1
|
Yao L, Yi J, Cheng L, Wang R, Wen J, Liang J. Novel association between E3 ubiquitin ligase MARCH8 and glucose transporter Glut1 in intracerebral hemorrhage. Int Immunopharmacol 2025; 158:114798. [PMID: 40373593 DOI: 10.1016/j.intimp.2025.114798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) leads to hematoma formation and neuroinflammation, resulting in severe neurological damage, with limited treatment options available. Membrane-associated RING-CH 8 (MARCH8) is known to be involved in inflammatory responses; however, its specific role in ICH remains unclear. This study investigates the function of MARCH8 in ICH, its mechanism in regulating neuroinflammation, and its potential value as a therapeutic target. METHODS An in vivo ICH model was established using C57BL/6 J mice. Gene and protein expression were analyzed by qRT-PCR, Western blot, and immunofluorescence staining. Neurological functional was evaluated via neurobehavioral tests, and inflammation markers, oxidative stress levels, and protein interactions were examined. RESULTS After ICH, MARCH8 expression in brain tissues and plasma was significantly downregulated. Overexpression of MARCH8 significantly improved neurological function, alleviated brain edema, suppressed oxidative stress and inflammation, and increased the survival rate of mice. Additionally, MARCH8 was found to co-localized with Glut1 in microglia, promoting Glut1 degradation via the ubiquitin-proteasome pathway, thereby reducing Glut1 stability. CONCLUSION Our findings highlight the protective role of MARCH8 in ICH, mainly through regulating inflammatory responses, oxidative stress, and Glut1 degradation, suggesting that MARCH8 or its activator could serve as a potential therapeutic target for ICH, offering new insights into treatment strategies for the condition.
Collapse
Affiliation(s)
- Ling Yao
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde, Changde 415000, Hunan Province, PR China
| | - Jing Yi
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde, Changde 415000, Hunan Province, PR China
| | - Longlin Cheng
- Health Management Center, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde, Changde 415000, Hunan Province, PR China
| | - Ruying Wang
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde, Changde 415000, Hunan Province, PR China
| | - Jiangli Wen
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde, Changde 415000, Hunan Province, PR China
| | - Ji Liang
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University, the First People's Hospital of Changde, Changde 415000, Hunan Province, PR China.
| |
Collapse
|
2
|
Karandikar P, Gerstl JVE, Kappel AD, Won SY, Dubinski D, Garcia-Segura ME, Gessler FA, See AP, Peruzzotti-Jametti L, Bernstock JD. SUMOtherapeutics for Ischemic Stroke. Pharmaceuticals (Basel) 2023; 16:ph16050673. [PMID: 37242456 DOI: 10.3390/ph16050673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The small, ubiquitin-like modifier (SUMO) is a post-translational modifier with a profound influence on several key biological processes, including the mammalian stress response. Of particular interest are its neuroprotective effects, first recognized in the 13-lined ground squirrel (Ictidomys tridecemlineatus), in the context of hibernation torpor. Although the full scope of the SUMO pathway is yet to be elucidated, observations of its importance in managing neuronal responses to ischemia, maintaining ion gradients, and the preconditioning of neural stem cells make it a promising therapeutic target for acute cerebral ischemia. Recent advances in high-throughput screening have enabled the identification of small molecules that can upregulate SUMOylation, some of which have been validated in pertinent preclinical models of cerebral ischemia. Accordingly, the present review aims to summarize current knowledge and highlight the translational potential of the SUMOylation pathway in brain ischemia.
Collapse
Affiliation(s)
- Paramesh Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA 01655, USA
| | - Jakob V E Gerstl
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ari D Kappel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02215, USA
| | - Sae-Yeon Won
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Daniel Dubinski
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Monica Emili Garcia-Segura
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Florian A Gessler
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02215, USA
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- NIHR Biomedical Research Centre, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
- Department of Neurosurgery, University Medicine Rostock, 18057 Rostock, Germany
- Koch Institute for Integrated Cancer Research, MIT, Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Dong F, Yan W, Meng Q, Song X, Cheng B, Liu Y, Yao R. Ebselen alleviates white matter lesions and improves cognitive deficits by attenuating oxidative stress via Keap1/Nrf2 pathway in chronic cerebral hypoperfusion mice. Behav Brain Res 2023; 448:114444. [PMID: 37098387 DOI: 10.1016/j.bbr.2023.114444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/27/2023]
Abstract
Oxidative stress is crucial in cerebral white matter lesions (WMLs) induced by chronic cerebral hypoperfusion. Therefore, ameliorating oxidative damage is considered to be a beneficial strategy for the treatment of WMLs. Ebselen (EbSe), a small lipid organoselenium compound, its lipid peroxidation activity is mediated through the glutathione peroxidase-mimetic properties. This study aimed to investigate the role of EbSe in WMLs after bilateral common carotid artery stenosis (BCAS). The BCAS model can moderately reduce cerebral blood flow, and mimics white matter damage caused by chronic cerebral hypoperfusion or small vessel disease. Laser Speckle Contrast Imaging (LSCI) was used to monitor the cerebral blood flow of mice. The spatial learning and memory were tested by using the eight-arm maze. LFB staining was used to detect demyelination. The expression of MBP, GFAP and Iba1 was assayed by immunofluorescence. The demyelination was assessed by Transmission Electron Microscope (TEM). The activities of MDA, SOD and GSH-Px were detected by assay kits. The mRNA levels of SOD, GSH-Px and HO-1 was detected by realtime PCR. The activation of the Nrf2/ARE pathway and the expression of SOD, GSH-Px and HO-1was assessed by Western blot. EbSe ameliorated cognitive deficits and white matter lesions induced by bilateral common carotid artery stenosis (BCAS). The expression of GFAP and Iba1 was decreased in the corpus callosum of BCAS mice after EbSe treatment. Moreover, EbSe alleviated the level of MDA by elevating the expression and mRNA of SOD, GSH-Px and HO-1 in BCAS mice. Furthermore, EbSe promoted the dissociation of the Keap1/Nrf2 complex, resulting in the accumulation of Nrf2 in the nucleus. This study demonstrates a favorable effect of EbSe on cognitive impairment in a chronic cerebral hypoperfusion model, and the improvement of EbSe's antioxidant property is mediated by Keap1/Nrf2 pathway.
Collapse
Affiliation(s)
- Fuxing Dong
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China; Public Experimental Research Center, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Weixing Yan
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Qiqi Meng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Xueli Song
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Bing Cheng
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Yaping Liu
- Laboratory of National Experimental Teaching and Demonstration Center of Basic Medicine, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China
| | - Ruiqin Yao
- Department of Cell Biology and Neurobiology, Xuzhou Key Laboratory of Neurobiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
4
|
Sahoo P, Lenka DR, Batabyal M, Pain PK, Kumar S, Manna D, Kumar A. Detailed Insights into the Inhibitory Mechanism of New Ebselen Derivatives against Main Protease (M pro) of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). ACS Pharmacol Transl Sci 2022; 6:171-180. [PMID: 36650888 PMCID: PMC9797022 DOI: 10.1021/acsptsci.2c00203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 main protease (Mpro/3CLpro) is a crucial target for therapeutics, which is responsible for viral polyprotein cleavage and plays a vital role in virus replication and survival. Recent studies suggest that 2-phenylbenzisoselenazol-3(2H)-one (ebselen) is a potent covalent inhibitor of Mpro, which affects its enzymatic activity and virus survival. Herein, we synthesized various ebselen derivatives to understand the mechanism of Mpro inhibition by ebselen. Using ebselen derivatives, we characterized the detailed interaction mechanism with Mpro. We discovered that modification of the parent ebselen inhibitor with an electron-withdrawing group (NO2) increases the inhibition efficacy by 2-fold. We also solved the structure of an Mpro complex with an ebselen derivative showing the mechanism of inhibition by blocking the catalytic Cys145 of Mpro. Using a combination of crystal structures and LC-MS data, we showed that Mpro hydrolyzes the new ebselen derivative and leaves behind selenium (Se) bound with Cys145 of the catalytic dyad of Mpro. We also described the binding profile of ebselen-based inhibitors using molecular modeling predictions supported by binding and inhibition assays. Furthermore, we have also solved the crystal structure of catalytically inactive mutant H41N-Mpro, which represents the inactive state of the protein where the substrate binding pocket is blocked. The inhibited structure of H41N-Mpro shows gatekeeper residues in the substrate binding pocket responsible for blocking the substrate binding; mutation of these gatekeeper residues leads to hyperactive Mpro.
Collapse
Affiliation(s)
- Pritiranjan Sahoo
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Dipti Ranjan Lenka
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Monojit Batabyal
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Pritam Kumar Pain
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sangit Kumar
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Debasish Manna
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Atul Kumar
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh 462066, India,
| |
Collapse
|
5
|
Gencheva R, Cheng Q, Arnér ESJ. Thioredoxin reductase selenoproteins from different organisms as potential drug targets for treatment of human diseases. Free Radic Biol Med 2022; 190:320-338. [PMID: 35987423 DOI: 10.1016/j.freeradbiomed.2022.07.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.
Collapse
Affiliation(s)
- Radosveta Gencheva
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden; Department of Selenoprotein Research, National Tumor Biology Laboratory, National Institute of Oncology, 1122, Budapest, Hungary.
| |
Collapse
|
6
|
Abstract
Abstract
Ebselen is a well-known synthetic compound mimicking glutathione peroxidase (GPx), which catalyses some vital reactions that protect against oxidative damage. Based on a large number of in vivo and in vitro studies, various mechanisms have been proposed to explain its actions on multiple targets. It targets thiol-related compounds, including cysteine, glutathione, and thiol proteins (e.g., thioredoxin and thioredoxin reductase). Owing to this, ebselen is a unique multifunctional agent with important effects on inflammation, apoptosis, oxidative stress, cell differentiation, immune regulation and neurodegenerative disease, with anti-microbial, detoxifying and anti-tumour activity. This review summarises the current understanding of the multiple biological processes and molecules targeted by ebselen, and its pharmacological applications.
Collapse
|
7
|
Abstract
Ebselen is a synthetic organoselenium radical scavenger compound that possesses glutathione peroxidase-like activity and its own unique bioactivity by reacting with thiols, hydroperoxides and peroxynitrites. Owing to its high affinity toward several essential reactions, ebselen protects cellular components from oxidative and free radical damage, and it has been employed as a useful tool for studying redox-related mechanisms. Based on numerous in vitro and in vivo research, mechanisms are proposed to understand the biomedical and molecular actions of ebselen in health and disease, and it is currently under clinical trials for the prevention and treatment of various human disorders. Based on these outstanding discoveries, this review summarizes the current understanding of the biochemical and molecular characteristics, pharmacological applications and future directions of ebselen.
Collapse
|
8
|
Li Y, Chen G, He Y, Zhang X, Zeng B, Wang C, Yi C, Yu D. Ebselen rescues oxidative-stress-suppressed osteogenic differentiation of bone-marrow-derived mesenchymal stem cells via an antioxidant effect and the PI3K/Akt pathway. J Trace Elem Med Biol 2019; 55:64-70. [PMID: 31345368 DOI: 10.1016/j.jtemb.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with metabolic bone diseases often have high risk of titanium implant failure due to compromised bone regeneration ability. Clinical evidence indicates that the poor osteogenic ability is partly because of excessive oxidative stress. To date, specific treatments for these patients are urgently needed. Ebselen, a non-toxic organoselenium compound, is reported to be a potent antioxidant agent. In this study, we hypothesized that ebselen exerted protective effects on osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress. METHODS BMSCs were isolated from SD rats, and their morphology and multiple differentiation abilities were characterized. Proliferation rates of BMSCs treated with different concentrations of ebselen were analyzed. Then BMSCs were pretreated by hydrogen peroxide (H2O2), after which ebselen at different concentrations (0, 1, 5, 10 μM) was added, alkaline phosphatase (ALP) activity, mineralization and osteogenic-related protein levels were evaluated and an optimum concentration of ebselen was selected. Subsequently, intracellular reactive oxygen species (ROS) generation and the role of the PI3K/AKT pathway were also investigated. RESULTS Ebselen within a proper range could promote the proliferation of BMSCs. H2O2-induced oxidative stress suppressed osteogenic differentiation of BMSCs, which was verified by the decrease in ALP activity, calcium deposition, Runx2 and β-catenin expression. However, ebselen could alleviate osteogenic dysfunction of BMSCs. We also observed that ebselen reduced ROS accumulation in H2O2-pretreated BMSCs. Moreover, the pro-osteogenic effects afforded by ebselen were almost abolished by the Akt inhibitor. CONCLUSION We concluded that ebselen could attenuate osteogenic dysfunction of BMSCs induced by H2O2 through an antioxidant effect and the activation of the PI3K/Akt pathway, suggesting that ebselen has a potential therapeutic effect for patients with metabolic bone diseases.
Collapse
Affiliation(s)
- Yiming Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Guanhui Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Yi He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Xiliu Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chao Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Chen Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, PR China.
| |
Collapse
|
9
|
Barua S, Kim JY, Yenari MA, Lee JE. The role of NOX inhibitors in neurodegenerative diseases. IBRO Rep 2019; 7:59-69. [PMID: 31463415 PMCID: PMC6709343 DOI: 10.1016/j.ibror.2019.07.1721] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is a key player in both chronic and acute brain disease due to the higher metabolic demand of the brain. Among the producers of free radicals, NADPH-oxidase (NOX) is a major contributor to oxidative stress in neurological disorders. In the brain, the superoxide produced by NOX is mainly found in leukocytes. However, recent studies have reported that it can be found in several other cell types. NOX has been reported to regulate neuronal signaling, memory processing, and central cardiovascular homeostasis. However, overproduction of NOX can contribute to neurotoxicity, CNS degeneration, and cardiovascular disorders. Regarding the above functions, NOX has been shown to play a crucial role in chronic CNS diseases like Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), and in acute CNS disorders such as stroke, spinal cord injury, traumatic brain injury (TBI), and related cerebrovascular diseases. NOX is a multi-subunit complex consisting of two membrane-associated and four cytosolic subunits. Thus, in recent years, inhibition of NOX activity has drawn a great deal of attention from researchers in the field of treating chronic and acute CNS disorders and preventing secondary complications. Mounting evidence has shown that NOX inhibition is neuroprotective and that inhibiting NOX in circulating immune cells can improve neurological disease conditions. This review summarizes recent studies on the therapeutic effects and pharmacological strategies regarding NOX inhibitors in chronic and acute brain diseases and focuses on the hurdles that should be overcome before their clinical implementation.
Collapse
Affiliation(s)
- Sumit Barua
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea
| | - Jong Youl Kim
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea
| | - Midori A Yenari
- Department of Neurology, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, 4150 Clement Street, MS 127, San Francisco, CA, 94121, United States
| | - Jong Eun Lee
- Department of Anatomy, College of Medicine, Yonsei University, Republic of Korea.,Brain Korea 21, PLUS Project for Medical Science, College of Medicine, Yonsei University, Republic of Korea.,Brain Research Institute, College of Medicine, Yonsei University, Republic of Korea
| |
Collapse
|
10
|
Ismail HTH. Hematobiochemical Disturbances and Oxidative Stress After Subacute Manganese Chloride Exposure and Potential Protective Effects of Ebselen in Rats. Biol Trace Elem Res 2019; 187:452-463. [PMID: 29858966 DOI: 10.1007/s12011-018-1395-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
The present study aimed to detect the possible disturbances induced by subacute exposure to manganese chloride (MnCl2) on some biomarkers of hematology, clinical chemistry and oxidative stress, serum iron homeostasis, and ferritin status beside the histopathological alterations in hepatic and renal tissues, and the potential protective effects of ebselen on the Mn toxicity were also evaluated. Forty-eight rats were divided into four groups: Group 1 was used as a control. Groups 2, 3, and 4 were administered of ebselen as a single protective dose (15 mg/kg BW) intraperitoneal, daily manganese chloride (50 mg/kg BW) orally, and ebselen plus manganese chloride, respectively. The administrations were conducted for 30 days. Blood and tissue samples were collected at the end of the treatment for various experimental tests. Results revealed that MnCl2 did not significantly change in erythrogram with leukocytosis and neutrophilia but significantly increased serum aminotransferases and alkaline phosphatase activities, bilirubin (total, direct, and indirect), globulins, triglycerides, total cholesterol, creatinine, urea, manganese, iron and ferritin concentrations and hepatic glutathione, renal malondialdehyde and nitric oxide levels and hepatic superoxide dismutase activity, while serum albumin, hepatic malondialdehyde, and nitric oxide concentrations were significantly decreased besides non-statistical change in serum total proteins concentration. Ebselen has reduced the disturbances in these analytes in combined treatment group. Collectively, subacute exposure to MnCl2 causes disturbance in the leukogram, and hepatic and renal functions with marked renal oxidative stress. It also disturbed serum iron homeostasis and ferritin status. Remarkably, ebselen appears to be highly effective in attenuating the various adverse effects of manganese.
Collapse
Affiliation(s)
- Hager Tarek H Ismail
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, 1 Alzeraa Street, Zagazig, Sharkia Province, 44511, Egypt.
| |
Collapse
|
11
|
Ren X, Zou L, Lu J, Holmgren A. Selenocysteine in mammalian thioredoxin reductase and application of ebselen as a therapeutic. Free Radic Biol Med 2018; 127:238-247. [PMID: 29807162 DOI: 10.1016/j.freeradbiomed.2018.05.081] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/27/2018] [Accepted: 05/23/2018] [Indexed: 12/29/2022]
Abstract
Thioredoxin system is a ubiquitous disulfide reductase system evolutionarily conserved through all living organisms. It contains thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH. TrxR can use NADPH to reduce Trx which passes the reducing equivalent to its downstream substrates involved in various biomedical events, such as ribonucleotide reductase for deoxyribonucleotide and DNA synthesis, or peroxiredoxins for counteracting oxidative stress. Obviously, TrxR stays in the center of the system to maintain the electron flow. Mammalian TrxR contains a selenocysteine (Sec) in its active site, which is not present in the low molecular weight prokaryotic TrxRs. Due to the special property of Sec, mammalian TrxR employs a different catalytic mechanism from prokaryotic TrxRs and has a broader substrate-spectrum. On the other hand, Sec is easily targeted by electrophilic compounds which inhibits the TrxR activity and may turn TrxR into an NADPH oxidase. Ebselen, a synthetic seleno-compound containing selenazol, has been tested in several clinical studies. In mammalian cells, ebselen works as a GSH peroxidase mimic and mainly as a peroxiredoxin mimic via Trx and TrxR to scavenge hydrogen peroxide and peroxynitrite. In prokaryotic cells, ebselen is an inhibitor of TrxR and leads to elevation of reactive oxygen species (ROS). Recent studies have made use of the difference and developed ebselen as a potential antibiotic, especially in combination with silver which enables ebselen to kill multi-drug resistant Gram-negative bacteria. Collectively, Sec is important for the biological functions of mammalian TrxR and distinguishes it from prokaryotic TrxRs, therefore it is a promising drug target.
Collapse
Affiliation(s)
- Xiaoyuan Ren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Lili Zou
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Translational Neuroscience & Neural Regeneration and Repair Institute/Institute of Cell Therapy, The First Hospital of Yichang, Three Gorges University, 443000 Yichang, China
| | - Jun Lu
- School of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
12
|
Eltahan R, Guo F, Zhang H, Zhu G. The Action of the Hexokinase Inhibitor 2-deoxy-d-glucose on Cryptosporidium parvum and the Discovery of Activities against the Parasite Hexokinase from Marketed Drugs. J Eukaryot Microbiol 2018; 66:460-468. [PMID: 30222231 DOI: 10.1111/jeu.12690] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 11/29/2022]
Abstract
Cryptosporidium parvum is one of the major species causing mild to severe cryptosporidiosis in humans and animals. We have previously observed that 2-deoxy-d-glucose (2DG) could inhibit both the enzyme activity of C. parvum hexokinase (CpHK) and the parasite growth in vitro. However, the action and fate of 2DG in C. parvum was not fully investigated. In the present study, we showed that, although 2DG could be phosphorylated by CpHK to form 2DG-6-phosphate (2DG6P), the anti-cryptosporidial activity of 2DG was mainly attributed to the action of 2DG on CpHK, rather than the action of 2DG or 2DG6P on the downstream enzyme glucose-6-phosphate isomerase (CpGPI) nor 2DG6P on CpHK. These observations further supported the hypothesis that CpHK could serve as a drug target in the parasite. We also screened 1,200 small molecules consisting of marketed drugs against CpHK, from which four drugs were identified as CpHK inhibitors with micromolar level of anti-cryptospordial activities at concentrations nontoxic to the host cells (i.e. hexachlorphene, thimerosal, alexidine dihydrochloride, and ebselen with EC50 = 0.53, 1.77, 8.1 and 165 μM, respectively). The anti-CpHK activity of the four existing drugs provided us new reagents for studying the enzyme properties of the parasite hexokinase.
Collapse
Affiliation(s)
- Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4467
| |
Collapse
|
13
|
Kholshin SV, Yagunov SE, Kandalintseva NV, Prosenko AE. Synthesis of selenium-containing derivatives of para-bromopropyl-substituted phenols. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2149-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Sodium-glucose transporter as a novel therapeutic target in disease. Eur J Pharmacol 2018; 822:25-31. [PMID: 29329760 DOI: 10.1016/j.ejphar.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/02/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Glucose is the primary energy fuel of life. A glucose transporter, the sodium-glucose transporter (SGLT), is receiving attention as a novel therapeutic target in disease. This review summarizes the physiological role of SGLT in cerebral ischemia, cancer, cardiac disease, and intestinal ischemia, which has encouraged analysis of SGLT function. In cerebral ischemia and cardiomyopathy, SGLT-1 is involved in worsening of the injury. In addition, SGLT-1 promotes the development of cancer. On the other hand, SGLT-1 has a protective effect against cardiac and intestinal ischemia. Interestingly, SGLT-1 expression levels are increased in some diseased tissue, such as in cerebral ischemia and cancer. This suggests that SGLT-1 may have an important role in many diseases. This review discusses the potential of SGLT as a target for novel therapeutic agents.
Collapse
|
15
|
Barbosa NV, Nogueira CW, Nogara PA, de Bem AF, Aschner M, Rocha JBT. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics 2017; 9:1703-1734. [PMID: 29168872 DOI: 10.1039/c7mt00083a] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Selenium is an essential trace element for animals and its role in the chemistry of life relies on a unique functional group: the selenol (-SeH) group. The selenol group participates in critical redox reactions. The antioxidant enzymes glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) exemplify important selenoproteins. The selenol group shares several chemical properties with the thiol group (-SH), but it is much more reactive than the sulfur analogue. The substitution of S by Se has been exploited in organic synthesis for a long time, but in the last 4 decades the re-discovery of ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) and the demonstration that it has antioxidant and therapeutic properties has renovated interest in the field. The ability of ebselen to mimic the reaction catalyzed by GPx has been viewed as the most important molecular mechanism of action of this class of compound. The term GPx-like or thiol peroxidase-like reaction was previously coined in the field and it is now accepted as the most important chemical attribute of organoselenium compounds. Here, we will critically review the literature on the capacity of organoselenium compounds to mimic selenoproteins (particularly GPx) and discuss some of the bottlenecks in the field. Although the GPx-like activity of organoselenium compounds contributes to their pharmacological effects, the superestimation of the GPx-like activity has to be questioned. The ability of these compounds to oxidize the thiol groups of proteins (the thiol modifier effects of organoselenium compounds) and to spare selenoproteins from inactivation by soft-electrophiles (MeHg+, Hg2+, Cd2+, etc.) might be more relevant for the explanation of their pharmacological effects than their GPx-like activity. In our view, the exploitation of the thiol modifier properties of organoselenium compounds can be harnessed more rationally than the use of low mass molecular structures to mimic the activity of high mass macromolecules that have been shaped by millions to billions of years of evolution.
Collapse
Affiliation(s)
- Nilda V Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Pablo A Nogara
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Andreza F de Bem
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
16
|
Yuan S, Zhang ZW, Li ZL. Cell Death-Autophagy Loop and Glutamate-Glutamine Cycle in Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:231. [PMID: 28785203 PMCID: PMC5519524 DOI: 10.3389/fnmol.2017.00231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/06/2017] [Indexed: 12/11/2022] Open
Abstract
Although we know that amyotrophic lateral sclerosis (ALS) is correlated with the glutamate-mediated corticomotor neuronal hyperexcitability, detailed ALS pathology remains largely unexplained. While a number of drugs have been developed, no cure exists so far. Here, we propose a hypothesis of neuronal cell death—incomplete autophagy positive-feedback loop—and summarize the role of the neuron-astrocyte glutamate-glutamine cycle in ALS. The disruption of these two cycles might ideally retard ALS progression. Cerebrovascular injuries (such as multiple embolization sessions and strokes) induce neuronal cell death and the subsequent autophagy. ALS impairs autophagosome-lysosome fusion and leads to magnified cell death. Trehalose rescues this impaired fusion step, significantly delaying the onset of the disease, although it does not affect the duration of the disease. Therefore, trehalose might be a prophylactic drug for ALS. Given that a major part of neuronal glutamate is converted from glutamine through neuronal glutaminase (GA), GA inhibitors may decrease the neuronal glutamate accumulation, and, therefore, might be therapeutic ALS drugs. Of these, Ebselen is the most promising one with strong antioxidant properties.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural UniversityChengdu, China
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, General Hospital of Lanzhou Military RegionLanzhou, China
| |
Collapse
|
17
|
Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F. Selenocompounds in Cancer Therapy: An Overview. Adv Cancer Res 2017; 136:259-302. [PMID: 29054421 DOI: 10.1016/bs.acr.2017.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vitro and in vivo experimental models clearly demonstrate the efficacy of Se compounds as anticancer agents, contingent upon chemical structures and concentrations of test molecules, as well as on the experimental model under investigation that together influence cellular availability of compounds, their molecular dynamics and mechanism of action. The latter includes direct and indirect redox effects on cellular targets by the activation and altered compartmentalization of molecular oxygen, and the interaction with protein thiols and Se proteins. As such, Se compounds interfere with the redox homeostasis and signaling of cancer cells to produce anticancer effects that include alterations in key regulatory elements of energy metabolism and cell cycle checkpoints that ultimately influence differentiation, proliferation, senescence, and death pathways. Cys-containing proteins and Se proteins involved in the response to Se compounds as sensors and transducers of anticancer signals, i.e., the pharmacoproteome of Se compounds, are described and include critical elements in the different phases of cancer onset and progression from initiation and escape of immune surveillance to tumor growth, angiogenesis, and metastasis. The efficacy and mode of action on these compounds vary depending on the inorganic and organic form of Se used as either supplement or pharmacological agent. In this regard, differences in experimental/clinical protocols provide options for either chemoprevention or therapy in different human cancers.
Collapse
Affiliation(s)
| | | | - Andreza Fabro de Bem
- Center of Biological Sciences (CCB), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil; Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Kenneth D Tew
- Medical University of South Carolina, Charleston, SC, United States
| | | | - Rafael Radi
- Center for Free Radical and Biomedical Research (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | | | | |
Collapse
|
18
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
19
|
Ozyigit F, Kucuk A, Akcer S, Tosun M, Kocak FE, Kocak C, Kocak A, Metineren H, Genc O. Different dose-dependent effects of ebselen in sciatic nerve ischemia-reperfusion injury in rats. Bosn J Basic Med Sci 2015; 15:36-43. [PMID: 26614850 DOI: 10.17305/bjbms.2015.521] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/06/2015] [Accepted: 06/06/2015] [Indexed: 11/16/2022] Open
Abstract
Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (p<0.01), levels of MDA, NO, and inducible nitric oxide synthase (iNOS) positive cells (p<0.01, p<0.05, respectively), and increased SOD, GPx, and CAT activities (p<0.001, p<0.01, p<0.05, respectively) compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (p<0.01, p<0.05, p<0.001) and MDA and NO levels (p<0.05, p<0.01) and decreased SOD, GPx, and CAT activities (p<0.05) compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.
Collapse
Affiliation(s)
- Filiz Ozyigit
- Dumlupinar University, Faculty of Medicine, Department of Pharmacology, Kutahya, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Altenhöfer S, Radermacher KA, Kleikers PWM, Wingler K, Schmidt HHHW. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. Antioxid Redox Signal 2015; 23:406-27. [PMID: 24383718 PMCID: PMC4543484 DOI: 10.1089/ars.2013.5814] [Citation(s) in RCA: 408] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress, an excess of reactive oxygen species (ROS) production versus consumption, may be involved in the pathogenesis of different diseases. The only known enzymes solely dedicated to ROS generation are nicotinamide adenine dinucleotide phosphate (NADPH) oxidases with their catalytic subunits (NOX). After the clinical failure of most antioxidant trials, NOX inhibitors are the most promising therapeutic option for diseases associated with oxidative stress. RECENT ADVANCES Historical NADPH oxidase inhibitors, apocynin and diphenylene iodonium, are un-specific and not isoform selective. Novel NOX inhibitors stemming from rational drug discovery approaches, for example, GKT137831, ML171, and VAS2870, show improved specificity for NADPH oxidases and moderate NOX isoform selectivity. Along with NOX2 docking sequence (NOX2ds)-tat, a peptide-based inhibitor, the use of these novel small molecules in animal models has provided preliminary in vivo evidence for a pathophysiological role of specific NOX isoforms. CRITICAL ISSUES Here, we discuss whether novel NOX inhibitors enable reliable validation of NOX isoforms' pathological roles and whether this knowledge supports translation into pharmacological applications. Modern NOX inhibitors have increased the evidence for pathophysiological roles of NADPH oxidases. However, in comparison to knockout mouse models, NOX inhibitors have limited isoform selectivity. Thus, their use does not enable clear statements on the involvement of individual NOX isoforms in a given disease. FUTURE DIRECTIONS The development of isoform-selective NOX inhibitors and biologicals will enable reliable validation of specific NOX isoforms in disease models other than the mouse. Finally, GKT137831, the first NOX inhibitor in clinical development, is poised to provide proof of principle for the clinical potential of NOX inhibition.
Collapse
Affiliation(s)
- Sebastian Altenhöfer
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kim A Radermacher
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Pamela W M Kleikers
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Kirstin Wingler
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| | - Harald H H W Schmidt
- Department of Pharmacology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht, the Netherlands
| |
Collapse
|
21
|
Jia M, Njapo SAN, Rastogi V, Hedna VS. Taming glutamate excitotoxicity: strategic pathway modulation for neuroprotection. CNS Drugs 2015; 29:153-62. [PMID: 25633850 DOI: 10.1007/s40263-015-0225-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much work has been carried out in recent years showing that elevated glutamate levels in the extracellular environment of the central nervous system play a pivotal role in neurodegeneration in acute CNS injuries. With the elucidation of the mechanism governing glutamate excitotoxicity, researchers are devising therapeutic strategies to target different parts of the pathway which begins with glutamate accumulation and ultimately results in neuronal cell death. In this article, we review some of the major classes of agents that are currently being investigated and highlight some of the key studies for each. Glutamate scavenging is a relatively new approach that directly decreases glutamate levels in the brain, thus preventing excitotoxicity. Nitric oxide inhibitors and free radical scavengers are more well-studied strategies that continue to yield promising results.
Collapse
Affiliation(s)
- Ming Jia
- University of Florida College of Medicine, Gainesville, FL, USA
| | | | | | | |
Collapse
|
22
|
Chen X, Deng A, Zhou T, Ding F. Pretreatment with 2-(4-methoxyphenyl)ethyl-2-acetamido-2-deoxy-β-D-pyranoside attenuates cerebral ischemia/reperfusion-induced injury in vitro and in vivo. PLoS One 2014; 9:e100126. [PMID: 24991917 PMCID: PMC4084628 DOI: 10.1371/journal.pone.0100126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/22/2014] [Indexed: 01/06/2023] Open
Abstract
Salidroside, extracted from the root of Rhodiola rosea L, is known for its pharmacological properties, in particular its neuroprotective effects. 2-(4-Methoxyphenyl) ethyl-2-acetamido-2-deoxy-β-D-pyranoside (GlcNAc-Sal), an analog of salidroside, was recently synthesized and shown to possess neuroprotective properties. The purpose of the current study was to investigate the neuroprotective effects of GlcNAc-Sal against oxygen-glucose deprivation-reperfusion (OGD-R)-induced neurotoxicity in vitro and global cerebral ischemia-reperfusion (GCI-R) injury in vivo. Cell viability tests and Hoechst 33342 staining confirmed that GlcNAc-Sal pretreatment markedly attenuated OGD-R induced apoptotic cell death in immortalized mouse hippocampal HT22 cells. Western blot, immunofluorescence and PCR analyses revealed that GlcNAc-Sal pretreatment restored the balance of pro- and anti-apoptotic proteins and inhibited the activation of caspase-3 and PARP induced by OGD-R treatment. Further analyses showed that GlcNAc-Sal pretreatment antagonized reactive oxygen species (ROS) generation, iNOS-derived NO production and NO-related apoptotic cell death during OGD-R stimulation. GCI-R was induced by bilateral common carotid artery occlusion (BCCAO) and reperfusion in mice in vivo. Western blot analysis showed that GlcNAc-Sal pretreatment decreased the expression of caspase-3 and increased the expression of Bcl-2 (B-cell lymphoma 2)/Bax (Bcl-2-associated X protein) induced by GCI-R treatment. Our findings suggest that GlcNAc-Sal pretreatment prevents brain ischemia reperfusion injury by the direct or indirect suppression of cell apoptosis and GlcNAc-Sal could be developed as a broad-spectrum agent for the prevention and/or treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Xia Chen
- Basic Medical Research Centre, Medical School, Nantong University, Nantong, China
| | - Aiqing Deng
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, China
| | - Tianqiu Zhou
- Department of ophtalmology, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
- * E-mail:
| |
Collapse
|
23
|
Azad GK, Tomar RS. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 2014; 41:4865-79. [DOI: 10.1007/s11033-014-3417-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Liu YR, Lei RY, Wang CE, Zhang BA, Lu H, Zhu HC, Zhang GB. Effects of catalpol on ATPase and amino acids in gerbils with cerebral ischemia/reperfusion injury. Neurol Sci 2014; 35:1229-33. [DOI: 10.1007/s10072-014-1687-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/13/2014] [Indexed: 10/25/2022]
|
25
|
Wei L, Zhang Y, Yang C, Wang Q, Zhuang Z, Sun Z. Neuroprotective effects of ebselen in traumatic brain injury model: involvement of nitric oxide and p38 mitogen-activated protein kinase signalling pathway. Clin Exp Pharmacol Physiol 2014; 41:134-8. [PMID: 24131109 DOI: 10.1111/1440-1681.12186] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 10/09/2013] [Accepted: 10/13/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Liang Wei
- Department of Neurosurgery; East Hospital; Tongji University School of Medicine; Shanghai China
| | - Yanfei Zhang
- Department of Neurosurgery; East Hospital; Tongji University School of Medicine; Shanghai China
| | - Cheng Yang
- Department of Neurosurgery; East Hospital; Tongji University School of Medicine; Shanghai China
| | - Qi Wang
- Department of Neurosurgery; East Hospital; Tongji University School of Medicine; Shanghai China
| | - Zhongwei Zhuang
- Department of Neurosurgery; East Hospital; Tongji University School of Medicine; Shanghai China
| | - Zhiyang Sun
- Department of Neurosurgery; East Hospital; Tongji University School of Medicine; Shanghai China
| |
Collapse
|
26
|
Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production. BIOMED RESEARCH INTERNATIONAL 2014; 2014:696107. [PMID: 24587987 PMCID: PMC3921973 DOI: 10.1155/2014/696107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/10/2013] [Accepted: 10/10/2013] [Indexed: 02/02/2023]
Abstract
Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ΔΨm changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.
Collapse
|
27
|
Effect of Buyang Huanwu decoction on amino acid content in cerebrospinal fluid of rats during ischemic/reperfusion injury. J Pharm Biomed Anal 2013; 86:143-50. [DOI: 10.1016/j.jpba.2013.07.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/15/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022]
|
28
|
Thomas AG, Rojas C, Tanega C, Shen M, Simeonov A, Boxer MB, Auld DS, Ferraris DV, Tsukamoto T, Slusher BS. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem Biophys Res Commun 2013; 438:243-8. [PMID: 23850693 DOI: 10.1016/j.bbrc.2013.06.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 12/14/2022]
Abstract
Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.
Collapse
Key Words
- 1,2-dimethoxy-N-methyl[1,3]benzodioxolo[5,6-c]phenanthridinium
- 13-methyl-[1,3]-benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridinium
- 2,3-dimethoxy-N-methyl[1,3]benzodioxolo[5,6-c]phenanthridinium
- 2-phenyl-1,2-benzisoselenazol-3[2H]-one
- 5,6,6a,7-tetrahydro-6-methyl-4H-dibenzo[de,g]quinoline-10,11-diol
- 5,6-dihydro-9,10-dimethoxy-benzo[g]-[1,3]benzodioxolo[5,6-a]quinolizinium
- 6-diazo-5-oxo-l-norleucine
- Apomorphine
- BPTES
- Berberine
- CNS
- Cancer
- Chelerythrine
- DON
- Ebselen
- GAC
- GLS
- Glutamate
- Glutaminase
- Glutamine
- HIV
- HIV-associated dementia (HAD)
- HRP
- KGA
- Kinetics
- LGA
- Nitidine
- Norsanguinarine
- Sanguinarine
- [1,3]-benzodioxolo[5,6-c]-1,3-dioxolo[4,5-i]phenanthridine
- bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide
- c-type glutaminase
- central nervous system
- glutaminase
- horse radish peroxidase
- human immunodeficiency virus
- kidney-type glutaminase
- liver-type glutaminase
Collapse
Affiliation(s)
- Ajit G Thomas
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li X, Han H, Hou R, Wei L, Wang G, Li C, Li D. Progesterone treatment before experimental hypoxia-ischemia enhances the expression of glucose transporter proteins GLUT1 and GLUT3 in neonatal rats. Neurosci Bull 2013; 29:287-94. [PMID: 23307114 DOI: 10.1007/s12264-013-1298-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/20/2012] [Indexed: 11/28/2022] Open
Abstract
Progesterone is an efficient candidate for treating stroke and traumatic brain damage. The current study was designed to investigate the effects of progesterone on glucose transporter proteins (GLUT1 and GLUT3) during hypoxic-ischemic injury in a neonatal rat model. We demonstrated strong staining for GLUT1 in the walls of blood vessels and GLUT3 immunoreactivity in hippocampal neurons after hypoxiaischemia. Hypoxia-ischemia elevated GLUT1 and GLUT3 at both the mRNA and protein levels in the hippocampus, and pre-treatment with progesterone (8 mg/kg) further enhanced their accumulation until 24 h after hypoxic-ischemic injury. These results showed that progesterone treatment induced the accumulation of both GLUT1 and GLUT3 transporters, and an energy-compensation mechanism may be involved in the neuroprotective effect of progesterone during hypoxic-ischemic injury after cerebral ischemic attacks.
Collapse
Affiliation(s)
- Xinjuan Li
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, 453003, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen XM, Chen HS, Xu MJ, Shen JG. Targeting reactive nitrogen species: a promising therapeutic strategy for cerebral ischemia-reperfusion injury. Acta Pharmacol Sin 2013; 34:67-77. [PMID: 22842734 DOI: 10.1038/aps.2012.82] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemic stroke accounts for nearly 80% of stroke cases. Recanalization with thrombolysis is a currently crucial therapeutic strategy for re-building blood supply, but the thrombolytic therapy often companies with cerebral ischemia-reperfusion injury, which are mediated by free radicals. As an important component of free radicals, reactive nitrogen species (RNS), including nitric oxide (NO) and peroxynitrite (ONOO(-)), play important roles in the process of cerebral ischemia-reperfusion injury. Ischemia-reperfusion results in the production of nitric oxide (NO) and peroxynitrite (ONOO(-)) in ischemic brain, which trigger numerous molecular cascades and lead to disruption of the blood brain barrier and exacerbate brain damage. There are few therapeutic strategies available for saving ischemic brains and preventing the subsequent brain damage. Recent evidence suggests that RNS could be a therapeutic target for the treatment of cerebral ischemia-reperfusion injury. Herein, we reviewed the recent progress regarding the roles of RNS in the process of cerebral ischemic-reperfusion injury and discussed the potentials of drug development that target NO and ONOO(-) to treat ischemic stroke. We conclude that modulation for RNS level could be an important therapeutic strategy for preventing cerebral ischemia-reperfusion injury.
Collapse
|
31
|
Neuroprotective strategies in hippocampal neurodegeneration induced by the neurotoxicant trimethyltin. Neurochem Res 2012. [PMID: 23179590 DOI: 10.1007/s11064-012-0932-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The selective vulnerability of specific neuronal subpopulations to trimethyltin (TMT), an organotin compound with neurotoxicant effects selectively involving the limbic system and especially marked in the hippocampus, makes it useful to obtain in vivo models of neurodegeneration associated with behavioural alterations, such as hyperactivity and aggression, cognitive impairment as well as temporal lobe epilepsy. TMT has been widely used to study neuronal and glial factors involved in selective neuronal death, as well as the molecular mechanisms leading to hippocampal neurodegeneration (including neuroinflammation, excitotoxicity, intracellular calcium overload, mitochondrial dysfunction and oxidative stress). It also offers a valuable instrument to study the cell-cell interactions and signalling pathways that modulate injury-induced neurogenesis, including the involvement of newly generated neurons in the possible repair processes. Since TMT appears to be a useful tool to damage the brain and study the various responses to damage, this review summarises current data from in vivo and in vitro studies on neuroprotective strategies to counteract TMT-induced neuronal death, that may be useful to elucidate the role of putative candidates for translational medical research on neurodegenerative diseases.
Collapse
|
32
|
Neuroprotection for stroke: current status and future perspectives. Int J Mol Sci 2012; 13:11753-11772. [PMID: 23109881 PMCID: PMC3472773 DOI: 10.3390/ijms130911753] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Neuroprotection aims to prevent salvageable neurons from dying. Despite showing efficacy in experimental stroke studies, the concept of neuroprotection has failed in clinical trials. Reasons for the translational difficulties include a lack of methodological agreement between preclinical and clinical studies and the heterogeneity of stroke in humans compared to homogeneous strokes in animal models. Even when the international recommendations for preclinical stroke research, the Stroke Academic Industry Roundtable (STAIR) criteria, were followed, we have still seen limited success in the clinic, examples being NXY-059 and haematopoietic growth factors which fulfilled nearly all the STAIR criteria. However, there are a number of neuroprotective treatments under investigation in clinical trials such as hypothermia and ebselen. Moreover, promising neuroprotective treatments based on a deeper understanding of the complex pathophysiology of ischemic stroke such as inhibitors of NADPH oxidases and PSD-95 are currently evaluated in preclinical studies. Further concepts to improve translation include the investigation of neuroprotectants in multicenter preclinical Phase III-type studies, improved animal models, and close alignment between clinical trial and preclinical methodologies. Future successful translation will require both new concepts for preclinical testing and innovative approaches based on mechanistic insights into the ischemic cascade.
Collapse
|
33
|
Roehl AB, Zoremba N, Kipp M, Schiefer J, Goetzenich A, Bleilevens C, Kuehn-Velten N, Tolba R, Rossaint R, Hein M. The effects of levosimendan on brain metabolism during initial recovery from global transient ischaemia/hypoxia. BMC Neurol 2012; 12:81. [PMID: 22920500 PMCID: PMC3492141 DOI: 10.1186/1471-2377-12-81] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 08/21/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuroprotective strategies after cardiopulmonary resuscitation are currently the focus of experimental and clinical research. Levosimendan has been proposed as a promising drug candidate because of its cardioprotective properties, improved haemodynamic effects in vivo and reduced traumatic brain injury in vitro. The effects of levosimendan on brain metabolism during and after ischaemia/hypoxia are unknown. METHODS Transient cerebral ischaemia/hypoxia was induced in 30 male Wistar rats by bilateral common carotid artery clamping for 15 min and concomitant ventilation with 6% O2 during general anaesthesia with urethane. After 10 min of global ischaemia/hypoxia, the rats were treated with an i.v. bolus of 24 μg kg-1 levosimendan followed by a continuous infusion of 0.2 μg kg-1 min-1. The changes in the energy-related metabolites lactate, the lactate/pyruvate ratio, glucose and glutamate were monitored by microdialysis. In addition, the effects on global haemodynamics, cerebral perfusion and autoregulation, oedema and expression of proinflammatory genes in the neocortex were assessed. RESULTS Levosimendan reduced blood pressure during initial reperfusion (72 ± 14 vs. 109 ± 2 mmHg, p = 0.03) and delayed flow maximum by 5 minutes (p = 0.002). Whereas no effects on time course of lactate, glucose, pyruvate and glutamate concentrations in the dialysate could be observed, the lactate/pyruvate ratio during initial reperfusion (144 ± 31 vs. 77 ± 8, p = 0.017) and the glutamate release during 90 minutes of reperfusion (75 ± 19 vs. 24 ± 28 μmol·L-1) were higher in the levosimendan group. The increased expression of IL-6, IL-1ß TNFα and ICAM-1, extend of cerebral edema and cerebral autoregulation was not influenced by levosimendan. CONCLUSION Although levosimendan has neuroprotective actions in vitro and on the spinal cord in vivo and has been shown to cross the blood-brain barrier, the present results showed that levosimendan did not reduce the initial neuronal injury after transient ischaemia/hypoxia.
Collapse
Affiliation(s)
- Anna B Roehl
- Department of Anaesthesiology, RWTH Aachen University Hospital, Pauwelstrasse 30, Aachen, D-52074, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|