1
|
Zheng C, Guo D, Zhang T, Hu W, Zhang B, Feng H, Gao Y, Yang G. HDAC/H3K27ac-mediated transcription of NDUFA3 exerts protective effects on high glucose-treated human nucleus pulposus cells through improving mitochondrial function. Sci Rep 2024; 14:21165. [PMID: 39256449 PMCID: PMC11387752 DOI: 10.1038/s41598-024-71810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
- Xinxiang Medical University, 601 Jinsui Avenue, Hongqi District, Xinxiang City, Henan Province, Xinxiang, 453003, China
| | - Dongshuai Guo
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Tong Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Weiran Hu
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Bo Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Hang Feng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Guang Yang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China.
| |
Collapse
|
2
|
Bharadwaj KK, Ahmad I, Pati S, Ghosh A, Rabha B, Sarkar T, Bhattacharjya D, Patel H, Baishya D. Screening of Phytocompounds for Identification of Prospective Histone Deacetylase 1 (HDAC1) Inhibitor: An In Silico Molecular Docking, Molecular Dynamics Simulation, and MM-GBSA Approach. Appl Biochem Biotechnol 2024; 196:3747-3764. [PMID: 37776441 DOI: 10.1007/s12010-023-04731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/02/2023]
Abstract
The upregulation of HDAC1 facilitate the induction of epigenetic repression of genes responsible for suppressing tumourigenesis, thereby triggering the development of cancer. HDAC1 inhibitors have thus emerged as possible therapeutic approaches against a variety of human malignancies, as they can inhibit the activity of certain HDACs, repair the overexpression of tumour suppressor genes, and induce cell differentiation, cell cycle arrest, and apoptosis. In this study, among 810 virtually screened compounds, Pinocembrin (PHUB000396) had a significant binding affinity (-7.99 kcal/mol). In molecular dynamics simulation (MD) studies for 200 ns time scale, the compound Pinocembrin effectively undergoes conformational optimization, thereby enabling its accommodation within the active site of the receptor. This outcome serves as a rational for the observed binding affinity. The optimal binding free energy calculations using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) (-35.86 ± 7.52 kcal/mol) showed the significant role of van der Waals forces and Coulomb interactions in the stability of the respective complex. The pharmacokinetic study showed its potential as a lead compound. The in-silico cytotoxicity prediction also confirmed its potential as an active anticancer phytocompound in lung and brain cancer. Therefore, it can be predicted that Pinocembrin could be a useful bioactive compound as an HDAC1 inhibitor and could be used in developing epigenetic therapy in cancer such as brain cancer and lung cancer to regulate gene expression.
Collapse
Affiliation(s)
- Kaushik Kumar Bharadwaj
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Siddhartha Pati
- Skills Innovation & Academic Network (SIAN) Institute-ABC, Balasore, 756001, Odisha, India
- NatNov Bioscience Private Limited, 756001, Balasore, Odisha, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, Assam, India, 781014
| | - Bijuli Rabha
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Government of West Bengal, Malda, 732102, West Bengal, India
| | - Dorothy Bhattacharjya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, Assam, India.
| |
Collapse
|
3
|
Li G, Ma L, Feng C, Yin H, Bao J, Wu D, Zhang Z, Li X, Li Z, Yang C, Wang H, Fang F, Hu X, Li M, Xu L, Xu Y, Liang H, Yang T, Wang J, Pan J. MZ1, a BRD4 inhibitor, exerted its anti-cancer effects by suppressing SDC1 in glioblastoma. BMC Cancer 2024; 24:220. [PMID: 38365636 PMCID: PMC10870565 DOI: 10.1186/s12885-024-11966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a relatively prevalent primary tumor of the central nervous system in children, characterized by its high malignancy and mortality rates, along with the intricate challenges of achieving complete surgical resection. Recently, an increasing number of studies have focused on the crucial role of super-enhancers (SEs) in the occurrence and development of GBM. This study embarks on the task of evaluating the effectiveness of MZ1, an inhibitor of BRD4 meticulously designed to specifically target SEs, within the intricate framework of GBM. METHODS The clinical data of GBM patients was sourced from the Chinese Glioma Genome Atlas (CGGA) and the Gene Expression Profiling Interactive Analysis 2 (GEPIA2), and the gene expression data of tumor cell lines was derived from the Cancer Cell Line Encyclopedia (CCLE). The impact of MZ1 on GBM was assessed through CCK-8, colony formation assays, EdU incorporation analysis, flow cytometry, and xenograft mouse models. The underlying mechanism was investigated through RNA-seq and ChIP-seq analyses. RESULTS In this investigation, we made a noteworthy observation that MZ1 exhibited a substantial reduction in the proliferation of GBM cells by effectively degrading BRD4. Additionally, MZ1 displayed a notable capability in inducing significant cell cycle arrest and apoptosis in GBM cells. These findings were in line with our in vitro outcomes. Notably, MZ1 administration resulted in a remarkable decrease in tumor size within the xenograft model with diminished toxicity. Furthermore, on a mechanistic level, the administration of MZ1 resulted in a significant suppression of pivotal genes closely associated with cell cycle regulation and epithelial-mesenchymal transition (EMT). Interestingly, our analysis of RNA-seq and ChIP-seq data unveiled the discovery of a novel prospective oncogene, SDC1, which assumed a pivotal role in the tumorigenesis and progression of GBM. CONCLUSION In summary, our findings revealed that MZ1 effectively disrupted the aberrant transcriptional regulation of oncogenes in GBM by degradation of BRD4. This positions MZ1 as a promising candidate in the realm of therapeutic options for GBM treatment.
Collapse
Affiliation(s)
- Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Liya Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, P.R. China
| | - Chenxi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hongli Yin
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Jianping Bao
- Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Chun Yang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hairong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Xiaohan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Mei Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Yunyun Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China
| | - Hansi Liang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P.R. China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jianwei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, P.R. China.
| |
Collapse
|
4
|
Chen Y, Pan Y, Gao H, Yi Y, Qin S, Ma F, Zhou X, Guan M. Mechanistic insights into super-enhancer-driven genes as prognostic signatures in patients with glioblastoma. J Cancer Res Clin Oncol 2023; 149:12315-12332. [PMID: 37432454 DOI: 10.1007/s00432-023-05121-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is one of the most common malignant brain tumors in adults and is characterized by high aggressiveness and rapid progression, poor treatment, high recurrence rate, and poor prognosis. Although super-enhancer (SE)-driven genes haven been recognized as prognostic markers for several cancers, whether it can be served as effective prognostic markers for patients with GBM has not been evaluated. METHODS We first combined histone modification data with transcriptome data to identify SE-driven genes associated with prognosis in patients with GBM. Second, we developed a SE-driven differentially expressed genes (SEDEGs) risk score prognostic model by univariate Cox analysis, KM survival analysis, multivariate Cox analysis and least absolute shrinkage and selection operator (LASSO) regression. Its reliability in predicting was verified by two external data sets. Third, through mutation analysis, immune infiltration, we explored the molecular mechanisms of prognostic genes. Next, Genomics of Drug Sensitivity in Cancer (GDSC) and the Connectivity Map (cMap) database were employed to assess different sensitivities to chemotherapeutic agents and small-molecule drug candidates between high- and low-risk patients. Finally, SEanalysis database was chosen to identify SE-driven transcription factors (TFs) regulating prognostic markers which will reveal a potential SE-driven transcriptional regulatory network. RESULTS First, we developed a 11-gene risk score prognostic model (NCF2, MTHFS, DUSP6, G6PC3, HOXB2, EN2, DLEU1, LBH, ZEB1-AS1, LINC01265, and AGAP2-AS1) selected from 1,154 SEDEGs, which is not only an independent prognostic factor for patients, but also can effectively predict the survival rate of patients. The model can effectively predict 1-, 2- and 3-year survival of patients and was validated in external Chinese Glioma Genome Atlas (CGGA) and Gene Expression Omnibus (GEO) datasets. Second, the risk score was positively correlated with the infiltration of regulatory T cell, CD4 memory activated T cell, activated NK cell, neutrophil, resting mast cell, M0 macrophage, and memory B cell. Third, we found that high-risk patients showed higher sensitivity than low-risk patients to both 27 chemotherapeutic agents and 4 small-molecule drug candidates which might benefit further precision therapy for GBM patients. Finally, 13 potential SE-driven TFs imply how SE regulates GBM patient's prognosis. CONCLUSION The SEDEG risk model not only helps to elucidate the impact of SEs on the course of GBM, but also provides a bright future for prognosis determination and choice of treatment for GBM patients.
Collapse
Affiliation(s)
- Youran Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China
| | - Yi Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China
| | - Hanyu Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China
| | - Yunmeng Yi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China
| | - Shijie Qin
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China.
| | - Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
5
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Zhuang HH, Qu Q, Teng XQ, Dai YH, Qu J. Superenhancers as master gene regulators and novel therapeutic targets in brain tumors. Exp Mol Med 2023; 55:290-303. [PMID: 36720920 PMCID: PMC9981748 DOI: 10.1038/s12276-023-00934-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 02/02/2023] Open
Abstract
Transcriptional deregulation, a cancer cell hallmark, is driven by epigenetic abnormalities in the majority of brain tumors, including adult glioblastoma and pediatric brain tumors. Epigenetic abnormalities can activate epigenetic regulatory elements to regulate the expression of oncogenes. Superenhancers (SEs), identified as novel epigenetic regulatory elements, are clusters of enhancers with cell-type specificity that can drive the aberrant transcription of oncogenes and promote tumor initiation and progression. As gene regulators, SEs are involved in tumorigenesis in a variety of tumors, including brain tumors. SEs are susceptible to inhibition by their key components, such as bromodomain protein 4 and cyclin-dependent kinase 7, providing new opportunities for antitumor therapy. In this review, we summarized the characteristics and identification, unique organizational structures, and activation mechanisms of SEs in tumors, as well as the clinical applications related to SEs in tumor therapy and prognostication. Based on a review of the literature, we discussed the relationship between SEs and different brain tumors and potential therapeutic targets, focusing on glioblastoma.
Collapse
Affiliation(s)
- Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410007, PR China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410007, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, 410011, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, PR China.
| |
Collapse
|
7
|
Li XP, Qu J, Teng XQ, Zhuang HH, Dai YH, Yang Z, Qu Q. The Emerging Role of Super-enhancers as Therapeutic Targets in The Digestive System Tumors. Int J Biol Sci 2023; 19:1036-1048. [PMID: 36923930 PMCID: PMC10008685 DOI: 10.7150/ijbs.78535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/09/2022] [Indexed: 02/05/2023] Open
Abstract
Digestive system tumors include malignancies of the stomach, pancreas, colon, rectum, and the esophagus, and are associated with high morbidity and mortality. Aberrant epigenetic modifications play a vital role in the progression of digestive system tumors. The aberrant transcription of key oncogenes is driven by super-enhancers (SEs), which are characterized by large clusters of enhancers with significantly high density of transcription factors, cofactors, and epigenetic modulatory proteins. The SEs consist of critical epigenetic regulatory elements, which modulate the biological characteristics of digestive system tumors including tumor cell identity and differentiation, tumorigenesis, environmental response, immune response, and chemotherapeutic resistance. The core transcription regulatory loop of the digestive system tumors is complex and a high density of transcription regulatory complexes in the SEs and the crosstalk between SEs and the noncoding RNAs. In this review, we summarized the known characteristics and functions of the SEs in the digestive system tumors. Furthermore, we discuss the oncogenic roles and regulatory mechanisms of SEs in the digestive system tumors. We highlight the role of SE-driven genes, enhancer RNAs (eRNAs), lncRNAs, and miRNAs in the digestive system tumor growth and progression. Finally, we discuss clinical significance of the CRISPR-Cas9 gene editing system and inhibitors of SE-related proteins such as BET and CDK7 as potential cancer therapeutics.
Collapse
Affiliation(s)
- Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Hai-Hui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha 410011, PR China
| | - Ying-Huan Dai
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha 410011, PR China
| | - Zhi Yang
- Department of Colorectal and Anal Surgery, Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410007, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410007, PR China.,Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, PR China
| |
Collapse
|
8
|
Shi J, Yang N, Han M, Qiu C. Emerging roles of ferroptosis in glioma. Front Oncol 2022; 12:993316. [PMID: 36072803 PMCID: PMC9441765 DOI: 10.3389/fonc.2022.993316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor in the central nervous system, and directly affects the quality of life and cognitive function of patients. Ferroptosis, is a new form of regulated cell death characterized by iron-dependent lipid peroxidation. Ferroptosis is mainly due to redox imbalance and involves multiple intracellular biology processes, such as iron metabolism, lipid metabolism, and antioxidants synthesis. Induction of ferroptosis could be a new target for glioma treatment, and ferroptosis-related processes are associated with chemoresistance and radioresistance in glioma. In the present review, we provide the characteristics, key regulators and pathways of ferroptosis and the crosstalk between ferroptosis and other programmed cell death in glioma, we also proposed the application and prospect of ferroptosis in the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Qiu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chen Qiu,
| |
Collapse
|
9
|
Zhu J, Tang B, Gao Y, Xu S, Tu J, Wang Y, Yang W, Fang S, Weng Q, Zhao Z, Xu M, Yang Y, Chen M, Lu C, Ji J. Predictive Models for HCC Prognosis, Recurrence Risk, and Immune Infiltration Based on Two Exosomal Genes: MYL6B and THOC2. J Inflamm Res 2021; 14:4089-4109. [PMID: 34466015 PMCID: PMC8403029 DOI: 10.2147/jir.s315957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is a heterogeneous molecular disease with complex molecular pathogenesis that influences the efficacy of therapies. Exosomes play a crucial role in tumorigenesis and poor disease outcomes in HCC. Objective The aim of this study was to identify the optimal gene set derived from exosomes in HCC with substantial predictive value to construct models for determining prognosis, recurrence risk and diagnosis and to identify candidates suitable for immunotherapy and chemotherapy, thereby providing new ideas for the individualized treatment of patients and for improving prognosis. Methods Weighted correlation network analysis (WGCNA) and univariate and multivariate Cox PH regression analyses were applied to identify exosome-related signatures in the TCGA and exoRbase databases associated with clinical relevance, immunogenic features and tumor progression in HCC. Cell experiments were performed to further confirm the oncogenic effect of MYL6B and THOC2. Results The models for prognosis and recurrence risk prediction were built based on two exosomal genes (MYL6B and THOC2) and were confirmed to be independent predictive factors with superior predictive performance. Patients with high prognostic risk had poorer prognosis than patients with low prognostic risk in all HCC datasets, namely, the TCGA cohort (HR=2.5, P<0.001), the ICGC cohort (HR=3.15, P<0.001) and the GSE14520 cohort (HR=1.85, P=0.004). A higher recurrence probability was found in HCC patients with high recurrence risk than in HCC patients with low recurrence risk in the TCGA cohort (HR=2.44, P<0.001) and the GSE14520 cohort (HR=1.54, P=0.025). High prognostic risk patients had higher expression of immune checkpoint genes, such as PD1, B7H3, B7H5, CTLA4 and TIM3 (P<0.05). Diagnostic models based on the same two genes were able to accurately distinguish HCC patients from normal individuals and HCC from dysplastic nodules. Conclusion Our findings lay the foundation for identifying molecular markers to increase the early detection rate of HCC, improve disease outcomes, and determine more effective individualized treatment options for patients.
Collapse
Affiliation(s)
- Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, People's Republic of China
| | - Yang Gao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Suqin Xu
- Clinical Laboratory, Fuyuan Hospital of Yiwu, Jinhua, 321000, People's Republic of China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Yajie Wang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Weibin Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Shiji Fang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Qiaoyou Weng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, People's Republic of China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, People's Republic of China
| |
Collapse
|
10
|
Li GH, Qu Q, Qi TT, Teng XQ, Zhu HH, Wang JJ, Lu Q, Qu J. Super-enhancers: a new frontier for epigenetic modifiers in cancer chemoresistance. J Exp Clin Cancer Res 2021; 40:174. [PMID: 34011395 PMCID: PMC8132395 DOI: 10.1186/s13046-021-01974-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Although new developments of surgery, chemotherapy, radiotherapy, and immunotherapy treatments for cancer have improved patient survival, the emergence of chemoresistance in cancer has significant impacts on treatment effects. The development of chemoresistance involves several polygenic, progressive mechanisms at the molecular and cellular levels, as well as both genetic and epigenetic heterogeneities. Chemotherapeutics induce epigenetic reprogramming in cancer cells, converting a transient transcriptional state into a stably resistant one. Super-enhancers (SEs) are central to the maintenance of identity of cancer cells and promote SE-driven-oncogenic transcriptions to which cancer cells become highly addicted. This dependence on SE-driven transcription to maintain chemoresistance offers an Achilles' heel for chemoresistance. Indeed, the inhibition of SE components dampens oncogenic transcription and inhibits tumor growth to ultimately achieve combined sensitization and reverse the effects of drug resistance. No reviews have been published on SE-related mechanisms in the cancer chemoresistance. In this review, we investigated the structure, function, and regulation of chemoresistance-related SEs and their contributions to the chemotherapy via regulation of the formation of cancer stem cells, cellular plasticity, the microenvironment, genes associated with chemoresistance, noncoding RNAs, and tumor immunity. The discovery of these mechanisms may aid in the development of new drugs to improve the sensitivity and specificity of cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
- Guo-Hua Li
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Ting-Ting Qi
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Hai-Hong Zhu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jiao-Jiao Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
| | - Qiong Lu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
11
|
Zhang L, Liu Z, Dong Y, Kong L. Epigenetic targeting of SLC30A3 by HDAC1 is related to the malignant phenotype of glioblastoma. IUBMB Life 2021; 73:784-799. [PMID: 33715270 DOI: 10.1002/iub.2463] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
The epigenetic abnormality is believed as a major driver for cancer initiation. Histone modification plays a vital role in tumor formation and progression. Particularly, alteration in histone acetylation has been highly associated with gene expression, cell cycle, as well as carcinogenesis. By analyzing glioblastoma (GBM)-related microarray from the GEO database and conducting chromatin immunoprecipitation-sequencing (ChIP-seq), we discovered that solute carrier family 30 member 3 (SLC30A3), a super enhancer (SE)-regulated factor, was significantly reduced in GBM tissues. Furthermore, histone deacetylase 1 (HDAC1), overexpressed in GBM tissues, could inhibit SLC30A3 expression by promoting histone H3K27ac deacetylation modification of the SE region of SLC30A3. Our functional validation revealed that SLC30A3 can inhibit the growth and metastatic spread of GBM cells in vitro and in vivo, and can activate the MAPK signaling pathway to promote apoptosis of GBM cells. Moreover, overexpression of HDAC1 resulted in a significant increase in DNA replication activity, a significant decline in apoptosis and cell cycle arrest in GBM cells. In a word, these findings indicate that combined epigenetic targeting of SLC30A3 by HDAC1 and SE is potentially therapeutically feasible in GBM.
Collapse
Affiliation(s)
- Longzhou Zhang
- Department of Neurosurgery, First Hospital Affiliated to Zhengzhou University, Zhengzhou, P.R. China
| | - Zengjin Liu
- Department of Neurosurgery, First Hospital Affiliated to Zhengzhou University, Zhengzhou, P.R. China
| | - Yang Dong
- Department of Neurosurgery, First Hospital Affiliated to Zhengzhou University, Zhengzhou, P.R. China
| | - Lingchang Kong
- Department of Neurosurgery, Zhengzhou Traditional Chinese Medicine Hospital, Zhengzhou, P.R. China
| |
Collapse
|
12
|
Baumgart SJ, Nevedomskaya E, Lesche R, Newman R, Mumberg D, Haendler B. Darolutamide antagonizes androgen signaling by blocking enhancer and super-enhancer activation. Mol Oncol 2020; 14:2022-2039. [PMID: 32333502 PMCID: PMC7463324 DOI: 10.1002/1878-0261.12693] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequent tumor types in the male Western population. Early-stage PCa and late-stage PCa are dependent on androgen signaling, and inhibitors of the androgen receptor (AR) axis represent the standard therapy. Here, we studied in detail the global impact of darolutamide, a newly approved AR antagonist, on the transcriptome and AR-bound cistrome in two PCa cell models. Darolutamide strongly depleted the AR from gene regulatory regions and abolished AR-driven transcriptional signaling. Enhancer activation was blocked at the chromatin level as evaluated by H3K27 acetylation (H3K27ac), H3K4 monomethylation (H3K4me1), and FOXA1, MED1, and BRD4 binding. We identified genomic regions with high affinities for the AR in androgen-stimulated, but also in androgen-depleted conditions. A similar AR affinity pattern was observed in healthy and PCa tissue samples. High FOXA1, BRD4, H3K27ac, and H3K4me1 levels were found to mark regions showing AR binding in the hormone-depleted setting. Conversely, low FOXA1, BRD4, and H3K27ac levels were observed at regulatory sites that responded strongly to androgen stimulation, and AR interactions at these sites were blocked by darolutamide. Beside marked loss of AR occupancy, FOXA1 recruitment to chromatin was also clearly reduced after darolutamide treatment. We furthermore identified numerous androgen-regulated super-enhancers (SEs) that were associated with hallmark androgen and cell proliferation-associated gene sets. Importantly, these SEs are also active in PCa tissues and sensitive to darolutamide treatment in our models. Our findings demonstrate that darolutamide is a potent AR antagonist blocking genome-wide AR enhancer and SE activation, and downstream transcription. We also show the existence of a dynamic AR cistrome that depends on the androgen levels and on high AR affinity regions present in PCa cell lines and also in tissue samples.
Collapse
Affiliation(s)
| | | | - Ralf Lesche
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Richard Newman
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Dominik Mumberg
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | | |
Collapse
|
13
|
Zhang Y, Fu T, Ren Y, Li F, Zheng G, Hong J, Yao X, Xue W, Zhu F. Selective Inhibition of HDAC1 by Macrocyclic Polypeptide for the Treatment of Glioblastoma: A Binding Mechanistic Analysis Based on Molecular Dynamics. Front Mol Biosci 2020; 7:41. [PMID: 32219100 PMCID: PMC7078330 DOI: 10.3389/fmolb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive intracranial malignant brain tumor, and the abnormal expression of HDAC1 is closely correlated to the progression, recurrence and metastasis of GBM cells, making selective inhibition of HDAC1 a promising strategy for GBM treatments. Among all available selective HDAC1 inhibitors, the macrocyclic peptides have gained great attention due to their remarkable inhibitory selectivity on HDAC1. However, the binding mechanism underlying this selectivity is still elusive, which increases the difficulty of designing and synthesizing the macrocyclic peptide-based anti-GBM drug. Herein, multiple computational approaches were employed to explore the binding behaviors of a typical macrocyclic peptide FK228 in both HDAC1 and HDAC6. Starting from the docking conformations of FK228 in the binding pockets of HDAC1&6, relatively long MD simulation (500 ns) shown that the hydrophobic interaction and hydrogen bonding of E91 and D92 in the Loop2 of HDAC1 with the Cap had a certain traction effect on FK228, and the sub-pocket formed by Loop1 and Loop2 in HDAC1 could better accommodate the Cap group, which had a positive effect on maintaining the active conformation of FK228. While the weakening of the interactions between FK228 and the residues in the Loop2 of HDAC6 during the MD simulation led to the large deflection of FK228 in the binding site, which also resulted in the decrease in the interactions between the Linker region of FK228 and the previously identified key amino acids (H134, F143, H174, and F203). Therefore, the residues located in Loop1 and Loop2 contributed in maintaining the active conformation of FK228, which would provide valuable hints for the discovery and design of novel macrocyclic polypeptide HDAC inhibitors.
Collapse
Affiliation(s)
- Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Tingting Fu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yuxiang Ren
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Guoxun Zheng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Jiajun Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|