1
|
Zhao J, Zhu T, Liao Q, Sun J, Liu F. Circulating exo-miRNA-27a-5p is a novel biomarker of the tofacitinib treatment response in rheumatoid arthritis. BMC Rheumatol 2025; 9:49. [PMID: 40296164 PMCID: PMC12036121 DOI: 10.1186/s41927-025-00502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Effective biological markers able to monitor the response of Janus kinase inhibitor (JAKi) are lacking. Exosomal microRNAs (exomiRNAs) can alter their expression during treatment and are ideal biomarkers for therapeutic interventions. In this study, we explored potential biomarkers for monitoring tofacitinib treatment response in patients with RA. METHODS Peripheral blood mononuclear cells (PBMCs) were collected from 35 healthy controls (HCs) and 74 patients with methotrexate (MTX)-resistant new-onset RA. We analyzed the profiles of exomiRNAs using next-generation sequencing (NGS) and verified them using quantitative real-time polymerase chain reaction (qRT-PCR). The functional roles of the selected exomiRNAs were analyzed using bioinformatics tools. Potential exomiRNAs were validated in MTX-resistant RA patients treated with tofacitinib for 3 months. RESULTS Fifty-six differentially expressed exomiRNAs were identified. High expressions of the exo-(miR-548ah-3p, miR-378 g, miR-27a-5p, and miR-30c-2-3p) were validated by qRT-PCR. Enrichment analysis indicated that these exomiRNAs may regulate immune cells and mediate immune responses. Exo-miR-27a-5p levels significantly decreased after tofacitinib treatment (p < 0.0001) and showed a strong correlation with the DAS28, RF and ESR. Receiver operating characteristic curve analysis showed that changes in the expression levels of exo-miR-27a-5p were significantly correlated with tofacitinib therapy (AUC = 0.92, p < 0.0001). CONCLUSIONS This study suggests that circulating exo-miR-27a-5p is a novel non-invasive biomarker to monitor the response to tofacitinib treatment.
Collapse
Affiliation(s)
- Jiwei Zhao
- Department of Rheumatology and Immunology, Lishui District Traditional Hospital of Chinese Medicine, Nanjing, China
- Department of Clinical Medical, Jiangsu Health Vocational College, Nanjing, China
- Department of Laboratory Medicine, Lishui District Traditional Hospital of Chinese Medicine, Nanjing, China
| | - Tianjun Zhu
- Department of Rheumatology and Immunology, Lishui District Traditional Hospital of Chinese Medicine, Nanjing, China
- Department of Clinical Medical, Jiangsu Health Vocational College, Nanjing, China
- Department of Laboratory Medicine, Lishui District Traditional Hospital of Chinese Medicine, Nanjing, China
| | - Qiu Liao
- Department of Orthopaedics, Lishui District Traditional Hospital of Chinese Medicine, Nanjing, China
| | - Jijia Sun
- Teaching and Research Section of the Chinese Materia School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Fuqun Liu
- Department of Rheumatology and Immunology, Lishui District Traditional Hospital of Chinese Medicine, Nanjing, China.
- Department of Clinical Medical, Jiangsu Health Vocational College, Nanjing, China.
- Department of Clinical Medical, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Sadeghi M, Tavakol Afshari J, Fadaee A, Dashti M, Kheradmand F, Dehnavi S, Mohammadi M. Exosomal miRNAs involvement in pathogenesis, diagnosis, and treatment of rheumatoid arthritis. Heliyon 2025; 11:e41983. [PMID: 39897907 PMCID: PMC11786886 DOI: 10.1016/j.heliyon.2025.e41983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune arthropathy worldwide. The initiation, and progression of RA involves multiple cellular and molecular pathways, and biological interactions. Micro RNAs (miRNAs) are characterized as a class of small non-coding RNAs that influence gene expression at the post-transcriptional level. Exosomes are biological nano-vesicles that are secreted by different types of cells. They facilitate communication and signalling between cells by transferring a variety of biological substances, such as proteins, lipids, and nucleic acids like mRNA and miRNA. Exosomal miRNAs were shown to be involved in normal and pathological conditions. In RA, deregulated exosomal miRNA expression was observed to be involved in the intercellular communication between synovial cells, and inflammatory or regulatory immune cells. Furthermore, circulating exosomal miRNAs were introduced as available diagnostic and prognostic biomarkers for RA pathology. The current review categorized and summarized dysregulated pathologically involved and circulating exosomal miRNAs in the context of RA. It highlighted present situation and future perspective of using exosomal miRNAs as biomarkers and a specific gene therapy approach for RA treatment.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Fadaee
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kheradmand
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Abebaw D, Akelew Y, Adugna A, Teffera ZH, Tegegne BA, Fenta A, Selabat B, Amare GA, Getinet M, Jemal M, Baylie T, Atnaf A. Extracellular vesicles: immunomodulation, diagnosis, and promising therapeutic roles for rheumatoid arthritis. Front Immunol 2024; 15:1499929. [PMID: 39624102 PMCID: PMC11609219 DOI: 10.3389/fimmu.2024.1499929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025] Open
Abstract
Extracellular vesicles (EV) can be produced as part of pathology and physiology with increased amounts in pathological conditions. EVs can carry and transfer cargo such as proteins, nucleic acids, and lipids to target cells and mediate intercellular communication resulting in modulation of gene expression, signaling pathways, and phenotype of recipient cells. EVs greatly influence the extracellular environment and the immune response. Their immunomodulatory properties are crucial in rheumatoid arthritis (RA), a condition marked by dysregulated immune response. EVs can modulate the functions of innate and adaptive immune cells in RA pathogenesis. Differentially expressed EV-associated molecules in RA, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), messenger RNAs (mRNAs) and proteins are promising markers to diagnose the disease. miRNA, lncRNA, and circular RNA (circRNA) cargos in EV regulate inflammation and the pathogenic functions of RA fibroblast-like synoviocytes (RA-FLS). Downregulated molecules in RA tissue and drugs can be encapsulated in EVs for RA therapy. This review provides an updated overview of EVs' immunomodulatory, diagnostic, and therapeutic roles, particularly emphasizing mesenchymal stem cell-derived EVs (MSC-EVs).
Collapse
Affiliation(s)
- Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantegize Selabat
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
4
|
Liu YR, Wang JQ, Fang L, Xia Q. Diagnostic and Therapeutic Roles of Extracellular Vesicles and Their Enwrapped ncRNAs in Rheumatoid Arthritis. J Inflamm Res 2024; 17:5475-5494. [PMID: 39165320 PMCID: PMC11334919 DOI: 10.2147/jir.s469032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic inflammatory disease whose precise pathogenesis remains mysterious. The involvement of epigenetic regulation in the pathogenesis of RA is one of the most anticipated findings, among which non-coding RNAs (ncRNAs) hold great application promise as diagnostic and therapeutic biomarkers for RA. Extracellular vesicles (EVs) are a heterogeneous group of nano-sized, membrane-enclosed vesicles that mediate intercellular communication and substance exchange, especially the transfer of ncRNAs from donor cells, thereby regulating the functional activities and biological processes of recipient cells. In light of the significant correlation between EVs, ncRNAs, and RA, we first documented expression levels of EVs and their-encapsulated ncRNAs in RA individuals, and methodically discussed their-implicated signaling pathways and phenotypic changes. The last but not least, we paied special attention to the therapeutic benefits of gene therapy reagents specifically imitating or silencing candidate ncRNAs with exosomes as carriers on RA animal models, and briefly highlighted their clinical application advantage and foreground. In conclusion, the present review may be conducive to a deeper comprehension of the diagnostic and therapeutic roles of EVs-enwrapped ncRNAs in RA, with special emphasis on exosomal ncRNAs, which may offer hints for the monitoring and treatment of RA.
Collapse
Affiliation(s)
- Ya-ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, People’s Republic of China
| | - Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei, 230000, People’s Republic of China
- Department of Pharmacy, Hefei Fourth People’s Hospital, Hefei, 230000, People’s Republic of China
- Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei, 230000, People’s Republic of China
| | - Ling Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, People’s Republic of China
| | - Quan Xia
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People’s Republic of China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, 230022, People’s Republic of China
| |
Collapse
|
5
|
Gong J, Zhang X, Khan A, Liang J, Xiong T, Yang P, Li Z. Identification of serum exosomal miRNA biomarkers for diagnosis of Rheumatoid arthritis. Int Immunopharmacol 2024; 129:111604. [PMID: 38320350 DOI: 10.1016/j.intimp.2024.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation-induced joint damage, which can cause lasting disability. Therefore, early diagnosis and treatment of RA are crucial. Herein, we evaluated whether exosomal microRNAs (miRNAs) could be served as promising biomarkers that can accelerate the diagnosis of RA and development of therapies for RA. METHODS First, we performed small RNA sequencing to determine the miRNA profiles of serum exosomes within a screening cohort comprised of 18 untreated active RA patients, along with 18 age and gender-matched healthy controls (HCs). Subsequently, the miRNA profiles were then validated in a training cohort consisting of 24 RA patients and 24 HCs by RT-qPCR. Finally, the selected exosomal miRNAs were validated in a larger cohort comprising 108 RA patients and 103 HCs. The diagnostic efficacy of the exosomal miRNAs was evaluated by receiver operating characteristic (ROC) curve analysis. Biological functions of the miRNAs were determined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS Our results first demonstrated a noteworthy upregulation of three candidate miRNAs (miR-885-5p, miR-6894-3p, and miR-1268a) in the RA patients' serum exosomes compared to HCs. The combination of three miRNAs along with anti- citrullinated peptide antibodies (ACPA) exhibited excellent diagnostic accuracy, yielding an area under the curve (AUC) of 0.963 (95 % CI : 0.941-0.984), sensitivity of 87.96 %, and specificity of 93.20 %. Notably, miR-885-5p exhibited remarkable discriminatory capacity by itself in indistinguishing ACPA- negative RA patients from HCs, with an AUC of 0.993 (95 % CI : 0.978-1.000), sensitivity of 96.67 %, and specificity of 100 %. Moreover, the expression of miR-1268a in the assessment of therapeutic effectiveness displayed significant reduction on 29th day of Methotrexate (MTX) treatment in RA patients. This decreased expression paralleled with trends observed in tender 28-joint count (TJC28), swollen 28-joint count (SJC28), and disease activity score with 28-joint count using C-reactive protein (DAS28-CRP), all of which are indicative of RA disease activity. Finally, predictive analysis indicated that, these three exosomal miRNAs target pivotal signaling molecules involved in inflammatory pathways, thereby demonstrating effective modulation of the immune system. CONCLUSIONS In this study, we successfully demonstrated the promising potential for serum exosomal miRNAs, particularly miR-885-5p, miR-6894-3p and miR-1268a as biomarkers for early diagnosis and prediction of RA for the first time.
Collapse
Affiliation(s)
- Jianmin Gong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Ping Yang
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
6
|
He XH, Xiao YT, Chen WY, Wang MJ, Wu XD, Mei LY, Gao KX, Huang QC, Huang RY, Chen XM. In silico analysis of serum miRNA profiles in seronegative and seropositive rheumatoid arthritis patients by small RNA sequencing. PeerJ 2023; 11:e15690. [PMID: 37525657 PMCID: PMC10387234 DOI: 10.7717/peerj.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 08/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a refractory autoimmune disease, affecting about 1% of the world's population. RA is divided into seronegative RA and seropositive RA. However, biomarkers for discriminating between seronegative and seropositive RA have not been reported. In this study, we profiled serum miRNAs in seronegative RA patients (N-RA), seropositive RA patients (P-RA) and healthy controls (HC) by small RNA sequencing. Results indicated that compared with HC group, there were one up-regulated and four downregulated miRNAs in N-RA group (fold change ≥ 2 and P value < 0.05); compared with P-RA group, there were two up-regulated and four downregulated miRNAs in N-RA group; compared with HC group, there were three up-regulated and four downregulated miRNAs in P-RA group. Among them, the level of hsa-miR-362-5p in N-RA group was up-regulated compared with that in HC group and P-RA group, and the level of hsa-miR-6855-5p and hsa-miR-187-3p in P-RA group was upregulated compared with that in N-RA group and HC group. Validation by qPCR confirmed that serum hsa-miR-362-5p level was elevated in N-RA group. Subsequently, by analyzing the target genes using RNAhybrid, PITA, Miranda and TargetScan and functions of differential miRNAs utilizing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the target genes and molecular pathways regulated by miRNAs in seronegative RA and seropositive RA were roughly the same, and miRNAs in these two diseases may participate in the occurrence and development of diseases by regulating the immune system. In conclusion, this study revealed the profiles of serum miRNAs in seronegative and seropositive RA patients for the first time, providing potential biomarkers and targets for the diagnosis and treatment of seronegative and seropositive RA.
Collapse
Affiliation(s)
- Xiao-Hong He
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yun-Ting Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Ying Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Jie Wang
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiao-Dong Wu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Yan Mei
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Xin Gao
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-Chun Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| | - Run-Yue Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xiu-Min Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
7
|
Ma J, Zhao W, Pei X, Li X, Zhao W. MicroRNA-345-3p is a potential biomarker and ameliorates rheumatoid arthritis by reducing the release of proinflammatory cytokines. J Orthop Surg Res 2023; 18:399. [PMID: 37264454 DOI: 10.1186/s13018-023-03797-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/13/2023] [Indexed: 06/03/2023] Open
Abstract
OBJECTIVES The study was to explore the influence of microRNA (miR)-345-3p on proinflammatory cytokines in patients with rheumatoid arthritis (RA). METHODS A total of 32 RA patients and 32 healthy patients were enrolled. Proinflammatory factors in patients' serum were detected by ELISA, and miR-345-3p was detected by RT-qPCR. The correlation between miR-345-3p expression and proinflammatory factors in RA patients was analyzed. The diagnostic value of miR-345-3p and proinflammatory factors in RA patients was analyzed by receiver operating curve diagnosis. The predictive value of miR-345-3p levels and proinflammatory factors in RA patients was analyzed by multivariate Cox regression. HFLS-RA and HFLS cells were cultured, in which miR-345-3p and proinflammatory cytokines were detected by RT-qPCR. Cell proliferation and apoptosis were determined by CCK-8 and flow cytometry, respectively. RESULTS MiR-345-3p was lowly expressed in the serum of RA patients. MiR-345-3p and proinflammatory factors were of diagnostic and predictive values in RA. Elevated miR-345-3p restrained the production of proinflammatory factors of HFLS-RA cells, improved cell proliferation, and reduced apoptosis. CONCLUSION MiR-345-3p is a potential biomarker and ameliorates RA by reducing the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - Wei Zhao
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - Xue Pei
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China
| | - XinZhi Li
- Department of Orthopaedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang City, 443001, Hubei Province, China
| | - Wei Zhao
- Department of Orthopedics, Jiu Quan People's Hospital, No. 22, West Street, Suzhou District, Jiu Quan City, 735000, Gansu Province, China.
| |
Collapse
|
8
|
Yang Y, Peng Y, Li Y, Shi T, Luan Y, Yin C. Role of stem cell derivatives in inflammatory diseases. Front Immunol 2023; 14:1153901. [PMID: 37006266 PMCID: PMC10062329 DOI: 10.3389/fimmu.2023.1153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells of mesodermal origin with the ability of self-renewal and multidirectional differentiation, which have all the common characteristics of stem cells and the ability to differentiate into adipocytes, osteoblasts, neuron-like cells and other cells. Stem cell derivatives are extracellular vesicles(EVs) released from mesenchymal stem cells that are involved in the process of body’s immune response, antigen presentation, cell differentiation, and anti-inflammatory. EVs are further divided into ectosomes and exosomes are widely used in degenerative diseases, cancer, and inflammatory diseases due to their parental cell characteristics. However, most diseases are closely related to inflammation, and exosomes can mitigate the damage caused by inflammation in terms of suppressing the inflammatory response, anti-apoptosis and promoting tissue repair. Stem cell-derived exosomes have become an emerging modality for cell-free therapy because of their high safety and ease of preservation and transportation through intercellular communication. In this review, we highlight the characteristics and functions of MSCs-derived exosomes and discuss the regulatory mechanisms of MSCs-derived exosomes in inflammatory diseases and their potential applications in clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Yuxi Yang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yiqiu Peng
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingying Li
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tingjuan Shi
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| |
Collapse
|
9
|
Bo L, Jin X, Hu Y, Yang R. Role of Liquid Biopsies in Rheumatoid Arthritis. Methods Mol Biol 2023; 2695:237-246. [PMID: 37450123 DOI: 10.1007/978-1-0716-3346-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease caused by genetic and environmental factors. Early diagnosis is crucial for effective therapy and prognosis of RA, while biomarkers play important roles in early diagnosis. Traditional laboratory tests include rheumatoid factor, anti-cyclic citrullinated peptide antibody, which are inadequate in the ability of early diagnosis. Liquid biopsy technology is a technique using biomarkers found in the blood, urine, and other biological samples from patients, including DNA, RNA, exosome, etc. Evidence indicates that these biomarkers are involved in pathological and physiological conditions of RA. We reviewed the effects of liquid biopsy technology in the early diagnosis of RA and may provide new ideas for effective and precise treatment.
Collapse
Affiliation(s)
- Lin Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaojia Jin
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yaqi Hu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ru Yang
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Jiang Y, Zhong S, He S, Weng J, Liu L, Ye Y, Chen H. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front Immunol 2023; 14:1087925. [PMID: 36817438 PMCID: PMC9929281 DOI: 10.3389/fimmu.2023.1087925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, diagnostic and therapeutic approaches for rheumatoid arthritis (RA) have continued to improve. However, in the advanced stages of the disease, patients are unable to achieve long-term clinical remission and often suffer from systemic multi-organ damage and severe complications. Patients with RA usually have no overt clinical manifestations in the early stages, and by the time a definitive diagnosis is made, the disease is already at an advanced stage. RA is diagnosed clinically and with laboratory tests, including the blood markers C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) and the autoantibodies rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPA). However, the presence of RF and ACPA autoantibodies is associated with aggravated disease, joint damage, and increased mortality, and these autoantibodies have low specificity and sensitivity. The etiology of RA is unknown, with the pathogenesis involving multiple factors and clinical heterogeneity. The early diagnosis, subtype classification, and prognosis of RA remain challenging, and studies to develop minimally invasive or non-invasive biomarkers in the form of biofluid biopsies are becoming more common. Non-coding RNA (ncRNA) molecules are composed of long non-coding RNAs, small nucleolar RNAs, microRNAs, and circular RNAs, which play an essential role in disease onset and progression and can be used in the early diagnosis and prognosis of RA. In this review of the diagnostic and prognostic approaches to RA disease, we provide an overview of the current knowledge on the subject, focusing on recent advances in mRNA-ncRNA as diagnostic and prognostic biomarkers from the biofluid to the tissue level.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Ye
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Department of Radiology, GuangzhouPanyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| |
Collapse
|
11
|
Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, Azargoonjahromi A, Nabi-Afjadi M, Payandeh Z, Zalpoor H, Shanehbandi D. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27:74. [PMID: 36064322 PMCID: PMC9446857 DOI: 10.1186/s11658-022-00377-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Dariush Shanehbandi
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
12
|
Sun J, Ye L, Shi Y, Wang X, Zhao X, Ren S, Fan J, Shao H, Qin B. MiR-6511b-5p suppresses metastasis of pMMR colorectal cancer through methylation of CD44 by directly targeting BRG1. Clin Transl Oncol 2022; 24:1940-1953. [PMID: 35590122 PMCID: PMC9418090 DOI: 10.1007/s12094-022-02845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Distal metastases are a major cause of poor prognosis in colorectal cancer patients. Approximately 95% of metastatic colorectal cancers are defined as DNA mismatch repair proficient (pMMR). Our previous study found that miR-6511b-5p was downregulated in pMMR colorectal cancer. However, the mechanism of miR-6511b-5p in pMMR colorectal cancer metastases remain unclear. METHODS We first used quantitative real-time PCR to evaluate the role of miR-6511b-5p in colorectal cancer. Second, we conducted invasion assays and wound healing assays to investigate the role of miR-6511b-5p and CD44 in colorectal cancer cells metastases. Third, luciferase reporter assay, in situ hybridization (ISH), and immunohistochemistry assays were performed to study the relationship between miR-6511b-5p and BRG1. Finally, real-time quantitative PCR, immunohistochemistry, and chromatin immunoprecipitation (ChIP) assays were performed to analyze the relationship between BRG1 and CD44 in colorectal cancer. RESULTS We found that lower expression of miR-6511b-5p appeared more often in pMMR colorectal cancer patients compared with dMMR (mismatch repair deficient) cases, and was positively correlated with metastases. In vitro, overexpression of miR-6511b-5p inhibited metastasis by decreasing CD44 expression via directly targeting BRG1 in colorectal cancer. Furthermore, BRG1 knockdown decreased the expression of CD44 by promoting CD44 methylation in colorectal cancer cells. CONCLUSION Our data suggest that miR-6511b-5p may act as a promising biomarker and treatment target for pMMR colorectal cancer, particularly in metastatic patients. Mechanistically, miR-6511b-5p suppresses invasion and migration of colorectal cancer cells through methylation of CD44 via directly targeting BRG1.
Collapse
Affiliation(s)
- JinMing Sun
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ling Ye
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yuan Shi
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - XingWei Wang
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - XiaFei Zhao
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - ShengYong Ren
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - JunWei Fan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - HuanZhang Shao
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - BingYu Qin
- Department of Critical Care Medicine, Henan Key Laboratory for Critical Care Medicine, Zhengzhou Key Laboratory for Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
13
|
Alghamdi M, Alamry SA, Bahlas SM, Uversky VN, Redwan EM. Circulating extracellular vesicles and rheumatoid arthritis: a proteomic analysis. Cell Mol Life Sci 2021; 79:25. [PMID: 34971426 PMCID: PMC11072894 DOI: 10.1007/s00018-021-04020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Circulating extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by most cells for intracellular communication and transportation of biomolecules. EVs carry proteins, lipids, nucleic acids, and receptors that are involved in human physiology and pathology. EV cargo is variable and highly related to the type and state of the cellular origin. Three subtypes of EVs have been identified: exosomes, microvesicles, and apoptotic bodies. Exosomes are the smallest and the most well-studied class of EVs that regulate different biological processes and participate in several diseases, such as cancers and autoimmune diseases. Proteomic analysis of exosomes succeeded in profiling numerous types of proteins involved in disease development and prognosis. In rheumatoid arthritis (RA), exosomes revealed a potential function in joint inflammation. These EVs possess a unique function, as they can transfer specific autoantigens and mediators between distant cells. Current proteomic data demonstrated that exosomes could provide beneficial effects against autoimmunity and exert an immunosuppressive action, particularly in RA. Based on these observations, effective therapeutic strategies have been developed for arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O Box 80215, Jeddah, 21589, Saudi Arabia
| | - Sami M Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah, 21589, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934, Alexandria, Egypt.
| |
Collapse
|
14
|
Rodríguez-Muguruza S, Altuna-Coy A, Castro-Oreiro S, Poveda-Elices MJ, Fontova-Garrofé R, Chacón MR. A Serum Biomarker Panel of exomiR-451a, exomiR-25-3p and Soluble TWEAK for Early Diagnosis of Rheumatoid Arthritis. Front Immunol 2021; 12:790880. [PMID: 34868079 PMCID: PMC8636106 DOI: 10.3389/fimmu.2021.790880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Background The etiology of rheumatoid arthritis (RA) remains poorly understood. Early and accurate diagnosis still difficult to achieve. Inflammatory related molecules released into the circulation such cytokines and exosome-derived microRNAs (exomiRNAs) could be good candidates for early diagnosis of autoimmune diseases. We sought to discover a serum biomarker panel for the early detection of RA based on exomiRNAs and inflammatory markers. Methods A 179 miRNAs-microarray panel was analyzed in a pilot study (4 early RA and 4 controls). Validation of deregulated exomiRNAs was performed in a larger cohort (24 patients with early RA and 24 controls). miRNet software was used to predict exomiRNA gene-targets interactions. Potentially altered pathways were analyzed by Reactome pathway database search. STRING database was used to predict protein-protein interaction networks. Enzyme-linked immunosorbent assay was used to measure serum levels of sTWEAK and sCD163. Signature biomarker candidates were statistical analyzed. Results We detected 11 differentially expressed exomiRNAs in early RA pilot study. Validation analysis revealed that 6/11 exomiRNAs showed strong agreement with the pilot microarray data (exomiR-144-3p, -25-3p, -15a-5p, -451a, -107 and -185-5p). sTWEAK and sCD163 biomarkers were significantly elevated in the serum of patients with early RA. Receiver operating characteristic (ROC) analysis showed that the best panel to diagnose early RA contained exomiR-451a, exomiR-25-3p and sTWEAK, and could correctly classify 95.6% of patients, with an area under the ROC curve of 0.983 and with 100% specificity and 85.7% sensitivity. The YWHAB gene was identified as a common target of the putative miRNA-regulated pathways. Conclusion A novel serum biomarker panel composed of exomiR-451a, exomiR-25-3p and serum levels of sTWEAK may have use in the early clinical diagnosis of RA. A new predicted exomiRNA-target gene YHWAB has been identified and may have a relevant role in the development of RA.
Collapse
Affiliation(s)
- Samantha Rodríguez-Muguruza
- Disease Biomarkers and Molecular Mechanisms Group, Institut D'investigaciò Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain.,Rheumatology Section, Joan XXIII University Hospital, Tarragona, Spain
| | - Antonio Altuna-Coy
- Disease Biomarkers and Molecular Mechanisms Group, Institut D'investigaciò Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain.,Rheumatology Section, Joan XXIII University Hospital, Tarragona, Spain
| | | | | | - Ramon Fontova-Garrofé
- Disease Biomarkers and Molecular Mechanisms Group, Institut D'investigaciò Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain.,Rheumatology Section, Joan XXIII University Hospital, Tarragona, Spain
| | - Matilde R Chacón
- Disease Biomarkers and Molecular Mechanisms Group, Institut D'investigaciò Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain.,Rheumatology Section, Joan XXIII University Hospital, Tarragona, Spain
| |
Collapse
|
15
|
Ali SA, Peffers MJ, Ormseth MJ, Jurisica I, Kapoor M. The non-coding RNA interactome in joint health and disease. Nat Rev Rheumatol 2021; 17:692-705. [PMID: 34588660 DOI: 10.1038/s41584-021-00687-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs have distinct regulatory roles in the pathogenesis of joint diseases including osteoarthritis (OA) and rheumatoid arthritis (RA). As the amount of high-throughput profiling studies and mechanistic investigations of microRNAs, long non-coding RNAs and circular RNAs in joint tissues and biofluids has increased, data have emerged that suggest complex interactions among non-coding RNAs that are often overlooked as critical regulators of gene expression. Identifying these non-coding RNAs and their interactions is useful for understanding both joint health and disease. Non-coding RNAs regulate signalling pathways and biological processes that are important for normal joint development but, when dysregulated, can contribute to disease. The specific expression profiles of non-coding RNAs in various disease states support their roles as promising candidate biomarkers, mediators of pathogenic mechanisms and potential therapeutic targets. This Review synthesizes literature published in the past 2 years on the role of non-coding RNAs in OA and RA with a focus on inflammation, cell death, cell proliferation and extracellular matrix dysregulation. Research to date makes it apparent that 'non-coding' does not mean 'non-essential' and that non-coding RNAs are important parts of a complex interactome that underlies OA and RA.
Collapse
Affiliation(s)
- Shabana A Ali
- Bone and Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA. .,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Michelle J Ormseth
- Department of Research and Development, Veterans Affairs Medical Center, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
The emerging roles of exosomes in autoimmune diseases, with special emphasis on microRNAs in exosomes. Pharmacol Res 2021; 169:105680. [PMID: 34010670 DOI: 10.1016/j.phrs.2021.105680] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases include rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic vasculitis, dermatomyositis, systemic sclerosis (SSc), mixed connective tissue disease, autoimmune hemolytic anemia, autoimmune thyroiditis (AITD) and ulcerative colitis. Exosomes exist in body fluids, including blood, saliva, urine, cerebrospinal fluid and milk. They are mainly derived from the invagination of intracellular lysosomal particles, which are released into the extracellular matrix after fusion of the outer membrane of the exosomes with the cell membrane. Exosomes mediate intercellular communication and regulate the biological activity of receptor cells by carrying proteins, nucleic acids and lipids. Evidences show that exosomes are involved in the pathogenesis of various autoimmune diseases. In view of the important roles of exosomes in autoimmune diseases, this work systematically reviewed the effects of exosomes on the pathogenesis of autoimmune diseases, especially the regulatory roles of exosome derived microRNAs (miRNAs) in the pathogenesis of RA, SLE, dermatomyositis, SSc, AITD and ulcerative colitis. The review of the roles of exosomes in autoimmune diseases will help to clarify the pathogenesis of these diseases and explore new diagnostic markers and therapeutic targets.
Collapse
|