1
|
El-Banna MH, Abdelgawad MH, Eltahawy N, Algeda FR, Elsayed TM. Hematological and neurological impact studies on the exposure to naturally occurring radioactive materials. Appl Radiat Isot 2024; 211:111424. [PMID: 38970986 DOI: 10.1016/j.apradiso.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/13/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Naturally Occurring Radioactive Materials (NORM) contribute to everyone's natural background radiation dose. The technologically advanced activities of the gas and oil sectors produce considerable amounts of radioactive materials as industrial by-products or waste products. The goal of the current study is to estimate the danger of long-term liability to Technologically Enhanced Naturally Occurring Radioactive Materials (TE-NORM) on blood indices, neurotransmitters, oxidative stress markers, and β-amyloid in the cerebral cortex of rats' brains. Twenty adult male albino rats were divided into two equal groups (n = 10): control and irradiated. Irradiated rats were exposed to a total dose of 0.016 Gy of TE-NORM as a whole-body chronic exposure over a period of two months. It should be ''The results showed no significant changes in RBC count, Hb concentration, hematocrit percentage (HCT%), and Mean Corpuscular Hemoglobin Concentration (MCHC). However, there was a significant increase in the Mean Corpuscular Volume of RBCs (MCV) and a significant decrease in cell distribution width (RDW%) compared to the control. Alteration in neurotransmitters is noticeable by a significant increase in glutamic acid and significant decreases in serotonin and dopamine. Increased lipid peroxidation, decreased glutathione content, superoxide dismutase, catalase, and glutathione peroxidase activities indicating oxidative stress were accompanied by increased β-amyloid in the cerebral cortex of rats' brains. The findings of the present study showed that chronic radiation liability has some harmful effects, that may predict the risks of future health problems in occupational radiation exposure in the oil industries. Therefore, the control of exposure and application of sample dosimetry is recommended for health and safety.
Collapse
Affiliation(s)
- Mohamed H El-Banna
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mahmoud H Abdelgawad
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
| | - Noaman Eltahawy
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma R Algeda
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tamer M Elsayed
- Biophysics Branch, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
2
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
3
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
4
|
Cuttler JM, Lamet MS, Calabrese EJ. Treatment of Early-Stage Alzheimer’s Disease With CT Scans of the Brain: A Case Report. Dose Response 2022; 20:15593258221078392. [PMID: 35321237 PMCID: PMC8935565 DOI: 10.1177/15593258221078392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
We report the case of a patient in Massachusetts with early-stage Alzheimer’s disease who was treated with low doses of ionizing radiation to the brain. He requested this treatment after reading about a patient with severe Alzheimer’s in Michigan who improved remarkably after receiving 4 CT scans. After his first treatment in April 2016, mental clarity improved. His impaired conversation, reading, and sense of humor were restored, especially his virtuosic clarinet jazz-playing. However, executive function remained deficient. He requested a treatment every 2 weeks, but his neurologist denied this, fearing opposition to this treatment, a diagnostic procedure that used ionizing radiation. Limited recovery was observed after each CT scan, lasting from several weeks to months, depending on the endpoints/behavior and the periodicity. Despite the positive responses, the physician was reluctant to continue beyond 6 due to concerns about adverse effects and disapproval for prescribing them. The patient began hyperbaric oxygen therapy as an alternative. But after 43 treatments, no conclusive benefit was observed. The patient died in September 2020 at age 77. This experience suggests CT scans may have value in treating Alzheimer’s patients and restoring, at least temporarily, important aspects of normal life activities. Such observations need testing and validation.
Collapse
|
5
|
Khan AUH, Blimkie M, Yang DS, Serran M, Pack T, Wu J, Kang JY, Laakso H, Lee SH, Le Y. Effects of Chronic Low-Dose Internal Radiation on Immune-Stimulatory Responses in Mice. Int J Mol Sci 2021; 22:7303. [PMID: 34298925 PMCID: PMC8306076 DOI: 10.3390/ijms22147303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022] Open
Abstract
The Linear-No-Threshold (LNT) model predicts a dose-dependent linear increase in cancer risk. This has been supported by biological and epidemiological studies at high-dose exposures. However, at low-doses (LDR ≤ 0.1 Gy), the effects are more elusive and demonstrate a deviation from linearity. In this study, the effects of LDR on the development and progression of mammary cancer in FVB/N-Tg(MMTVneu)202Mul/J mice were investigated. Animals were chronically exposed to total doses of 10, 100, and 2000 mGy via tritiated drinking water, and were assessed at 3.5, 6, and 8 months of age. Results indicated an increased proportion of NK cells in various organs of LDR exposed mice. LDR significantly influenced NK and T cell function and activation, despite diminishing cell proliferation. Notably, the expression of NKG2D receptor on NK cells was dramatically reduced at 3.5 months but was upregulated at later time-points, while the expression of NKG2D ligand followed the opposite trend, with an increase at 3.5 months and a decrease thereafter. No noticeable impact was observed on mammary cancer development, as measured by tumor load. Our results demonstrated that LDR significantly influenced the proportion, proliferation, activation, and function of immune cells. Importantly, to the best of our knowledge, this is the first report demonstrating that LDR modulates the cross-talk between the NKG2D receptor and its ligands.
Collapse
Affiliation(s)
- Abrar Ul Haq Khan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
| | - Melinda Blimkie
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Doo Seok Yang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
| | - Mandy Serran
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Tyler Pack
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Jin Wu
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Ji-Young Kang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
| | - Holly Laakso
- Radiobiology and Health Branch, Canadian Nuclear Laboratories Ltd., Chalk River, ON K0J 1J0, Canada; (M.B.); (M.S.); (T.P.); (J.W.); (H.L.)
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
- Centre for Infection, The University of Ottawa, Immunity and Inflammation, Ottawa, ON K1H 8M5, Canada
| | - Yevgeniya Le
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (A.U.H.K.); (D.S.Y.); (J.-Y.K.)
- CANDU Owners Group Inc., Toronto, ON M5G 2K4, Canada
| |
Collapse
|
6
|
Liu N, Peng Y, Zhong X, Ma Z, He S, Li Y, Zhang W, Gong Z, Yao Z. Effects of exposure to low-dose ionizing radiation on changing platelets: a prospective cohort study. Environ Health Prev Med 2021; 26:14. [PMID: 33494698 PMCID: PMC7836727 DOI: 10.1186/s12199-021-00939-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/18/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Numerous studies have concentrated on high-dose radiation exposed accidentally or through therapy, and few involve low-dose occupational exposure, to investigate the correlation between low-dose ionizing radiation and changing hematological parameters among medical workers. METHODS Using a prospective cohort study design, we collected health examination reports and personal dose monitoring data from medical workers and used Poisson regression and restricted cubic spline models to assess the correlation between changing hematological parameters and cumulative radiation dose and determine the dose-response relationship. RESULTS We observed that changing platelet of 1265 medical workers followed up was statistically different among the cumulative dose groups (P = 0.010). Although the linear trend tested was not statistically significant (Ptrend = 0.258), the non-linear trend tested was statistically significant (Pnon-linear = 0.007). Overall, there was a correlation between changing platelets and cumulative radiation dose (a change of βa 0.008 × 109/L during biennially after adjusting for gender, age at baseline, service at baseline, occupation, medical level, and smoking habits; 95% confidence interval [CI] = 0.003,0.014 × 109/L). Moreover, we also found positive first and then negative dose-response relationships between cumulative radiation dose and changing platelets by restricted cubic spline models, while there were negative patterns of the baseline service not less than 10 years (- 0.015 × 109/L, 95% CI = - 0.024, - 0.007 × 109/L) and radiation nurses(- 0.033 × 109/L, 95% CI = - 0.049, - 0.016 × 109/L). CONCLUSION We concluded that although the exposure dose was below the limit, medical workers exposed to low-dose ionizing radiation for a short period of time might have increased first and then decreased platelets, and there was a dose-response relationship between the cumulative radiation dose and platelets changing.
Collapse
Affiliation(s)
- Ning Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Yang Peng
- Cancer Research Centre, Cancer Council Queensland, Fortitude Valley, Brisbane, 4006 Australia
- School of Clinical Medicine, The University of Queensland, Herston, 4006 Australia
| | - Xinguang Zhong
- The Sixth People’s Hospital of Dongguan, Dongguan, 532008 Guangdong China
| | - Zheng Ma
- The Sixth People’s Hospital of Dongguan, Dongguan, 532008 Guangdong China
| | - Suiping He
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Ying Li
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Wencui Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Zijun Gong
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| | - Zhenjiang Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310 Guangdong China
| |
Collapse
|
7
|
Vaiserman A, Cuttler JM, Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology 2021; 22:145-164. [PMID: 33420860 PMCID: PMC7794644 DOI: 10.1007/s10522-020-09908-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023]
Abstract
Hormesis is any kind of biphasic dose-response when low doses of some agents are beneficial while higher doses are detrimental. Radiation hormesis is the most thoroughly investigated among all hormesis-like phenomena, in particular in biogerontology. In this review, we aimed to summarize research evidence supporting hormesis through exposure to low-dose ionizing radiation (LDIR). Radiation-induced longevity hormesis has been repeatedly reported in invertebrate models such as C. elegans, Drosophila and flour beetles and in vertebrate models including guinea pigs, mice and rabbits. On the contrary, suppressing natural background radiation was repeatedly found to cause detrimental effects in protozoa, bacteria and flies. We also discussed here the possibility of clinical use of LDIR, predominantly for age-related disorders, e.g., Alzheimer's disease, for which no remedies are available. There is accumulating evidence that LDIR, such as those commonly used in X-ray imaging including computer tomography, might act as a hormetin. Of course, caution should be exercised when introducing new medical practices, and LDIR therapy is no exception. However, due to the low average residual life expectancy in old patients, the short-term benefits of such interventions (e.g., potential therapeutic effect against dementia) may outweigh their hypothetical delayed risks (e.g., cancer). We argue here that assessment and clinical trials of LDIR treatments should be given priority bearing in mind the enormous economic, social and ethical implications of potentially-treatable, age-related disorders.
Collapse
|
8
|
Waltar A, Feinendegen L. The Double Threshold: Consequences for Identifying Low-Dose Radiation Effects. Dose Response 2020; 18:1559325820949729. [PMID: 32913426 PMCID: PMC7444125 DOI: 10.1177/1559325820949729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/21/2023] Open
Abstract
Prior to observing low-dose-induced cell signaling and adaptive protection, radiogenic stochastic effects were assumed to be linearly related to absorbed dose. Now, abundant data prove the occurrence of radiogenic adaptive protection specifically at doses below ∼ 200 mGy (with some data suggesting such protection at a dose even higher than 200 mGy). Moreover, cells do not thrive properly when deprived of radiation below background dose. Two threshold doses need be considered in constructing a valid dose-response relationship. With doses beginning to rise from zero, cells increasingly escape radiation deprivation. The dose at which radiation-deprived cells begin to function homeostatically provides dose Threshold A. With further dose increase, adaptive protection becomes prominent and then largely disappears at acute doses above ∼ 200 mGy. The dose at which damage begins to override protection defines Threshold B. Thresholds A and B should be terms in modeling dose-response functions. Regarding whole-body responses, current data suggest for low-LET acute, non-chronic, irradiation a Threshold B of about 100 mGy prevails, except for leukemia and probably some other malignancies, and for chronic, low dose-rate irradiation where the Threshold B may well reach 1 Gy per year. A new Research and Development Program should determine individual Thresholds A and B for various radiogenic cell responses depending on radiation quality and target.
Collapse
Affiliation(s)
- Alan Waltar
- Retired Professor and Head, Department of Nuclear Engineering, Texas A&M University, College Station, TX
| | | |
Collapse
|
9
|
Bilko DI, Russu IZ, Bilko NM. ASSESSMENT OF RADIOPROTECTIVE ACTION OF BASIDIOMYCOTIC MELANIN PIGMENTS ON THE HEMATOPOIETIC SYSTEM OF Balb/C MICE UNDER EXPOSURE TO IONIZING RADIATION IN SUBLETHAL DOSE. PROBLEMY RADIAT︠S︡IĬNOÏ MEDYT︠S︡YNY TA RADIOBIOLOHIÏ 2020; 24:210-219. [PMID: 31841468 DOI: 10.33145/2304-8336-2019-24-210-219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Assessment of radioprotective action of basidiomycotic melanin pigments on hematopoietic stem and progenitor bone marrow cells of Balb/C mice in case of exposure to ionizing radiation in sublethal dose. MATERIALS AND METHODS Using original method of cultivation in gel diffusion chambers in vivo of bone marrow cells of Balb/C mice we investigated the colony-forming efficiency of hematopoietic progenitor cells of the ani- mals, which were exposed to ionizing radiation action in sublethal dose, in case of treatment with melanin pig- ments solution of basidiomycotic fungi as radioprotector. RESULTS AND CONCLUSIONS Investigation of functional activity of bone marrow progenitor cells of Balb/C mice allowed assessing their hematopoiesis state in case of ionizing radiation action, as well as in case of previous treat- ment of the animals with the solution of melanin pigments as radioprotector. It was determined that under the influence of ionizing radiation the colony-forming activity of mice bone marrow has decreased comparing to con- trol. Solution of melanin pigments was able to enhance the functional activity of bone marrow of irradiated ani- mals. Obtained results of radioprotective action of basidiomycotic melanin pigments solution on irradiated stem cells and their descendants (progenitor cells) may become the evidence for development of the protective means for human organism from the injuring action of ionizing radiation.
Collapse
Affiliation(s)
- D I Bilko
- National University of Kyiv-Mohyla Academy, 2, Hryhoriia Skovorody St., Kyiv, 04070, Ukraine
| | - I Z Russu
- National University of Kyiv-Mohyla Academy, 2, Hryhoriia Skovorody St., Kyiv, 04070, Ukraine
| | - N M Bilko
- National University of Kyiv-Mohyla Academy, 2, Hryhoriia Skovorody St., Kyiv, 04070, Ukraine
| |
Collapse
|
10
|
Vosoughi H, Azimian H, Khademi S, Rezaei AR, Najafi-Amiri M, Vaziri-Nezamdoost F, Bahreyni-Toossi MT. PHA stimulation may be useful for FDXR gene expression-based biodosimetry. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:449-453. [PMID: 32489559 PMCID: PMC7239428 DOI: 10.22038/ijbms.2020.42350.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/11/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Nowadays, ionizing radiation (IR) has a significant contribution to the diagnostic and therapeutic medicine, and following that, health risks to individuals through unexpected exposure is greatly increased. Therefore, biological and molecular technology for estimation of dose (biodosimetry) is taken into consideration. In biodosimetry methods stimulation of cells to proliferation is routine to achieve more sensitivity of techniques. However, this concept has recently been challenged by new molecular methods such as gene expression analysis. This study aims to investigate the stimulation effects on gene expression biodosimetry. MATERIALS AND METHODS The blood samples were taken from15 patients who were irradiated by TC-99 MIBI, before radiopharmaceutical injection and 24 hr after injection. Lymphocytes were extracted immediately and activated by (phytohemagglutinin) PHA for 24 hr and XPA and FDXR expression levels were investigated by employing relative quantitative Real-Time PCR. RESULTS The results of this study show a significant increase in the FDXR expression level and a significant decrease in the XPA after stimulation of irradiated lymphocytes. Interestingly, a significant increasing trend in the FDXR expression level (at 0.05 significance level) following cell stimulation to the division was observed. CONCLUSION Our results suggest that the PHA activation role in gene expression-based biodosimetry is strongly depended on the target genes and the relevant protein pathways. Finally, cell stimulation looks to be useful for some specific genes, such as FDXR, due to the increasing trend in expression and improvement of sensitivity of gene expression-based biodosimetry method.
Collapse
Affiliation(s)
- Habibeh Vosoughi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdul-Rahim Rezaei
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Najafi-Amiri
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | |
Collapse
|
11
|
Wang Q, Pujol-Canadell M, Taveras M, Garty G, Perrier J, Bueno-Beti C, Shuryak I, Brenner DJ, Turner HC. DNA damage response in peripheral mouse blood leukocytes in vivo after variable, low-dose rate exposure. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:89-98. [PMID: 31897603 PMCID: PMC7441378 DOI: 10.1007/s00411-019-00825-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/08/2019] [Indexed: 05/03/2023]
Abstract
Environmental contamination and ingestion of the radionuclide Cesium-137 (137Cs) is a large concern in fallout from a nuclear reactor accident or improvised nuclear device, and highlights the need to develop biological assays for low-dose rate, internal emitter radiation. To mimic low-dose rates attributable to fallout, we have developed a VAriable Dose-rate External 137Cs irradiatoR (VADER), which can provide arbitrarily varying and progressive low-dose rate irradiations in the range of 0.1-1.2 Gy/day, while circumventing the complexities of dealing with radioactively contaminated biomaterials. We investigated the kinetics of mouse peripheral leukocytes DNA damage response in vivo after variable, low-dose rate 137Cs exposure. C57BL/6 mice were placed in the VADER over 7 days with total accumulated dose up to 2.7 Gy. Peripheral blood response including the leukocyte depletion, apoptosis as well as its signal protein p53 and DNA repair biomarker γ-H2AX was measured. The results illustrated that blood leukocyte numbers had significantly dropped by day 7. P53 levels peaked at day 2 (total dose = 0.91 Gy) and then declined; whereas, γ-H2AX fluorescence intensity (MFI) and foci number generally increased with accumulated dose and peaked at day 5 (total dose = 2.08 Gy). ROC curve analysis for γ-H2AX provided a good discrimination of accumulated dose < 2 Gy and ≥ 2 Gy, highlighting the potential of γ-H2AX MFI as a biomarker for dosimetry in a protracted, environmental exposure scenario.
Collapse
Affiliation(s)
- Qi Wang
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Monica Pujol-Canadell
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jay Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Carlos Bueno-Beti
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
12
|
Cuttler JM. Application of Low Doses of Ionizing Radiation in Medical Therapies. Dose Response 2020; 18:1559325819895739. [PMID: 31933547 PMCID: PMC6945458 DOI: 10.1177/1559325819895739] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023] Open
Abstract
The discovery of X-rays and radioactivity in 1895/1896 triggered a flood of studies and applications of radiation in medicine that continues to this day. They started with imaging fractures/organs and progressed to treating diseases by exposing areas to radiation from external and internal sources. By definition, low-dose treatments stimulate damage control (or adaptive protection) systems that remedy diseases. Publications are identified on low-dose ionizing radiation (LDIR) therapies for different cancers, infections, inflammations, and autoimmune and neurodegenerative diseases. The high rate of endogenous DNA damage, due to leakage of oxygen from aerobic metabolism, and the damage control systems that deal with this are discussed. Their stimulation and inhibition by radiation are described. The radium dial painter studies revealed the radium ingestion threshold for malignancy and the dose threshold for bone sarcoma. The radiation scare that misled the medical profession and the public is a barrier to LDIR therapies. Many studies on nasal radium irradiation demonstrated that children are not unduly radiation sensitive. Omissions in the medical textbooks misinform physicians about the effects of LDIR therapy, which blocks clinical trials to determine optimal doses, efficacy, and thresholds for onset of harm. Information from many recent case reports on LDIR therapies, including successes with radon therapy, is provided.
Collapse
|
13
|
El-Shanshoury H, El-Shanshoury G, Abaza A. Evaluation of low dose ionizing radiation effect on some blood components in animal model. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2016.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- H. El-Shanshoury
- Radiation Safety Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt
- Laser Sciences (Department of Medical Applications of Laser), National Institute of Laser Sciences, Cairo University, Cairo, Egypt
| | - G. El-Shanshoury
- Applied Statistic in Radiation Safety Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt
- Applied Statistic, Ain-Shams University, Cairo, Egypt
| | - A. Abaza
- Safety and Prevention of Oncology in Radiation Protection Department, Nuclear and Radiological Regulatory Authority, Cairo, Egypt
- Childhood Studies & Pediatric Oncology, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
14
|
Akeem S, Lukman O, Eltahir K, Fatai O, Abiola B, Khadijat O. Bone Marrow and Peripheral Blood Cells Toxicity of a Single 2.0 Gy Cobalt 60 Ionizing Radiation: An Animal Model. Ethiop J Health Sci 2019; 29:195-202. [PMID: 31011267 PMCID: PMC6460448 DOI: 10.4314/ejhs.v29i2.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Bone marrow is extremely vulnerable to damage caused by radiation therapy. Hence, bone marrow suppression is an important side effect of radiotherapy. Effective use of radiotherapy is therefore compromised by radiation-related injuries. Material and Methods Six Guinea-pigs were recruited for the study of which three were subjected to total body irradiation with Co60 while the other three served as controls. Bone marrow and peripheral blood samples were collected before and at days 9, 14 and 21, post irradiation. Manual and automated counts were performed for bone marrow nucleated cells and peripheral blood cells respectively. Results Declining bone marrow cellularity was evident immediately post irradiation. Mean ± SD of marrow cell counted per mm3 were 121,924±281, 87,603±772, 121,367±375 and 122,750±1000 pre-irradiation and days 9, 14 and 21, postirradiation (p-values 0.10, 0.27 and 0.29 respectively). Significant drops in counts were noticed on day 9 post-irradiation for all red cell parameters (p-values <0.05), for Total White Blood Cell Count and Neutrophil count (p-values <0.05) and also on days 14 and 21 for Lymphocytes (p-values <0.05) and on day 21 for Eosinophil/Basophil/Monocytes (p-value <0.05). A significant drop in platelets counts was also noticed on day 9 (p-value <0.05) which significantly increased above pre-irradiation value on day 21. Conclusion Total body irrradiation with Co60 significantly affects the bone marrow with maximum reductions in marrow nucleated cells and peripheral blood cells counts on day 9 post irradiation.
Collapse
Affiliation(s)
- Shittu Akeem
- Department of Haematology, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Olatunbosun Lukman
- Department of Haematology and Blood Transfusion, University of Ilorin teaching Hospital, PMB 1459, Ilorin, Nigeri
| | - Khalil Eltahir
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Sudan
| | - Olalere Fatai
- Department of Haematology and Blood Transfusion, University of Ilorin teaching Hospital, PMB 1459, Ilorin, Nigeri
| | - Babatunde Abiola
- Department of Haematology, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Omokanye Khadijat
- Department of Haematology and Blood Transfusion, University of Ilorin teaching Hospital, PMB 1459, Ilorin, Nigeri
| |
Collapse
|
15
|
Cuttler JM, Feinendegen LE, Socol Y. Evidence of a Dose-Rate Threshold for Life Span Reduction of Dogs Exposed Lifelong to γ-Radiation. Dose Response 2018; 16:1559325818820211. [PMID: 30627069 PMCID: PMC6311660 DOI: 10.1177/1559325818820211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 01/25/2023] Open
Abstract
Our return to a study on dogs exposed lifelong to cobalt-60 γ-radiation was prompted by a comment that data in dog studies have large statistical errors due to the small number of dogs. We located an earlier article on the same study that had a better mortality curve for the dogs in each dose-rate group. The median life span of the dogs in each group was tabulated, and the standard error of each was calculated. No statistically significant shortening of median life span was observed for the lowest dose-rate group at any reasonable significance level (P value: .005-.05), whereas for dogs with higher irradiation rates, life span shortening was statistically significant at highest reasonable significance level (P value: .005). The results were entered on a graph of life span versus dose rate, assuming a threshold dose–response model. The fitted line indicates that the dose-rate threshold for γ-radiation induced life span reduction is about 600 mGy per year, which is close to the value we found previously. Making allowance for the calculated standard errors, we conclude that this threshold is in the range from 300 to 1100 mGy per year. This evidence is relevant for emergency measures actions (evacuation of residents) and for nuclear waste management.
Collapse
Affiliation(s)
| | | | - Yehoshua Socol
- Department of Electrical and Electronics Engineering, Jerusalem College of Technology, Jerusalem, Israel
| |
Collapse
|
16
|
Cuttler JM. Evidence of a Dose Threshold for Radiation-Induced Leukemia. Dose Response 2018; 16:1559325818811537. [PMID: 30479588 PMCID: PMC6247492 DOI: 10.1177/1559325818811537] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022] Open
Abstract
In 1958, Neil Wald presented data on the incidence of leukemia among the Hiroshima atomic bomb survivors. These data, which suggested a dose-response threshold for radiation-induced leukemia, were included in the first UNSCEAR report (1958). However, this evidence of a threshold was not recognized. It was obfuscated and concealed. In 2010, Zbigniew Jaworowski identified these data as evidence of radiation hormesis. A letter to the editor in 2014 and 2 articles in 2014 and 2015 presented a graph of these UNSCEAR 1958 data, which revealed a threshold at about 500 mSv. Since the blood-forming stem cells of bone marrow are more radiosensitive than most other cell types, it is reasonable to expect thresholds for inducing other types of cancer by ionizing radiation-their thresholds are likely higher than 500 mSv. A careful examination of the Wald data reveals the suprisingly low incidence of radiogenic leukemia, only 0.5% of the survivors who were in the high radiation zone. Many articles on radiation risk have been published since 2015 by other authors, but none makes reference to this evidence of a threshold, either to challenge or endorse it. In this commentary, the author addresses the comments from a colleague.
Collapse
|
17
|
Agbenyegah S, Abend M, Atkinson MJ, Combs SE, Trott KR, Port M, Majewski M. Impact of Inter-Individual Variance in the Expression of a Radiation-Responsive Gene Panel Used for Triage. Radiat Res 2018; 190:226-235. [PMID: 29923790 DOI: 10.1667/rr15013.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In previous studies we determined a gene expression signature in baboons for predicting the severity of hematological acute radiation syndrome. We subsequently validated a set of eight of these genes in leukemia patients undergoing total-body irradiation. In the current study, we addressed the effect of intra-individual variability on the basal level of expression of those eight radiation-responsive genes identified previously, by examining baseline levels in 200 unexposed healthy human donors (122 males and 88 females with an average age of 46 years) using real-time PCR. In addition to the eight candidate genes ( DAGLA, WNT3, CD177, PLA2G16, WLS, POU2AF1, STAT4 and PRF1), we examined two more genes ( FDXR and DDB2) widely used in ex vivo whole blood experiments. Although significant sex- (seven genes) and age-dependent (two genes) differences in expression were found, the fold changes ranged only between 1.1-1.6. These were well within the twofold differences in gene expression generally considered to represent control values. Age and sex contributed less than 20-30% to the complete inter-individual variance, which is calculated as the fold change between the lowest (reference) and the highest Ct value minimum-maximum fold change (min-max FC). Min-max FCs ranging between 10-17 were observed for most genes; however, for three genes, min-max FCs of complete inter-individual variance were found to be 37.1 ( WNT3), 51.4 ( WLS) and 1,627.8 ( CD177). In addition, to determine whether discrimination between healthy and diseased baboons might be altered by replacing the published gene expression data of the 18 healthy baboons with that of the 200 healthy humans, we employed logistic regression analysis and calculated the area under the receiver operating characteristic (ROC) curve. The additional inter-individual variance of the human data set had either no impact or marginal impact on the ROC area, since up to 32-fold change gene expression differences between healthy and diseased baboons were observed.
Collapse
Affiliation(s)
- S Agbenyegah
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - M Abend
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M J Atkinson
- c Institute of Radiation Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - S E Combs
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany.,d Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - K R Trott
- a Department of Radiation Oncology, Technical University of Munich, Munich, Germany
| | - M Port
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Majewski
- b Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
18
|
Taqi AH, Faraj KA, Zaynal SA, Hameed AM, Mahmood AAA. Effects of occupational exposure of X-Ray on hematological parameters of diagnostic technicians. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
El-Marakby SM, Selim NS, Desouky OS, Ashry HA, Sallam AM. Radio-mitigation effect of poly-MVA after exposure to an acute dose of gamma radiation. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Seham M. El-Marakby
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Nabila S. Selim
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Omar S. Desouky
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | - Hoda A. Ashry
- Biophysics Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), AEA, P.O. Box 29, Madinat Nasr, Cairo, Egypt
| | | |
Collapse
|
20
|
Cuttler JM, Feinendegen LE, Socol Y. Evidence That Lifelong Low Dose Rates of Ionizing Radiation Increase Lifespan in Long- and Short-Lived Dogs. Dose Response 2017; 15:1559325817692903. [PMID: 28321175 PMCID: PMC5347275 DOI: 10.1177/1559325817692903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
After the 1956 radiation scare to stop weapons testing, studies focused on cancer induction by low-level radiation. Concern has shifted to protecting "radiation-sensitive individuals." Since longevity is a measure of health impact, this analysis reexamined data to compare the effect of dose rate on the lifespans of short-lived (5% and 10% mortality) dogs and on the lifespans of dogs at 50% mortality. The data came from 2 large-scale studies. One exposed 10 groups to different γ dose rates; the other exposed 8 groups to different lung burdens of plutonium. Reexamination indicated that normalized lifespans increased more for short-lived dogs than for average dogs, when radiation was moderately above background. This was apparent by interpolating between the lifespans of nonirradiated dogs and exposed dogs. The optimum lifespan increase appeared at 50 mGy/y. The threshold for harm (decreased lifespan) was 700 mGy/y for 50% mortality dogs and 1100 mGy/y for short-lived dogs. For inhaled α-emitting particulates, longevity was remarkably increased for short-lived dogs below the threshold for harm. Short-lived dogs seem more radiosensitive than average dogs and they benefit more from low radiation. If dogs model humans, this evidence would support a change to radiation protection policy. Maintaining exposures "as low as reasonably achievable" (ALARA) appears questionable.
Collapse
|
21
|
Hu S. Linking Doses with Clinical Scores of Hematopoietic Acute Radiation Syndrome. HEALTH PHYSICS 2016; 111:337-347. [PMID: 27575346 DOI: 10.1097/hp.0000000000000529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In radiation accidents, determining the radiation dose the victim received is a key step for medical decision making and patient prognosis. To reconstruct and evaluate the absorbed dose, researchers have developed many physical devices and biological techniques during the last decades. However, using the physical parameter "absorbed dose" alone is not sufficient to predict the clinical development of the various organs injured in an individual patient. In operational situations for radiation accidents, medical responders need more urgently to classify the severity of the radiation injury based on the signs and symptoms of the patient. In this work, the author uses a unified hematopoietic model to describe dose-dependent dynamics of granulocytes, lymphocytes, and platelets, and the corresponding clinical grading of hematopoietic acute radiation syndrome. This approach not only visualizes the time course of the patient's probable outcome in the form of graphs but also indirectly gives information of the remaining stem and progenitor cells, which are responsible for the autologous recovery of the hematopoietic system. Because critical information on the patient's clinical evolution can be provided within a short time after exposure and only peripheral cell counts are required for the simulation, these modeling tools will be useful to assess radiation exposure and injury in human-involved radiation accident/incident scenarios.
Collapse
Affiliation(s)
- Shaowen Hu
- *KBRwyle Science, Technology and Engineering, Houston, TX 77058
| |
Collapse
|
22
|
Cuttler JM, Moore ER, Hosfeld VD, Nadolski DL. Treatment of Alzheimer Disease With CT Scans: A Case Report. Dose Response 2016; 14:1559325816640073. [PMID: 27103883 PMCID: PMC4826954 DOI: 10.1177/1559325816640073] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer disease (AD) primarily affects older adults. This neurodegenerative disorder is the most common cause of dementia and is a leading source of their morbidity and mortality. Patient care costs in the United States are about 200 billion dollars and will more than double by 2040. This case report describes the remarkable improvement in a patient with advanced AD in hospice who received 5 computed tomography scans of the brain, about 40 mGy each, over a period of 3 months. The mechanism appears to be radiation-induced upregulation of the patient's adaptive protection systems against AD, which partially restored cognition, memory, speech, movement, and appetite.
Collapse
|
23
|
Dobrzyński L, Fornalski KW, Feinendegen LE. Cancer Mortality Among People Living in Areas With Various Levels of Natural Background Radiation. Dose Response 2015; 13:1559325815592391. [PMID: 26674931 PMCID: PMC4674188 DOI: 10.1177/1559325815592391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There are many places on the earth, where natural background radiation exposures are elevated significantly above about 2.5 mSv/year. The studies of health effects on populations living in such places are crucially important for understanding the impact of low doses of ionizing radiation. This article critically reviews some recent representative literature that addresses the likelihood of radiation-induced cancer and early childhood death in regions with high natural background radiation. The comparative and Bayesian analysis of the published data shows that the linear no-threshold hypothesis does not likely explain the results of these recent studies, whereas they favor the model of threshold or hormesis. Neither cancers nor early childhood deaths positively correlate with dose rates in regions with elevated natural background radiation.
Collapse
Affiliation(s)
| | | | - Ludwig E. Feinendegen
- Heinrich-Heine University, Düsseldorf, Germany
- BECS Department, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
24
|
Mutations of the human interferon alpha-2b (hIFNα-2b) gene in low-dose natural terrestrial ionizing radiation exposed dwellers. Cytokine 2015; 76:294-302. [PMID: 26092410 DOI: 10.1016/j.cyto.2015.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/07/2015] [Accepted: 05/18/2015] [Indexed: 02/02/2023]
Abstract
Natural terrestrial ionizing radiations emerge from uranium deposits and can impact human tissues by affecting DNA bases which constitute genes. Human interferon alpha-2b (hIFNα-2b) gene synthesizes a protein which exhibits anticancerous, immunomodulatory, anti-proliferative and antiviral properties. This research aimed to find out hIFNα-2b gene mutations for those residents who were chronically exposed to low-dose natural terrestrial ionizing radiations. The gene amplifications was done through PCR technique and gene mutations were identified by bioinformatics in order to conclude as to how mutations identified in hIFNα-2b gene sequences will lead to alterations in the hIFNα-2b protein in radiation exposed residents. The range of radiation dose exposure was 0.4383-4.55832 (mSv/y) for the selected radiation exposed locations which were having uranium mineralization. Mutations (24%) in hIFNα-2b gene shows that some of the radiation exposed inhabitants were having a modulated immune response. The CBC (Complete Blood Count) parameters: WBC (White Blood Cells), MCH (Mean Corpuscular Hemoglobin), MCHC (MCH Concentration) and PLT (Platelets) on average were below the normal range in 24% radiation exposed subjects who were having hIFNα-2b gene mutations. Immunomodulation is observed by the mixed trend of either lymphocytosis or lymphopenia and neutropenia or neutrophilia in the exposed population. Thus, a radioactive exposure from uranium can affect the immune system and can induce mutations.
Collapse
|
25
|
Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine 2015; 73:181-9. [DOI: 10.1016/j.cyto.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 12/11/2022]
|
26
|
Liu YH, Ma SD, Fu QJ, Zhao LY, Li Y, Wang HQ, Li MC. Effect of lentinan on membrane-bound protein expression in splenic lymphocytes under chronic low-dose radiation. Int Immunopharmacol 2014; 22:505-14. [PMID: 25102307 DOI: 10.1016/j.intimp.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/02/2014] [Accepted: 07/21/2014] [Indexed: 01/23/2023]
Abstract
We investigated the protective effects of lentinan against damages to chronic and low-dose radiation (CL-radiation) by using mouse models. The mice were randomized divided into four groups: normal control mice (Ctr), mice exposed to radiation (Rad), irradiated mice treated with low-dose lentinan (0.1mg/(kg.d), RL), and irradiated mice treated with high-dose lentinan (0.5mg/(kg.d), RH). All the mice were injected intraperitoneally once a day at a dose of 0.5mL (Ctr and Rad with normal sodium while RL and RH with lentinan). The success of radiation models was confirmed by HE stain and cell morphology by a transmission electron microscope (TEM). On the basis of radiation models, we investigated the expression of proteins on the membrane of splenic cells through MALDI-TOF-MS/MS. The results demonstrated that both RT-radiation and lentinan affected the expression of membrane proteins, but lentinan protected the splenic cells and tissue from the injuries caused by CL-radiation. Therefore, we speculated that CL-radiation mainly damages the genetic materials and membrane-bound proteins, while lentinan protects membrane-bound proteins by regulating signal transduction and the appearance of the cells.
Collapse
Affiliation(s)
- Ying-Hua Liu
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Shou-Dong Ma
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Qing-Jie Fu
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Li-Yan Zhao
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Yi Li
- Radiation Oncology Department, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Hai-Qing Wang
- Radiation Oncology Department, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China
| | - Ming-Chun Li
- Department of Pharmacy, No. 401 Hospital of Chinese People's Liberation Army, Qingdao 266071, China.
| |
Collapse
|
27
|
Abstract
Concerns have been expressed recently regarding the observed increased DNA damage from activities such as thinking and exercise. Such concerns have arisen from an incomplete accounting of the full effects of the increased oxidative damage. When the effects of the induced adaptive protective responses such as increased antioxidants and DNA repair enzymes are taken into consideration, there would be less endogenous DNA damage during the subsequent period of enhanced defenses, resulting in improved health from the thinking and exercise activities. Low dose radiation (LDR), which causes oxidative stress and increased DNA damage, upregulates adaptive protection systems that may decrease diseases in an analogous manner. Though there are ongoing debates regarding LDR's carcinogenicity, with two recent advisory committee reports coming to opposite conclusions, data published since the time of the reports have overwhelmingly ruled out its carcinogenicity, paving the way for consideration of its potential use for disease reduction. LDR adaptive protection is a promising approach to control neurodegenerative diseases, for which there are no methods of prevention or cure. Preparation of a compelling ethics case would pave the way for LDR clinical studies and progress in dealing with neurodegenerative diseases.
Collapse
|
28
|
Abstract
Seeking a remedy for the radiation fear in Japan, the author re-examined an article on radiation hormesis. It describes the background for this fear and evidence in the first UNSCEAR report of a reduction in leukemia of the Hiroshima survivors in the low dose zone. The data are plotted and dose-response models are drawn. While UNSCEAR suggested the extra leukemia incidence is proportional to radiation dose, the data are consistent with a hormetic J-shape and a threshold at about 100 rem (1 Sv). UNSCEAR data on lifespan reduction of mammals exposed continuously to gamma rays indicate a 2 gray/year threshold. This contradicts the conceptual basis for radiation protection and risk determination established in 1956-58. In this paper, beneficial effects and thresholds for harmful effects are discussed, and the biological mechanism is explained. The key point: the rate of DNA damage (double-strand breaks) caused by background radiation is 1000 times less than the endogenous (spontaneous) rate. It is the effect of radiation on an organism's very powerful adaptive protection systems that determines the dose-response characteristic. Low radiation up-regulates the protection systems, while high radiation impairs these systems. The remedy for radiation fear is to expose and discard the politicized science.
Collapse
|
29
|
Abstract
Approximately 160,000 people evacuated the area around the Fukushima Dai-ichi NPP shortly after it was damage by the earthquake and tsunami. The evacuation order applied to 70,000 of them, while the other 90,000 left voluntarily and returned soon afterward. After more than two years, most of the 70,000 are still not allowed to return to their homes. The 1100 disaster-related deaths caused by the evacuation order show that this pre-cautionary action, taken to minimize cancer risks, was not "conservative." In this paper, recent studies are reviewed on the consequences of the radioactive releases and on the benefits of many medical treatments with low doses of radiation that were carried out until the 1950s, before the radiation scare was created. Recent research has shed light on the high rate of spontaneous double-strand breaks in DNA and the adaptive protections in cells, tissues and humans that are up-regulated by low radiation. These defences prevent, repair, remove and replace damage, from all causes including external agents. Cancer mortality is reduced. The ICRP's concept of radiation risk is wrong. It should revert to its 1934 concept, which was a tolerance dose of 0.2 roentgen (r) per day based on more than 35 years of medical experience.
Collapse
|
30
|
Abstract
“At the early stages of evolution, increasingly complex organisms developed powerful defense mechanisms against such adverse radiation effects as mutation and malignant change. These effects originate in the cell nucleus, where the DNA is their primary target. That evolution has apparently proceeded for so long is proof, in part, of the effectiveness of living things’ defenses against radiation.” Zbigniew Jaworowski 1999 “Chernobyl was indeed an historic event; it is the only nuclear power station disaster that ever resulted in an occupational death toll, albeit a comparatively small one. A vast environmental dispersion of radioactivity occurred that did not cause any scientifically confirmed fatalities in the general population. The worst harm to the population was caused not by radiation, and not to flesh, but to minds.” Zbigniew Jaworowski 2010
Collapse
|