1
|
Merah-Mourah F, Cohen SO, Haziot A. A Two-Stage Flow Cytometry Strategy to Distinguish Single Cells from Doublets in Heterogeneous Cell Mixtures and Improve Cell Cluster Identification: Application to Human Monocyte Subpopulations. Curr Protoc 2021; 1:e229. [PMID: 34416100 DOI: 10.1002/cpz1.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Flow cytometry is a powerful method, widely used to identify cell types present in tissues, to describe their phenotypes, and to purify cells for functional analyses. As a single cell technique, flow cytometry relies on identifying and excluding cell doublets and aggregates present in samples in the initial gating steps. This identification is based on detection of events generating electrical pulses falling outside of linear variations of pulse height, width, and area in a singlet population with increasing cell sizes. In heterogeneous cell mixtures, however, with cell types varying extensively in size and granularity, exclusion of doublets has the risk of removing single cells that co-localize with doublets of another cell type. This is particularly the case when doublets of a smaller cell type overlap with large cells of a distinct, larger cell type. Here, we describe a gating method to reduce this risk. In this protocol, initial gating steps aim to segregate cells according to physical characteristics (such as size and granularity) and gene expression properties in order to obtain more homogeneous cell clusters. Doublet exclusion is then performed separately in each cluster, minimizing the risk of confusion between single cells and doublets. To illustrate this protocol, human blood monocytes are separated and analyzed. By implementing this protocol, we were able to reveal the existence of a population of large monocytes previously unrecognized using conventional gating strategies. In subsequent functional assays, we have shown that this novel population exhibits unique inflammatory responses, highlighting the need and pertinence of this approach to identify and characterize infrequent-yet functionally relevant-cell populations present in complex cell mixtures. © 2021 Wiley Periodicals LLC. Basic Protocol: Distinguishing single cells from doublets in heterogeneous cell mixtures by flow cytometry.
Collapse
Affiliation(s)
- Fadila Merah-Mourah
- INSERM U976, Institut de Recherche Saint Louis, Paris, France.,Université de Paris, Paris, France.,Current address: Department of Endocrinology, Diabetology, Nutrition, Hôpital Bichat, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - Shannon O Cohen
- INSERM U976, Institut de Recherche Saint Louis, Paris, France.,Université de Paris, Paris, France
| | - Alain Haziot
- INSERM U976, Institut de Recherche Saint Louis, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
2
|
Govindan AN, Fitzpatrick KS, Manoharan M, Tagge I, Kohama SG, Ferguson B, Peterson SM, Wong GS, Rooney WD, Park B, Axthelm MK, Bourdette DN, Sherman LS, Wong SW. Myelin-specific T cells in animals with Japanese macaque encephalomyelitis. Ann Clin Transl Neurol 2021; 8:456-470. [PMID: 33440071 PMCID: PMC7886046 DOI: 10.1002/acn3.51303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/24/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022] Open
Abstract
Objective To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin‐specific T cells in their central nervous system (CNS) and periphery. Methods Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non‐JME conditions were analyzed for the presence of myelin‐specific T cells and changes in interleukin 17 (IL‐17) and interferon gamma (IFNγ) expression. Results Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T‐cell responses were absent in JME peripheral blood, and in age‐ and sex‐matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. Interpretations JME possesses an immune‐mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma‐herpesvirus infection.
Collapse
Affiliation(s)
- Aparna N Govindan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Kristin S Fitzpatrick
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Minsha Manoharan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - Ian Tagge
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA.,Montreal Neurological Institute, McGill University, Montreal, QC, USA
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Samuel M Peterson
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Grayson S Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Byung Park
- Biostatistics Shared Resource, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Michael K Axthelm
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Dennis N Bourdette
- Department of Neurology, Multiple Sclerosis Clinic, Oregon Health & Science University, Portland, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA.,Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, USA.,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, OR, USA
| |
Collapse
|
3
|
Taher H, Mahyari E, Kreklywich C, Uebelhoer LS, McArdle MR, Moström MJ, Bhusari A, Nekorchuk M, E X, Whitmer T, Scheef EA, Sprehe LM, Roberts DL, Hughes CM, Jackson KA, Selseth AN, Ventura AB, Cleveland-Rubeor HC, Yue Y, Schmidt KA, Shao J, Edlefsen PT, Smedley J, Kowalik TF, Stanton RJ, Axthelm MK, Estes JD, Hansen SG, Kaur A, Barry PA, Bimber BN, Picker LJ, Streblow DN, Früh K, Malouli D. In vitro and in vivo characterization of a recombinant rhesus cytomegalovirus containing a complete genome. PLoS Pathog 2020; 16:e1008666. [PMID: 33232376 PMCID: PMC7723282 DOI: 10.1371/journal.ppat.1008666] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/08/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus. However, the only available RhCMV clone that permits genetic modifications is based on the 68-1 strain which has been passaged in fibroblasts for decades resulting in multiple genomic changes due to tissue culture adaptations. As a result, 68-1 displays reduced viremia in RhCMV-naïve animals and limited shedding compared to non-clonal, low passage isolates. To overcome this limitation, we used sequence information from primary RhCMV isolates to construct a full-length (FL) RhCMV by repairing all mutations affecting open reading frames (ORFs) in the 68-1 bacterial artificial chromosome (BAC). Inoculation of adult, immunocompetent, RhCMV-naïve RM with the reconstituted virus resulted in significant viremia in the blood similar to primary isolates of RhCMV and furthermore led to high viral genome copy numbers in many tissues at day 14 post infection. In contrast, viral dissemination was greatly reduced upon deletion of genes also lacking in 68-1. Transcriptome analysis of infected tissues further revealed that chemokine-like genes deleted in 68-1 are among the most highly expressed viral transcripts both in vitro and in vivo consistent with an important immunomodulatory function of the respective proteins. We conclude that FL-RhCMV displays in vitro and in vivo characteristics of a wildtype virus while being amenable to genetic modifications through BAC recombineering techniques.
Collapse
Affiliation(s)
- Husam Taher
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Eisa Mahyari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Luke S. Uebelhoer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matthew R. McArdle
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Matilda J. Moström
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Amruta Bhusari
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Nekorchuk
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Travis Whitmer
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Elizabeth A. Scheef
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Lesli M. Sprehe
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Dawn L. Roberts
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Colette M. Hughes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Kerianne A. Jackson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrea N. Selseth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Abigail B. Ventura
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Hillary C. Cleveland-Rubeor
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Yujuan Yue
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Kimberli A. Schmidt
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Jason Shao
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Paul T. Edlefsen
- Statistical Center for HIV/AIDS Research and Prevention, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jeremy Smedley
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy F. Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Michael K. Axthelm
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jacob D. Estes
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott G. Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Amitinder Kaur
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Peter A. Barry
- Center for Comparative Medicine and Department of Medical Pathology, University of California, Davis, California, United States of America
| | - Benjamin N. Bimber
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| |
Collapse
|
4
|
Roberts ER, Carnathan DG, Li H, Shaw GM, Silvestri G, Betts MR. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog 2016; 12:e1006135. [PMID: 28036372 PMCID: PMC5231392 DOI: 10.1371/journal.ppat.1006135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/23/2022] Open
Abstract
Poor maintenance of cytotoxic factor expression among HIV-specific CD8+ T cells, in part caused by dysregulated expression of the transcription factor T-bet, is associated with HIV disease progression. However, the precise evolution and context in which CD8+ T cell cytotoxic functions become dysregulated in HIV infection remain unclear. Using the rhesus macaque (RM) SIV infection model, we evaluated the kinetics of SIV-specific CD8+ T cell cytolytic factor expression in peripheral blood, lymph node, spleen, and gut mucosa from early acute infection through chronic infection. We identified rapid acquisition of perforin and granzyme B expression in SIV-specific CD8+ T cells in blood, secondary lymphoid tissues and gut mucosa that collapsed rapidly during the transition to chronic infection. The evolution of this expression profile was linked to low expression of T-bet and occurred independent of epitope specificity, viral escape patterns and tissue origin. Importantly, during acute infection SIV-specific CD8+ T cells that maintained T-bet expression retained the ability to express granzyme B after stimulation, but this relationship was lost in chronic infection. Together, these data demonstrate the loss of cytolytic machinery in SIV-specific CD8+ T cells in blood and at tissue sites of viral reservoir and active replication during the transition from acute to chronic infection. This phenomenon occurs despite persistent high levels of viremia suggesting that an inability to maintain properly regulated cytotoxic T cell responses in all tissue sites enables HIV/SIV to avoid immune clearance, establish persistent viral reservoirs in lymphoid tissues and gut mucosa, and lead ultimately to immunopathogenesis and death.
Collapse
Affiliation(s)
- Emily R. Roberts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Biomedical Graduate Studies in Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Diane G. Carnathan
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Hui Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Blair TC, Manoharan M, Rawlings-Rhea SD, Tagge I, Kohama SG, Hollister-Smith J, Ferguson B, Woltjer RL, Frederick MC, Pollaro J, Rooney WD, Sherman LS, Bourdette DN, Wong SW. Immunopathology of Japanese macaque encephalomyelitis is similar to multiple sclerosis. J Neuroimmunol 2016; 291:1-10. [PMID: 26857488 PMCID: PMC4748211 DOI: 10.1016/j.jneuroim.2015.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
Japanese macaque encephalomyelitis (JME) is an inflammatory demyelinating disease that occurs spontaneously in a colony of Japanese macaques (JM) at the Oregon National Primate Research Center. Animals with JME display clinical signs resembling multiple sclerosis (MS), and magnetic resonance imaging reveals multiple T2-weighted hyperintensities and gadolinium-enhancing lesions in the central nervous system (CNS). Here we undertook studies to determine if JME possesses features of an immune-mediated disease in the CNS. Comparable to MS, the CNS of animals with JME contain active lesions positive for IL-17, CD4+ T cells with Th1 and Th17 phenotypes, CD8+ T cells, and positive CSF findings.
Collapse
Affiliation(s)
- Tiffany C Blair
- Vaccine and Gene Therapy Institute, Oregon Health & Science University (OHSU), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Minsha Manoharan
- Vaccine and Gene Therapy Institute, Oregon Health & Science University (OHSU), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Stephanie D Rawlings-Rhea
- Vaccine and Gene Therapy Institute, Oregon Health & Science University (OHSU), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Ian Tagge
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Steven G Kohama
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Julie Hollister-Smith
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Betsy Ferguson
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Randall L Woltjer
- Department of Pathology, OHSU, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Meredith C Frederick
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - James Pollaro
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - William D Rooney
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| | - Dennis N Bourdette
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health & Science University (OHSU), 505 NW 185th Avenue, Beaverton, OR 97006, United States; Division of Pathobiology and Immunology, ONPRC, 505 NW 185th Avenue, Beaverton, OR 97006, United States.
| |
Collapse
|
6
|
Sylwester AW, Hansen SG, Picker LJ. Quantification of T cell Antigen-specific Memory Responses in Rhesus Macaques, Using Cytokine Flow Cytometry (CFC, also Known as ICS and ICCS): Analysis of Flow Data. Bio Protoc 2014; 4:e1109. [PMID: 28280751 DOI: 10.21769/bioprotoc.1109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
What was initially termed 'CFC' (Cytokine Flow Cytometry) is now more commonly known as 'ICS' (Intra Cellular Staining), or less commonly as 'ICCS' (Intra Cellular Cytokine Staining). The key innovations were use of an effective permeant (allowing intracellular staining), and a reagent to disrupt secretion (trapping cytokines, thereby enabling accumulation of detectable intracellular signal). Because not all researchers who use the technique are interested in cytokines, the 'ICS' term has gained favor, though 'CFC' will be used here. CFC is a test of cell function, exposing lymphocytes to antigen in culture, then measuring any cytokine responses elicited. Test cultures are processed so as to stain cells with monoclonal antibodies tagged with fluorescent markers, and to chemically fix the cells and decontaminate the samples, using paraformaldehyde. CFC provides the powers of flow cytometry, which includes bulk sampling and multi-parametric cross-correlation, to the analysis of antigen-specific memory responses. A researcher using CFC is able to phenotypically characterize cells cultured with test antigen, and for phenotypic subsets (e.g. CD4+ or CD8+ T cells) determine the % frequency producing cytokine above background level. In contrast to ELISPOT and Luminex methods, CFC can correlate production of multiple cytokines from particular, phenotypically-characterized cells. The CFC assay is useful for detecting that an individual has had an antigen exposure (as in population screenings), or for following the emergence and persistence of antigen memories (as in studies of vaccination, infections, or pathogenesis). In addition to quantifying the % frequency of antigen-responding cells, mean fluorescence intensity can be used to assess how much of a cytokine is generated within responding cells. With the technological advance of flow cytometry, a current user of CFC often has access to 11 fluorescent channels (or even 18), making it possible to either highly-characterize the phenotypes of antigen-responding cells, or else simultaneously quantify the responses according to many cytokines or activation markers. Powerful software like FlowJo (TreeStar) and SPICE (NIAID) can be used to analyse the data, and to do sophisticated multivariate analysis of cytokine responses. The method described here is customized for cells from Rhesus macaque monkeys, and the extensive annotating notes represent a decade of accumulated technical experience. The same scheme is readily applicable to other mammalian cells (e.g. human or mouse), though the exact antibody clones will differ according to host system. The basic method described here incubates 1 × 106 Lymphocytes in 1 ml tube culture with antigen and co-stimulatory antibodies in the presence of Brefeldin A, prior to staining and fixation. Note: This is the second part of a two-part procedure. Part one has the same initial title, but the subtitle "From Assay Set-up to Data Acquisition (Sylwester et al., 2014)". The Abstract and Historical Background is the same for both documents.
Collapse
Affiliation(s)
- Andrew W Sylwester
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, USA
| | - Louis J Picker
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, USA
| |
Collapse
|