunnan Key Laboratory of Children's Major Disease Research, Kunming, Yunnan 650034, P.R. China
| | - Ting-Yun Yuan
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital and Yunnan Key Laboratory of Children's Major Disease Research, Kunming, Yunnan 650034, P.R. China
| | - Jia-Wu Yang
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital and Yunnan Key Laboratory of Children's Major Disease Research, Kunming, Yunnan 650034, P.R. China
| | - Feng Li
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital and Yunnan Key Laboratory of Children's Major Disease Research, Kunming, Yunnan 650034, P.R. China
| | - Fan Wang
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital and Yunnan Key Laboratory of Children's Major Disease Research, Kunming, Yunnan 650034, P.R. China
| | - Hong-Min Fu
- Department of Pulmonary and Critical Care Medicine, Kunming Children's Hospital and Yunnan Key Laboratory of Children's Major Disease Research, Kunming, Yunnan 650034, P.R. China
| |
Collapse
|
27
|
Yu JJ, Non AL, Heinrich EC, Gu W, Alcock J, Moya EA, Lawrence ES, Tift MS, O'Brien KA, Storz JF, Signore AV, Khudyakov JI, Milsom WK, Wilson SM, Beall CM, Villafuerte FC, Stobdan T, Julian CG, Moore LG, Fuster MM, Stokes JA, Milner R, West JB, Zhang J, Shyy JY, Childebayeva A, Vázquez-Medina JP, Pham LV, Mesarwi OA, Hall JE, Cheviron ZA, Sieker J, Blood AB, Yuan JX, Scott GR, Rana BK, Ponganis PJ, Malhotra A, Powell FL, Simonson TS. Time Domains of Hypoxia Responses and -Omics Insights. Front Physiol 2022; 13:885295. [PMID: 36035495 PMCID: PMC9400701 DOI: 10.3389/fphys.2022.885295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
The ability to respond rapidly to changes in oxygen tension is critical for many forms of life. Challenges to oxygen homeostasis, specifically in the contexts of evolutionary biology and biomedicine, provide important insights into mechanisms of hypoxia adaptation and tolerance. Here we synthesize findings across varying time domains of hypoxia in terms of oxygen delivery, ranging from early animal to modern human evolution and examine the potential impacts of environmental and clinical challenges through emerging multi-omics approaches. We discuss how diverse animal species have adapted to hypoxic environments, how humans vary in their responses to hypoxia (i.e., in the context of high-altitude exposure, cardiopulmonary disease, and sleep apnea), and how findings from each of these fields inform the other and lead to promising new directions in basic and clinical hypoxia research.
Collapse
Affiliation(s)
- James J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Amy L. Non
- Department of Anthropology, Division of Social Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Erica C. Heinrich
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States
| | - Wanjun Gu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Herbert Wertheim School of Public Health and Longevity Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joe Alcock
- Department of Emergency Medicine, University of New Mexico, Albuquerque, MX, United States
| | - Esteban A. Moya
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Elijah S. Lawrence
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Michael S. Tift
- Department of Biology and Marine Biology, College of Arts and Sciences, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Katie A. O'Brien
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Physiology, Development and Neuroscience, Faculty of Biology, School of Biological Sciences, University of Cambridge, Cambridge, ENG, United Kingdom
| | - Jay F. Storz
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Anthony V. Signore
- School of Biological Sciences, College of Arts and Sciences, University of Nebraska-Lincoln, Lincoln, IL, United States
| | - Jane I. Khudyakov
- Department of Biological Sciences, University of the Pacific, Stockton, CA, United States
| | | | - Sean M. Wilson
- Lawrence D. Longo, MD Center for Perinatal Biology, Loma Linda, CA, United States
| | | | | | | | - Colleen G. Julian
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lorna G. Moore
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, Aurora, CO, United States
| | - Mark M. Fuster
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jennifer A. Stokes
- Department of Kinesiology, Southwestern University, Georgetown, TX, United States
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA, United States
| | - John B. West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jiao Zhang
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - John Y. Shyy
- Department of Medicine, UC San Diego School of Medicine, San Diego, CA, United States
| | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, College of Letters and Science, University of California, Berkeley, Berkeley, CA, United States
| | - Luu V. Pham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - James E. Hall
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zachary A. Cheviron
- Division of Biological Sciences, College of Humanities and Sciences, University of Montana, Missoula, MT, United States
| | - Jeremy Sieker
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Arlin B. Blood
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jason X. Yuan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Graham R. Scott
- Department of Pediatrics Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brinda K. Rana
- Moores Cancer Center, UC San Diego, La Jolla, CA, United States
- Department of Psychiatry, UC San Diego, La Jolla, CA, United States
| | - Paul J. Ponganis
- Center for Marine Biotechnology and Biomedicine, La Jolla, CA, United States
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Frank L. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Flores K, Siques P, Brito J, Arribas SM. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms23116205. [PMID: 35682884 PMCID: PMC9181235 DOI: 10.3390/ijms23116205] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by sustained elevation of pulmonary artery pressure produced by vasoconstriction and hyperproliferative remodeling of the pulmonary artery and subsequent right ventricular hypertrophy (RVH). The search for therapeutic targets for cardiovascular pathophysiology has extended in many directions. However, studies focused on mitigating high-altitude pulmonary hypertension (HAPH) have been rare. Because AMP-activated protein kinase (AMPK) is involved in cardiovascular and metabolic pathology, AMPK is often studied as a potential therapeutic target. AMPK is best characterized as a sensor of cellular energy that can also restore cellular metabolic homeostasis. However, AMPK has been implicated in other pathways with vasculoprotective effects. Notably, cellular metabolic stress increases the intracellular ADP/ATP or AMP/ATP ratio, and AMPK activation restores ATP levels by activating energy-producing catabolic pathways and inhibiting energy-consuming anabolic pathways, such as cell growth and proliferation pathways, promoting cardiovascular protection. Thus, AMPK activation plays an important role in antiproliferative, antihypertrophic and antioxidant pathways in the pulmonary artery in HPH. However, AMPK plays contradictory roles in promoting HPH development. This review describes the main findings related to AMPK participation in HPH and its potential as a therapeutic target. It also extrapolates known AMPK functions to discuss the less-studied HAPH context.
Collapse
Affiliation(s)
- Karen Flores
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
- Correspondence: ; Tel.: +56-572526392
| | - Patricia Siques
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Julio Brito
- Institute of Health Studies, University Arturo Prat, Av. Arturo Prat 2120, Iquique 1110939, Chile; (P.S.); (J.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20251 Hamburg, Germany and Iquique 1100000, Chile
| | - Silvia M. Arribas
- Department of Physiology, University Autonoma of Madrid, 28049 Madrid, Spain;
| |
Collapse
|
29
|
Halawa S, Pullamsetti SS, Bangham CRM, Stenmark KR, Dorfmüller P, Frid MG, Butrous G, Morrell NW, de Jesus Perez VA, Stuart DI, O'Gallagher K, Shah AM, Aguib Y, Yacoub MH. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: a global perspective. Nat Rev Cardiol 2022; 19:314-331. [PMID: 34873286 PMCID: PMC8647069 DOI: 10.1038/s41569-021-00640-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
The lungs are the primary target of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with severe hypoxia being the cause of death in the most critical cases. Coronavirus disease 2019 (COVID-19) is extremely heterogeneous in terms of severity, clinical phenotype and, importantly, global distribution. Although the majority of affected patients recover from the acute infection, many continue to suffer from late sequelae affecting various organs, including the lungs. The role of the pulmonary vascular system during the acute and chronic stages of COVID-19 has not been adequately studied. A thorough understanding of the origins and dynamic behaviour of the SARS-CoV-2 virus and the potential causes of heterogeneity in COVID-19 is essential for anticipating and treating the disease, in both the acute and the chronic stages, including the development of chronic pulmonary hypertension. Both COVID-19 and chronic pulmonary hypertension have assumed global dimensions, with potential complex interactions. In this Review, we present an update on the origins and behaviour of the SARS-CoV-2 virus and discuss the potential causes of the heterogeneity of COVID-19. In addition, we summarize the pathobiology of COVID-19, with an emphasis on the role of the pulmonary vasculature, both in the acute stage and in terms of the potential for developing chronic pulmonary hypertension. We hope that the information presented in this Review will help in the development of strategies for the prevention and treatment of the continuing COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Charles R M Bangham
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Kurt R Stenmark
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Giessen, Germany
| | - Maria G Frid
- Divisions of Paediatric Critical Care Medicine and Cardiovascular Pulmonary Research, University of Colorado Denver, Denver, CO, USA
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent at Canterbury, Canterbury, UK
| | - Nick W Morrell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - David I Stuart
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin O'Gallagher
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, UK
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Magdi H Yacoub
- Aswan Heart Centre, Aswan, Egypt.
- National Heart & Lung Institute, Imperial College London, London, UK.
- Harefield Heart Science Centre, London, UK.
| |
Collapse
|
30
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
31
|
Zhang R, Li Z, Liu C, Yang Q, Lu D, Ge RL, Ma S, Li Z. Pretreatment with the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu rescues hypoxia-induced potassium channel inhibition in rat pulmonary artery smooth muscle cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114734. [PMID: 34648900 DOI: 10.1016/j.jep.2021.114734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Previous studies have shown that the active fraction of Rhodiola tangutica (Maxim.) S.H. Fu (ACRT) dilates pulmonary arteries and thwarts pulmonary artery remodelling. The dilatation effect of ACRT on pulmonary artery vascular rings could be reduced by potassium (K+) channel blockers. However the exact mechanisms of ACRT on ion channels are still unclear. AIM OF THE STUDY This study aimed to investigate whether the effect of ACRT on K+ channels inhibits cell proliferation after pulmonary artery smooth muscle cells (PASMCs) are exposed to hypoxia. MATERIALS AND METHODS The whole-cell patch-clamp method was used to clarify the effect of ACRT on the K+ current (IK) of rat PASMCs exposed to hypoxia. The mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction (RT-qPCR) and western blotting, respectively. The intracellular calcium (Ca2+) concentration ([Ca2+]i) values in rat PASMCs were detected by laser scanning confocal microscopy. The cell cycle and cell proliferation were assessed using flow cytometry analysis and CCK-8 and EdU assays. RESULTS ACRT pretreatment alleviated the inhibition of IK induced by hypoxia in rat PASMCs. Compared with hypoxia, ACRT upregulated voltage-dependent K+ channel (Kv) 1.5 and big-conductance calcium-activated K+ channel (BKCa) mRNA and protein expression and downregulated voltage-dependent Ca2+ channel (Cav) 1.2 mRNA and protein expression. ACRT decreased [Ca2+]i, inhibited the promotion of cyclin D1 and proliferating cell nuclear antigen (PCNA) expression, and prevented the proliferation of rat PASMCs exposed to hypoxia. CONCLUSION In conclusion, the present study demonstrated that ACRT plays a key role in restoring ion channel function and then inhibiting the proliferation of PASMCs under hypoxia, ACRT has preventive and therapeutic potential in hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Ruixia Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China; Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Zhanqiang Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China; Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Quanyu Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Dianxiang Lu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China
| | - Shuang Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China; Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Xining, 810001, China.
| | - Zhanquan Li
- Qinghai University Affiliated Hospital, Xining, 810001, China.
| |
Collapse
|
32
|
Diaz GF, Marquez A, Ruiz-Parra A, Beghetti M, Ivy D. An Acute Hyperoxia Test Predicts Survival in Children with Pulmonary Hypertension Living at High Altitude. High Alt Med Biol 2021; 22:395-405. [PMID: 34905397 PMCID: PMC8742266 DOI: 10.1089/ham.2021.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Diaz, Gabriel F., Alicia Marquez, Ariel Ruiz-Parra, Maurice Beghetti, and Dunbar Ivy. An acute hyperoxia test predicts survival in children with pulmonary hypertension living at high altitude. High Alt Med Biol. 22:395-405, 2021. Background: Pulmonary hypertension (PH) causes significant morbidity and mortality in children at altitude. Materials and Methods: Fifty-two children living at 2,640 m were included. During hyperoxia test (O2Test), patients received high oxygen concentrations (FiO2 >80, through Mask, using Venturi or nonrebreathing mask); echocardiography was used to evaluate pulmonary vasculature reactivity. A decrease >20% from the basal pulmonary artery systolic pressure was considered a positive response. Results: Most of the patients had severe PH. The median age at diagnosis was 4.5 years; 34 were female (65.4%). Idiopathic PH was present in 44 patients (84.6%). Six developed severe PH after ductus closure. They were classified in responders (n = 25), and nonresponders (n = 26). Responders were younger (3 years vs. 7 years, p = 0.02), and 22 (88%), had better functional class (FC) 1-2, than nonresponders: 18 (69.23%) of them had worse FC: 3-4 (p = 0.000). In responders, 10/12 who went to live at low altitude became asymptomatic, compared with 7/13 who remained at high altitude. FC 1-2 was achieved by 70% of the patients with idiopathic PH who went to a low altitude, compared with 30% who continued at high altitude (p = 0.03). In nonresponders, 10/26 patients moved to a low altitude: four improved, one worsened, and five died; of the 16/26 patients living at high altitude, four are stable, eight worsened, and four died. Four patients (30.76%) in responder group and nine (69.24%) in the nonresponder group died (p = 0.03). There were differences between both groups in systolic (88 mm Hg vs. 110 mm Hg; p = 0.037), diastolic (37 mm Hg vs. 56 mm Hg; p = 0.035), and mean pulmonary artery pressures (57 mm Hg vs. 88 mm Hg; p = 0.038). Conclusions: This specific hyperoxia test applied until 24 hours (not published before) helps to predict survival and prognosis of children with PH. Children with PH at a high altitude improve at low altitude.
Collapse
Affiliation(s)
- Gabriel F Diaz
- Department of Pediatrics, Universidad Nacional de Colombia, Fundación Santa Fe de Bogotá, Bogotá Colombia
| | - Alicia Marquez
- Clínica De La Mujer, Centro Policlínico del Olaya, Bogotá, Colombia
| | - Ariel Ruiz-Parra
- Instituto de Investigaciones Clínicas and Department of Obstetrics and Gynecology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maurice Beghetti
- Head of Pediatric Cardiology Unit (HUG), Director Pulmonary Hypertension Program (HUG) Children's University Hospital, Geneva, Switzerland
| | - Dunbar Ivy
- Chief and Selby's Chair of Pediatric Cardiology, University of Colorado, School of Medicine, Children's Hospital Colorado, Denver, Colorado, USA
| |
Collapse
|
33
|
Xu X, Li H, Wei Q, Li X, Shen Y, Guo G, Chen Y, He K, Liu C. Novel Targets in a High-Altitude Pulmonary Hypertension Rat Model Based on RNA-seq and Proteomics. Front Med (Lausanne) 2021; 8:742436. [PMID: 34805208 PMCID: PMC8595261 DOI: 10.3389/fmed.2021.742436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/11/2021] [Indexed: 11/21/2022] Open
Abstract
High-altitude pulmonary hypertension (HAPH) is a complication arising from an inability to acclimatize to high altitude and is associated with high morbidity and mortality. We aimed to analyze the effects of macitentan, selexipag, riociguat, and reoxygenation on HAPH, and to screen possible targets of these treatments for future drug screening. Rats were subjected to hypobaric hypoxia for 35 days to induce HAPH, and treated with vehicle or selexipag, macitentan, riociguat, or with reoxygenation, from days 21 to 35. Selexipag, macitentan, and reoxygenation prevented an increase in mean pulmonary artery pressure and hypoxia-induced right ventricular hypertrophy, compared to the vehicle. Riociguat had little effect. RNA-seq and proteomics revealed strong correlations between responses to the three drugs, which had almost identical effects. GO-enrichment revealed that the differentially expressed genes included those involved in metabolic regulation, transcription, and translation. Various molecular pathways were annotated. Selexipag, macitentan, and reoxygenation ameliorated HAPH. Serpina1, Cryz, and Cmc1 were identified, via multi-omics screening, as key genes involved in HAPH. These findings provide new insights into the targeted drug mechanisms in HAPH.
Collapse
Affiliation(s)
- Xiang Xu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Hanlu Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Qingxia Wei
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Xin Li
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yanying Shen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Ge Guo
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yibing Chen
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Kunlun He
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| | - Chunlei Liu
- Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China.,Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
DEMİR C, KARAMAN M, UÇAN ES, GÖKMEN AN, GÜREL D, ÇOKER ŞC, ADALI Y, YILMAZ O. Effects of bevacizumab administration on the hypoxia - induced pulmonary hypertension rat model. Turk J Med Sci 2021; 51:2752-2762. [PMID: 34333902 PMCID: PMC8742496 DOI: 10.3906/sag-2101-76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/31/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Bevacizumab is a chemotherapeutic drug, which selectively binds to vascular endothelial growth factor (VEGF) and mainly inhibits angiogenesis and neovascularization. We aimed to study the possible effects of bevacizumab on right ventricular pressure (RVP), right ventricular hypertrophy, and VEGF, in hypoxia - induced pulmonary hypertension (PH) rat model. METHODS 24 adult Wistar Albino rats were randomly divided into four groups: control group - saline; Bevacizumab Group; PH Group; PH + Bevacizumab Group. In hypoxia - induced model, 10% oxygen and 90% nitrogen were applied in a plexiglas box for eight days to PH Group and PH + Bevacizumab Group. On day eight, RVPs were measured directly from the heart, and then animals were sacrificed. Heart and lung tissues were examined, and Fulton index was measured. RESULTS RVP, Fulton index, and tissue VEGF scores were significantly lower in PH + Bevacizumab group than PH group: median (ranges), RVP, mmHg, 37.8 (33.0-39.0) and 32.3 (28.0-35.0), p: 0.01; Fulton index: 0.30 (0.29-0.33) and 0.25 (0.24-0.26), p: 0.003; tissue VEGF scores: 5.1 (4.8-5.3) and 4.0 (3.8 4.1), p: 0.004, respectively. DISCUSSION Bevacizumab, which is indeed an antineoplastic agent, might have a favorable effect on hypoxia - induced pulmonary hypertension.
Collapse
Affiliation(s)
- Canan DEMİR
- Occupational Diseases Clinic, Occupational and Environmental Diseases Hospital, AnkaraTurkey
| | - Meral KARAMAN
- Department of Medical Microbiology, Faculty of Medicine, Dokuz Eylül University, İzmirTurkey
| | - Eyüp Sabri UÇAN
- Department of Chest Diseases, Faculty of Medicine, Dokuz Eylül University, İzmirTurkey
| | - Ali Necati GÖKMEN
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dokuz Eylül University, İzmirTurkey
| | - Duygu GÜREL
- Department of Medical Pathology, Faculty of Medicine, Dokuz Eylül University, İzmirTurkey
| | - Şadiye Canan ÇOKER
- Department of Medical Biochemistry, Faculty of Medicine, Dokuz Eylül University, İzmirTurkey
| | - Yasemen ADALI
- Department of Medical Pathology, Faculty of Medicine, Izmir University of Economics, İzmirTurkey
| | - Osman YILMAZ
- Department of Laboratory Animal Science, Faculty of Medicine, Dokuz Eylül University, İzmirTurkey
| |
Collapse
|
35
|
Padmasekar M, Savai R, Seeger W, Pullamsetti SS. Exposomes to Exosomes: Exosomes as Tools to Study Epigenetic Adaptive Mechanisms in High-Altitude Humans. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8280. [PMID: 34444030 PMCID: PMC8392481 DOI: 10.3390/ijerph18168280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/29/2022]
Abstract
Humans on earth inhabit a wide range of environmental conditions and some environments are more challenging for human survival than others. However, many living beings, including humans, have developed adaptive mechanisms to live in such inhospitable, harsh environments. Among different difficult environments, high-altitude living is especially demanding because of diminished partial pressure of oxygen and resulting chronic hypobaric hypoxia. This results in poor blood oxygenation and reduces aerobic oxidative respiration in the mitochondria, leading to increased reactive oxygen species generation and activation of hypoxia-inducible gene expression. Genetic mechanisms in the adaptation to high altitude is well-studied, but there are only limited studies regarding the role of epigenetic mechanisms. The purpose of this review is to understand the epigenetic mechanisms behind high-altitude adaptive and maladaptive phenotypes. Hypobaric hypoxia is a form of cellular hypoxia, which is similar to the one suffered by critically-ill hypoxemia patients. Thus, understanding the adaptive epigenetic signals operating in in high-altitude adjusted indigenous populations may help in therapeutically modulating signaling pathways in hypoxemia patients by copying the most successful epigenotype. In addition, we have summarized the current information about exosomes in hypoxia research and prospects to use them as diagnostic tools to study the epigenome of high-altitude adapted healthy or maladapted individuals.
Collapse
Affiliation(s)
- Manju Padmasekar
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
| | - Rajkumar Savai
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60438 Frankfurt am Main, Germany
| | - Werner Seeger
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany; (M.P.); (R.S.); (W.S.)
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the DZL, Member of CPI, 35392 Giessen, Germany
| |
Collapse
|
36
|
Santocildes G, Viscor G, Pagès T, Ramos-Romero S, Torres JL, Torrella JR. Physiological Effects of Intermittent Passive Exposure to Hypobaric Hypoxia and Cold in Rats. Front Physiol 2021; 12:673095. [PMID: 34135770 PMCID: PMC8201611 DOI: 10.3389/fphys.2021.673095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
The benefits of intermittent hypobaric hypoxia (IHH) exposure for health and its potential use as a training tool are well-documented. However, since hypobaric hypoxia and cold are environmental factors always strongly associated in the biosphere, additive or synergistic adaptations could have evolved in animals' genomes. For that reason, the aim of the present study was to investigate body composition and hematological and muscle morphofunctional responses to simultaneous intermittent exposure to hypoxia and cold. Adult male rats were randomly divided into four groups: (1) control, maintained in normoxia at 25°C (CTRL); (2) IHH exposed 4 h/day at 4,500 m (HYPO); (3) intermittent cold exposed 4 h/day at 4°C (COLD); and (4) simultaneously cold and hypoxia exposed (COHY). At the end of 9 and 21 days of exposure, blood was withdrawn and gastrocnemius (GAS) and tibialis anterior muscles, perigonadal and brown adipose tissue, diaphragm, and heart were excised. GAS transversal sections were stained for myofibrillar ATPase and succinate dehydrogenase for fiber typing and for endothelial ATPase to assess capillarization. Hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor (VEGF), and glucose transporter 1 (GLUT1) from GAS samples were semi-quantified by Western blotting. COLD and HYPO underwent physiological adjustments such as higher brown adipose tissue weight and increase in blood-related oxygen transport parameters, while avoiding some negative effects of chronic exposure to cold and hypoxia, such as body weight and muscle mass loss. COHY presented an additive erythropoietic response and was prevented from right ventricle hypertrophy. Intermittent cold exposure induced muscle angiogenesis, and IHH seems to indicate better muscle oxygenation through fiber area reduction.
Collapse
Affiliation(s)
- Garoa Santocildes
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Ginés Viscor
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Teresa Pagès
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Ramos-Romero
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- Departament de Química Biològica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Josep Lluís Torres
- Departament de Química Biològica, Institut de Química Avançada de Catalunya (IQAC-CSIC), Barcelona, Spain
| | - Joan Ramon Torrella
- Secció de Fisiologia, Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Sanabria Pérez ES, Ercilla Sánchez JG, Aguirre Zurita O. [Impact of variation in altitude above sea level on clinical and hemodynamic parameters in pulmonary arterial hypertension: case report]. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2021; 2:68-71. [PMID: 37727259 PMCID: PMC10506571 DOI: 10.47487/apcyccv.v2i1.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 09/21/2023]
Abstract
Clinical monitoring of pulmonary arterial hypertension in our country, in which patients come from different altitudes above sea level, forces us to rule out pulmonary hypertension in relation to chronic exposure to high heights, described in third group of international classification. When reviewing the hemodynamic variations in pulmonary pressure with exercise at altitude with respect to sea level in healthy patients, this is greater in height, this would explain that the patient with pulmonary arterial hypertension is more symptomatic while living at a higher altitude above sea level.
Collapse
Affiliation(s)
- Enrique Saul Sanabria Pérez
- Servicio de cardiología clínica, Instituto Nacional Cardiovascular, INCOR-EsSalud. Lima, PerúServicio de cardiología clínicaInstituto Nacional Cardiovascular, INCOR-EsSaludLimaPerú
| | - José Guillermo Ercilla Sánchez
- Servicio de Hemodinámica, Instituto Nacional Cardiovascular, INCOR-EsSalud. Lima, PerúServicio de HemodinámicaInstituto Nacional Cardiovascular, INCOR-EsSaludLimaPerú
| | - Oscar Aguirre Zurita
- Servicio de cardiología clínica, Instituto Nacional Cardiovascular, INCOR-EsSalud. Lima, PerúServicio de cardiología clínicaInstituto Nacional Cardiovascular, INCOR-EsSaludLimaPerú
| |
Collapse
|
38
|
Xu SL, Deng YS, Liu J, Xu SY, Zhao FY, Wei L, Tian YC, Yu CE, Cao B, Huang XX, Yang M, He XH, Bai M, Huang YC, Xing XQ, Yang J. Regulation of circular RNAs act as ceRNA in a hypoxic pulmonary hypertension rat model. Genomics 2021; 113:11-19. [PMID: 33249173 DOI: 10.1016/j.ygeno.2020.11.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 02/05/2023]
Abstract
To explore potential critical genes and identify circular RNAs (circRNAs) that act as the competitive endogenous RNA (ceRNA) in a hypoxic pulmonary hypertension (HPH) rat model. Constructed rat model, and a bioinformatics method was used to analyse differentially expressed (DE) genes and construct a circRNA-miRNA-mRNA ceRNA regulatory network. Then, qRT-PCR was used to verify. The significant DEcircRNAs/DEmiRNAs/DEmRNAs was showed, and a ceRNA network with 8 DEcircRNAs, 9 DEmiRNAs and 46 DEmRNAs were constructed. The functional enrichment suggested the inflammatory response, NF-κB signalling, MAPK cascade and Toll-like receptor were associated with HPH. Further assessment confirmed that circ_002723, circ_008021, circ_016925 and circ_020581 could have a potential ceRNA mechanism by sponging miR-23a or miR-21 to control downstream target gene and be involved in the pathophysiology of HPH. The qRT-PCR validation results were consistent with the RNA-Seq results. This study revealed potentially important genes, pathways and ceRNA regulatory networks in HPH.
Collapse
Affiliation(s)
- Shuang-Lan Xu
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Yi-Shu Deng
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Jie Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Shuang-Yan Xu
- Department of Dermatology, The People's Hospital of Yuxi City, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi 653100, Yunan, China
| | - Fang-Yun Zhao
- Department of Pharmacy, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan, China
| | - Li Wei
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Ying-Chun Tian
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Cai-E Yu
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Bing Cao
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Xiao-Xian Huang
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Mei Yang
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Xiao-Hua He
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Min Bai
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Yun-Chao Huang
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China
| | - Xi-Qian Xing
- Department of Respiratory Medicine, The Affiliated Hospital of Yunnan University, The Second People's Hospital of Yunnan Province, Kunming 650021, Yunnan, China.
| | - Jiao Yang
- First Department of Respiratory Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, Yunnan, China.
| |
Collapse
|
39
|
Wang T, Hou J, Xiao W, Zhang Y, Zhou L, Yuan L, Yin X, Chen X, Hu Y. Chinese medicinal plants for the potential management of high-altitude pulmonary oedema and pulmonary hypertension. PHARMACEUTICAL BIOLOGY 2020; 58:815-827. [PMID: 32883127 PMCID: PMC8641673 DOI: 10.1080/13880209.2020.1804407] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 05/29/2023]
Abstract
CONTEXT Despite the abundance of knowledge regarding high-altitude pulmonary edoema (HAPE) and high-altitude pulmonary hypertension (HAPH), their prevalence continues to be on the rise. Thus, there is an urgent need for newer safe, effective, and relatively economic drug candidates. China is particularly known for the use of medicinal plants. OBJECTIVE This review summarizes the medicinal plants used for HAPE and HAPH in the past 30 years, as well as some potential plants. METHODS Publications on HAPE and HAPH from 1990 to 2020 were identified using Web of Science, PubMed, SCOPUS, Springer Link, Google Scholar databases, Chinese Clinical Trial Registry and CNKI with the following keywords: 'medicinal plants,' 'hypoxia,' 'high altitude pulmonary edema,' 'high altitude pulmonary hypertension,' 'pathophysiology,' 'mechanisms,' 'prevention,' 'treatment,' 'human,' 'clinical,' 'safety,' and 'pharmacokinetics.' RESULTS We found 26 species (from 20 families) out of 5000 plants which are used for HAPE and HAPH prevention or treatment. Rhodiola rosea Linn. (Crassulaceae) is the most widely utilized. The most involved family is Lamiaceae, which contains 5 species. DISCUSSION AND CONCLUSIONS We mainly reviewed the medicinal plants and mechanisms for the treatment of HAPE and HAPH, and we also assessed related toxicology experiments, pharmacokinetics and bioavailability. Potential medicinal plants were also identified. Further research is needed to determine the pharmacological effects and active ingredients of these potential medicinal plants.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Jun Hou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Wenjing Xiao
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Yaolei Zhang
- Faculty of Medical, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Longfu Zhou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Li Yuan
- Faculty of Medical, Southwest Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Xiaoqiang Yin
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, P. R. China
| | - Yonghe Hu
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, P. R. China
| |
Collapse
|
40
|
Brito J, Siques P, Pena E. Long-term chronic intermittent hypoxia: a particular form of chronic high-altitude pulmonary hypertension. Pulm Circ 2020; 10:5-12. [PMID: 33110494 PMCID: PMC7557688 DOI: 10.1177/2045894020934625] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/26/2020] [Indexed: 12/19/2022] Open
Abstract
In some subjects, high-altitude hypobaric hypoxia leads to high-altitude pulmonary
hypertension. The threshold for the diagnosis of high-altitude pulmonary hypertension is a
mean pulmonary artery pressure of 30 mmHg, even though for general pulmonary hypertension
is ≥25 mmHg. High-altitude pulmonary hypertension has been associated with high hematocrit
findings (chronic mountain sickness), and although these are two separate entities, they
have a synergistic effect that should be considered. In recent years, a new condition
associated with high altitude was described in South America named long-term chronic
intermittent hypoxia and has appeared in individuals who commute to work at high altitude
but live and rest at sea level. In this review, we discuss the initial epidemiological
pattern from the early studies done in Chile, the clinical presentation and possible
molecular mechanism and a discussion of the potential management of this condition.
Collapse
Affiliation(s)
- Julio Brito
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Patricia Siques
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| | - Eduardo Pena
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, Hamburg, Germany
| |
Collapse
|
41
|
Fakhri S, Hannon K, Moulden K, Peterson R, Hountras P, Bull T, Maloney J, De Marco T, Ivy D, Thenappan T, Sager JS, Ryan JJ, Mazimba S, Hirsch R, Chakinala M, Shlobin O, Lammi M, Zwicke D, Robinson J, Benza RL, Klinger J, Grinnan D, Mathai S, Badesch D. Residence at moderately high altitude and its relationship with WHO Group 1 pulmonary arterial hypertension symptom severity and clinical characteristics: the Pulmonary Hypertension Association Registry. Pulm Circ 2020; 10:2045894020964342. [PMID: 33240488 PMCID: PMC7675880 DOI: 10.1177/2045894020964342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/15/2020] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND WHO Group 1 pulmonary arterial hypertension is a progressive and potentially fatal disease. Individuals living at higher altitude are exposed to lower barometric pressure and hypobaric hypoxemia. This may result in pulmonary vasoconstriction and contribute to disease progression. We sought to examine the relationship between living at moderately high altitude and pulmonary arterial hypertension characteristics. METHODS Forty-two US centers participating in the Pulmonary Hypertension Association Registry enrolled patients who met the definition of WHO Group 1 pulmonary arterial hypertension. We utilized baseline data and patient questionnaire responses. Patients were divided into two groups: moderately high altitude residence (home ≥4000 ft) and low altitude residence (home <4000 ft) based on zip-code. Clinical characteristics, hemodynamic data, patient demographics, and patient reported quality of life metrics were compared. RESULTS Controlling for potential confounders (age, sex at birth, body mass index, supplemental oxygen use, race, 100-day cigarette use, alcohol use, and pulmonary arterial hypertension medication use), subjects residing at moderately high altitude had a 6-min walk distance 32 m greater than those at low altitude, despite having a pulmonary vascular resistance that was 2.2 Wood units higher. Additionally, those residing at moderately high altitude had 3.7 times greater odds of using supplemental oxygen. CONCLUSION Patients with pulmonary arterial hypertension who live at moderately high altitude have a higher pulmonary vascular resistance and are more likely to need supplemental oxygen. Despite these findings, moderately high altitude Pulmonary Hypertension Association Registry patients have better functional tolerance as measured by 6-min walk distance. It is possible that a "high-altitude phenotype" of pulmonary arterial hypertension may exist. These findings warrant further study.
Collapse
Affiliation(s)
- Shoaib Fakhri
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | - Kelly Hannon
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | - Kelly Moulden
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | - Ryan Peterson
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | - Peter Hountras
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | - Todd Bull
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | - James Maloney
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| | | | - Dunbar Ivy
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
- Children’s Hospital of Colorado, Aurora,
CO, USA
| | | | - Jeffrey S. Sager
- Cottage Health Pulmonary Hypertension
Center, Santa Barbara, CA, USA
| | | | - Sula Mazimba
- University of Virginia, Charlottesville,
VA, USA
| | - Russel Hirsch
- Cincinnati Children’s Hospital Medical
Center, Cincinnati, OH, USA
| | - Murali Chakinala
- Washington University at Barnes-Jewish
Hospital, St. Louis, MO, USA
| | | | - Matthew Lammi
- Louisiana State University,
Comprehensive Pulmonary Hypertension Center, New Orleans, LA, USA
| | - Dianne Zwicke
- Aurora St. Luke’s Medical Center,
Milwaukee, WI, USA
| | | | | | | | | | | | - David Badesch
- University of Colorado, Anschutz Medical
Campus, Aurora, CO, USA
| |
Collapse
|
42
|
Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int J Mol Sci 2020; 21:ijms21176421. [PMID: 32899304 PMCID: PMC7503689 DOI: 10.3390/ijms21176421] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
High altitude (hypobaric hypoxia) triggers several mechanisms to compensate for the decrease in oxygen bioavailability. One of them is pulmonary artery vasoconstriction and its subsequent pulmonary arterial remodeling. These changes can lead to pulmonary hypertension and the development of right ventricular hypertrophy (RVH), right heart failure (RHF) and, ultimately to death. The aim of this review is to describe the most recent molecular pathways involved in the above conditions under this type of hypobaric hypoxia, including oxidative stress, inflammation, protein kinases activation and fibrosis, and the current therapeutic approaches for these conditions. This review also includes the current knowledge of long-term chronic intermittent hypobaric hypoxia. Furthermore, this review highlights the signaling pathways related to oxidative stress (Nox-derived O2.- and H2O2), protein kinase (ERK5, p38α and PKCα) activation, inflammatory molecules (IL-1β, IL-6, TNF-α and NF-kB) and hypoxia condition (HIF-1α). On the other hand, recent therapeutic approaches have focused on abolishing hypoxia-induced RVH and RHF via attenuation of oxidative stress and inflammatory (IL-1β, MCP-1, SDF-1 and CXCR-4) pathways through phytotherapy and pharmacological trials. Nevertheless, further studies are necessary.
Collapse
|
43
|
Gao X, Zhang Z, Li X, Li C, Hao J, Luo Y, Lei M, Li J, Liu C, He K. Macitentan Attenuates Chronic Mountain Sickness in Rats by Regulating Arginine and Purine Metabolism. J Proteome Res 2020; 19:3302-3314. [PMID: 32640793 DOI: 10.1021/acs.jproteome.0c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaojian Gao
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Zeyu Zhang
- Department of Cardiovascular, Chinese PLA General Hospital, Beijing 100853, China
| | - Xin Li
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Chen Li
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianxiu Hao
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Yunfu Luo
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Maoyi Lei
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Junmiao Li
- WuXi AppTec Co., Ltd., 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chunlei Liu
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| | - Kunlun He
- Core Laboratory of Translational Medicine, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
44
|
Ucrós S, Granados CM, Castro-Rodríguez JA, Hill CM. Oxygen Saturation in Childhood at High Altitude: A Systematic Review. High Alt Med Biol 2020; 21:114-125. [DOI: 10.1089/ham.2019.0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Santiago Ucrós
- Department of Pediatrics, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Claudia M. Granados
- Departments of Pediatrics, Clinical Epidemiology, and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - José A. Castro-Rodríguez
- Pulmonology Unit, Department of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catherine M. Hill
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Southampton Children's Hospital, Southampton, United Kingdom
| |
Collapse
|
45
|
McGettrick M, Peacock A. Group 3 pulmonary hypertension: Challenges and opportunities. Glob Cardiol Sci Pract 2020; 2020:e202006. [PMID: 33150151 PMCID: PMC7590933 DOI: 10.21542/gcsp.2020.6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Michael McGettrick
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| | - Andrew Peacock
- Scottish Pulmonary Vascular Unit, Golden Jubilee National Hospital, Glasgow, UK
| |
Collapse
|
46
|
Wang M, Zhuang D, Mei M, Ma H, Li Z, He F, Cheng G, Lin G, Zhou W. Frequent mutation of hypoxia-related genes in persistent pulmonary hypertension of the newborn. Respir Res 2020; 21:53. [PMID: 32054482 PMCID: PMC7020588 DOI: 10.1186/s12931-020-1314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Aims Persistent pulmonary hypertension of the newborn (PPHN) is characterized by sustained high levels of pulmonary vascular resistance after birth with etiology unclear; Arterial blood oxygen saturation of Tibetan newborns at high latitudes is higher than that of Han newborns at low latitudes, suggesting that genetic adaptation may allow sufficient oxygen to confer Tibetan populations with resistance to pulmonary hypertension; We have previously identified genetic factors related to PPHN through candidate gene sequencing; In this study, we first performed whole exome sequencing in PPHN patients to screen for genetic-related factors. Methods and results In this two-phase genetic study, we first sequenced the whole exome of 20 Tibetan PPHN patients and compared it with the published genome sequences of 50 healthy high-altitude Tibetanshypoxia-related genes, a total of 166 PPHN-related variants were found, of which 49% were from 43 hypoxia-related genes; considering many studies have shown that the differences in the genetic background between Tibet and Han are characterized by hypoxia-related genetic polymorphisms, so it is necessary to further verify whether the association between hypoxia-related variants and PPHN is independent of high-altitude life. During the validation phase, 237 hypoxia-related genes were sequenced in another 80 Han PPHN patients living in low altitude areas, including genes at the discovery stage and known hypoxia tolerance, of which 413 variants from 127 of these genes were shown to be significantly associated with PPHN.hypoxia-related genes. Conclusions Our results indicates that the association of hypoxia-related genes with PPHN does not depend on high-altitude life, at the same time, 21 rare mutations associated with PPHN were also found, including three rare variants of the tubulin tyrosine ligase-like family member 3 gene (TTLL3:p.E317K, TTLL3:p.P777S) and the integrin subunit alpha M gene (ITGAM:p.E1071D). These novel findings provide important information on the genetic basis of PPHN.
Collapse
Affiliation(s)
- Mingbang Wang
- Shanghai Key Laboratory of Birth Defects, National Health Commision (NHC) Key Laboratory of Neonatal Diseases, Division of Neonatology, National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Deyi Zhuang
- Xiamen Key Laboratory of Neonatal Diseases, Neonatal Medical Center, Xiamen Children's Hospital, Children's Hospital of Fudan University (Xiamen Branch), Xiamen, 361006, Fujian, China
| | - Mei Mei
- Division of Pulmonology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Haiyan Ma
- Zhuhai Maternal and Children's Hospital, Zhuhai, 519001, Guangdong, China
| | - Zixiu Li
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | | | - Guoqiang Cheng
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, 200436, China
| | - Guang Lin
- Zhuhai Maternal and Children's Hospital, Zhuhai, 519001, Guangdong, China.
| | - Wenhao Zhou
- Shanghai Key Laboratory of Birth Defects, National Health Commision (NHC) Key Laboratory of Neonatal Diseases, Division of Neonatology, National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
47
|
Dubroff J, Melendres L, Lin Y, Beene DR, Ketai L. High geographic prevalence of pulmonary artery hypertension: associations with ethnicity, drug use, and altitude. Pulm Circ 2020; 10:2045894019894534. [PMID: 32110384 PMCID: PMC7000864 DOI: 10.1177/2045894019894534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
While estimates of pulmonary arterial hypertension incidence and prevalence commonly range from 1-3/million and 15-25/million, respectively, clinical experience at our institution suggested much higher rates. We sought to describe the disease burden of pulmonary arterial hypertension in the geographic area served by our Pulmonary Hypertension Clinic and compare it to the REVEAL registry. Our secondary objectives were to document pulmonary arterial hypertension prevalence in minorities underrepresented in REVEAL (Hispanics and Native Americans) and to address the association of pulmonary arterial hypertension with exposure to drugs and moderately increased residential altitude in this population. Retrospective review of pulmonary arterial hypertension clinic patients alive during 2016 identified 154 patients. Hispanic patients made up 35.7% of the cohort, a much greater percentage than REVEAL, p < .001 but smaller than the percentage of Hispanic patients (48.4%) in geographic area served by the clinic. Pulmonary arterial hypertension due to drug exposure was more common and idiopathic pulmonary arterial hypertension was less common than in REVEAL (p < .001). Overall, pulmonary arterial hypertension incidence was 14 cases per million, greater than the REVEAL registry, odds ratio 6.3 (95% CI: 4.2-9.5), (p < .001). Annual period prevalence of pulmonary arterial hypertension was 93 cases per million, also greater than the REVEAL, odds ratio = 7.5 (95% CI: 6.4-8.8) and remained greater when the clinic cohort was constrained to patients with hemodynamic severity comparable to REVEAL, odds ratio = 3.8 (95% CI: 3.0-4.6), (p < .001). There was a strong association between pulmonary arterial hypertension prevalence and residence at altitude > 4000 ft, odds ratio = 26.6 (95% CI: 8.5-83.5), p < .001; however, this was potentially confounded by pulmonary arterial hypertension treatment referral patterns. These findings document a much higher local pulmonary arterial hypertension incidence and prevalence than previously reported in REVEAL. While population ethnicity differed markedly from REVEAL, the disease burden was not driven by these differences. The possible association of moderately increased residential altitude with pulmonary arterial hypertension warrants further evaluation.
Collapse
Affiliation(s)
- Jason Dubroff
- Department of Internal Medicine,
University of Utah, Salt Lake City, UT, USA
| | - Lana Melendres
- Department of Internal Medicine,
University of New Mexico, Albuquerque, NM, USA
| | - Yan Lin
- Department of Geography and
Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Daniel Raley Beene
- Department of Geography and
Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Loren Ketai
- Department of Radiology, University of
New Mexico, Albuquerque, NM, USA
| |
Collapse
|
48
|
Chen Y, He W, Ouyang H, Liu C, Hong C, Wang T, Yang K, Lu W, Wang J. Efficacy and safety of tetramethylpyrazine phosphate on pulmonary hypertension: study protocol for a randomized controlled study. Trials 2019; 20:725. [PMID: 31842950 PMCID: PMC6916097 DOI: 10.1186/s13063-019-3770-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tetramethylpyrazine (TMP), an active ingredient in the traditional Chinese herbal medicine Rhizoma Chuanxiong, has been used clinically for the prevention and treatment of cardiovascular disease. The benefits of TMP are largely attributed to its anti-oxidative and vasodilative properties. However, the efficacy of TMP in the treatment of pulmonary hypertension (PH) is unknown. We hypothesized that TMP may have a therapeutic effect in patients with PH. METHODS/DESIGN A randomized, single-blinded, clinical study with a TMP treatment group and a control group will be conducted to evaluate the efficacy and safety of TMP intervention in patients with PH. The recruitment target is 120 subjects meeting the following criteria: (i) at rest and at sea level, mean pulmonary artery pressure above 20 mmHg and pulmonary capillary wedge pressure below 15 mmHg; (ii) type 1 or 4 PH in the stable phase; (iii) age 15-70 years; (iv) 6-min walk distance between 100 and 450 m; (v) World Health Organization (WHO) functional classification of pulmonary hypertension of II, III, or IV. Subjects will be assigned randomly into two groups at a ratio of 1:2 (control:TMP). Both groups will receive routine treatment, and the treatment group will also receive oral TMP (100 mg) three times a day for 16 weeks. All patients will be followed up for 4, 8, 12, and 16 weeks; symptoms and patient compliance will be recorded. DISCUSSION We aimed to determine the efficacy and safety of TMP for the treatment of PH. TRIAL REGISTRATION Chinese Clinical Trial Register, ChiCTR1800018664. Registered on 2 October 2018.
Collapse
Affiliation(s)
- Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Wenjun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Haiping Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Tao Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, 510120, People's Republic of China.
- Division of Translational and Regenerative Medicine, Department of Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA.
| |
Collapse
|
49
|
Sheikh AQ, Saddouk FZ, Ntokou A, Mazurek R, Greif DM. Cell Autonomous and Non-cell Autonomous Regulation of SMC Progenitors in Pulmonary Hypertension. Cell Rep 2019; 23:1152-1165. [PMID: 29694892 PMCID: PMC5959296 DOI: 10.1016/j.celrep.2018.03.043] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension is a devastating disease characterized by excessive vascular muscularization. We previously demonstrated primed platelet-derived growth factor receptor β+ (PDGFR-β+)/smooth muscle cell (SMC) marker+ progenitors at the muscular-unmuscular arteriole border in the normal lung, and in hypoxia-induced pulmonary hypertension, a single primed cell migrates distally and expands clonally, giving rise to most of the pathological smooth muscle coating of small arterioles. Little is known regarding the molecular mechanisms underlying this process. Herein, we show that primed cell expression of Kruppel-like factor 4 and hypoxia-inducible factor 1-α(HIF1-α) are required, respectively, for distal migration and smooth muscle expansion in a sequential manner. In addition, the HIF1-α/PDGF-B axis in endothelial cells non-cell autonomously regulates primed cell induction, proliferation, and differentiation. Finally, myeloid cells transdifferentiate into or fuse with distal arteriole SMCs during hypoxia, and Pdgfb deletion in myeloid cells attenuates pathological muscularization. Thus, primed cell autonomous and non-cell autonomous pathways are attractive therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fatima Zahra Saddouk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Renata Mazurek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW To understand the global distribution of different forms of pulmonary hypertension. RECENT FINDINGS Different registries have explored the epidemiological characteristics of pulmonary hypertension. Interestingly, there is a clear difference in the prevalence of different forms of pulmonary hypertension in developed regions in comparison with less developed countries. This finding suggests not only that extrapolation of data should be avoided but also that the known prevalence of pulmonary hypertension might be underestimated. SUMMARY Pulmonary hypertension might be more prevalent than what is currently believed. Specific forms of pulmonary hypertension distributed worldwide might characterize an unrecognized burden that still have to be properly approached. This highlights the heterogeneity of pulmonary hypertension around the world. It is clear that more epidemiological data are still needed as well as studies addressing management alternatives in these specific regions.
Collapse
|