1
|
Rahdan F, Abedi F, Dianat-Moghadam H, Sani MZ, Taghizadeh M, Alizadeh E. Autophagy-based therapy for hepatocellular carcinoma: from standard treatments to combination therapy, oncolytic virotherapy, and targeted nanomedicines. Clin Exp Med 2024; 25:13. [PMID: 39621122 PMCID: PMC11611955 DOI: 10.1007/s10238-024-01527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
Human hepatocellular carcinoma (HCC) has been identified as a significant cause of mortality worldwide. In recent years, extensive research has been conducted to understand the underlying mechanisms of autophagy in the pathogenesis of the disease, with the aim of developing novel therapeutic agents. Targeting autophagy with conventional therapies in invasive HCC has opened up new opportunities for treatment. However, the emergence of resistance and the immunosuppressive tumor environment highlight the need for combination therapy or specific targeting, as well as an efficient drug delivery system to ensure targeted tumor areas receive sufficient doses without affecting normal cells or tissues. In this review, we discuss the findings of several studies that have explored autophagy as a potential therapeutic approach in HCC. We also outline the potential and limitations of standard therapies for autophagy modulation in HCC treatment. Additionally, we discuss how different combination therapies, nano-targeted strategies, and oncolytic virotherapy could enhance autophagy-based HCC treatment in future research.
Collapse
Affiliation(s)
- Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
- Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| | - Maryam Zamani Sani
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Matboli M, Al-Amodi HS, Khaled A, Khaled R, Ali M, Kamel HFM, Hamid MSAEL, ELsawi HA, Habib EK, Youssef I. Integrating molecular, biochemical, and immunohistochemical features as predictors of hepatocellular carcinoma drug response using machine-learning algorithms. Front Mol Biosci 2024; 11:1430794. [PMID: 39479501 PMCID: PMC11521808 DOI: 10.3389/fmolb.2024.1430794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Liver cancer, particularly Hepatocellular carcinoma (HCC), remains a significant global health concern due to its high prevalence and heterogeneous nature. Despite the existence of approved drugs for HCC treatment, the scarcity of predictive biomarkers limits their effective utilization. Integrating diverse data types to revolutionize drug response prediction, ultimately enabling personalized HCC management. Method In this study, we developed multiple supervised machine learning models to predict treatment response. These models utilized classifiers such as logistic regression (LR), k-nearest neighbors (kNN), neural networks (NN), support vector machines (SVM), and random forests (RF) using a comprehensive set of molecular, biochemical, and immunohistochemical features as targets of three drugs: Pantoprazole, Cyanidin 3-glycoside (Cyan), and Hesperidin. A set of performance metrics for the complete and reduced models were reported including accuracy, precision, recall (sensitivity), specificity, and the Matthews Correlation Coefficient (MCC). Results and Discussion Notably, (NN) achieved the best prediction accuracy where the combined model using molecular and biochemical features exhibited exceptional predictive power, achieving solid accuracy of 0.9693 ∓ 0.0105 and average area under the ROC curve (AUC) of 0.94 ∓ 0.06 coming from three cross-validation iterations. Also, found seven molecular features, seven biochemical features, and one immunohistochemistry feature as promising biomarkers of treatment response. This comprehensive method has the potential to significantly advance personalized HCC therapy by allowing for more precise drug response estimation and assisting in the identification of effective treatment strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Faculty of Oral and Dental Medicine, Misr International University (MIU), Cairo, Egypt
| | - Hiba S. Al-Amodi
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Radwa Khaled
- Biotechnology/Biomolecular Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala F. M. Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Biochemistry Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Hind A. ELsawi
- Department of Internal Medicine, Badr University in Cairo, Badr, Egypt
| | - Eman K. Habib
- Department of Anatomy and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Anatomy and Cell Biology, Faculty of Medicine, Galala University, Suez, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Kale SR, Karande G, Gudur A, Garud A, Patil MS, Patil S. Recent Trends in Liver Cancer: Epidemiology, Risk Factors, and Diagnostic Techniques. Cureus 2024; 16:e72239. [PMID: 39583507 PMCID: PMC11584332 DOI: 10.7759/cureus.72239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global health challenge due to its high mortality rate. Hepatocellular carcinoma and intrahepatic cholangiocarcinoma (ICC) are the two main types of primary liver cancer (PLC), each with its own set of complexities. Secondary or metastatic liver cancer is more common than PLC. It is frequently observed in malignancies such as colorectal, pancreatic, melanoma, lung, and breast cancer. Liver cancer is often diagnosed at an advanced stage, making it difficult to treat. This highlights the need for focused research on early detection and effective treatment strategies. This review explores the epidemiology, risk factors, and diagnostic techniques for HCC. The development of HCC involves various risk factors, including chronic liver diseases, hepatitis B and C infections, alcohol consumption, obesity, smoking, and genetic predispositions. Various invasive and non-invasive diagnostic techniques, such as biopsy, liquid biopsy, and imaging modalities like ultrasonography, computed tomography scans (CT scans), magnetic resonance imaging (MRI), and positron emission tomography (PET) scans, are utilized for HCC detection and monitoring. Advances in imaging technology and biomarker research have led to more accurate and sensitive methods for early HCC detection. We also reviewed advanced research on emerging techniques, including next-generation sequencing, metabolomics, epigenetic biomarkers, and microbiome analysis, which show great potential for advancing early diagnosis and personalized treatment strategies. This literature review provides insights into the current state of liver cancer diagnosis and promising future advancements. Ongoing research and innovation in these areas are essential for improving early diagnosis and reducing the global burden of liver cancer.
Collapse
Affiliation(s)
- Shivani R Kale
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Geeta Karande
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Anand Gudur
- Oncology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Aishwarya Garud
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Monika S Patil
- Molecular Biology and Genetics, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
4
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
6
|
Shafieizadeh Z, Shafieizadeh Z, Davoudi M, Afrisham R, Miao X. Role of Fibrinogen-like Protein 1 in Tumor Recurrence Following Hepatectomy. J Clin Transl Hepatol 2024; 12:406-415. [PMID: 38638375 PMCID: PMC11022061 DOI: 10.14218/jcth.2023.00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 04/20/2024] Open
Abstract
Partial hepatectomy is a first-line treatment for hepatocellular carcinoma. Within 2 weeks following partial hepatectomy, specific molecular pathways are activated to promote liver regeneration. Nevertheless, residual microtumors may also exploit these pathways to reappear and metastasize. Therapeutically targeting molecules that are differentially regulated between normal cells and malignancies, such as fibrinogen-like protein 1 (FGL1), appears to be an effective approach. The potential functions of FGL1 in both regenerative and malignant cells are discussed within the ambit of this review. While FGL1 is normally elevated in regenerative hepatocytes, it is normally downregulated in malignant cells. Hepatectomy does indeed upregulate FGL1 by increasing the release of transcription factors that promote FGL1, including HNF-1α and STAT3, and inflammatory effectors, such as TGF-β and IL6. This, in turn, stimulates certain proliferative pathways, including EGFR/Src/ERK. Hepatectomy alters the phase transition of highly differentiated hepatocytes from G0 to G1, thereby transforming susceptible cells into cancerous ones. Activation of the PI3K/Akt/mTOR pathway by FGL1 allele loss on chromosome 8, a tumor suppressor area, may also cause hepatocellular carcinoma. Interestingly, FGL1 is specifically expressed in the liver via HNF-1α histone acetylase activity, which triggers lipid metabolic reprogramming in malignancies. FGL1 might also be involved in other carcinogenesis processes such as hypoxia, epithelial-mesenchymal transition, immunosuppression, and sorafenib-mediated drug resistance. This study highlights a research gap in these disciplines and the necessity for additional research on FGL1 function in the described processes.
Collapse
Affiliation(s)
- Zahra Shafieizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Shafieizadeh
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Davoudi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Xiaolei Miao
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| |
Collapse
|
7
|
Abumustafa W, Castven D, Sharif-Askari FS, Abi Zamer B, Hamad M, Marquardt JU, Muhammad JS. PRMT5 Mediated HIF1α Signaling and Ras-Related Nuclear Protein as Promising Biomarker in Hepatocellular Carcinoma. BIOLOGY 2024; 13:216. [PMID: 38666828 PMCID: PMC11048327 DOI: 10.3390/biology13040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/28/2024]
Abstract
Protein arginine N-methyltransferase 5 (PRMT5) has been identified as a potential therapeutic target for various cancer types. However, its role in regulating the hepatocellular carcinoma (HCC) transcriptome remains poorly understood. In this study, publicly available databases were employed to investigate PRMT5 expression, its correlation with overall survival, targeted pathways, and genes of interest in HCC. Additionally, we utilized in-house generated NGS data to explore PRMT5 expression in dysplastic nodules compared to hepatocellular carcinoma. Our findings revealed that PRMT5 is significantly overexpressed in HCC compared to normal liver, and elevated expression correlates with poor overall survival. To gain insights into the mechanism driving PRMT5 overexpression in HCC, we analyzed promoter CpG islands and methylation status in HCC compared to normal tissues. Pathway analysis of PRMT5 knockdown in the HCC cells revealed a connection between PRMT5 expression and genes related to the HIF1α pathway. Additionally, by filtering PRMT5-correlated genes within the HIF1α pathway and selecting up/downregulated genes in HCC patients, we identified Ras-related nuclear protein (RAN) as a target associated with overall survival. For the first time, we report that PRMT5 is implicated in the regulation of HIF1A and RAN genes, suggesting the potential prognostic utility of PRMT5 in HCC.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Fatemeh Saheb Sharif-Askari
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jens-Uwe Marquardt
- First Medical Department, University Medical Center Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute of Medical and Health Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
Harris S, Nagarajan P, Kim K. The cytotoxic effects of prazosin, chlorpromazine, and haloperidol on hepatocellular carcinoma and immortalized non-tumor liver cells. Med Oncol 2024; 41:87. [PMID: 38472423 DOI: 10.1007/s12032-024-02323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024]
Abstract
Liver cancer annually accounts for over 800,000 cases and 700,000 deaths worldwide. Hepatocellular carcinoma is responsible for over 80% of liver cancer cases. Due to ineffective treatment options and limited surgical interventions, hepatocellular carcinoma is notoriously difficult to treat. Nonetheless, drugs utilized for other medical conditions, such as the antihypertensive medication prazosin, the neuroleptic medication chlorpromazine, and the neuroleptic medication haloperidol, have gained attention for their potential anti-cancer effects. Therefore, this study used these medications for investigating toxicity to hepatocellular carcinoma while testing the adverse effects on a noncancerous liver cell line model THLE-2. After treatment, an XTT cell viability assay, cell apoptosis assay, reactive oxygen species (ROS) assay, apoptotic proteome profile, and western blot were performed. We calculated IC50 values for chlorpromazine and prazosin to have a molar range of 35-65 µM. Our main findings suggest the capability of both of these treatments to reduce cell viability and generate oxidative stress in HepG2 and THLE-2 cells (p value < 0.05). Haloperidol, however, failed to demonstrate any reduction in cell viability revealing no antitumor effect up to 100 µM. Based on our findings, a mechanism of cell death was not able to be established due to lack of cleaved caspase-3 expression. Capable of bypassing many aspects of the lengthy, costly, and difficult cancer drug approval process, chlorpromazine and prazosin deserve further investigation for use in conjunction with traditional chemotherapeutics.
Collapse
Affiliation(s)
- Seth Harris
- Department of Biology, Missouri State University, Springfield, MO, USA
| | | | - Kyoungtae Kim
- Thomas Jefferson Independent Day School, Joplin, MO, USA.
| |
Collapse
|
9
|
Alfalasi W, Hussain T, Tit N. Ab initio investigation of functionalization of titanium carbide Ti 3C 2 MXenes to tune the selective detection of lung cancer biomarkers. Sci Rep 2024; 14:1403. [PMID: 38228686 PMCID: PMC10791681 DOI: 10.1038/s41598-024-51692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Selected volatile organic compounds (VOCs), such as benzene (C6H6), cyclohexane (C6H12), isoprene (C5H8), cyclopropanone (C3H4O), propanol (C3H8O), and butyraldehyde butanal (C4H8O), in exhaled human breath can act as indicators or biomarkers of lung cancer diseases. Detection of such VOCs with low density would pave the way for an early diagnosis of the disease and thus early treatment and cure. In the present investigation, the density-functional theory (DFT) is applied to study the detection of the mentioned VOCs on Ti3C2TX MXenes, saturated with the functional groups Tx = O, F, S, and OH. For selectivity, comparative sensing of other interfering air molecules from exhaled breath, such as O2, N2, CO2, and H2O is further undertaken. Three functionalization (Tx = O, F, and S) are found promising for the selective detection of the studied VOCs, in particular Ti3C2O2 MXenes has shown distinct sensor response toward the C5H8, C6H6, C6H12, and C3H4O. The relatively strong physisorption ([Formula: see text]), triggered between VOC and MXene due to an enhancement of van der Waals interaction, is found responsible to affect the near Fermi level states, which in turn controls the conductivity and consequently the sensor response. Meanwhile, such intermediate-strength interactions remain moderate to yield small desorption recovery time (of order [Formula: see text] using visible light at room temperature. Thus, Ti3C2O2 MXenes are found promising candidate material for reusable biosensor for the early diagnosis of lung cancer diseases through the VOC detection in exhaled breath.
Collapse
Affiliation(s)
- Wadha Alfalasi
- Department of Physics, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
- National Water and Energy Center, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates
| | - Tanveer Hussain
- School of Science and Technology, University of New England, Armidale, NSW, 2351, Australia
| | - Nacir Tit
- Department of Physics, College of Science, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
- National Water and Energy Center, UAE University, P.O. Box 15551, Al-Ain, United Arab Emirates.
| |
Collapse
|
10
|
Yüregir Y, Kaçaroğlu D, Yaylacı S. Regulation of Hepatocellular Carcinoma Epithelial-Mesenchymal Transition Mechanism and Targeted Therapeutic Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1450:93-102. [PMID: 37452258 DOI: 10.1007/5584_2023_781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy that accounts for the majority of liver cancer cases, with multiple risk factors including chronic hepatitis B and C infections, alcohol abuse, and non-alcoholic fatty liver disease (NAFLD). Despite advancements in diagnosis and treatment, the survival rate of patients with advanced HCC remains low, creating an urgent need for new therapeutic targets and strategies.One biological process crucial to HCC progression is the epithelial-mesenchymal transition (EMT). EMT is a process that enables epithelial cells to acquire mesenchymal properties, including motility and invasiveness, by losing their cell-cell adhesion. Various signaling pathways, including TGF-β, Wnt/β-catenin, and Notch, have been implicated in regulating EMT in HCC.To inhibit EMT, targeted therapeutic approaches have been developed, and preclinical studies suggest that the inhibition of the TGF-β, Wnt/β-catenin, and Notch signaling pathways is promising. TGF-β receptor inhibitors, Wnt/β-catenin pathway inhibitors, and gamma-secretase inhibitors have shown efficacy in preclinical studies by inhibiting EMT and reducing tumor growth in HCC models. However, further clinical studies are necessary to determine their effectiveness in human patients.In addition to these approaches, further research is needed to identify other novel therapeutic targets and develop new treatment strategies for HCC. This review emphasizes the critical role of EMT in HCC progression and highlights the potential of targeting the TGF-β, Wnt/β-catenin, and Notch signaling pathways to inhibit EMT and reduce tumor growth in HCC. Future studies and clinical trials are necessary to validate these therapeutic strategies and develop effective treatments for HCC.
Collapse
Affiliation(s)
- Yelda Yüregir
- Molecular Biology and Genetics Department, İhsan Doğramacı Bilkent University, Ankara, Turkey
| | - Demet Kaçaroğlu
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey
| | - Seher Yaylacı
- Faculty of Medicine, Medical Biology Department, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
11
|
Tang X, Xiang L, Li Q, Shao Y, Wan L, Zhao D, Li X, Wu S, Wang H, Li D, Ding K. Molecular evolution in different subtypes of multifocal hepatocellular carcinoma. Hepatol Int 2023; 17:1429-1443. [PMID: 37273168 DOI: 10.1007/s12072-023-10551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/07/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Multifocal hepatocellular carcinoma (MF-HCC) accounts for > 40% of HCCs, exhibiting a poor prognosis than single primary HCCs. Characterizing molecular features including dynamic changes of mutational signature along with clonal evolution, intrahepatic metastatic timing, and genetic footprint in the preneoplastic stage underlying different subtypes of MF-HCC are important for understanding their molecular evolution and developing a precision management strategy. METHODS We conducted whole-exome sequencing in 74 tumor samples from spatially distinct regions in 35 resected lesions and adjacent noncancerous tissues from 11 patients, 15 histologically confirmed preneoplastic lesions, and six samples from peripheral blood mononuclear cells. A previously published MF-HCC cohort (n = 9) was included as an independent validation dataset. We combined well-established approaches to investigate tumor heterogeneity, intrahepatic metastatic timing, and molecular footprints in different subtypes of MF-HCCs. RESULTS We classified MF-HCCs patients into three subtypes, including intrahepatic metastasis, multicentric occurrence, and mixed intrahepatic metastasis and multicentric occurrence. The dynamic changes in mutational signatures between tumor subclonal expansions demonstrated varied etiologies (e.g., aristolochic acid exposure) underlying the clonal progression in different MF-HCC subtypes. Furthermore, the clonal evolution in intrahepatic metastasis exhibited an early metastatic seeding at 10-4-0.01 cm3 in primary tumor volume (below the limits of clinical detection), further validated in an independent cohort. In addition, mutational footprints in the preneoplastic lesions for multicentric occurrence patients revealed common preneoplastic arising clones, evidently being ancestors of different tumor lesions. CONCLUSION Our study comprehensively characterized the varied tumor clonal evolutionary history underlying different subtypes of MF-HCC and provided important implications for optimizing personalized clinical management for MF-HCC.
Collapse
Affiliation(s)
- Xia Tang
- Shanghai Pudong Hospital and Pudong Medical Center of Fudan University, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lei Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qingshu Li
- Department of Pathology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Li Wan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Xiaoyuan Li
- Department of Oncology, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Songfeng Wu
- Beijing Qinglian Biotech Co., Ltd, Beijing, 102206, People's Republic of China
| | - Haijian Wang
- Shanghai Pudong Hospital and Pudong Medical Center of Fudan University, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| | - Dewei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Hepatobiliary and Pancreatic Cancer Center, Chongqing University Cancer Hospital, Chongqing, 400030, People's Republic of China.
| | - Keyue Ding
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Iyer P, Oberai S, Jiang B, Marimekala D. Unveiling ATF6 and PPM1H signaling in hepatocellular carcinoma progression: From ER stress to tumor suppression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:813-815. [PMID: 37662964 PMCID: PMC10474341 DOI: 10.1016/j.omtn.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Affiliation(s)
- Prajish Iyer
- Department of Systems Biology, City of Hope National Comprehensive Medical Center, Monrovia, CA, USA
| | - Shivangi Oberai
- MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Brian Jiang
- Department of Systems Biology, City of Hope National Comprehensive Medical Center, Monrovia, CA, USA
| | - David Marimekala
- Department of Systems Biology, City of Hope National Comprehensive Medical Center, Monrovia, CA, USA
| |
Collapse
|
13
|
Kumar VB, Lee CH, Su TC, Lin CC, Mohammedsaleh ZM, Yeh CM, Kiefer R, Lin SH. Prognostic and Clinical Implications of UNC13C expression in Hepatocellular Carcinoma Patients. Int J Med Sci 2023; 20:1235-1239. [PMID: 37575271 PMCID: PMC10416712 DOI: 10.7150/ijms.80488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 08/15/2023] Open
Abstract
Aberrant expression of UNC13C (Unc-13 Homolog C) has been observed during the progression of oral squamous cell carcinoma. However, the expression pattern and clinical relevance of UNC13C in Hepatocellular carcinoma (HCC) remain to be elucidated. The purpose of this study is to examine UNC13C expression in HCC and explore its role in clinicopathological factor or prognosis in HCC. Two hundred and sixty-five patients diagnosed with HCC were included in the present study. The expression of UNC13C in HCC tissues was analyzed by immunohistochemistry analysis. The relationship between UNC13C protein and clinicopathological characteristics in HCC was investigated. Moreover, the high expression of UNC13C was significantly correlated with T stage, AJCC stage and overall survival rates. Cox regression analysis identified UNC13C as an independent prognostic indicator for HCC patients. UNC13C might be a prognostic biomarker and therapeutic target in HCC. Further studies with larger sample sets are needed to understand the clinical implications of UNC13C in hepatocellular carcinoma.
Collapse
Affiliation(s)
- V. Bharath Kumar
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chien-Hsun Lee
- Department of Pathology, E- Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Chia-Chieh Lin
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applies Medical Sciences, University of Tabuk, Tabuk-71491, Kingdom of Saudi Arabia
| | - Chung-Min Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University. Taichung, Taiwan
| |
Collapse
|
14
|
Revamping the innate or innate-like immune cell-based therapy for hepatocellular carcinoma: new mechanistic insights and advanced opportunities. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:84. [PMID: 36680649 DOI: 10.1007/s12032-023-01948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023]
Abstract
A cancerous tumour termed hepatocellular carcinoma (HCC) is characterized by inflammation and subsequently followed by end-stage liver disease and necrosis of the liver. The liver's continuous exposure to microorganisms and toxic molecules affects the immune response because normal tissue requires some immune tolerance to be safeguarded from damage. Several innate immune cells are involved in this process of immune system activation which includes dendritic cells, macrophages, and natural killer cells. The liver is an immunologic organ with vast quantities of innate and innate-like immune cells subjected to several antigens (bacteria, fungal or viral) through the gut-liver axis. Tumour-induced immune system engagement may be encouraged or suppressed through innate immunological systems, which are recognized promoters of liver disease development in pre-HCC conditions such as fibrosis or cirrhosis, ultimately resulting in HCC. Immune-based treatments containing several classes of drugs have transformed the treatment of several types of cancers in recent times. The effectiveness of such immunotherapies relies on intricate interactions between lymphocytes, tumour cells, and neighbouring cells. Even though immunotherapy therapy has already reported to possess potential effect to treat HCC, a clear understanding of the crosstalk between innate and adaptive immune cell pathways still need to be clearly understood for better exploitation of the same. The identification of predictive biomarkers, understanding the progression of the disease, and the invention of more efficient combinational treatments are the major challenges in HCC immunotherapy. The functions and therapeutic significance of innate immune cells, which have been widely implicated in HCC, in addition to the interplay between innate and adaptive immune responses during the pathogenesis, have been explored in the current review.
Collapse
|
15
|
Onikanni SA, Lawal B, Bakare OS, Ajiboye BO, Ojo OA, Farasani A, Kabrah SM, Batiha GES, Conte-Junior CA. Cancer of the Liver and its Relationship with Diabetes mellitus. Technol Cancer Res Treat 2022; 21:15330338221119743. [PMID: 36533882 PMCID: PMC9772979 DOI: 10.1177/15330338221119743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A high increase witnessed in type II diabetes mellitus (T2DM) globally has increasingly posed a serious threat to global increases in liver cancer with the association between diabetes mellitus type II and the survival rate in liver cancer patients showing unstable findings. An increase in the development and progression of chronic liver disease from diabetes mellitus patients may be connected to cancer of the liver with several links such as Hepatitis B and C virus and heavy consumption of alcohol. The link between T2DM patients and liver cancer is centered on non-alcoholic fatty liver disease (NAFLD) which could be a serious threat globally if not clinically addressed. Several reports identified metformin treatment as linked to a lower risk of liver cancer prognosis while insulin treatment or sulphonylureas posed a serious threat. Mechanistically, the biological linkage between diabetes type II mellitus and liver cancer are still complex to understand with only the existence of a relationship between NAFLD and high level of energy intake and diabetes mellitus induces hepatic damage, increased liver weight thereby causes multiple pro-inflammatory cytokines that lead to the development of liver cancer. Therefore, this review gives an account of the pathophysiological importance of liver cancer position with T2DM, with the role of NAFLD as an important factor that bridges them.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria,College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Sunday Amos Onikanni, College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei,Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei
| | | | - Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Ekiti State, Nigeria
| | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - Abdullah Farasani
- Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia,Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Saeed M Kabrah
- Department of Laboratory Medicine Faculty of Applied medical sciences, Umm Al-Qura University, Kingdom of Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, Egypt
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
16
|
Yousuf S, Shabir S, Kauts S, Minocha T, Obaid AA, Khan AA, Mujalli A, Jamous YF, Almaghrabi S, Baothman BK, Hjazi A, Singh SK, Vamanu E, Singh MP. Appraisal of the Antioxidant Activity, Polyphenolic Content, and Characterization of Selected Himalayan Herbs: Anti-Proliferative Potential in HepG2 Cells. Molecules 2022; 27:molecules27238629. [PMID: 36500720 PMCID: PMC9735473 DOI: 10.3390/molecules27238629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Natural antioxidants derived from plants have played a vital role in preventing a wide range of human chronic conditions and provide novel bioactive leads for investigators in pharmacotherapy discovery. This work was designed to examine the ethnopharmacological role of Urtica dioica (UD), Capsella bursa-pastoris (CBP), and Inula racemosa (IR). The total phenolic and flavonoid contents (TPC and TFC) were illustrated through colorimetric assays, while the antioxidant activity was investigated through DPPH and ABTS assays. The evaluation of phytochemicals by FT-IR of UD and CBP revealed high contents of aliphatic amines, while IR showed a major peak for ketones. The antioxidant activity, TPC and TFC were highest in the ethanol extract of UD, followed by CBP, and IR showed the lowest activity. All of the extracts revealed significant antioxidant capacities along a dosage gradient. Through a HPLC analysis at a wavelength of 280 nm, UD leaves demonstrated an intense peak of quercetin, and the peak for rutin was less intense. CBP (whole plant), instead, demonstrated a major yield of rutin, and a peak for quercetin was not observed in CBP. IR (rhizomes) showed both quercetin and rutin. All of the extracts were significantly cytotoxic to HepG2 cells after 48 h with the trend IR > UD > CBP. The outcomes of this study may be effective in the selection of specific plants as realistic sources of the bioactive components that might be useful in the nutraceutical progression and other biomedical efficacies.
Collapse
Affiliation(s)
- Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Simran Kauts
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Tarun Minocha
- Department of Zoology, Institute of Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ahmad A. Obaid
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Anmar A. Khan
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdulrahman Mujalli
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Yahya F. Jamous
- National Center of Vaccines and Bio Processing, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Sarah Almaghrabi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Bandar K. Baothman
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Ab dulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| | - Mahendra P. Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
- Correspondence: (S.K.S.); (E.V.); (M.P.S.)
| |
Collapse
|
17
|
Koopaei NN, Shademani M, Yazdi NS, Tahmasvand R, Dehbid M, Koopaei MN, Azizian H, Mousavi Z, Almasirad A, Salimi M. Design and synthesis of novel ureido and thioureido conjugated hydrazone derivatives with potent anticancer activity. BMC Chem 2022; 16:81. [PMID: 36320042 PMCID: PMC9624014 DOI: 10.1186/s13065-022-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Background Compounds possessing urea/thiourea moiety have a wide range of biological properties including anticancer activity. On the other hand, taking advantage of the low toxicity and structural diversity of hydrazone derivatives, they are presently being considered for designing chemical compounds with hydrazone moiety in the field of cancer treatment. With this in mind, a series of novel ureido/thioureido derivatives possessing a hydrazone moiety bearing nitro and chloro substituents (4a–4i) have been designed, synthesized, characterized and evaluated for their in vitro cytotoxic effect on HT-29 human colon carcinoma and HepG2 hepatocarcinoma cell lines. Results Two compounds (4c and 4e) having the chloro phenylurea group hybridized with phenyl hydrazone bearing nitro or chloro moieties demonstrated potent anticancer effect with the IC50 values between 2.2 and 4.8 µM at 72 h. The mechanism of action of compound 4c was revealed in hepatocellular carcinoma cells as an inducer of apoptosis in a caspase-independent pathway. Conclusion Taken together, the current work presented compound 4c as a potential lead compound in developing future hepatocellular carcinoma chemotherapy drugs. Methods The compounds were synthesized and then characterized by physical and spectral data (FT-IR, 1H-NMR, 13C-NMR, Mass). The anticancer activity was assessed using MTT assay, flowcytometry, annexin-V, DAPI staining and Western blot analysis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13065-022-00873-3.
Collapse
Affiliation(s)
- Nasrin Nassiri Koopaei
- grid.411463.50000 0001 0706 2472Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, P.O. Box 1941933111, Tehran, Iran
| | - Mehrasa Shademani
- grid.420169.80000 0000 9562 2611Department of Physiology and Pharmacology, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran ,grid.411463.50000 0001 0706 2472Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nasrin Shirzad Yazdi
- grid.411463.50000 0001 0706 2472Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, P.O. Box 1941933111, Tehran, Iran ,grid.412571.40000 0000 8819 4698Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raheleh Tahmasvand
- grid.420169.80000 0000 9562 2611Department of Physiology and Pharmacology, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Mina Dehbid
- grid.411872.90000 0001 2087 2250Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mansur Nassiri Koopaei
- grid.411705.60000 0001 0166 0922Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design & Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Azizian
- grid.411746.10000 0004 4911 7066Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Zahra Mousavi
- grid.411463.50000 0001 0706 2472Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Almasirad
- grid.411463.50000 0001 0706 2472Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, P.O. Box 1941933111, Tehran, Iran
| | - Mona Salimi
- grid.420169.80000 0000 9562 2611Department of Physiology and Pharmacology, Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
18
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
19
|
Jayaprakash S, Hegde M, BharathwajChetty B, Girisa S, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. Unraveling the Potential Role of NEDD4-like E3 Ligases in Cancer. Int J Mol Sci 2022; 23:ijms232012380. [PMID: 36293239 PMCID: PMC9604169 DOI: 10.3390/ijms232012380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer is a deadly disease worldwide, with an anticipated 19.3 million new cases and 10.0 million deaths occurring in 2020 according to GLOBOCAN 2020. It is well established that carcinogenesis and cancer development are strongly linked to genetic changes and post-translational modifications (PTMs). An important PTM process, ubiquitination, regulates every aspect of cellular activity, and the crucial enzymes in the ubiquitination process are E3 ubiquitin ligases (E3s) that affect substrate specificity and must therefore be carefully regulated. A surfeit of studies suggests that, among the E3 ubiquitin ligases, neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4)/NEDD4-like E3 ligases show key functions in cellular processes by controlling subsequent protein degradation and substrate ubiquitination. In addition, it was demonstrated that NEDD4 mainly acts as an oncogene in various cancers, but also plays a tumor-suppressive role in some cancers. In this review, to comprehend the proper function of NEDD4 in cancer development, we summarize its function, both its tumor-suppressive and oncogenic role, in multiple types of malignancies. Moreover, we briefly explain the role of NEDD4 in carcinogenesis and progression, including cell survival, cell proliferation, autophagy, cell migration, invasion, metastasis, epithelial-mesenchymal transition (EMT), chemoresistance, and multiple signaling pathways. In addition, we briefly explain the significance of NEDD4 as a possible target for cancer treatment. Therefore, we conclude that targeting NEDD4 as a therapeutic method for treating human tumors could be a practical possibility.
Collapse
Affiliation(s)
- Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, Gamasa 35712, Egypt
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Correspondence: (G.S.); (A.B.K.)
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, Assam, India
- Correspondence: (G.S.); (A.B.K.)
| |
Collapse
|
20
|
Badshah Y, Shabbir M, Khan K, Fatima M, Majoka I, Aslam L, Munawar H. Manipulation of Interleukin-6 (IL-6) and Transforming Growth Factor Beta-1(TGFβ-1) towards viral induced liver cancer pathogenesis. PLoS One 2022; 17:e0275834. [PMID: 36215278 PMCID: PMC9550071 DOI: 10.1371/journal.pone.0275834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy. Early diagnosis of HCC has always been challenging. This study aims to assess the pathogenicity and the prevalence of IL-6 -174G/C (rs1800795) and TGFβ-1 +29C/T (rs1800470) polymorphisms in HCV-infected HCC patients. Experimental strategies are integrated with computational approaches to analyse the pathogenicity of the TGFβ-1 +29C/T and IL-6-174 G/C polymorphisms in HCV-induced HCC. AliBaba2 was used to predict the effect of IL-6-174 G/C on transcription factor binding site in IL-6 gene. Structural changes in the mutant TGFβ-1 structure were determined through project HOPE. To assess the polymorphic prevalence of IL-6 -174G/C and TGFβ-1 +29C/T genotypes in HCC and control subjects, amplification refractory mutation system PCR (ARMS-PCR) was performed on 213 HCC and 216 control samples. GraphPad Prism version 8.0 was used for the statistical analysis of the results. In-silico analysis revealed the regulatory nature of both IL-6 -174G/C and TGFβ-1 +29C/T polymorphisms. ARMS-PCR results revealed that the individuals carrying TT genotype for TGFβ-1 gene have an increased risk of developing HCC (p<0.0001, OR = 5.403, RR = 2.062) as compared to individuals with CT and CC genotype. Similarly, GC genotype carriers for IL-6 gene exhibit an increased risk of HCC susceptibility (p<0.0001, OR = 2.276, RR = 1.512) as compared to the people carrying the GG genotype. Genotype TT of TGFβ-1 gene and genotype GC of IL-6 gene are found to be associated with HCV-induced HCC. IL-6 polymorphism may alter its transcription that leads to its pathogenicity. TGFβ-1 polymorphism may alter protein structure stability.
Collapse
Affiliation(s)
- Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Maha Fatima
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Iqra Majoka
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Laiba Aslam
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Huda Munawar
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
21
|
Karthic A, Roy A, Lakkakula J, Alghamdi S, Shakoori A, Babalghith AO, Emran TB, Sharma R, Lima CMG, Kim B, Park MN, Safi SZ, de Almeida RS, Coutinho HDM. Cyclodextrin nanoparticles for diagnosis and potential cancer therapy: A systematic review. Front Cell Dev Biol 2022; 10:984311. [PMID: 36158215 PMCID: PMC9494816 DOI: 10.3389/fcell.2022.984311] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer is still one of the world’s deadliest health concerns. As per latest statistics, lung, breast, liver, prostate, and cervical cancers are reported topmost worldwide. Although chemotherapy is most widely used methodology to treat cancer, poor pharmacokinetic parameters of anticancer drugs render them less effective. Novel nano-drug delivery systems have the caliber to improve the solubility and biocompatibility of various such chemical compounds. In this regard, cyclodextrins (CD), a group of natural nano-oligosaccharide possessing unique physicochemical characteristics has been highly exploited for drug delivery and other pharmaceutical purposes. Their cup-like structure and amphiphilic nature allows better accumulation of drugs, improved solubility, and stability, whereas CDs supramolecular chemical compatibility renders it to be highly receptive to various kinds of functionalization. Therefore combining physical, chemical, and bio-engineering approaches at nanoscale to specifically target the tumor cells can help in maximizing the tumor damage without harming non-malignant cells. Numerous combinations of CD nanocomposites were developed over the years, which employed photodynamic, photothermal therapy, chemotherapy, and hyperthermia methods, particularly targeting cancer cells. In this review, we discuss the vivid roles of cyclodextrin nanocomposites developed for the treatment and theranostics of most important cancers to highlight its clinical significance and potential as a medical tool.
Collapse
Affiliation(s)
- Anandakrishnan Karthic
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Jaya Lakkakula
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- Centre for Computational Biology and Translational Research, Amity University Maharashtra, Mumbai-Pune Expressway, Mumbai, India
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Arpita Roy, ; Bonglee Kim, ; Talha Bin Emran, ; Jaya Lakkakula,
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Malaysia
- IRCBM, COMSATS University Islamabad, Lahore, Pakistan
| | - Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri –URCA, Crato, Brazil
| | | |
Collapse
|
22
|
Lu L, Huang J, Mo J, Da X, Li Q, Fan M, Lu H. Exosomal lncRNA TUG1 from cancer-associated fibroblasts promotes liver cancer cell migration, invasion, and glycolysis by regulating the miR-524-5p/SIX1 axis. Cell Mol Biol Lett 2022; 27:17. [PMID: 35193488 PMCID: PMC8903597 DOI: 10.1186/s11658-022-00309-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Increasing evidence suggests that taurine upregulated gene 1 (TUG1) is crucial for tumor progression; however, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms are not well characterized. Methods The expression levels of TUG1, miR-524-5p, and sine oculis homeobox homolog 1 (SIX1) were determined using quantitative real-time PCR. The regulatory relationships were confirmed by dual-luciferase reporter assay. Cell proliferation and invasion were assessed using Cell Counting Kit 8 and transwell assays. Glucose uptake, cellular levels of lactate, lactate dehydrogenase (LDH), and adenosine triphosphate (ATP) were detected using commercially available kits. Silencing of TUG1 or SIX1 was performed by lentivirus transduction. Protein levels were measured by immunoblotting. Results Cancer-associated fibroblasts (CAFs)-secreted exosomes promoted migration, invasion, and glycolysis in HepG2 cells by releasing TUG1. The promotive effects of CAFs-secreted exosomes were attenuated by silencing of TUG1. TUG1 and SIX1 are targets of miR-524-5p. SIX1 knockdown inhibited the promotive effects of miR-524-5p inhibitor. Silencing of TUG1 suppressed tumor growth and lung metastasis and therefore increased survival of xenograft model mice. We also found that TUG1 and SIX1 were increased in HCC patients with metastasis while miR-524-5p was decreased in HCC patients with metastasis. Conclusions CAFs-derived exosomal TUG1 promoted migration, invasion, and glycolysis in HCC cells via the miR-524-5p/SIX1 axis. These findings may help establish the foundation for the development of therapeutics strategies and clinical management for HCC in future. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00309-9.
Collapse
Affiliation(s)
- Le Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jingjing Huang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Jiantao Mo
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Xuanbo Da
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Qiaoxin Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Meng Fan
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China
| | - Hongwei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, No.157, West 5th Road, Xi'an, 710004, China.
| |
Collapse
|
23
|
Atta S, Kramani NE, Mohamed SR, Mohamed MA, Hassan SH, Hesham R, Mohamed AM, Abdel-Halim EE, Mohamed YA, El-Ahwany E. MicroRNA-199: A Potential Therapeutic Tool for Hepatocellular Carcinoma in an Experimental Model. Asian Pac J Cancer Prev 2021; 22:2771-2779. [PMID: 34582645 PMCID: PMC8850877 DOI: 10.31557/apjcp.2021.22.9.2771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma is one of the major health problems throughout the world with a very poor prognosis. MicroRNAs are small regulatory non-protein-coding RNA molecules. We aimed at investigating microRNA-199 as a potential therapeutic tool for HCC both in vitro and in an experimental model. A therapeutic strategy based on the effect of microRNAs to target genes responsible for liver cancer was adopted in this work. The ability of these small RNAs to potently influence cellular behavior was also investigated. The role of miR-199a in the development of liver cancer has been identified using a systematic literature search using miRBase. HepG2 cell line was used to test the effect of miRNA199a in vitro. Hepatocellular carcinoma was induced in Male Balb/C mice by diethylnitrosamine (DEN). Mice were treated with miRNA-199a and sacrificed after 16 weeks and blood samples and liver specimens were collected for biochemical and histopathological assessment. Histopathological examination of liver specimens after miRNA 199a treatment showed regression of Hepatocellular carcinoma with restoration of normal architecture. AFP, VEGF and TNFα levels decreased after treatment with miRNA 199a. Caspase 3 and 9; showed decreased expression in animals treated with miRNA 199a than non-treated ones.
Collapse
Affiliation(s)
- Shimaa Atta
- Immunology Lab, Theodor Bilharz Research Institute, Kornish El Nil street, Giza, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin YH, Wu MH, Liu YC, Lyu PC, Yeh CT, Lin KH. LINC01348 suppresses hepatocellular carcinoma metastasis through inhibition of SF3B3-mediated EZH2 pre-mRNA splicing. Oncogene 2021; 40:4675-4685. [PMID: 34140643 DOI: 10.1038/s41388-021-01905-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNA) play crucial roles in hepatocellular carcinoma (HCC) progression. However, the specific functions of lncRNAs in alternative splicing (AS) and the metastatic cascade in liver cancer remain largely unclear. In this study, we identified a novel lncRNA, LINC01348, which was significantly downregulated in HCC and correlated with survival functions in HCC patients. Ectopic expression of LINC01348 induced marked inhibition of cell growth, and metastasis in vitro and in vivo. Conversely, these phenotypes were reversed upon knockdown of LINC01348. Mechanistically, LINC01348 complexed with splicing factor 3b subunit 3 (SF3B3) acted as a modulator of EZH2 pre-mRNA AS, and induced alterations in JNK/c-Jun activity and expression of Snail. Notably, C-terminal truncated HBx (Ct-HBx) negatively regulated LINC01348 through c-Jun signaling. Our data collectively highlight those novel regulatory associations involving LINC01348/SF3B3/EZH2/JNK/c-Jun/Snail are an important determinant of metastasis in HCC cells and support the potential utility of targeting LINC01348 as a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Chung Liu
- Institute of Population Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
25
|
Lu Z, Sun Z, Liu C, Shi X, Li R, Shao W, Zheng Y, Li Y, Song J. Prognostic nomogram for hepatocellular carcinoma with radiofrequency ablation: a retrospective cohort study. BMC Cancer 2021; 21:751. [PMID: 34187430 PMCID: PMC8243759 DOI: 10.1186/s12885-021-08505-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023] Open
Abstract
Background Radiofrequency ablation (RFA) is an effective treatment option for hepatocellular carcinoma (HCC). This study aimed to analyze the prognostic factors of HCC patients treated with RFA and to develop nomograms for outcome prediction. Methods A total of 3142 HCC patients treated with RFA were recruited, and their data were collected from the Surveillance, Epidemiology, and End Results database. Univariate and multifactor Cox analyses were performed to identify independent prognostic factors. These factors were integrated into a nomogram to predict 3- and 5-year cancer-specific survival (CSS) and overall survival (OS). Consistency indices and calibration plots were used to assess the accuracy of the nomograms in both the internal and external cohorts. Results The median follow-up periods for HCC patients treated with RFA were 27 and 29 months for OS and CSS, respectively. Marital status, age, race, histological grade of differentiation, tumor size, T stage, and serum alpha-fetoprotein levels at the time of diagnosis were identified as prognostic factors for OS and CSS. Additionally, M stage was identified as risk factors for OS. These risk factors are included in the nomogram. The calibration plots of the OS and CSS nomograms showed excellent consistency between actual survival and nomogram predictions. The bootstrap-corrected concordance indices of the OS and CSS nomograms were 0.637 (95% CI, 0.628–0.646) and 0.670 (95% 0.661–0.679), respectively. Importantly, our nomogram performed better discriminatory compared with 8th edition tumor-node-metastasis (TNM) stage system for predicting OS and CSS. Conclusions We identified prognostic factors for HCC patients treated with RFA and provided an accurate and personalized survival prediction scheme.
Collapse
Affiliation(s)
- Zhenhua Lu
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,The Key Laboratory of geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Zhen Sun
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Chengyu Liu
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,The Key Laboratory of geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China
| | - Xiaolei Shi
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China
| | - Rui Li
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking University Fifth School of Clinical Medicine, Beijing, 100730, China
| | - Weiwei Shao
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China
| | - Yangyang Zheng
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China
| | - Yao Li
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China
| | - Jinghai Song
- Department of General Surgery, Department of Hepato-bilio-pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, NO. 1 DaHua Road, Dong Dan, Beijing, 100730, PR China. .,The Key Laboratory of geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, PR China.
| |
Collapse
|
26
|
Gao Y, Lyu L, Feng Y, Li F, Hu Y. A review of cutting-edge therapies for hepatocellular carcinoma (HCC): Perspectives from patents. Int J Med Sci 2021; 18:3066-3081. [PMID: 34400877 PMCID: PMC8364461 DOI: 10.7150/ijms.59930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Hepatocellular carcinoma (HCC) is a challenging disease due to its heterogenous etiology. Several breakthroughs have occurred in treatment of HCC, associated with an enormous number of patent publications for a variety of HCC treatment modalities. As patents can provide valuable information for academic research and commercial development, this study aims to unravel the cutting-edge therapies for HCC by using patents as an indicator. The outcome from this analysis may offer meaningful insights for respective policymaking, strategic plan and research and development (R&D) prioritization. Methods: Derwent Innovation platform was employed to collect the sample data of patents related to HCC treatment technologies worldwide as of December 31, 2019. Data inclusion, screening and exclusion were according to the rules of preferred reporting items for systematic reviews and meta-analyses (PRISMA). Technologies were classified based on Barcelona Clinic Liver Cancer (BCLC) staging system and recent clinical publications. Patent citation network analysis was carried out to identify and understand HCC therapeutic technology flow. Results: A dataset of 2543 patent documents and 528 patent families was generated. 11 technological categories were classified. Numerous researches were focalized on refinements in technologies and innovations within the field of HCC therapy, and the major achievements are technology advancement on molecular target therapy, chemotherapy, locoregional therapy, combination therapy and immunotherapy with demonstrated clinical benefits. In patent citation network, Notch pathway investigation, antibody drug conjugate (ADC) technology development and drug eluting beads trans artery chemoembolization (DEB-TACE) advancement are the major technological communities involving patents with the greatest future exploratory potential. Conclusion: Numerous emerging technologies have been identified in this study, in which exploring novel therapeutic targets in molecular target therapy, more localized and visible locoregional therapy and combination of immunotherapy with target therapy or other traditional therapies are highlighted as the future trends in treating HCC.
Collapse
Affiliation(s)
| | | | | | | | - Yuanjia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| |
Collapse
|
27
|
Kim SY, Park C, Kim MY, Ji SY, Hwangbo H, Lee H, Hong SH, Han MH, Jeong JW, Kim GY, Son CG, Cheong J, Choi YH. ROS-Mediated Anti-Tumor Effect of Coptidis Rhizoma against Human Hepatocellular Carcinoma Hep3B Cells and Xenografts. Int J Mol Sci 2021; 22:4797. [PMID: 33946527 PMCID: PMC8124566 DOI: 10.3390/ijms22094797] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Coptidis Rhizoma is the dried rhizome from the Coptis chinensis Franch. that has been shown to have a number of beneficial pharmacological properties including antioxidant, anti-inflammatory, and anti-cancer effects. However, the anti-cancer effects of Coptidis Rhizoma on hepatocellular carcinoma (HCC) remain unclear. In this study, we investigated the anti-cancer properties of Coptidis Rhizoma ethanol extract (CR) in HCC Hep3B cells and in a xenograft mouse model. Our results showed that the CR significantly inhibited cell growth and induced apoptosis in Hep3B cells through increased expression of Bcl-2 associated x-protein (Bax) and cleavage of poly-ADP ribose polymerase (PARP), reduced expression of Bcl-2, and activated caspases. CR also increased the generation of intracellular reactive oxygen species (ROS), which caused a loss of mitochondrial membrane potential (MMP, ΔΨm) and activation of the mitochondria-mediated intrinsic apoptosis pathway. Moreover, N-acetylcysteine (NAC), a ROS inhibitor, markedly blocked the effects of CR on apoptotic pathways. CR also induced the expression of light chain 3 (LC3)-I/II, a key autophagy regulator, whereas CR-mediated autophagy was significantly suppressed by NAC. In addition, pre-treatment with NAC perfectly attenuated the inhibition of cell invasion and migration of CR-stimulated Hep3B cells. Furthermore, oral administration of CR suppressed Hep3B tumor growth in xenograft mice without toxicity, alterations to body weight, or changes in hematological and biochemical profiles. Taken together, our findings suggest that CR has anti-tumor effects that result from ROS generation, and may be a potential pharmacological intervention for HCC.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Min Yeong Kim
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Su Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| | - Min Ho Han
- National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea;
| | - Jin-Woo Jeong
- Nakdonggang National Institute of Biological Resources, Sangju 17104, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 176 split 75 Daedeokdae-ro Seo-gu, Daejeon 35235, Korea;
| | - JaeHun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University, Busan 47340, Korea; (S.Y.K.); (M.Y.K.); (S.Y.J.); (H.H.); (H.L.)
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan 47227, Korea;
| |
Collapse
|
28
|
Li FY, Fan TY, Zhang H, Sun YM. Demethylation of miR-34a upregulates expression of membrane palmitoylated proteins and promotes the apoptosis of liver cancer cells. World J Gastroenterol 2021; 27:470-486. [PMID: 33642822 PMCID: PMC7896437 DOI: 10.3748/wjg.v27.i6.470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer is a common cancer and the main cause of cancer-related deaths worldwide. Liver cancer is the sixth most common cancer in the world. Although miR-34a and palmitoyl membrane palmitoylated protein (MPP2) are reportedly involved in various cell processes, their precise roles in liver cancer are still unclear.
AIM To investigate the expression of micro RNA 34a (miR-34a), methylation of the miR-34a promoter and the expression of MPP2 in liver cancer cells and their related mechanisms.
METHODS Together, 78 cases of liver cancer tissues and 78 cases of adjacent tissues were collected. The methylation degree of miR-34a promoter in liver cancer/ paracancerous tissue and liver cancer cells/normal liver cells, and the expression levels of miR-34a and MPP2 in the above samples were detected. Demethylation of liver cancer cells or transfection of liver cancer cells with miR-34a mimetic was performed. The MPP2 overexpression vector was used to transfect liver cancer cells, and the changes in proliferation, invasion, apoptosis, migration, and other biological functions of liver cancer cells after the above interventions were observed. Double luciferase reporter genes were used to detect the targeting relationship between miR-34a and MPP2.
RESULTS Clinical samples showed that the expression levels of miR-34a and MPP2 in liver cancer tissues were lower than those in the normal tissues. The methylation degree of miR-34a promoter region in liver cancer cells was higher than that in normal liver cells. After miR-34a demethylation/mimetic transfection/MPP2 overexpression, the apoptosis of liver cancer cells was increased; the proliferation, invasion and migration capabilities were decreased; the expression levels of caspase 3, caspase 9, E-cadherin, and B-cell lymphoma 2 (Bcl-2)-associated X protein were increased; and the expression levels of Bcl-2, N-cadherin, and β-catenin were decreased. Double luciferase reporter genes confirmed that MPP2 is targeted by miR-34a. Rescue experiments showed that small interfering MPP2 could counteract the promoting effect of miR-34a demethylation on apoptosis and the inhibitory effect on cell proliferation, invasion, and migration.
CONCLUSION miR-34a demethylation upregulates the expression level of MPP2 in liver cancer cells and promotes the apoptosis of liver cancer cells. miR-34a demethylation is a potential method for liver cancer treatment.
Collapse
Affiliation(s)
- Fu-Yong Li
- Department of Interventional Radiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| | - Ting-Yong Fan
- Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Hao Zhang
- Department of Endoscopy, Shandong Cancer Hospital affiliated to Shandong University, Jinan 250117, Shandong Province, China
| | - Yu-Min Sun
- Department of Cardiology, Jinan City People's Hospital, Jinan 271100, Shandong Province, China
| |
Collapse
|
29
|
Kaltenmeier CT, Yazdani H, van der Windt D, Molinari M, Geller D, Tsung A, Tohme S. Neutrophil extracellular traps as a novel biomarker to predict recurrence-free and overall survival in patients with primary hepatic malignancies. HPB (Oxford) 2021; 23:309-320. [PMID: 32811764 PMCID: PMC7958967 DOI: 10.1016/j.hpb.2020.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The incidence of primary hepatic malignancies including Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) is on the rise. (i) Surgery remains the mainstay of potential curative treatment, however the vast majority of patients will recur and not be amenable to curative therapy. (ii) Inflammation has been associated with poor prognosis, however there is no preoperative marker that can predict recurrence-free- or overall survival. Our aim is to correlate inflammation measured as neutrophil extracellular traps (NETs) with survival. METHODS A retrospective analysis was performed using sera/tissue from patients with hepatic malignancies. NET levels were measured in the serum (MPO-DNA) or tumor (Cit-H3). Log rank analysis for RFS/OS was performed. RESULTS Cancer patients had higher pre-surgery MPO-DNA levels compared to healthy individuals (healthy vs cancer: 2.6 ± 1.0 ng/ml vs 34.7 ± 2.13 ng/ml; p < 0.0001). High pre-surgery serum NET levels were associated with shorter RFS/OS compared to those with low levels (RFS-HCC: HR: 2.91, 95% CI: 1.61-5.26, p < 0.0001, RFS-CC: HR: 3.22, 95% CI: 1.33-7.77 p < 0.0093). High Cit-H3 tumor levels similarly predicted shorter RFS/OS. CONCLUSION The current study shows a correlation between pre-operative NET levels and survival. Studying NET formation as a biomarker pre-surgery can help identify patients that could benefit from closer follow-up due to higher risk for recurrence.
Collapse
Affiliation(s)
| | - Hamza Yazdani
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | | | | | - David Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Allan Tsung
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
30
|
Sokkar HH, Abo Dena AS, Mahana NA, Badr A. Artichoke extracts in cancer therapy: do the extraction conditions affect the anticancer activity? FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Artichoke is an edible plant that is grown in the Mediterranean region and is known for its antimicrobial, antifungal, antibacterial, antioxidant and anticancer activities. Different artichoke extraction methods can impressively affect the nature as well as the yield of the extracted components.
Main body
The different methods of artichoke extraction and the influence of the extraction conditions on the extraction efficiency are summarized herein. In addition, cancer causalities and hallmarks together with the molecular mechanisms of artichoke active molecules in cancer treatment are also discussed. Moreover, a short background is given on the common types of cancer that can be treated with artichoke extracts as well as their pathogenesis. A brief discussion of the previous works devoted to the application of artichoke extracts in the treatment of these cancers is also given.
Conclusion
This review article covers the extraction methods, composition, utilization and applications of artichoke extracts in the treatment of different cancers.
Collapse
|
31
|
Huynh H, Prawira A, Le TBU, Vu TC, Hao HX, Huang A, Wang Y, Porta DG. FGF401 and vinorelbine synergistically mediate antitumor activity and vascular normalization in FGF19-dependent hepatocellular carcinoma. Exp Mol Med 2020; 52:1857-1868. [PMID: 33235319 PMCID: PMC8080677 DOI: 10.1038/s12276-020-00524-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal cancer with limited therapeutic options, and standard therapy with sorafenib provides only modest survival benefits. Fibroblast growth factor 19 (FGF19) has been proposed as a driver oncogene, and targeting its receptor, FGFR-4, may provide a better alternative to standard therapy for patients with FGF19-driven tumors. Sixty-three HCC patient-derived xenograft (PDX) models were screened for FGF19 expression. Mice bearing high and low FGF19-expressing tumors were treated with FGF401 and/or vinorelbine, and the antitumor activity of both agents was assessed individually and in combination. Tumor vasculature and intratumoral hypoxia were also examined. High FGF19 expression was detected in 14.3% (9 of 63) of the HCC models tested and may represent a good target for HCC treatment. FGF401 potently inhibited the growth of high FGF19-expressing HCC models regardless of FGF19 gene amplification. Furthermore, FGF401 inhibited the FGF19/FGFR-4 signaling pathway, cell proliferation, and hypoxia, induced apoptosis and blood vessel normalization and prolonged the overall survival (OS) of mice bearing high FGF19 tumors. FGF401 synergistically acted with the microtubule-depolymerizing drug vinorelbine to further suppress tumor growth, promote apoptosis, and prolong the OS of mice bearing high FGF19 tumors, with no evidence of increased toxicity. Our study suggests that a subset of patients with high FGF19-expressing HCC tumors could benefit from FGF401 or FGF401/vinorelbine treatment. A high level of FGF19 in a tumor may serve as a potential biomarker for patient selection. The drugs FGF401 and vinorelbine, when working together synergistically, could be effective in treating those liver cancers driven by the activity of the fibroblast growth factor 19 (FGF19) protein. The drugs’ effects on human tumors grafted into mice were studied by an international research team led by Hung Huynh at the National Cancer Centre in Singapore. FGF401 is a small molecule that inhibits the activity of the receptor protein that the FGF19 growth factor interacts with to promote some cancers. Vinorelbine disrupts protein microtubules required for the cell division that allows cancer cells to multiply. In combination, the drugs achieved significantly enhanced anti-cancer effects which can now be tested in clinical trials. The research also uncovered new details of FGF401’s therapeutic actions, including its ability to restore healthy blood vessel formation.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore.
| | - Aldo Prawira
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | - Thi Bich Uyen Le
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | - Thanh Chung Vu
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular Research, National Cancer Centre, Singapore, Singapore
| | - Huai-Xiang Hao
- Oncology Drug Discovery Pharmacology, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Alan Huang
- Oncology Drug Discovery Pharmacology, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Youzhen Wang
- Oncology Drug Discovery Pharmacology, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Diana Graus Porta
- Oncology Translational Research, Novartis Institutes for Biomedical Research at Basel, Basel, Switzerland
| |
Collapse
|
32
|
Glycyrrhetinic Acid-Functionalized Mesoporous Silica Nanoparticles for the Co-Delivery of DOX/CPT-PEG for Targeting HepG2 Cells. Pharmaceutics 2020; 12:pharmaceutics12111048. [PMID: 33147860 PMCID: PMC7694026 DOI: 10.3390/pharmaceutics12111048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
A pH-triggered mesoporous silica nanoparticle (MSN)-based nano-vehicle for the dual delivery of doxorubicin (DOX)/camptothecin-PEG (CPT-PEG) has been prepared. To enhance its selectivity, the nanoparticles were decorated with glycyrrhetinic acid (GA) to target HepG2 cells. The highly insoluble CPT was derivatized with a reductive-cleavable PEG chain to improve its loading within the MSN. The preparation of these particles consisted of four steps. First, CPT-PEG was loaded within the pores of the MSN. Then, dihydrazide polyethylene glycol chains were introduced onto the surface of an aldehyde-functionalized MSN by means of a hydrazone bond. Afterwards, DOX was covalently attached to the other end of the dihydrazide polyethylene glycol chains. Finally, the resulting nanoparticles were decorated with GA by formation of an imine bond between the amino group of DOX and a benzaldehyde-GA derivative. The system was stable at physiological conditions and the release of both drugs was negligible. However, at acidic pH, a burst release of DOX and a gradual release of CPT-PEG takes place. GA-decorated drug delivery systems (DDS) selectively internalizes into HepG2. In vitro tests demonstrated that this system shows a great cytotoxicity towards HepG2 cells. Furthermore, glutathione cleavage of CPT prodrug assures the formation of free CPT leading to a synergistic effect in combination with DOX.
Collapse
|
33
|
Polidoro MA, Mikulak J, Cazzetta V, Lleo A, Mavilio D, Torzilli G, Donadon M. Tumor microenvironment in primary liver tumors: A challenging role of natural killer cells. World J Gastroenterol 2020; 26:4900-4918. [PMID: 32952338 PMCID: PMC7476172 DOI: 10.3748/wjg.v26.i33.4900] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/24/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the last years, several studies have been focused on elucidate the role of tumor microenvironment (TME) in cancer development and progression. Within TME, cells from adaptive and innate immune system are one of the main abundant components. The dynamic interactions between immune and cancer cells lead to the activation of complex molecular mechanisms that sustain tumor growth. This important cross-talk has been elucidate for several kind of tumors and occurs also in patients with liver cancer, such as hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Liver is well-known to be an important immunological organ with unique microenvironment. Here, in normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as liver sinusoidal endothelial cells and Kupffer cells, favoring self-tolerance against gut antigens. The presence of underling liver immunosuppressive microenvironment highlights the importance to dissect the interaction between HCC and iCCA cells with immune infiltrating cells, in order to understand how this cross-talk promotes tumor growth. Deeper attention is, in fact, focused on immune-based therapy for these tumors, as promising approach to counteract the intrinsic anti-tumor activity of this microenvironment. In this review, we will examine the key pathways underlying TME cell-cell communications, with deeper focus on the role of natural killer cells in primary liver tumors, such as HCC and iCCA, as new opportunities for immune-based therapeutic strategies.
Collapse
Affiliation(s)
- Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Ana Lleo
- Hepatobiliary Immunopathology Laboratory, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Internal Medicine, Humanitas Clinical and Research Center – IRCCS, Rozzano 20089, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Rozzano 20089, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, Pieve Emanuele 20090, Milan, Italy
- Department of Hepatobiliary and General Surgery, Humanitas Clinical and Research Center - IRCCS, Rozzano 20089, Milan, Italy
| |
Collapse
|
34
|
Kang K, Song SK, Chung CW, Park Y. Value of surgical resection compared to transarterial chemoembolization in the treatment of hepatocellular carcinoma with portal vein tumor thrombus: A meta-analysis of hazard ratios from five observational studies. Ann Hepatobiliary Pancreat Surg 2020; 24:243-251. [PMID: 32843588 PMCID: PMC7452806 DOI: 10.14701/ahbps.2020.24.3.243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
Backgrounds/Aims Although systemic therapy is recommended in advanced hepatocellular carcinoma (HCC), treatment options for advanced HCC with portal vein tumor thrombosis (PVTT) are debatable. Recent studies have recommended other treatments, such as surgical resection (SR) and transarterial chemoembolization (TACE). Therefore, we performed a meta-analysis of hazard ratio (HR) for overall survival (OS) between the two modalities using previous reports in order to compare the two treatment options. Methods A systematic review was performed on previously reported data that compared the survival benefits of SR and TACE in patients with advanced HCC with PVTT. Thereafter, the meta-analysis was performed to determine the cumulative HR between the two different treatment groups. We used the HR and 95% CI directly from the original data, when available; however, if these data were unavailable, reconstruction was performed with the secondary data from the original Kaplan-Meier survival curve. Results A total of seven studies were eligible; however, 2 were excluded from the meta-analysis. The remaining 5 studies that included 1422 patients (SR group=559, TACE group=863) were studied for the meta-analysis. The median OS was longer in the SR group (8.2-64 months in SR vs. 6.6-32 months in TACE), proving that SR offered survival benefits. Moreover, the HR for the OS in the TACE group was 1.64 (95% CI, 1.43-1.88) compared to SR group, depicting that TACE was a less favorable option compared to SR. Conclusions There is evidence that SR may be a better viable option for advanced HCC with PVTT.
Collapse
Affiliation(s)
- Keera Kang
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Sung Kyu Song
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Chul-Woon Chung
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| | - Yongkeun Park
- Department of Surgery, Catholic Kwandong University International St. Mary's Hospital, Incheon, Korea
| |
Collapse
|
35
|
Kim SY, Hwangbo H, Lee H, Park C, Kim GY, Moon SK, Yun SJ, Kim WJ, Cheong J, Choi YH. Induction of Apoptosis by Coptisine in Hep3B Hepatocellular Carcinoma Cells through Activation of the ROS-Mediated JNK Signaling Pathway. Int J Mol Sci 2020; 21:E5502. [PMID: 32752099 PMCID: PMC7432186 DOI: 10.3390/ijms21155502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a high mortality rate worldwide, and treatment is very limited due to its high recurrence and low diagnosis rate, and therefore there is an increasing need to develop more effective drugs to treat HCC. Coptisine is one of the isoquinoline alkaloids, and it has various pharmacological effects. However, the evidence for the molecular mechanism of the anticancer efficacy is still insufficient. Therefore, this study investigated the antiproliferative effect of coptisine on human HCC Hep3B cells and identified the action mechanism. Our results showed that coptisine markedly increased DNA damage and apoptotic cell death, which was associated with induction of death receptor proteins. Coptisine also significantly upregulated expression of proapoptotic Bax protein, downregulated expression of anti-apoptotic Bcl-2 protein, and activated caspase-3, -8, and -9. In addition, coptisine remarkably increased the generation of reactive oxygen species (ROS), loss of mitochondrial membrane potential (MMP), and release of cytochrome c into the cytoplasm. However, N-acetylcysteine (NAC), a ROS scavenger, significantly attenuated the apoptosis-inducing effect of coptisine. It is worth noting that coptisine significantly upregulated phosphorylation of ROS-dependent c-Jun N-terminal kinase (JNK), whereas treatment with JNK inhibitor could suppress an apoptosis-related series event. Taken together, our results suggest that coptisine has an anticancer effect in Hep3B cells through ROS-mediated activation of the JNK signaling pathway.
Collapse
Affiliation(s)
- So Young Kim
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| | - Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-Eui University, Busan 47340, Korea;
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea;
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Korea;
| | - Seok Joong Yun
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.J.Y.); (W.-J.K.)
| | - Wun-Jae Kim
- Department of Urology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea; (S.J.Y.); (W.-J.K.)
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-Eui University, Busan 47340, Korea; (S.Y.K.); (H.H.); (H.L.)
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Busan 47227, Korea
| |
Collapse
|
36
|
Nabrinsky E, James E. Highlighting Survival with Yttrium-90 Radioembolization Therapy in Unresectable Hepatocellular Carcinoma. Cureus 2020; 12:e8163. [PMID: 32550079 PMCID: PMC7296880 DOI: 10.7759/cureus.8163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Unresectable hepatocellular carcinoma has several different therapeutic options, including targeted agents as well as locoregional therapy. Yttrium-90 (Y90) radioembolization therapy is an established treatment for unresectable disease and has been compared to other locoregional options as well as different targeted therapies. Newer case series are also reporting a potential benefit to the addition of immunotherapy to Y90 radioembolization. Here we report a case of prolonged survival in a patient whose treatment course included Y90 radioembolization along with sorafenib and nivolumab.
Collapse
Affiliation(s)
- Edward Nabrinsky
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | - Edward James
- Medical Oncology, Advocate Lutheran General Hospital, Park Ridge, USA
| |
Collapse
|
37
|
D. Martins T, Lima E, E. Boto R, Ferreira D, R. Fernandes J, Almeida P, F. V. Ferreira L, Silva AM, V. Reis L. Red and Near-Infrared Absorbing DicyanomethyleneSquaraine Cyanine Dyes: PhotophysicochemicalProperties and Anti-Tumor Photosensitizing Effects. MATERIALS 2020; 13:ma13092083. [PMID: 32369923 PMCID: PMC7254310 DOI: 10.3390/ma13092083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy is a medical modality developed for the treatment of several diseases of oncological and non-oncological etiology that requires the presence of a photosensitizer, light and molecular oxygen, which combined will trigger physicochemical reactions responsible for reactive oxygen species production. Given the scarcity of photosensitizers that exhibit desirable characteristics for its potential application in this therapeutic strategy, the main aims of this work were the study of the photophysical and photochemical properties and the photobiological activity of several dicyanomethylene squaraine cyanine dyes. Thus, herein, the study of their aggregation character, photobleaching and singlet oxygen production ability, and the further application of the previously synthesized dyes in Caco-2 and HepG2 cancer cell lines, to evaluate their phototherapeutic effects, are described. Dicyanomethylene squaraine dyes exhibited moderate light-stability and, despite the low singlet oxygen quantum yields, were a core of dyes that exhibited relevant in vitro photodynamic activity, as there was an evident increase in the toxicity of some of the tested dyes exclusive to radiation treatments.
Collapse
Affiliation(s)
- Tiago D. Martins
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Eurico Lima
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
| | - Renato E. Boto
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-001 Covilhã, Portugal; (R.E.B.); (P.A.)
| | - Diana Ferreira
- Institute of Bioengineering and Biosciences (iBB), Higher Technical Institute, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (D.F.); (L.F.V.F.)
| | - José R. Fernandes
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
| | - Paulo Almeida
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Av. Infante D. Henrique, 6201-001 Covilhã, Portugal; (R.E.B.); (P.A.)
| | - Luis F. V. Ferreira
- Institute of Bioengineering and Biosciences (iBB), Higher Technical Institute, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (D.F.); (L.F.V.F.)
| | - Amélia M. Silva
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- Correspondence: (A.M.S.); (L.V.R.)
| | - Lucinda V. Reis
- Chemistry Centre of Vila Real (CQ-VR), University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal; (T.D.M.); (E.L.); (J.R.F.)
- Correspondence: (A.M.S.); (L.V.R.)
| |
Collapse
|
38
|
Xia L, Teng Q, Chen Q, Zhang F. Preparation and Characterization of Anti-GPC3 Nanobody Against Hepatocellular Carcinoma. Int J Nanomedicine 2020; 15:2197-2205. [PMID: 32280214 PMCID: PMC7125335 DOI: 10.2147/ijn.s235058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Glypican-3 (GPC3) is a newly identified target molecule for the early diagnosis of hepatocellular carcinoma (HCC), while targeted inhibition of GPC3 signaling may help to control the proliferation and metastasis of HCC cells. The purpose of this study was to prepare the anti-GPC3 nanobody and to investigate the affinity of the anti-GPC3 nanobodies in vitro and the anticancer effects on hepatocellular carcinoma in vivo. Methods To screen for unknown anti-GPC3 antibodies, we constructed an antibody phage display library. After three rounds of panning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA). Further, the nanobody fusion protein was expressed in E. coli BL21 cells and purified by affinity chromatography. Competitive ELISA and flow cytometry were conducted to confirm the affinity of the anti-GPC3 nanobodies in vitro. The antitumor effects of VHHGPC3 were assessed in vivo. Results The results showed that the nanobody VHHGPC3 had specific high-affinity binding to His-GPC3 antigen. Moreover, VHHGPC3 exhibited specific binding to commercial human GPC3 and recognized the surface GPC3 protein of the hepatoma cell line HepG2. Importantly, in vivo study showed that GPC3 nanobody suppresses the growth of HepG2 and improves the survival rate of tumor mice. Discussion In summary, our new anti-GPC3 nanobody suggests a strong application potential for targeted therapy of liver cancer.
Collapse
Affiliation(s)
- Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Qiao Teng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Qi Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, People's Republic of China
| |
Collapse
|
39
|
Lv S, Ning H, Li Y, Wang J, Jia Q, Wen H. Inhibition of cyclinB1 Suppressed the Proliferation, Invasion, and Epithelial Mesenchymal Transition of Hepatocellular Carcinoma Cells and Enhanced the Sensitivity to TRAIL-Induced Apoptosis. Onco Targets Ther 2020; 13:1119-1128. [PMID: 32103981 PMCID: PMC7008233 DOI: 10.2147/ott.s225202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background CyclinB1 is highly expressed in various tumor tissues and plays an important role in tumor progression. However, its role in hepatocellular carcinoma (HCC) remains unclear. Therefore, the aim of this study was to explore the role of cyclinB1 in the development and progression of HCC. Methods The expression of cyclinB1 was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) database, and detected in HCC tissues and HCC cell lines through quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. CyclinB1-short hairpin RNA (Sh-cyclinB1) was transfected into HCC cells to knockdown cyclinB1, and the effect of cyclinB1 knockdown on HCC was examined via the MTT assay, colony formation assay, wound healing assay, scratch assay, cell cycle analysis in vitro, and xenograft model in nude mice. In addition, the role of cyclinB1 on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis was measured using flow cytometry and Western blotting. Results The GEPIA database analysis showed that cyclinB1 was highly expressed in HCC tissues. The results of qRT-PCR and Western blotting proved that the expression of cyclinB1 was significantly increased in HCC tissues and cell lines. The data of the MTT assay, colony formation assay, and cell cycle analysis indicated that cyclinB1 knockdown inhibited the proliferation of HCC cells. In addition, cell migration, invasion, and epithelial mesenchymal transition were also impaired by cyclinB1 knockdown. Furthermore, the xenograft model in nude mice demonstrated that inhibition of cyclinB1 suppressed tumor growth and metastasis in vivo. Finally, the results of flow cytometry and Western blotting indicated that inhibition of cyclinB1 enhanced the sensitivity of HCC cells to TRAIL-induced apoptosis. Conclusion Overall, these data provide reasonable evidence that cyclinB1 may serve as a proto-oncogene during the progression of HCC.
Collapse
Affiliation(s)
- Shuai Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Hanbing Ning
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Yingxia Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Jingyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Qiaoyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| | - Hongtao Wen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450018, Henan Province, People's Republic of China
| |
Collapse
|
40
|
Barabadi H, Webster TJ, Vahidi H, Sabori H, Damavandi Kamali K, Jazayeri Shoushtari F, Mahjoub MA, Rashedi M, Mostafavi E, Cruz DM, Hosseini O, Saravana M. Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:3-17. [PMID: 33680005 PMCID: PMC7757980 DOI: 10.22037/ijpr.2020.113820.14504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of the current study was to systematically review the in-vitro anticancer activity of green synthesized gold nanoparticles (AuNPs) against hepatic cancer cells. The articles were identified through electronic databases, including PubMed, Scopus, Embase, Web of Science, Science Direct, ProQuest, and Cochrane. In total, 20 articles were found eligible to enter into our systematic review. Our findings showed that 65% of the articles used herbal extracts for the synthesis of AuNPs. Significantly, almost all of the articles stated the biofabrication of AuNPs below 100 nm in diameter. Impressively, most of the studies showed significant anticancer activity against HepG2 cells. Molecular studies stated the induction of apoptosis through the AuNPs-treated cells. We provided valuable information about the molecular mechanisms of AuNPs-induced cytotoxicity against HepG2 cells as well as their biocompatibility. The studies represented that AuNPs can be effective as anticancer drug nanocarrier for drug delivery systems. In addition, AuNP surface functionalization provides an opportunity to design multifunctional nanoparticles by conjugating them to diagnostic and/or therapeutic agents for theranostic purposes. Overall, our findings depicted considerable biogenic AuNPs-induced cytotoxicity, however, future studies should assess the anticancer activity of biogenic AuNPs through in-vivo studies, which was missing from such studies.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamed Sabori
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | - Mohammad Ali Mahjoub
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Rashedi
- Student Research Committee, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.
| | - David Medina Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115 USA.
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Muthupandian Saravana
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Science, Mekelle University, Mekelle-1871, Ethiopia.
| |
Collapse
|
41
|
Dadfar SMM, Sekula-Neuner S, Trouillet V, Liu HY, Kumar R, Powell AK, Hirtz M. Evaluation of click chemistry microarrays for immunosensing of alpha-fetoprotein (AFP). BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2505-2515. [PMID: 31921529 PMCID: PMC6941445 DOI: 10.3762/bjnano.10.241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The level of cancer biomarkers in cells, tissues or body fluids can be used for the prediction of the presence of cancer or can even indicate the stage of the disease. Alpha-fetoprotein (AFP) is the most commonly used biomarker for early screening and diagnosis of hepatocellular carcinoma (HCC). Here, a combination of three techniques (click chemistry, the biotin-streptavidin-biotin sandwich strategy and the use of antigen-antibody interactions) were combined to implement a sensitive fluorescent immunosensor for AFP detection. Three types of functionalized glasses (dibenzocyclooctyne- (DBCO-), thiol- and epoxy-terminated surfaces) were biotinylated by employing the respective adequate click chemistry counterparts (biotin-thiol or biotin-azide for the first class, biotin-maleimide or biotin-DBCO for the second class and biotin-amine or biotin-thiol for the third class). The anti-AFP antibody was immobilized on the surfaces via a biotin-streptavidin-biotin sandwich technique. To evaluate the sensing performance of the differently prepared surfaces, fluorescently labeled AFP was spotted onto them via microchannel cantilever spotting (µCS). Based on the fluorescence measurements, the optimal microarray design was found and its sensitivity was determined.
Collapse
Affiliation(s)
- Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Sylwia Sekula-Neuner
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Vanessa Trouillet
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Institute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Hui-Yu Liu
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| | - Annie K Powell
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein Leopoldshafen, Germany
| |
Collapse
|
42
|
Upregulation of RUNX1 Suppresses Proliferation and Migration through Repressing VEGFA Expression in Hepatocellular Carcinoma. Pathol Oncol Res 2019; 26:1301-1311. [PMID: 31289995 DOI: 10.1007/s12253-019-00694-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, and occurs in people with chronic liver diseases. Current treatment methods include surgery, transplant, and chemotherapy. Our study demonstrates runt-related transcription factor 1 (RUNX1) as a novel molecule in the initiation and development of HCC, and the role of its interaction with vascular endothelial growth factor A (VEGFA) in HCC. We showed the suppressive role of RUNX1 in the proliferation and migration of hepatocytes. In addition, the repressor RUNX1 functioned as a transcription factor on the promoter of VEGFA to inhibit the expression of VEGFA. Study in the HCC cells demonstrated that the suppression of HCC proliferation and migration was masked in the presence of overexpressed VEGFA. Introduction of RUNX1 into HCC mice model significantly limited the tumor growth. In summary, our study demonstrated that RUNX1 functions as a repressor in the HCC and this suppressive function was dependent on its effect on VEGFA.
Collapse
|
43
|
Guo Y, Qin X, Chai B, Jia J, Yi J, Wang K, Hou X. The prognostic value of homeobox B7 expression in patients with hepatocellular carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:2682-2690. [PMID: 31934098 PMCID: PMC6949547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/23/2019] [Indexed: 06/10/2023]
Abstract
The prognostic role of homeobox B7 (HOXB7) in hepatocellular carcinoma (HCC) is not clearly established. The present study aimed to evaluate the associations among the clinicopathological characteristics, HOXB7 expression, and the overall survival (OS) of patients with HCC. An immunohistochemical analysis was used to detect the expression level of HOXB7. In addition, the association between the expression of HOXB7 and the clinicopathological characteristics of HCC was analyzed. The Kaplan-Meier method was used to calculate the survival rates, and the COX proportional hazards model was used to investigate univariate and multivariate analyses. A total of 80 patients were enrolled in this study. Of the 80 HCC samples, HOXB7 was up-regulated in 28 samples (35.0%). The high HOXB7 expression was significantly associated with OS by univariate Cox regression analysis (HR = 2.0; 95% CI = 1.1-3.4, P = 0.016). The median survival with high HOXB7 expression and low HOXB7 expression was 12.5 months ± 3.7 months versus 32.5 months ± 4.7 months, respectively, as visualized on Kaplan-Meier curves (P = 0.014). After adjusting for possible factors related to survival time after HCC resection, the results suggested that survival time was negatively correlated with high HOXB7 expression (HR = 2.592, 95% CI = 1.283-5.239, P = 0.008). The present data indicate that the HOXB7 expression was negatively associated with survival time after HCC resection. As HOXB7 was a common and readily available measurement in the clinical setting, it was a convenient and feasible way to identify those patients who were at high risk and who had a poor prognosis.
Collapse
Affiliation(s)
- Yarong Guo
- Department of Oncology, The First Clinical Hospital of Shanxi Medical UniversityTaiyuan, Shanxi Province, China
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical UniversityTaiyuan, Shanxi Province, China
| | - Bao Chai
- Department of Pharmacology, Shanxi Medical UniversityTaiyuan, Shanxi Province, China
| | - Junmei Jia
- Department of Oncology, The First Clinical Hospital of Shanxi Medical UniversityTaiyuan, Shanxi Province, China
| | - Jiahong Yi
- Department of Oncology, The First Clinical Hospital of Shanxi Medical UniversityTaiyuan, Shanxi Province, China
| | - Kang Wang
- Department of Oncology, The First Clinical Hospital of Shanxi Medical UniversityTaiyuan, Shanxi Province, China
| | - Xiaomin Hou
- Department of Gastroenterology and Hepatology, Shanxi Academy of Medical Sciences Shanxi DAYI HospitalTaiyuan, Shanxi Province, China
| |
Collapse
|
44
|
Wang Y, Huang Q, Deng T, Li BH, Ren XQ. Clinical Significance of TRMT6 in Hepatocellular Carcinoma: A Bioinformatics-Based Study. Med Sci Monit 2019; 25:3894-3901. [PMID: 31128068 PMCID: PMC6556066 DOI: 10.12659/msm.913556] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The purpose of this study was to investigate the correlation between TRMT6 mRNA expression levels and clinicopathological features in primary HCC patients and to evaluate their prognostic value. Material/Methods The clinical information and the mRNA sequencing data of the patients with primary hepatocellular carcinoma (HCC) were extracted from The Cancer Genome Atlas (TCGA) Liver Cancer database. The correlation between the clinicopathological features and the expression of TRMT6 was analyzed by t test and chi-square test. The overall survival (OS) and recurrence-free survival (RFS) were estimated using the Kaplan-Meier method and Cox regression models. Gene set enrichment analysis (GSEA) was used to explore the potential mechanisms of TRMT6 dysregulation in primary HCC patients. Results Compared to normal tissues, TRMT6 was significantly upregulated in primary HCC tissues. Kaplan-Meier survival curves revealed that higher TRMT6 expression was associated with reduced RFS (p=0.0146) and OS (p=0.0224) in HCC patients. Moreover, multivariable Cox regression analysis indicated that TRMT6 upregulation independently predicted poor RFS (HR: 1.871, 95% CI: 1.204, 2.905, p=0.005) and OS (HR: 2.176, 95% CI: 1.234, 3.836, p=0.007). Gene Set Enrichment Analysis (GSEA) indicated that primary HCC samples in the TRMT6 high expression group were enriched for the G2M checkpoint, spermatogenesis, and MYC target genes. Conclusions TRMT6 was upregulated in HCC tissues, and higher TRMT6 expression levels was correlated with reduced OS and RFS in patients with primary HCC. TRMT6 might be a promising prognostic biomarker for poor clinical outcomes in primary HCC patients.
Collapse
Affiliation(s)
- Yang Wang
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Tong Deng
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Bing-Hui Li
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Xue-Qun Ren
- Department of General Surgery, Center for Evidence-Based Medicine and Clinical Research, Huaihe Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
45
|
Jeon YJ, Kim S, Kim JH, Youn UJ, Suh SS. The Comprehensive Roles of ATRANORIN, A Secondary Metabolite from the Antarctic Lichen Stereocaulon caespitosum, in HCC Tumorigenesis. Molecules 2019; 24:molecules24071414. [PMID: 30974882 PMCID: PMC6480312 DOI: 10.3390/molecules24071414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly genetic diseases, but surprisingly chemotherapeutic approaches against HCC are only limited to a few targets. In particular, considering the difficulty of a chemotherapeutic drug development in terms of cost and time enforces searching for surrogates to minimize effort and maximize efficiency in anti-cancer therapy. In spite of the report that approximately one thousand lichen-derived metabolites have been isolated, the knowledge about their functions and consequences in cancer development is relatively limited. Moreover, one of the major second metabolites from lichens, Atranorin has never been studied in HCC. Regarding this, we comprehensively analyze the effect of Atranorin by employing representative HCC cell lines and experimental approaches. Cell proliferation and cell cycle analysis using the compound consistently show the inhibitory effects of Atranorin. Moreover, cell death determination using Annexin-V and (Propidium Iodide) PI staining suggests that it induces cell death through necrosis. Lastly, the metastatic potential of HCC cell lines is significantly inhibited by the drug. Taken these together, we claim a novel functional finding that Atranorin comprehensively suppresses HCC tumorigenesis and metastatic potential, which could provide an important basis for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Young-Jun Jeon
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ji Hee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, Korea.
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea.
| | - Sung-Suk Suh
- Department of Bioscience, Mokpo National University, Muan 58554, Korea.
| |
Collapse
|
46
|
Lv L, Wang X, Ma T. microRNA-944 inhibits the malignancy of hepatocellular carcinoma by directly targeting IGF-1R and deactivating the PI3K/Akt signaling pathway. Cancer Manag Res 2019; 11:2531-2543. [PMID: 31114322 PMCID: PMC6497845 DOI: 10.2147/cmar.s199818] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose: Recent studies have identified microRNA-944 (miR-944) as a cancer-related miRNA, but its expression and precise functions in hepatocellular carcinoma (HCC) remain unknown. Patients and methods: miR-944 expression in HCC tissues and cell lines were detected by RT-qPCR. A series of functional assays were utilized to examine the influence of miR-944 on the malignant phenotypes of HCC cells in vitro and in vivo. More importantly, the associated mechanisms underlying the activity of miR-944 in HCC cells were investigated using bioinformatics, luciferase reporter assays, RT-qPCR, and western blot analysis. Results: In this study, we report for the first time, a significant downregulation of miR-944 in HCC tissues and cell lines and the correlation between its downregulation and malignant clinical parameters, including Edmondson-Steiner grade, TNM stage, and venous infiltration. Low miR-944 expression predicted poorer overall survival rate and disease-free survival rate in patients with HCC. Functionally, exogenous miR-944 expression attenuated cell proliferation, clone formation, metastasis, and epithelial-mesenchymal transition and increased apoptosis in HCC, whereas miR-944 knockdown produced the opposite results. In addition, ectopic miR-944 expression hindered HCC tumor growth in vivo. Mechanistically, insulin-like growth factor 1 receptor (IGF-1R) was demonstrated to be the direct target gene of miR-944 in HCC cells. Furthermore, the expression level of miR-944 was inversely correlated with IGF-1R expression in HCC tissues. Rescue experiments showed that IGF-1R was at least partially responsible for the effects of miR-944 on the malignant phenotypes of HCC cells. In addition, the PI3K/Akt pathway was notably deactivated, both in vitro and in vivo, upon miR-944 upregulation. Conclusion: This study provides the first evidence that miR-944 directly targets IGF-1R and inhibits the aggressiveness of HCC, in vitro and in vivo, by decreasing PI3K/Akt signaling. Hence, targeting miR-944 may open a new avenue for the treatment of patients with HCC.
Collapse
Affiliation(s)
- Lili Lv
- Department of Oncology and Hematology, The Second Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Xiaodong Wang
- Department of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| | - Tonghui Ma
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130000, People's Republic of China
| |
Collapse
|
47
|
Yu MM, Feng YH, Zheng L, Zhang J, Luo GH. Short hairpin RNA-mediated knockdown of nuclear factor erythroid 2-like 3 exhibits tumor-suppressing effects in hepatocellular carcinoma cells. World J Gastroenterol 2019; 25:1210-1223. [PMID: 30886504 PMCID: PMC6421239 DOI: 10.3748/wjg.v25.i10.1210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3 (NFE2L3), also known as NRF3, is a member of the cap 'n' collar basic-region leucine zipper family of transcription factors. NFE2L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated. AIM To explore the expression and biological function of NFE2L3 in HCC. METHODS We analyzed the expression of NFE2L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas (TCGA) data portal. Short hairpin RNA (shRNA) interference technology was utilized to knock down NFE2L3 in vitro. Cell apoptosis, clone formation, proliferation, migration, and invasion assays were used to identify the biological effects of NFE2L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition (EMT) markers was examined by Western blot analysis. RESULTS TCGA analysis showed that NFE2L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines. CONCLUSION Our study showed that shRNA-mediated knockdown of NFE2L3 exhibited tumor-suppressing effects in HCC cells.
Collapse
Affiliation(s)
- Miao-Mei Yu
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Yue-Hua Feng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Lu Zheng
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Jun Zhang
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| | - Guang-Hua Luo
- Comprehensive Laboratory, the Third Affiliated Hospital of Soochow University, Changzhou 213003, Jiangsu Province, China
| |
Collapse
|
48
|
Huynh H, Lee LY, Goh KY, Ong R, Hao H, Huang A, Wang Y, Graus Porta D, Chow P, Chung A. Infigratinib Mediates Vascular Normalization, Impairs Metastasis, and Improves Chemotherapy in Hepatocellular Carcinoma. Hepatology 2019; 69:943-958. [PMID: 30575985 PMCID: PMC6635738 DOI: 10.1002/hep.30481] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/16/2018] [Indexed: 12/21/2022]
Abstract
The fibroblast growth factor (FGF) signaling cascade is a key signaling pathway in hepatocarcinogenesis. We report high FGF receptor (FGFR) expression in 17.7% (11 of 62) of hepatocellular carcinoma (HCC) models. Infigratinib, a pan-FGFR inhibitor, potently suppresses the growth of high-FGFR-expressing and sorafenib-resistant HCCs. Infigratinib inhibits FGFR signaling and its downstream targets, cell proliferation, the angiogenic rescue program, hypoxia, invasion, and metastasis. Infigratinib also induces apoptosis and vessel normalization and improves the overall survival of mice bearing FGFR-driven HCCs. Infigratinib acts in synergy with the microtubule-depolymerizing drug vinorelbine to promote apoptosis, suppress tumor growth, and improve the overall survival of mice. Increased expression levels of FGFR-2 and FGFR-3 through gene amplification correlate with treatment response and may serve as potential biomarkers for patient selection. Conclusion: Treatments with Infigratinib alone or in combination with vinorelbine may be effective in a subset of patients with HCC with FGFR-driven tumors.
Collapse
Affiliation(s)
- Hung Huynh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Liek Yeow Lee
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Kah Yong Goh
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | - Richard Ong
- Laboratory of Molecular Endocrinology, Division of Molecular and Cellular ResearchNational Cancer CentreSingapore
| | | | - Alan Huang
- Novartis Institutes for Biomedical ResearchCambridgeMA
| | - Youzhen Wang
- Oncology Drug Discovery PharmacologyNovartis Institutes for Biomedical ResearchCambridgeMA
| | - Diana Graus Porta
- Oncology Translational Research, Novartis Institutes for Biomedical Research at BaselBaselSwitzerland
| | - Pierce Chow
- Department of General SurgerySingapore General HospitalSingapore
| | - Alexander Chung
- Department of General SurgerySingapore General HospitalSingapore
| |
Collapse
|
49
|
Xia Y, Zhang Y, Shen M, Xu H, Li Z, He N. Golgi protein 73 and its diagnostic value in liver diseases. Cell Prolif 2019; 52:e12538. [PMID: 30341783 PMCID: PMC6496820 DOI: 10.1111/cpr.12538] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Golgi protein 73 (GP73, also referred to as Golph 2) with 400 amino acids is a 73 kDa transmembrane glycoprotein typically found in the cis-Golg complex. It is primarily expressed in epithelial cells, which has been found upregulated in hepatocytes in patients suffering from both viral and non-viral liver diseases. GP73 has drawn increasing attention for its potential application in the diagnosis of liver diseases such as hepatitis, liver cirrhosis and liver cancer. Herein, we reviewed the discovery history of GP73 and summarized studies by many groups around the world, aiming at understanding its structure, expression, function, detection methods and the relationship between GP73 and liver diseases in various settings.
Collapse
Affiliation(s)
- Yanyan Xia
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuanying Zhang
- Department of Molecular BiologyJiangsu Cancer HospitalNanjingChina
| | - Mengjiao Shen
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Hongpan Xu
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Zhiyang Li
- Center of Laboratory MedicineThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Nongyue He
- State Key Laboratory of BioelectronicsSoutheast UniversityNanjingChina
| |
Collapse
|
50
|
Precancer antiviral treatment reduces microvascular invasion of early-stage Hepatitis B-related hepatocellular carcinoma. Sci Rep 2019; 9:2220. [PMID: 30778112 PMCID: PMC6379412 DOI: 10.1038/s41598-019-39440-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
The impact of antiviral therapy before tumorigenesis on microvascular invasion (MVI) of Chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC) is still unknown. In this retrospective cohort study 3,276 HCC patients with early-stage who underwent curative resection were included. We investigated the effect of precancer antiviral therapy on the pathology, especially MVI, of CHB-related HCC. MVI occurrence rates of CHB-related HCC stratified by histopathologic inflammation grades of G1, G2, and G3 were 30.4%, 34.7%, and 38.6%, respectively, compared to 19.8% for CHB-negative HCC. Patients who received standard antiviral treatment showed much lower rates of MVI, higher tumor capsule integrity, less frequent satellite micronodules and lower AFP level compared to the no antiviral group. Moreover, precancer antiviral therapy prolonged the disease-free survival (DFS), which are also proved to be independent indicators of DFS. In addition, we show that antivirals may suppress early progression of HCC primarily by inhibition of HBV viral load, and influencing the expression levels of CK18, GPC3, OPN and pERK. Hence, we demonstrate that precancer antivirals significantly reduce the MVI rate of CHB-related HCC, reduce malignancy of early-stage HCC, and improve HCC prognosis. Thus, this study confirms the importance of antiviral therapy for CHB patients.
Collapse
|