1
|
Shimura T, Isago H, Morita Y, Ohkawa R, Yoshikawa N, Ono Y, Kurano M. Modulating lysophospholipids with Paraoxonase-1: Exploring its impact on inflammatory responses and immune reactions. Biochem Biophys Res Commun 2025; 746:151234. [PMID: 39746221 DOI: 10.1016/j.bbrc.2024.151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Paraoxonase-1 (PON1) is a crucial esterase in cardiovascular health, closely associated with HDL and known for its antioxidant and anti-inflammatory properties. Reduced PON1 activity has been linked to cardiovascular diseases. Lysophospholipids (LysoPLs), essential for cellular processes and immune responses, are implicated in the pathogenesis of cardiovascular diseases and are bound to lipoproteins, contributing to their diverse effects. Thus, we hypothesize that the relationship between PON1 and cardiovascular diseases may involve the modulation of LysoPLs by PON1. This study aims to investigate how PON1 potentially influences LysoPLs. METHODS We quantified the levels of LysoPLs in HepG2 cells by using liquid chromatography-mass spectrometry, manipulating PON1 expression or knockdown. RESULTS In cells overexpressing PON1, there was a significant increase in cellular levels of lysophosphatidylserine (LysoPS) and medium levels of LysoPS. Conversely, in cells with PON-1 knockdown, cellular levels of lysophosphatidylcholine (LysoPC) and medium levels of LysoPC showed a significant decrease. CONCLUSIONS PON1 is involved in modulating LysoPLs, which contribute to the antioxidant and anti-inflammatory properties of HDL, often attributed to PON1.
Collapse
Affiliation(s)
- Takuya Shimura
- Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan; Department of Clinical Laboratory, Kawaguchi Municipal Medical Center, Saitama, Japan
| | - Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshifumi Morita
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Ryunosuke Ohkawa
- Clinical Bioanalysis and Molecular Biology, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Naoyuki Yoshikawa
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikazu Ono
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Tsutsumi T, Taira S, Matsuda R, Kageyama C, Wada M, Kitayama T, Morioka N, Morita K, Tsuboi K, Yamazaki N, Kido J, Nagata T, Dohi T, Tokumura A. Lysophospholipase D activity on oral mucosa cells in whole mixed human saliva involves in production of bioactive lysophosphatidic acid from lysophosphatidylcholine. Prostaglandins Other Lipid Mediat 2024; 174:106881. [PMID: 39134206 DOI: 10.1016/j.prostaglandins.2024.106881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
We reported that lysophosphatidic acid (LPA) is present at 0.8 μM in mixed human saliva (MS). In this study, we examined the distribution, origin, and enzymatic generation pathways of LPA in MS. LPA was distributed in the medium and cell pellet fraction; a true level of soluble LPA in MS was about 150 nM. The soluble LPA was assumed to be generated by ecto-type lysophospholipase D on exfoliated cells in MS from LPC that originated mainly from the major salivary gland saliva. Our results with the albumin-back extraction procedures suggest that a significant pool of LPA is kept in the outer layer of the plasma membranes of detached oral mucosal cells. Such pool of LPA may contribute to wound healing in upper digestive organs including oral cavity. We obtained evidence that the choline-producing activity in MS was mainly due to Ca2+-activated lysophospholipase D activity of glycerophosphodiesterase 7.
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Medical Science, Nobeoka 882-8508, Japan
| | - Satoshi Taira
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Risa Matsuda
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Chieko Kageyama
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Mamiko Wada
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Tomoya Kitayama
- Department of Pharmacy and Pharmaceutical Sciences, Mucogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Katsuya Morita
- Department of Molecular and Pharmacological Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi, Hiroshima 734-8553, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama 701-0192, Japan
| | - Naoshi Yamazaki
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan
| | - Junichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiko Nagata
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Toshihiro Dohi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 734-8553, Japan; Faculty of Nursing, Hiroshima Bunka Gakuen University, Kure 737-0004, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan; Department of Life Science, Faculty of Pharmacy, Yasuda Women's University, Hiroshima 730-0153, Japan.
| |
Collapse
|
3
|
Maekawa M, Iwahori A, Kumondai M, Sato Y, Sato T, Mano N. Determination of Choline-Containing Compounds in Rice Bran Fermented with Aspergillus oryzae Using Liquid Chromatography/Tandem Mass Spectrometry. Mass Spectrom (Tokyo) 2024; 13:A0151. [PMID: 39161737 PMCID: PMC11331278 DOI: 10.5702/massspectrometry.a0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Choline-containing compounds are essential nutrients for human activity, as they are involved in many biological processes, including cell membrane organization, methyl group donation, neurotransmission, signal transduction, lipid transport, and metabolism. These compounds are normally obtained from food. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) is a fermented food product derived from rice and rice ingredients. FBRA exhibits a multitude of functional properties with respect to the health sciences. This study has a particular focus on choline-containing compounds. We first developed a simultaneous liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis method for seven choline-containing compounds. The method was subsequently applied to FBRA and its ingredients. Hydrophilic interaction chromatography (HILIC) and selected reaction monitoring were employed for the simultaneous analysis of seven choline-containing compounds. MS ion source conditions were optimized in positive ion mode, and the product ions derived from the choline group were obtained through MS/MS optimization. Under optimized HILIC conditions, the peaks exhibited good shape without peak tailing. Calibration curves demonstrated high linearity across a 300- to 10,000-fold concentration range. The application of the method to FBRA and other ingredients revealed significant differences between food with and without fermentation. In particular, betaine and α-glycerophosphocholine were found to be highest in FBRA and brown rice malt, respectively. The results indicated that the fermentation processing of rice ingredients results in alterations to the choline-containing compounds present in foods. The developed HILIC/MS/MS method proved to be a valuable tool for elucidating the composition of choline-containing compounds in foods.
Collapse
Affiliation(s)
- Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Anna Iwahori
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
- Faculty of Pharmaceutical Sciences, Tohoku University, 1–1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980–8574, Japan
| |
Collapse
|
4
|
Suzuki T, Kurano M, Isono A, Uchino T, Sayama Y, Tomomitsu H, Mayumi D, Shibayama R, Sekiguchi T, Edo N, Uno-Eder K, Uno K, Morita K, Ishikawa T, Tsukamoto K. Genetic and biochemical analysis of severe hypertriglyceridemia complicated with acute pancreatitis or with low post-heparin lipoprotein lipase mass. Endocr J 2024; 71:447-460. [PMID: 38346769 DOI: 10.1507/endocrj.ej23-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
Severe hypertriglyceridemia is a pathological condition caused by genetic factors alone or in combination with environmental factors, sometimes leading to acute pancreatitis (AP). In this study, exome sequencing and biochemical analyses were performed in 4 patients with hypertriglyceridemia complicated by obesity or diabetes with a history of AP or decreased post-heparin LPL mass. In a patient with a history of AP, SNP rs199953320 resulting in LMF1 nonsense mutation and APOE rs7412 causing apolipoprotein E2 were both found in heterozygous form. Three patients were homozygous for APOA5 rs2075291, and one was heterozygous. ELISA and Western blot analysis of the serum revealed the existence of apolipoprotein A-V in the lipoprotein-free fraction regardless of the presence or absence of rs2075291; furthermore, the molecular weight of apolipoprotein A-V was different depending on the class of lipoprotein or lipoprotein-free fraction. Lipidomics analysis showed increased serum levels of sphingomyelin and many classes of glycerophospholipid; however, when individual patients were compared, the degree of increase in each class of phospholipid among cases did not coincide with the increases seen in total cholesterol and triglycerides. Moreover, phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin levels tended to be higher in patients who experienced AP than those who did not, suggesting that these phospholipids may contribute to the onset of AP. In summary, this study revealed a new disease-causing gene mutation in LMF1, confirmed an association between overlapping of multiple gene mutations and severe hypertriglyceridemia, and suggested that some classes of phospholipid may be involved in the pathogenesis of AP.
Collapse
Affiliation(s)
- Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Endowed Chairs Department of Clinical Research Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Akari Isono
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Honami Tomomitsu
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Daiki Mayumi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Ruriko Shibayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Toru Sekiguchi
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Naoki Edo
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Kiyoko Uno-Eder
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
- Teikyo Academic Research Center, Teikyo University, Tokyo 173-8605, Japan
| | - Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
5
|
Isago H, Uranbileg B, Mitani A, Kurano M. Understanding the modulations of glycero-lysophospholipids in an elastase-induced murine emphysema model. Biochem Biophys Res Commun 2024; 694:149419. [PMID: 38145597 DOI: 10.1016/j.bbrc.2023.149419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Increasing evidence indicates that bioactive lipid mediators are involved in chronic obstructive pulmonary disease (COPD) pathogenesis. Recently, glycero-lysophospholipids, such as lysophosphatidic acid (LysoPA) and lysophosphatidylserine (LysoPS), have been recognized as significant inflammation-related lipid mediators. However, their association with COPD remains unclear. METHODS We used an elastase-induced murine emphysema model to analyze the levels of lysophospholipids and diacyl-phospholipids in the lungs. Additionally, we assessed the expression of LysoPS-related genes and published data on smokers. RESULTS In the early phase of an elastase-induced murine emphysema model, the levels of LysoPS and its precursor (phosphatidylserine [PS]) were significantly reduced, without significant modulations in other glycero-lysophospholipids. Additionally, there was an upregulation in the expression of lysoPS receptors, specifically GPR34, observed in the lungs of a cigarette smoke-exposed mouse model and the alveolar macrophages of human smokers. Elastase stimulation induces GPR34 expression in a human macrophage cell line in vitro. CONCLUSIONS Elastase-induced lung emphysema affects the LysoPS/PS-GPR34 axis, and cigarette smoking or elastase upregulates GPR34 expression in alveolar macrophages. This novel association may serve as a potential pharmacological target for COPD treatment.
Collapse
Affiliation(s)
- Hideaki Isago
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan; Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan.
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Yaginuma S, Omi J, Kano K, Aoki J. Lysophospholipids and their producing enzymes: Their pathological roles and potential as pathological biomarkers. Pharmacol Ther 2023; 246:108415. [PMID: 37061204 DOI: 10.1016/j.pharmthera.2023.108415] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Accumulating evidence suggests that lysophospholipids (LPL) serve as lipid mediators that exert their diverse pathophysiological functions via G protein-coupled receptors. These include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), lysophosphatidylserine (LysoPS) and lysophosphatidylinositol (LPI). Unlike S1P, which is produced intracellularly and secreted from various cell types, some LPLs, such as LPA, LysoPS and LPI, are produced in lesions, especially under pathological conditions, where they positively or negatively regulate disease progression through their autacoid-like actions. Although these LPLs are minor components of the cell membrane, recent developments in mass spectrometry techniques have made it possible to detect and quantify them in a variety of biological fluids, including plasma, serum, urine and cerebrospinal fluid. The synthetic enzymes of LPA and LysoPS are also present in these biological fluids, which also can be detected by antibody-based methods. Importantly, their levels have been found to dramatically increase during various pathological conditions. Thus, LPLs and their synthetic enzymes in these biological fluids are potential biomarkers. This review discusses the potential of these LPLs and LPL-related molecules as pathological biomarkers, including methods and problems in their measurement.
Collapse
Affiliation(s)
- Shun Yaginuma
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan.
| |
Collapse
|
7
|
Tsuchida R, Nishizawa D, Fukuda KI, Ichinohe T, Kano K, Kurano M, Ikeda K, Sumitani M. Genetic Polymorphisms of ENPP2 Are Possibly Associated with Pain Severity and Opioid Dose Requirements in Patients with Inflammatory Pain Conditions: Clinical Observation Study. Int J Mol Sci 2023; 24:ijms24086986. [PMID: 37108150 PMCID: PMC10139129 DOI: 10.3390/ijms24086986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Autotaxin, encoded by the ENPP2 gene, is a known key element of neuropathic pain; however, its involvement in nociceptive pain processing remains unclear. We explored the associations between postoperative pain intensity, 24-h postoperative opioid dose requirements, and 93 ENNP2-gene single-nucleotide polymorphisms (SNPs) in 362 healthy patients who underwent cosmetic surgery using the dominant, recessive, and genotypic models. Next, we validated the associations between relevant SNPs on the one hand and pain intensity and daily opioid dosages on the other in 89 patients with cancer-related pain. In this validation study, a Bonferroni correction for multiplicity was applied on all relevant SNPs of the ENPP2 gene and their respective models. In the exploratory study, three models of two SNPs (rs7832704 and rs2249015) were significantly associated with postoperative opioid doses, although the postoperative pain intensity was comparable. In the validation study, the three models of the two SNPs were also significantly associated with cancer pain intensity (p < 0.017). Patients with a minor allele homozygosity complained of more severe pain compared with patients with other genotypes when using comparable daily opioid doses. Our findings might suggest that autotaxin is associated with nociceptive pain processing and the regulation of opioid requirements.
Collapse
Affiliation(s)
- Rikuhei Tsuchida
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyoku, Tokyo 113-8655, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Kami Kitazawa 2-1-6, Setagayaku, Tokyo 156-0057, Japan
| | - Ken-Ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Kanda Misakichou 2-9-18, Chiyodaku, Tokyo 101-0061, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Kanda Misakichou 2-9-18, Chiyodaku, Tokyo 101-0061, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyoku, Tokyo 113-8655, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyoku, Tokyo 113-8655, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Kami Kitazawa 2-1-6, Setagayaku, Tokyo 156-0057, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyoku, Tokyo 113-8655, Japan
| |
Collapse
|
8
|
Usefulness of lysophosphatidylcholine measurement in the cerebrospinal fluid for differential diagnosis of neuropathic pain: Possible introduction into clinical laboratory testing. Clin Chim Acta 2023; 541:117249. [PMID: 36764506 DOI: 10.1016/j.cca.2023.117249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
BACKGROUND The differential diagnosis of neuropathic pain, especially discrimination between neuropathic pain caused by spinal canal stenosis (SCS) and neuropathic pain associated with causes other than SCS, is sometimes difficult; however, it is important for surgical application. METHODS We established a reliable method for measuring lysophosphatidylcholine (LPC), a precursor of lysophosphatidic acids which are known as being pain initiators, using a liquid chromatography-tandem mass spectrometry method, and measured the LPC concentrations in the cerebrospinal fluid (CSF) in patients with SCS (SCS group; n = 76), patients with neuropathic pain caused by non-SCS diseases (Others group; n = 49), and control subjects without pain (control group; n = 92). RESULTS Both within-run and between-run CV(%) were almost < 10 %, suggesting an enough performance for clinical introduction. The CSF concentrations of LPC (16:0) and LPC (18:0) were higher in the SCS group than those in the Control or Others group; the concentrations of LPC (18:1), LPC (18:2), LPC (20:4), LPC (22:6) levels were higher in the SCS group than those in the control or others group, but they were also higher in the Others group than those in the control group. The areas under the curve in the ROC curve analyses of LPC (18:1) for discriminating between the SCS and control groups, others and control groups, and SCS and others groups were 0.994, 0.860, and 0.869, respectively. CONCLUSIONS LPC measurement in the CSF is useful for the differential diagnosis of neuropathic pain, especially for surgical decision-making, which is expected for clinical introduction.
Collapse
|
9
|
Modulations of urinary lipid mediators in acute bladder cystitis. Prostaglandins Other Lipid Mediat 2023; 164:106690. [PMID: 36332874 DOI: 10.1016/j.prostaglandins.2022.106690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
Abstract
Bioactive lipids, such as lysophospholipids, ceramides, and eicosanoids and related mediators, have been demonstrated to be involved in inflammation. We aimed to investigate the possible orchestral modulations of these bioactive lipids in human inflammation. We simultaneously measured the urinary levels of lysophospholipids, ceramides, and eicosanoids and related mediators by a liquid chromatography-mass spectrometry method in patients with cystitis and control subjects. The urinary levels of lysophosphatidylcholine, lysophosphatidylethanolamine, sphingosine 1-phosphate, ceramides, prostaglandin (PG)E2 and its metabolites represented by tetranor-PGEM, several oxylipins, DHA, and lysoPAF were higher in patients with cystitis. Urinary levels of some species of glycerolysophospholipids were highly positively correlated with those of other species of the same glycerolysophospholipids. Cluster analyses revealed that lysophosphatidylcholine was close to a PGE2 metabolite, lysophosphatidylethanolamine was close to DHA, and sphingosine 1-phosphate and ceramides were close to lysoPAF. The orchestral dynamism of the lipid mediators was observed in the urine of cystitis, suggesting the necessity for simultaneous investigation of lipid mediators for translational research.
Collapse
|
10
|
Cao X, van Putten JPM, Wösten MMSM. Biological functions of bacterial lysophospholipids. Adv Microb Physiol 2023; 82:129-154. [PMID: 36948653 DOI: 10.1016/bs.ampbs.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Lysophospholipids (LPLs) are lipid-derived metabolic intermediates in the cell membrane. The biological functions of LPLs are distinct from their corresponding phospholipids. In eukaryotic cells LPLs are important bioactive signaling molecules that regulate many important biological processes, but in bacteria the function of LPLs is still not fully defined. Bacterial LPLs are usually present in cells in very small amounts, but can strongly increase under certain environmental conditions. In addition to their basic function as precursors in membrane lipid metabolism, the formation of distinct LPLs contributes to the proliferation of bacteria under harsh circumstances or may act as signaling molecules in bacterial pathogenesis. This review provides an overview of the current knowledge of the biological functions of bacterial LPLs including lysoPE, lysoPA, lysoPC, lysoPG, lysoPS and lysoPI in bacterial adaptation, survival, and host-microbe interactions.
Collapse
Affiliation(s)
- Xuefeng Cao
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
11
|
Shimura T, Kurano M, Okamoto K, Jubishi D, Hashimoto H, Kano K, Igarashi K, Shimamoto S, Aoki J, Moriya K, Yatomi Y. Decrease in serum levels of autotaxin in COVID-19 patients. Ann Med 2022; 54:3189-3200. [PMID: 36369824 PMCID: PMC9665086 DOI: 10.1080/07853890.2022.2143554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION In order to identify therapeutic targets in Coronavirus disease 2019 (COVID-19), it is important to identify molecules involved in the biological responses that are modulated in COVID-19. Lysophosphatidic acids (LPAs) are involved in the pulmonary inflammation and fibrosis are one of the candidate molecules. The aim of this study was to evaluate the association between the serum levels of autotaxin (ATX), which are enzymes involved in the synthesis of lysophosphatidic acids. MATERIAL AND METHODS We enrolled 134 subjects with COVID-19 and 58 normal healthy subjects for the study. We measured serum ATX levels longitudinally in COVID-19 patients and investigated the time course and the association with severity and clinical parameters. RESULTS The serum ATX levels were reduced in all patients with COVID-19, irrespective of the disease severity, and were negatively associated with the serum CRP, D-dimer, and anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody levels. DISCUSSION Considering the biological properties of LPAs in the pulmonary inflammation and fibrosis, modulation of ATX might be compensatory biological responses to suppress immunological overreaction especially in the lung, which is an important underlying mechanism for the mortality of the disease. CONCLUSIONS COVID-19 patients showed a decrease in the serum levels of ATX, irrespective of the disease severity. Key MessagesAutotaxin (ATX) is an enzyme involved in the synthesis of lysophosphatidic acid (LPA), which has been reported to be involved in pulmonary inflammation and fibrosis. Patients with COVID-19 show decrease in the serum levels of ATX. Modulation of ATX might be compensatory biological responses to suppress immunological overreaction.
Collapse
Affiliation(s)
- Takuya Shimura
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Jubishi
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Hideki Hashimoto
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | | | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan.,Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Kurano M, Jubishi D, Okamoto K, Hashimoto H, Sakai E, Morita Y, Saigusa D, Kano K, Aoki J, Harada S, Okugawa S, Doi K, Moriya K, Yatomi Y. Dynamic modulations of urinary sphingolipid and glycerophospholipid levels in COVID-19 and correlations with COVID-19-associated kidney injuries. J Biomed Sci 2022; 29:94. [PMCID: PMC9647768 DOI: 10.1186/s12929-022-00880-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Among various complications of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), renal complications, namely COVID-19-associated kidney injuries, are related to the mortality of COVID-19. Methods In this retrospective cross-sectional study, we measured the sphingolipids and glycerophospholipids, which have been shown to possess potent biological properties, using liquid chromatography-mass spectrometry in 272 urine samples collected longitudinally from 91 COVID-19 subjects and 95 control subjects without infectious diseases, to elucidate the pathogenesis of COVID-19-associated kidney injuries. Results The urinary levels of C18:0, C18:1, C22:0, and C24:0 ceramides, sphingosine, dihydrosphingosine, phosphatidylcholine, lysophosphatidylcholine, lysophosphatidic acid, and phosphatidylglycerol decreased, while those of phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, and lysophosphatidylethanolamine increased in patients with mild COVID-19, especially during the early phase (day 1–3), suggesting that these modulations might reflect the direct effects of infection with SARS-CoV-2. Generally, the urinary levels of sphingomyelin, ceramides, sphingosine, dihydrosphingosine, dihydrosphingosine l-phosphate, phosphatidylcholine, lysophosphatidic acid, phosphatidylserine, lysophosphatidylserine, phosphatidylethanolamine, lysophosphatidylethanolamine, phosphatidylglycerol, lysophosphatidylglycerol, phosphatidylinositol, and lysophosphatidylinositol increased, especially in patients with severe COVID-19 during the later phase, suggesting that their modulations might result from kidney injuries accompanying severe COVID-19. Conclusions Considering the biological properties of sphingolipids and glycerophospholipids, an understanding of their urinary modulations in COVID-19 will help us to understand the mechanisms causing COVID-19-associated kidney injuries as well as general acute kidney injuries and may prompt researchers to develop laboratory tests for predicting maximum severity and/or novel reagents to suppress the renal complications of COVID-19. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00880-5.
Collapse
Affiliation(s)
- Makoto Kurano
- grid.26999.3d0000 0001 2151 536XDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan ,grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Jubishi
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koh Okamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideki Hashimoto
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Sakai
- grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshifumi Morita
- grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Daisuke Saigusa
- grid.264706.10000 0000 9239 9995Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Kuniyuki Kano
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- grid.26999.3d0000 0001 2151 536XDepartment of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Sohei Harada
- grid.26999.3d0000 0001 2151 536XDepartment of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Shu Okugawa
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kent Doi
- grid.412708.80000 0004 1764 7572Department of Emergency and Critical Care Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kyoji Moriya
- grid.26999.3d0000 0001 2151 536XDepartment of Infectious Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Infection Control and Prevention, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- grid.26999.3d0000 0001 2151 536XDepartment of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655 Japan ,grid.412708.80000 0004 1764 7572Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
13
|
HPLC–(Q)-TOF-MS-Based Study of Plasma Metabolic Profile Differences Associated with Age in Pediatric Population Using an Animal Model. Metabolites 2022; 12:metabo12080739. [PMID: 36005611 PMCID: PMC9413543 DOI: 10.3390/metabo12080739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
A deep knowledge about the biological development of children is essential for appropriate drug administration and dosage in pediatrics. In this sense, the best approximation to study organ maturation is the analysis of tissue samples, but it requires invasive methods. For this reason, surrogate matrices should be explored. Among them, plasma emerges as a potential alternative since it represents a snapshot of global organ metabolism. In this work, plasma metabolic profiles from piglets of different ages (newborns, infants, and children) obtained by HPLC–(Q)-TOF-MS at positive and negative ionization modes were studied. Improved clustering within groups was achieved using multiblock principal component analysis compared to classical principal component analysis. Furthermore, the separation observed among groups was better resolved by using partial least squares-discriminant analysis, which was validated by bootstrapping and permutation testing. Thanks to univariate analysis, 13 metabolites in positive and 21 in negative ionization modes were found to be significant to discriminate the three groups of piglets. From these features, an acylcarnitine and eight glycerophospholipids were annotated and identified as metabolites of interest. The findings indicate that there is a relevant change with age in lipid metabolism in which lysophosphatidylcholines and lysophoshatidylethanolamines play an important role.
Collapse
|
14
|
Takagi Y, Nishikado S, Omi J, Aoki J. The Many Roles of Lysophospholipid Mediators and Japanese Contributions to This Field. Biol Pharm Bull 2022; 45:1008-1021. [DOI: 10.1248/bpb.b22-00304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yugo Takagi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Shun Nishikado
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Jumpei Omi
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
15
|
Kurano M, Sakai E, Yatomi Y. Understanding modulations of lipid mediators in cancer using a murine model of carcinomatous peritonitis. Cancer Med 2022; 11:3491-3507. [PMID: 35315587 PMCID: PMC9487885 DOI: 10.1002/cam4.4699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022] Open
Abstract
Background Numerous studies have investigated the possible involvement of eicosanoids, lysophospholipids, and sphingolipids in cancer. We considered that comprehensive measurement of these lipid mediators might provide a better understanding of their involvement in the pathogenesis of cancer. In the present study, we attempted to elucidate the modulations of sphingolipids, lysophospholipids, diacyl‐phospholipids, eicosanoids, and related mediators in cancer by measuring their levels simultaneously by a liquid chromatography‐mass spectrometry method in a mouse model of carcinomatous peritonitis. Methods We investigated the modulations of these lipids in both ascitic fluid and plasma specimens obtained from Balb/c mice injected intraperitoneally with Colon‐26 cells, as well as the modulations of the lipid contents in the cancer cells obtained from the tumor xenografts. Results The results were as follows: the levels of sphingosine 1‐phosphate were increased, while those of lysophosphatidic acid (LysoPA), especially unsaturated long‐chain LysoPA, tended to be increased, in the ascitic fluid. Our findings suggested that ceramides, sphingomyelin, and phosphatidylcholine, their precursors, were supplied by both de novo synthesis and from elsewhere in the body. The levels of lysophosphatidylserine (LysoPS), lysophosphatidylinositol, lysophosphatidylglycerol, and lysophosphatidylethanolamine were also increased in the ascitic fluid, while those of phosphatidylserine (PS), a precursor of LysoPS, were markedly decreased. The levels of arachidonic acid derivatives, especially PGE2‐related metabolites, were increased, while the plasma levels of eicosanoids and related mediators were decreased. Comprehensive statistical analyses mainly identified PS in the ascitic fluid and eicosanoids in the plasma as having highly negative predictive values for cancer. Conclusions The results proposed many unknown associations of lipid mediators with cancer, underscoring the need for further studies. In particular, the PS/LysoPS pathway could be a novel therapeutic target, and plasma eicosanoids could be useful biomarkers for cancer.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Murakami K, Tamada T, Saigusa D, Miyauchi E, Nara M, Ichinose M, Kurano M, Yatomi Y, Sugiura H. Urine autotaxin levels reflect the disease activity of sarcoidosis. Sci Rep 2022; 12:4372. [PMID: 35288647 PMCID: PMC8921313 DOI: 10.1038/s41598-022-08388-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/04/2022] [Indexed: 12/17/2022] Open
Abstract
Since the clinical outcome of patients with sarcoidosis is still unpredictable, a good prognostic biomarker is necessary. Autotaxin (ATX) and phosphatidylserine-specific phospholipase A1 (PS-PLA1) function as main enzymes to produce lysophospholipids (LPLs), and these enzymes are attracting attention as useful biomarkers for several chronic inflammatory diseases. Here, we investigated the relationships between LPLs-producing enzymes and the disease activity of sarcoidosis. In total, 157 patients with sarcoidosis (active state, 51%) were consecutively enrolled. Using plasma or urine specimens, we measured the values of LPLs-producing enzymes. Urine ATX (U-ATX) levels were significantly lower in the active state compared to those in the inactive state, while the plasma ATX (P-ATX) and PS-PLA1 levels showed no significant difference between these two states. Concerning the comparison with existing clinical biomarkers for sarcoidosis, U-ATX showed a weak negative correlation to ACE, P-ATX a weak positive correlation to both ACE and sIL-2R, and PS-PLA1 a weak positive one to sIL-2R. Notably, only the U-ATX levels inversely fluctuated depending on the status of disease activity whether OCS had been used or not. These findings suggest that U-ATX is likely to be a novel and useful molecule for assessing the disease activity of sarcoidosis.
Collapse
|
17
|
Abstract
Lysophospholipids, exemplified by lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), are produced by the metabolism and perturbation of biological membranes. Both molecules are established extracellular lipid mediators that signal via specific G protein-coupled receptors in vertebrates. This widespread signaling axis regulates the development, physiological functions, and pathological processes of all organ systems. Indeed, recent research into LPA and S1P has revealed their important roles in cellular stress signaling, inflammation, resolution, and host defense responses. In this review, we focus on how LPA regulates fibrosis, neuropathic pain, abnormal angiogenesis, endometriosis, and disorders of neuroectodermal development such as hydrocephalus and alopecia. In addition, we discuss how S1P controls collective behavior, apoptotic cell clearance, and immunosurveillance of cancers. Advances in lysophospholipid research have led to new therapeutics in autoimmune diseases, with many more in earlier stages of development for a wide variety of diseases, such as fibrotic disorders, vascular diseases, and cancer.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; , .,AMED-LEAP, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Timothy Hla
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA; .,Department of Surgery, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
18
|
Engel KM, Schiller J, Galuska CE, Fuchs B. Phospholipases and Reactive Oxygen Species Derived Lipid Biomarkers in Healthy and Diseased Humans and Animals - A Focus on Lysophosphatidylcholine. Front Physiol 2021; 12:732319. [PMID: 34858200 PMCID: PMC8631503 DOI: 10.3389/fphys.2021.732319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids (PL) are converted into lipid biomarkers by the action of phospholipases and reactive oxygen species (ROS), which are activated or released under certain physiological and pathophysiological conditions. Therefore, the in vivo concentration of such lipid biomarkers [e.g., lysophospholipids (LPLs)] is altered in humans and animals under different conditions such as inflammation, stress, medication, and nutrition. LPLs are particularly interesting because they are known to possess pro- and anti-inflammatory properties and may be generated by two different pathways: either by the influence of phospholipase A2 or by different reactive oxygen species that are generated in significant amounts under inflammatory conditions. Both lead to the cleavage of unsaturated acyl residues. This review provides a short summary of the mechanisms by which lipid biomarkers are generated under in vitro and in vivo conditions. The focus will be on lysophosphatidylcholine (LPC) because usually, this is the LPL species which occurs in the highest concentration and is, thus, easily detectable by chromatographic and spectroscopic methods. Finally, the effects of lipid biomarkers as signaling molecules and their roles in different human and animal pathologies such as infertility, cancer, atherosclerosis, and aging will be shortly discussed.
Collapse
Affiliation(s)
- Kathrin M Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Christina E Galuska
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Beate Fuchs
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
19
|
He W, Yang G, Liu S, Maghsoudloo M, Shasaltaneh MD, Kaboli PJ, Zhang C, Zhang J, Entezari M, Imani S, Wen Q. Comparative mRNA/micro-RNA co-expression network drives melanomagenesis by promoting epithelial-mesenchymal transition and vasculogenic mimicry signaling. Transl Oncol 2021; 14:101237. [PMID: 34626953 PMCID: PMC8512639 DOI: 10.1016/j.tranon.2021.101237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to identify a novel disease-associated differentially co-expressed mRNA-microRNA (miRNA) that is associated with vasculogenic mimicry (VM) and epithelial-to-mesenchymal transition (EMT) network at different stages of melanoma. By applying weighted gene co-expression network analysis, we constructed a VM+EMT biological network with the available microarray dataset downloaded from a public database. Quantitative real-time PCR, immunohistochemical staining, and CD31-periodic acid solution dual staining were performed to confirm the expression of genes associated with EMT and VM formation in subjects with malignant melanoma (n = 18) and primary melanoma (n = 13) and in healthy subjects (n = 10). Our findings suggested that phosphatidylserine-specific phospholipase A1-alpha (PLA1A) and dermokine (DMKN) genes function as oncogenes that trigger VM and EMT processes during melanomagenesis on interaction with miR-370, miR-563, and miR-770-5p. PLA1A and DMKN genes can be considered potential VM+EMT network-based diagnostic biomarkers for distinguishing between melanoma patients. We postulate that a network with altered PLA1A/miR-563 and DMNK/miR-770-5p/miR-370 may contribute to melanomagenesis by triggering the EMT signaling pathway and VM formation. This study provides a potentially valuable approach for the early diagnosis and prognosis of melanoma progression.
Collapse
Affiliation(s)
- WenFeng He
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Oncology, Anyue Hospital of Traditional Chinese Medicine, Second Ziyang Hospital of Traditional Chinese Medicine, Ziyang, Sichuan, China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, Sichuan, China
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - JingHeng Zhang
- Oncology Department, Luzhou People's Hospital, Luzhou, Sichuan, China
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
20
|
Dynamic Role of Phospholipases A2 in Health and Diseases in the Central Nervous System. Cells 2021; 10:cells10112963. [PMID: 34831185 PMCID: PMC8616333 DOI: 10.3390/cells10112963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids are major components in the lipid bilayer of cell membranes. These molecules are comprised of two acyl or alkyl groups and different phospho-base groups linked to the glycerol backbone. Over the years, substantial interest has focused on metabolism of phospholipids by phospholipases and the role of their metabolic products in mediating cell functions. The high levels of polyunsaturated fatty acids (PUFA) in the central nervous system (CNS) have led to studies centered on phospholipases A2 (PLA2s), enzymes responsible for cleaving the acyl groups at the sn-2 position of the phospholipids and resulting in production of PUFA and lysophospholipids. Among the many subtypes of PLA2s, studies have centered on three major types of PLA2s, namely, the calcium-dependent cytosolic cPLA2, the calcium-independent iPLA2 and the secretory sPLA2. These PLA2s are different in their molecular structures, cellular localization and, thus, production of lipid mediators with diverse functions. In the past, studies on specific role of PLA2 on cells in the CNS are limited, partly because of the complex cellular make-up of the nervous tissue. However, understanding of the molecular actions of these PLA2s have improved with recent advances in techniques for separation and isolation of specific cell types in the brain tissue as well as development of sensitive molecular tools for analyses of proteins and lipids. A major goal here is to summarize recent studies on the characteristics and dynamic roles of the three major types of PLA2s and their oxidative products towards brain health and neurological disorders.
Collapse
|
21
|
Minamihata T, Takano K, Nakamura Y, Seto R, Moriyama M. Increase in Cellular Lysophosphatidylserine Content Exacerbates Inflammatory Responses in LPS-Activated Microglia. Neurochem Res 2021; 47:2602-2616. [PMID: 34383250 DOI: 10.1007/s11064-021-03425-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/20/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
Mutations in alpha/beta-hydrolase domain containing (ABHD) 12 gene, which encodes lysophosphatidylserine (LysoPS) lipase, cause the neurodegenerative disease PHARC (Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa, Cataract). Since ABHD12 is expressed by microglia in the central nervous system and is localized to the endoplasmic reticulum, accumulation of intracellular LysoPS by ABHD12 mutations is assumed to be one of the pathological mechanisms associated with microglial activation in PHARC. However, the role of microglia in the PHARC brain and the relationship between microglial function and cellular LysoPS content remains unclear. Therefore, we explored the influence of cellular LysoPS content in microglial inflammatory responses. We evaluated the effects of inhibitors of cellular LysoPS metabolism, KC01 and DO-264, on inflammatory responses using a lipopolysaccharide (LPS)-stimulated mouse microglial cell line, BV-2 and primary microglia. Treatment of DO-264, an inhibitor of cellular LysoPS degradation, enhanced LPS-induced phagocytosis concomitant with the increase in cellular LysoPS content in BV-2 cells. On the other hand, treatment with KC01, an agent had been developed as an inhibitor of LysoPS synthase, reduced phagocytosis without affecting cellular LysoPS content. Such effects of both inhibitors on phagocytosis were also confirmed using primary microglia. KC01 treatment decreased nitric oxide (NO) production, accompanied by a reduction in inducible NO synthase expression in BV-2 microglia. KC01 also suppressed LPS-induced generation of intracellular reactive oxygen species and cytokines such as interleukin-6. Our results suggest that increase in cellular LysoPS levels can exacerbate microglial inflammatory responses. Treatment to prevent the increase in cellular LysoPS in microglia may have therapeutic potential for PHARC.
Collapse
Affiliation(s)
- Tomoki Minamihata
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Katsura Takano
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Yoichi Nakamura
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan
| | - Ryoya Seto
- Chemicals Evaluation and Research Institute, Kitakatsushika, Saitama, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, 1-58 Rinku Ourai Kita, Izumisano, Osaka, 598-8531, Japan.
| |
Collapse
|
22
|
Kurano M, Kobayashi T, Sakai E, Tsukamoto K, Yatomi Y. Lysophosphatidylinositol, especially albumin-bound form, induces inflammatory cytokines in macrophages. FASEB J 2021; 35:e21673. [PMID: 34042213 DOI: 10.1096/fj.202100245r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Lysophosphatidylinositol (LPI) is a glycero-lysophospholipid and a natural agonist against GPR55. The roles of the LPI/GPR55 axis in the pathogenesis of inflammation have been controversial. In the present study, we attempted to elucidate the roles of the LPI/GPR55 axis in inflammation, especially the secretion of inflammatory cytokines, IL-6 and TNF-α from macrophages. We treated RAW264.7 cells and mouse peritoneal macrophages (MPMs) with LPI and observed that LPI induced the secretion of IL-6 and TNF-α from these cells, as well as the phosphorylation of p38. These responses were inhibited by treatment with CID16020046 (CID), an antagonist against GPR55, or SB202190, an inhibitor of p38 cascade or knockdown of GPR55 with siRNA. Treatment with CID or ML-193, another antagonist against GPR55, attenuated the elevation of inflammatory cytokines in the plasma or tissue of db/db mice and in a septic mouse model induced using lipopolysaccharide, suggesting contributions to the improvement of insulin resistance and protection against organ injuries by treatment with CID or ML-193, respectively. In human subjects, although the serum LPI levels were not different, the levels of LPI in the lipoprotein fractions were lower and the levels in the lipoprotein-depleted fractions were higher in subjects with diabetes. LPI bound to albumin induced the secretion of IL-6 and TNF-α from RAW264.7 cells to a greater degree than LPI bound to LDL or HDL. These results suggest that LPI, especially the albumin-bound form, induced inflammatory cytokines depending on the GPR55/p38 pathway, which might contribute to the pathogenesis of obesity-induced inflammation and acute inflammation.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Tamaki Kobayashi
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Eri Sakai
- Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
23
|
Zhao Y, Hasse S, Bourgoin SG. Phosphatidylserine-specific phospholipase A1: A friend or the devil in disguise. Prog Lipid Res 2021; 83:101112. [PMID: 34166709 DOI: 10.1016/j.plipres.2021.101112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
Various human tissues and cells express phospholipase A1 member A (PLA1A), including the liver, lung, prostate gland, and immune cells. The enzyme belongs to the pancreatic lipase family. PLA1A specifically hydrolyzes sn-1 fatty acid of phosphatidylserine (PS) or 1-acyl-lysophosphatidylserine (1-acyl-lysoPS). PS externalized by activated cells or apoptotic cells or extracellular vesicles is a potential source of substrate for the production of unsaturated lysoPS species by PLA1A. Maturation and functions of many immune cells, such as T cells, dendritic cells, macrophages, and mast cells, can be regulated by PLA1A and lysoPS. Several lysoPS receptors, including GPR34, GPR174 and P2Y10, have been identified. High serum levels and high PLA1A expression are associated with autoimmune disorders such as Graves' disease and systemic lupus erythematosus. Increased expression of PLA1A is associated with metastatic melanomas. PLA1A may contribute to cardiometabolic disorders through mediating cholesterol transportation and producing lysoPS. Furthermore, PLA1A is necessary for hepatitis C virus assembly and can play a role in the antivirus innate immune response. This review summarizes recent findings on PLA1A expression, lysoPS and lysoPS receptors in autoimmune disorders, cancers, cardiometabolic disorders, antivirus immune responses, as well as regulations of immune cells.
Collapse
Affiliation(s)
- Yang Zhao
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Stephan Hasse
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Centre de recherche du CHU de Québec-Université Laval, Centre ARThrite de l'Université Laval, Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec, G1V 4G2, Canada.
| |
Collapse
|
24
|
Li X, Nakayama K, Goto T, Akamatsu S, Kobayashi T, Shimizu K, Ogawa O, Inoue T. A narrative review of urinary phospholipids: from biochemical aspect towards clinical application. Transl Androl Urol 2021; 10:1829-1849. [PMID: 33968673 PMCID: PMC8100843 DOI: 10.21037/tau-20-1263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a newly emerged discipline, lipidomic studies have focused on the comprehensive characterization and quantification of lipids in a given biological system, which has remarkably advanced in recent years owing to the rapid development of analytical techniques, especially mass spectrometry. Among diverse lipid classes, phospholipids, which have fundamental roles in the formation of cellular membranes, signaling processes, and bioenergetics have gained momentum in several fields of research. The altered composition, concentration, spatial distribution, and metabolism of phospholipids in cells, tissues, and body fluids have been elucidated in various human diseases such as cancer, inflammation, as well as cardiovascular and metabolic disorders. Among the different kinds of phospholipid sources in the human body, urine has not been extensively investigated in recent years owing to the extremely low concentrations of phospholipids and high levels of salts and other contaminants, which can interfere with precise detection. However, with profound advances and rapid expansion in analytical methods, urinary phospholipids have attracted increasing attention in current biomedical research as urine is an easily available source for the discovery of noninvasive biomarkers. In this review, we provide an overview of urinary phospholipids, including their biochemical aspects and clinical applications, aimed at promoting this field of research.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
25
|
Yang G, Liu S, Maghsoudloo M, Shasaltaneh MD, Kaboli PJ, Zhang C, Deng Y, Heidari H, Entezari M, Fu S, Wen Q, Imani S. PLA1A expression as a diagnostic marker of BRAF-mutant metastasis in melanoma cancer. Sci Rep 2021; 11:6056. [PMID: 33723350 PMCID: PMC7961027 DOI: 10.1038/s41598-021-85595-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
BRAF and NRAS are the most reported mutations associated to melanomagenesis. The lack of accurate diagnostic markers in response to therapeutic treatment in BRAF/NRAS-driven melanomagenesis is one of the main challenges in melanoma personalized therapy. In order to assess the diagnostic value of phosphatidylserine-specific phospholipase A1-alpha (PLA1A), a potent lysophospholipid mediating the production of lysophosphatidylserine, PLA1A mRNA and serum levels were compared in subjects with malignant melanoma (n = 18), primary melanoma (n = 13), and healthy subjects (n = 10). Additionally, the correlation between histopathological subtypes of BRAF/NRAS-mutated melanoma and PLA1A was analyzed. PLA1A expression was significantly increased during melanogenesis and positively correlated to disease severity and histopathological markers of metastatic melanoma. PLA1A mRNA and serum levels were significantly higher in patients with BRAF-mutated melanoma compared to the patients with NRAS-mutated melanoma. Notably, PLA1A can be used as a diagnostic marker for an efficient discrimination between naïve melanoma samples and advanced melanoma samples (sensitivity 91%, specificity 57%, and AUC 0.99), as well as BRAF-mutated melanoma samples (sensitivity 62%, specificity 61%, and AUC 0.75). Our findings suggest that PLA1A can be considered as a potential diagnostic marker for advanced and BRAF-mutated melanoma.
Collapse
Affiliation(s)
- Gang Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Oncology, Anyue Hospital of Traditional Chinese Medicine, Second Ziyang Hospital of Traditional Chinese Medicine, Ziyang, Sichuan, China
| | - Shuya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mazaher Maghsoudloo
- Laboratory of Systems Biology and Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Parham Jabbarzadeh Kaboli
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Youcai Deng
- Institute of Materia Medical, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hajar Heidari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - QingLian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
26
|
Iwama T, Kano K, Saigusa D, Ekroos K, van Echten-Deckert G, Vogt J, Aoki J. Development of an On-Tissue Derivatization Method for MALDI Mass Spectrometry Imaging of Bioactive Lipids Containing Phosphate Monoester Using Phos-tag. Anal Chem 2021; 93:3867-3875. [PMID: 33577289 DOI: 10.1021/acs.analchem.0c04479] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) is an emerging label-free method for mapping the distribution of diverse molecular species in tissue sections. Despite recent progress in MALDI-MSI analyses of lipids, it is still difficult to visualize minor bioactive lipids including lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P). Here, we have developed a novel on-tissue derivatization method using Phos-tag, a zinc complex that specifically binds to a phosphate monoester group. MALDI-MSI with Phos-tag derivatization made it possible to image LPA and S1P in the murine brain. Furthermore, we were able to visualize other low-abundance lipids containing phosphate monoester, such as phosphatidic acid and ceramide-1-phosphate. Compared with conventional MALDI-MS, this derivatization produced LPA images with high spatial accuracy discriminating LPA artificially produced during MALDI-MS analysis. In mice with deficiencies in enzymes that degrade LPA and S1P, we observed marked S1P and/or LPA accumulation in specific regions of the brain. Thus, the present study provides a simple and optimal way to reveal the spatial localization of potent bioactive lipid phosphates such as LPA and S1P in tissues.
Collapse
Affiliation(s)
- Taiga Iwama
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8577, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8577, Japan.,AMED-LEAP, Tokyo100-0004, Japan
| | - Daisuke Saigusa
- AMED-LEAP, Tokyo100-0004, Japan.,Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai980-8577, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Kim Ekroos
- Lipidomics Consulting Ltd., 02230 Espoo, Finland
| | | | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, University Medical Hospital, University of Cologne, 50923 Cologne, Germany
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8654, Japan.,Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai980-8577, Japan.,AMED-LEAP, Tokyo100-0004, Japan
| |
Collapse
|
27
|
Kano K, Matsumoto H, Kono N, Kurano M, Yatomi Y, Aoki J. Suppressing postcollection lysophosphatidic acid metabolism improves the precision of plasma LPA quantification. J Lipid Res 2021; 62:100029. [PMID: 33524376 PMCID: PMC7937979 DOI: 10.1016/j.jlr.2021.100029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/11/2021] [Accepted: 01/22/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potent signaling lipid, and state-dependent alterations in plasma LPA make it a promising diagnostic marker for various diseases. However, plasma LPA concentrations vary widely among reports, even under normal conditions. These variations can be attributed, at least in part, to the artificial metabolism of LPA after blood collection. Here, we aimed to develop an optimized plasma preparation method that reflects the concentration of LPA in the circulating blood. The main features of the devised method were suppression of both LPA production and degradation after blood collection by keeping whole blood samples at low temperature followed by the addition of an autotaxin inhibitor to plasma samples. Using this devised method, the LPA level did not change for 30 min after blood collection. Also, human and mouse LPA levels were found to be much lower than those previously reported, ranging from 40 to 50 nM with minimal variation across the individual. Finally, the increased accuracy made it possible to detect circadian rhythms in the levels of certain LPA species in mouse plasma. These results demonstrate the usefulness of the devised plasma preparation method to determine accurate plasma LPA concentrations.
Collapse
Affiliation(s)
- Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan; AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan
| | - Hirotaka Matsumoto
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kurano
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Clinical Laboratory, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Yatomi
- AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan; Department of Clinical Laboratory, University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Bunkyo-ku, Tokyo, Japan; Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-Ku, Sendai, Japan; AMED-LEAP, Japan Science and Technology Corporation, Kawaguchi, Saitama, Japan.
| |
Collapse
|
28
|
Milbeck SM, Bhattacharya SK. Alteration in Lysophospholipids and Converting Enzymes in Glaucomatous Optic Nerves. Invest Ophthalmol Vis Sci 2021; 61:60. [PMID: 32602905 PMCID: PMC7415893 DOI: 10.1167/iovs.61.6.60] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine whether lysophospholipid (LPL) profiles and corresponding conversion enzymes in the LPL pathways are altered in the optic nerve (ON) between human control and glaucoma samples. Methods Lipids extracted from control (n = 11) and glaucomatous (n = 12) ON samples using the Bligh and Dyer method were subjected to high-resolution mass spectrometry on a Q-exactive mass spectrometer coupled with a high-performance liquid chromatography (Accela 600) system. Analysis was performed for LPLs (lysophosphatidylcholines, lysophosphatidylserines, lysophosphatidylethanolamines, lysophosphatidylinositols, and lysosphingomyelines) using LipidSearch v.4.1, MZmine v.2.0, and MetaboAnalyst v.4.0. LPL synthesis and degradation pathway maps, utilizing UniProt and BRENDA database entries as needed, were created using Kyoto Encyclopedia of Genes and Genomes (KEGG)-based tools. The mRNA expression level in normal and glaucomatous human ON were analyzed using Gene Expression Omnibus (GEO) entry GSE45570. Protein amounts were determined using PHAST gel and dot blot and were used for normalization of protein amounts across samples. Western blot, ELISA, and protein quantification were performed using established protocols. Results Principal component analysis of ON LPL profile placed control and glaucomatous ONs in two distinct separate groups. Mass spectrometric analysis of ON revealed decrease in lysophosphatidic acid, lysophosphatidylethanolamine, lysophosphatidylcholine, and significant increase in diacylglycerol in glaucomatous ON. Statistical analysis of LPL conversion enzymes revealed significant overexpression of phosphatidate phosphatase LPIN2, phospholipid phosphatase 3, phosphatidylcholine-sterol acyltransferase, and calcium-dependent phospholipase 2, and significant downregulation of glycerol-3-phosphate acyltransferase 4 at mRNA level in glaucomatous ON. Western blot and ELISA confirmed proteomic differences between normal and diseased ON. Conclusions Our analysis revealed alterations in specific LPL levels and corresponding select enzyme-level changes in glaucomatous ON.
Collapse
|
29
|
Iwata Y, Kitajima S, Yamahana J, Shimomura S, Yoneda-Nakagawa S, Sakai N, Furuichi K, Ogura H, Sato K, Toyama T, Yamamura Y, Miyagawa T, Hara A, Shimizu M, Ohkawa R, Kurano M, Yatomi Y, Wada T. Higher serum levels of autotaxin and phosphatidylserine-specific phospholipase A 1 in patients with lupus nephritis. Int J Rheum Dis 2020; 24:231-239. [PMID: 33314787 DOI: 10.1111/1756-185x.14031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies revealed that lysophospholipids (LPLs) and related molecules, such as autotaxin (ATX) and phosphatidylserine-specific phospholipase A1 (PS-PLA1 ), are candidates for novel biomarkers in melanoma, glaucoma and diabetic nephropathy. However, it is not clear whether serum levels of ATX/ PS-PLA1 would be associated with pathological and clinical findings of lupus nephritis (LN). METHODS In this retrospective cohort study, serum samples were collected from 39 patients with LN and 37 patients with other glomerular diseases. The serum levels of ATX and PS-PLA1 were evaluated for an association with renal pathology and clinical phenotypes of LN. RESULTS The serum levels of ATX and PS-PLA1 were higher in the patients with LN as compared to those with other glomerular diseases. Among the classes of LN, the patients with class IV showed the trend of lower serum levels of ATX. Moreover, the patients with lower levels of ATX exhibited higher scores of activity index (AI) and chronicity index (CI). The level of ATX tended to be negatively correlated with AI and CI. These results might be explained by the effect of treatment, because the serum levels of ATX and PS-PLA1 were inversely correlated with the daily amount of oral prednisolone. Moreover, they did not reflect the level of proteinuria or kidney survival in LN patients. CONCLUSION Although the serum levels of ATX and PS-PLA1 were affected by the treatment, these levels were higher in the patients with LN. The potential clinical benefits of these markers need to be clarified in further studies.
Collapse
Affiliation(s)
- Yasunori Iwata
- Division of Infection Control, Kanazawa University, Kanazawa, Japan.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | | | - Shuji Shimomura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | | | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Division of Blood Purification, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Division of Nephrology, Kanazawa Medical University School of Medicine, Ishikawa, Japan
| | - Hisayuki Ogura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taro Miyagawa
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, University of Tokyo, Tokyo, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
30
|
Kurano M, Tsukamoto K, Hara M, Tsuneyama K, Nishikawa T, Ikeda H, Yatomi Y. Modulation of sphingosine 1-phosphate by hepatobiliary cholesterol handling. FASEB J 2020; 34:14655-14670. [PMID: 32918529 DOI: 10.1096/fj.202001397r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 11/11/2022]
Abstract
Hepatobiliary cholesterol handling, mediated by Niemann-Pick C1-like 1 protein (NPC1L1) and ABCG5/8, is well-known to contribute to the homeostasis of cholesterol. We attempted to elucidate the impact of hepatobiliary cholesterol handling on the homeostasis of sphingolipids and lysophospholipids, especially sphingosine 1-phosphate (S1P). We induced the overexpression of NPC1L1 or ABCG5/8 in the mouse liver. Hepatic NPC1L1 overexpression increased the plasma and hepatic S1P levels, while it decreased the biliary S1P levels, and all of these changes were inhibited by ezetimibe. The ability of HDL to activate Akt in the endothelial cells was augmented by hepatic NPC1L1 overexpression. NPC1L1-mediated S1P transport was confirmed by both in vitro and in vivo studies conducted using C17 S1P, an exogenous S1P analog. Upregulation of apolipoprotein M (apoM) was involved in these modulations, although apoM was not necessary for these modulations. Moreover, the increase in the plasma S1P levels also observed in ABCG5/8-overexpressing mice was dependent on the elevation of the plasma apoM levels. In regard to other sphingolipids and lysophospholipids, ceramides were similarly modulated by NPC1L1 to S1P, while other lipids were differently influenced by NPC1L1 or ABCG5/8 from S1P. Hepatobiliary cholesterol handling might also regulate the functional lipids, such as S1P.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Masumi Hara
- Department of Medicine IV, Mizonokuchi Hospital, Teikyo University School of Medicine, Kawasaki, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Regulation of plasma glycero-lysophospholipid levels by lipoprotein metabolism. Biochem J 2020; 476:3565-3581. [PMID: 31746967 DOI: 10.1042/bcj20190498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/26/2022]
Abstract
Glycero-lysophospholipids, such as lysophosphatidic acids and lysophosphatidylserine, are gathering attention, since specific receptors have been identified. Most of these compounds have been proposed to be bound to albumin, while their associations with lipoproteins have not been fully elucidated. Therefore, in this study, we aimed to investigate the contents of glycero-lysophospholipids (lysophosphatidic acids, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylinositol, and lysophosphatidylserine) on lipoproteins and the modulation of their metabolism by lipoprotein metabolism. We observed that moderate amounts of glycero-lysophospholipids, with the exception of lysophosphatidylserine, were distributed on the LDL and HDL fractions, and glycero-lysophospholipids that had bound to albumin were observed in lipoprotein fractions when they were co-incubated. The overexpression of cholesteryl ester transfer protein decreased the plasma levels of lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, and lysophosphatidylinositol and it increased their contents in apoB-containing lipoproteins, while it decreased their contents in HDL and lipoprotein-depleted fractions in mice. The overexpression of the LDL receptor (LDLr) decreased the plasma levels of lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, and lysophosphatidylinositol and decreased the contents of these compounds in the LDL, HDL, and lipoprotein-depleted fractions, while the knockdown of the LDLr increased them. These results suggest the potential importance of glycero-lysophospholipids in the pleiotropic effects of lipoproteins as well as the importance of lipoprotein metabolism in the regulation of glycero-lysophospholipids.
Collapse
|
32
|
Morita Y, Kurano M, Morita E, Shimamoto S, Igarashi K, Sawabe M, Aoki J, Yatomi Y. Urinary autotaxin concentrations are associated with kidney injury. Clin Chim Acta 2020; 509:156-165. [PMID: 32540127 DOI: 10.1016/j.cca.2020.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND While basic researches have shown the involvement of the autotaxin-lysophosphatidic acid (ATX-LPA) axis in the pathogenesis of kidney diseases, no clinical studies have revealed the association between urinary ATX concentrations and kidney disease yet. We investigate the clinical characteristics in relation to the urinary ATX concentrations and the potential association between urinary ATX concentrations and various kidney diseases. METHODS We measured the urinary ATX concentrations in residual urine samples after routine clinical testing from a total of 326 subjects with various kidney diseases and healthy subjects. We compared the urinary ATX concentrations in relation to clinical parameters and urinary biomarkers, and investigated their association with various kidney diseases. RESULTS The urinary ATX concentrations were associated with the gender, eGFR, presence/absence of hematuria, serum ATX, urinary concentrations of total protein (TP), microalbumin, N-acetyl-β-D-glucosaminidase (NAG), α1-microglobulin (α1-MG), and transforming growth factor-β. Multiple regression analyses identified urinary α1-MG, age, urinary TP, NAG, and hematuria as being significantly associated with the urinary ATX concentrations. Urinary ATX concentrations were higher in subjects with membranous nephropathy and systemic lupus erythematosus than in the control subjects. CONCLUSIONS Urinary ATX might be associated with pathological conditions of the kidney associated with kidney injury.
Collapse
Affiliation(s)
- Yoshifumi Morita
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan; Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Eriko Morita
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan
| | | | - Koji Igarashi
- Bioscience Division, TOSOH Corporation, Kanagawa, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, the University of Tokyo Hospital, Tokyo, Japan; Department of Clinical Laboratory Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Chapman MJ, Orsoni A, Tan R, Mellett NA, Nguyen A, Robillard P, Giral P, Thérond P, Meikle PJ. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res 2020; 61:911-932. [PMID: 32295829 PMCID: PMC7269759 DOI: 10.1194/jlr.p119000543] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese hypertriglyceridemic hypercholesterolemic males [n = 12; lipoprotein (a) <10 mg/dl] received pitavastatin calcium (4 mg/day) for 180 days in a single-phase unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids {LPC, lysophosphatidylinositol (LPI), lysoalkylphosphatidylcholine [LPC(O)]; 9, 0.2, and 0.14 mol per mole of apoB, respectively; all P < 0.001 vs. LDL1-4}, suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI, and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5-3 mol per mole of apoB; 3-7 mmol per mole of PC) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.
Collapse
Affiliation(s)
- M John Chapman
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France; Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. mailto:
| | - Alexina Orsoni
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Ricardo Tan
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitié-Salpetrière University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
34
|
Elevated phosphatidylserine-specific phospholipase A1 level in hyperthyroidism. Clin Chim Acta 2020; 503:99-106. [DOI: 10.1016/j.cca.2020.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/31/2022]
|
35
|
Hahnefeld L, Gurke R, Thomas D, Schreiber Y, Schäfer SM, Trautmann S, Snodgrass IF, Kratz D, Geisslinger G, Ferreirós N. Implementation of lipidomics in clinical routine: Can fluoride/citrate blood sampling tubes improve preanalytical stability? Talanta 2020; 209:120593. [DOI: 10.1016/j.talanta.2019.120593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
|
36
|
Kurano M, Yasukawa K, Ikeda H, Aoki J, Yatomi Y. Redox state of albumin affects its lipid mediator binding characteristics. Free Radic Res 2019; 53:892-900. [DOI: 10.1080/10715762.2019.1641603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory, Medicine, The University of Tokyo, Tokyo, Japan
| | - Keiko Yasukawa
- Department of Clinical Laboratory, Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Ikeda
- Department of Clinical Laboratory, Medicine, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Yagi T, Shoaib M, Kuschner C, Nishikimi M, Becker LB, Lee AT, Kim J. Challenges and Inconsistencies in Using Lysophosphatidic Acid as a Biomarker for Ovarian Cancer. Cancers (Basel) 2019; 11:cancers11040520. [PMID: 30979045 PMCID: PMC6521627 DOI: 10.3390/cancers11040520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Increased detection of plasma lysophosphatidic acid (LPA) has been proposed as a potential diagnostic biomarker in ovarian cancer, but inconsistency exists in these reports. It has been shown that LPA can undergo an artificial increase during sample processing and analysis, which has not been accounted for in ovarian cancer research. The aim of this study is to provide a potential explanation about how the artificial increase in LPA may have interfered with previous LPA analysis in ovarian cancer research. Using an established LC-MS method, we measured LPA and other lysophospholipid levels in plasma obtained from three cohorts of patients: non-cancer controls, patients with benign ovarian tumors, and those with ovarian cancer. We did not find the LPA level to be higher in cancer samples. To understand this inconsistency, we observed that LPA content changed more significantly than other lysophospholipids as a function of plasma storage time while frozen. Additionally, only LPA was found to be adversely impacted by incubation time depending on the Ethylenediaminetetraacetic acid (EDTA) concentration used during blood drawing. We also show that the inhibition of autotaxin effectively prevented artificial LPA generation during incubation at room temperature. Our data suggests that the artificial changes in LPA content may contribute to the discrepancies reported in literature. Any future studies planning to measure plasma LPA should carefully design the study protocol to consider these confounding factors.
Collapse
Affiliation(s)
- Tsukasa Yagi
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Muhammad Shoaib
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Cyrus Kuschner
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Mitsuaki Nishikimi
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Lance B Becker
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| | - Annette T Lee
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
- Robert S. Boas Center for Genomics & Human Genetics, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
| | - Junhwan Kim
- Center for Immunology and Inflammation, Feinstein Institute for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY 11549, USA.
| |
Collapse
|