1
|
Byrne HL, Eikelis N, Dusting J, Fouras A, Keall PJ, Pirakalathanan P. More accessible functional lung imaging: non-contrast CT-ventilation demonstrates strong association and agreement with PET-ventilation. Respir Res 2025; 26:163. [PMID: 40287648 PMCID: PMC12034206 DOI: 10.1186/s12931-025-03245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Computed Tomography (CT) ventilation imaging (CTVI) is an emerging ventilation imaging technique. CTVI implementations have been widely validated against alternative ventilation imaging techniques but have been limited to clinical research only. The first CTVI commercial product, CT LVAS (4DMedical, Melbourne, Australia), was recently released enabling its use in clinical practice. This study quantitatively compares ventilation images from CT LVAS and previously validated research CTVI algorithms to Galligas PET ventilation. METHODS 16 patients with Galligas PET and paired inhale/exhale breath-hold CT images were taken from a publicly available dataset on The Cancer Imaging Archive. Ventilation images were produced using CT LVAS and two previously published algorithms: (1) utilising the Hounsfield Unit difference (CTVI_HU); and (2) utilising the Jacobian determinant (CTVI_Jac). CTVI images were compared to the reference standard Galligas PET using Bland-Altman analysis of lobar ventilation, voxel-wise Spearman correlation, and Dice similarity coefficient (DSC) of regions of interest representing the top 85% and 15% of ventilation function. RESULTS Bland-Altman analysis showed overall bias of < 0.01% for all CTVI methods (95% confidence interval: ±7.4% for CT LVAS, ± 9.1% for CTVI_HU, ± 7.9% for CTVI_Jac). The mean Spearman correlation between CTVI and Galligas PET was 0.61 ± 0.14 (p < 0.01) for CT LVAS, 0.68 ± 0.10 (p < 0.01) for CTVI_HU, and 0.57 ± 0.15 (p < 0.01) for CTVI_Jac. The mean DSC for the top 85% was 0.91 ± 0.03 for CT LVAS, 0.92 ± 0.02 for CTVI_HU, and 0.91 ± 0.03 for CTVI_Jac, with the DSC for CTVI_HU significantly higher than the other two CTVI methods. The DSC for the top 15% was 0.47 ± 0.17 for CT LVAS, 0.53 ± 0.16 for CTVI_HU, and 0.47 ± 0.18 for CTVI_Jac. CONCLUSIONS In a comparison to Galligas PET ventilation imaging, CT LVAS performs similarly to previous CTVI methods. Bland-Altman analysis for quantification of lobar ventilation demonstrates negligible bias. Mean voxel-wise Spearman correlations are moderate to good. DSC of functionally thresholded lung regions are similar for all CTVI methods. These results warrant further investigation of CT LVAS as a readily available ventilation imaging tool in disease characterisation, lung health assessment, and surgical and targeted treatment planning. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR) registration number ACTRN12612000775819, registered on 23/07/2012.
Collapse
Affiliation(s)
- Hilary L Byrne
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | | | | | - Paul J Keall
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | |
Collapse
|
2
|
Correale M, Bevere EML, Tricarico L, Villani D, Granato M, Guerriero E, Capasso R, Rossi L, Rotondo C, Cantatore FP, Corrado A, Iacoviello M, Brunetti ND. How to Assess Pulmonary Circulation and Right Heart Chambers in Systemic Sclerosis Patients? Diagnostics (Basel) 2025; 15:1029. [PMID: 40310415 PMCID: PMC12026199 DOI: 10.3390/diagnostics15081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025] Open
Abstract
Systemic sclerosis (SSc) is a rare autoimmune connective tissue disease characterized by a widespread accumulation of extracellular matrix components leading to fibrosis of the skin and internal organs. Vascular changes occur in all involved tissues and are responsible for several distinctive clinical manifestations of the disease. This review focuses on the usefulness of various diagnostic tools in clinical practice for the early identification of clinical, functional, and/or structural RV impairment in SSc patients at risk of PH. It aims to identify specific causes of RV dysfunction, describe potential differences in outcome measures, and, ultimately, determine different cut-off values compared to subjects with PH not related to SSc.
Collapse
Affiliation(s)
- Michele Correale
- Cardiothoracic Department, Ospedali Riuniti University Hospital, 71100 Foggia, Italy
| | - Ester Maria Lucia Bevere
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Deborah Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Mattia Granato
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Erminia Guerriero
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Raffaele Capasso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Luciano Rossi
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Cinzia Rotondo
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (C.R.); (F.P.C.); (A.C.)
| | - Francesco Paolo Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (C.R.); (F.P.C.); (A.C.)
| | - Addolorata Corrado
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (C.R.); (F.P.C.); (A.C.)
| | - Massimo Iacoviello
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (E.M.L.B.); (L.T.); (D.V.); (M.G.); (E.G.); (R.C.); (L.R.); (M.I.); (N.D.B.)
| |
Collapse
|
3
|
Lanzafame LRM, Gulli C, Booz C, Vogl TJ, Saba L, Cau R, Toia P, Ascenti G, Gaeta M, Mazziotti S, D'Angelo T. Advancements in Computed Tomography Angiography for Pulmonary Embolism Assessment. Echocardiography 2025; 42:e70116. [PMID: 40028754 DOI: 10.1111/echo.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
Pulmonary embolism (PE) is a critical condition stemming from venous thromboembolism, with potentially fatal outcomes. Computed tomography pulmonary angiography (CTPA) serves as the gold standard for diagnosing PE, offering unparalleled diagnostic accuracy, accessibility, and speed. Recent innovations, such as spectral CT systems and artificial intelligence (AI)-driven algorithms, have enhanced the diagnostic and prognostic capabilities of CTPA, enabling precise anatomical and functional assessments. This review highlights these technological advancements and their clinical implications.
Collapse
Affiliation(s)
- Ludovica R M Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Claudia Gulli
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria, Cagliari, Italy
| | - Patrizia Toia
- Department of Radiology, AOUP Paolo Giaccone, Palermo, Italy
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
| |
Collapse
|
4
|
Yu J, Tang X, Lei Y, Zhang Z, Li B, Bai H, Li L. A review on functional lung avoidance radiotherapy plan for lung cancer. Front Oncol 2024; 14:1429837. [PMID: 39703855 PMCID: PMC11656049 DOI: 10.3389/fonc.2024.1429837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Lung cancer is the most common malignant tumor in China. Its incidence and mortality rate increase year by year. In the synthesis treatment of lung cancer, radiotherapy (RT) plays a vital role, and radiation-induced lung injury(RILI) has become the major limiting factor in prescription dose escalation. Conventional RT is designed to minimize radiation exposure to healthy lungs without considering the inhomogeneity of lung function, which is significantly non-uniform in most patients. In accordance with the functional and structural heterogeneity of lung tissue, functional lung avoidance RT (FLART) can reduce radiation exposure to functional lung (FL), thus reducing RILI. Meanwhile, a dose-function histogram (DFH) was proposed to describe the dose parameters of the optimized image-guided RT plan. This paper reviews lung function imaging for lung cancer RT plans. It also reviews the clinical applications of function-guided RT plans and their current problems and research directions to provide better guidance for clinical selection.
Collapse
Affiliation(s)
- Jinhui Yu
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaofeng Tang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| | - Yifan Lei
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Zhe Zhang
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Bo Li
- The Third Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan, China
| | - Han Bai
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
- Department of Physics and Astronomy, Yunnan University, Kunming, Yunnan, China
| | - Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Tumor Hospital, Kunming, Yunnan, China
| |
Collapse
|
5
|
Vinogradskiy Y, Bahig H, Bucknell NW, Buchsbaum J, Shu HKG. Conference Report: Review of Clinical Implementation of Advanced Quantitative Imaging Techniques for Personalized Radiotherapy. Tomography 2024; 10:1798-1813. [PMID: 39590941 PMCID: PMC11598114 DOI: 10.3390/tomography10110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The topic of quantitative imaging in radiation therapy was presented as a "Masterclass" at the 2023 annual meeting of the American Society of Radiation Oncology (ASTRO). Dual-energy computed tomography (CT) and single-positron computed tomography were reviewed in detail as the first portion of the meeting session, with data showing utility in many aspects of radiation oncology including treatment planning and dose response. Positron emission tomography/CT scans evaluating the functional volume of lung tissue so as to provide optimal avoidance of healthy lungs were presented second. Advanced brain imaging was then discussed in the context of different forms of magnetic resonance scanning methods as the third area noted with significant discussion of ongoing research programs. Quantitative image analysis was presented to provide clinical utility for the analysis of patients with head and neck cancer. Finally, quality assurance was reviewed for different forms of quantitative imaging given the critical nature of imaging when numerical valuation, not just relative contrast, plays a crucial role in clinical process and decision-making. Conclusions and thoughts are shared in the conclusion, noting strong data supporting the use of quantitative imaging in radiation therapy going forward and that more studies are needed to move the field forward.
Collapse
Affiliation(s)
- Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Houda Bahig
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Centre Hospitalier de l’Universite de Montreal (CHUM), Montreal, QC H2X 3E4, Canada
| | | | | | - Hui-Kuo George Shu
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 19104, USA
| |
Collapse
|
6
|
Spielberg DR, Weinman J, DeBoer EM. Advancements in imaging in ChILD. Pediatr Pulmonol 2024; 59:2276-2285. [PMID: 37222402 DOI: 10.1002/ppul.26487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Interstitial and diffuse lung diseases in children constitute a range of congenital and acquired disorders. These disorders present with signs and symptoms of respiratory disease accompanied by diffuse radiographic changes. In many cases, radiographic findings are nonspecific, while in other disorders, chest computed tomography (CT) is diagnostic in the appropriate context. Regardless, chest imaging remains central in the evaluation of the patient with suspected childhood interstitial lung disease (chILD). Several newly described chILD entities, spanning both genetic and acquired etiologies, have imaging that aid in their diagnoses. Advances in CT scanning technology and CT analysis techniques continue to improve scan quality as well as expand use of chest CT as a research tool. Finally, ongoing research is expanding use of imaging modalities without ionizing radiation. Magnetic resonance imaging is being applied to investigate pulmonary structure and function, and ultrasound of the lung and pleura is a novel technique with an emerging role in chILD disorders. This review describes the current state of imaging in chILD including recently described diagnoses, advances in conventional imaging techniques and applications, and evolving new imaging modalities that expand the clinical and research roles for imaging in these disorders.
Collapse
Affiliation(s)
- David R Spielberg
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jason Weinman
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily M DeBoer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Lee S, Lee HY, Park J, Kim H, Park JY. Assessment of Pulmonary Ventilation Using 3D Ventilation Flow Capacity-Weighted and Ventilation-Weighted Maps From 3D Ultrashort Echo Time (UTE) MRI. J Magn Reson Imaging 2024; 60:483-494. [PMID: 37970646 DOI: 10.1002/jmri.29129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) ventilation flow capacity-weighted (VFCW) maps together with 3D ventilation-weighted (VW) maps may help to better assess pulmonary function. PURPOSE To investigate the use of 3D VFCW and VW maps for evaluating pulmonary ventilation function. STUDY TYPE Prospective. POPULATION Two patients (one male, 85 years old; one female, 64 years old) with chronic obstructive pulmonary disease (COPD) and nine healthy subjects (all male; 23-27 years). FIELD STRENGTH/SEQUENCE 3-T, 3D radial UTE imaging. ASSESSMENT 3D VFCW and VW maps were calculated from 3D UTE MRI by voxel-wise subtraction of respiratory phase images. Their validation was tested in nine healthy volunteers using slow/deep and fast/shallow breathing conditions. Additional validation was performed by comparison with single photon emission computed tomography (SPECT) ventilation maps of one healthy participant. For comparison, gravity dependence of anterior-posterior regional ventilation was assessed by one-dimensional plot of the mean signal intensity for each coronal slice. Structural similarity index measure was also calculated. Finally, VW maps and VFCW maps of two COPD patients were evaluated for emphysema lesions with reference to CT images. STATISTICAL TESTS Wilcoxon sign-rank tests for regional Ventilation and ventilation flow capacity, analysis of variance, post-hoc t-tests and Bonferroni correction, coefficient of variation, Kullback-Liebler divergence. A P-value <0.05 was considered statistically significant. RESULTS The validation of 3D VFCW and VW maps was shown by statistically significant differences in ventilation flow capacity and ventilation between the breathing conditions. Additionally, UTE-MRI and SPECT-based ventilation maps showed gravitational dependence in the anteroposterior direction. When applied to patients with COPD, the use of 3D VFCW and VW maps was able to differentiate between two patients with different phenotypes. DATA CONCLUSION The use of 3D VFCW and VW maps can provide regional information on ventilation function and potentially contribute to assessment of COPD subtypes and disease progression. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Seokwon Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ho Yun Lee
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Jinil Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hyeonha Kim
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
8
|
Ohno Y, Ozawa Y, Nagata H, Bando S, Cong S, Takahashi T, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Yoshikawa T, Takenaka D, Toyama H. Area-Detector Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2518. [PMID: 37568881 PMCID: PMC10416899 DOI: 10.3390/diagnostics13152518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.
Collapse
Affiliation(s)
- Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan;
| | - Shuji Bando
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Shang Cong
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Tomoki Takahashi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| | - Takeshi Yoshikawa
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Daisuke Takenaka
- Department of Diagnostic Radiology, Hyogo Cancer Center, Akashi 673-0021, Hyogo, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan; (Y.O.)
| |
Collapse
|
9
|
Du K, Dmochowski IJ. Thermally Tunable Adsorption of Xenon in Crystalline Molecular Sorbent. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:13810-13816. [PMID: 39027347 PMCID: PMC11257604 DOI: 10.1021/acs.jpcc.3c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The thermostability of encapsulated xenon is investigated in a series of isostructural crystalline sorbents. These sorbents consist of metal-organic capsules, with the general formula of [ConFe4-nL6]4- (n = 1, 2, 3 and 4), where L2- is an organic linker with two sulfonate groups. In the crystalline sorbent, guanidinium cations form H-bond networks with the peripheral sulfonate groups in the solid state and trap xenon in the molecular cavities, which are at least 2.7 times the volume of xenon. When heated, the sorbent retains xenon up to 561 K, i.e., 396 K higher than the boiling point of xenon. Furthermore, the thermostability of trapped xenon can be modulated by varying the ratio of Co:Fe in the crystalline sorbent. Elemental analysis on a single crystal by energy dispersive X-ray spectroscopy confirms the homogeneous distribution of Co and Fe in the sorbent. Structural analyses reveal that the expansion of capsule cavity is proportional to the Co:Fe ratio, with increases of 0.049(1) Å and 6.4(8) Å3 in metal-metal distance and cavity volume, per substitution of Fe by Co center. Steric repulsion between peripheral sulfonate groups is found to render a hypothetical face-centered cubic structure of (C(NH2)3)4[Fe4L6] not accessible, which would have trapped xenon with exceptional thermostability. The stable and tunable trapping of xenon in crystalline sorbents by over-sized molecular cavities suggests a new strategy for separation and storage of xenon, through introduction of kinetic barriers, such as H-bond networks.
Collapse
Affiliation(s)
- Kang Du
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Ivan J Dmochowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
10
|
Ozawa Y, Ohno Y, Nagata H, Tamokami K, Nishikimi K, Oshima Y, Hamabuchi N, Matsuyama T, Ueda T, Toyama H. Advances for Pulmonary Functional Imaging: Dual-Energy Computed Tomography for Pulmonary Functional Imaging. Diagnostics (Basel) 2023; 13:2295. [PMID: 37443688 DOI: 10.3390/diagnostics13132295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Dual-energy computed tomography (DECT) can improve the differentiation of material by using two different X-ray energy spectra, and may provide new imaging techniques to diagnostic radiology to overcome the limitations of conventional CT in characterizing tissue. Some techniques have used dual-energy imaging, which mainly includes dual-sourced, rapid kVp switching, dual-layer detectors, and split-filter imaging. In iodine images, images of the lung's perfused blood volume (PBV) based on DECT have been applied in patients with pulmonary embolism to obtain both images of the PE occluding the pulmonary artery and the consequent perfusion defects in the lung's parenchyma. PBV images of the lung also have the potential to indicate the severity of PE, including chronic thromboembolic pulmonary hypertension. Virtual monochromatic imaging can improve the accuracy of diagnosing pulmonary vascular diseases by optimizing kiloelectronvolt settings for various purposes. Iodine images also could provide a new approach in the area of thoracic oncology, for example, for the characterization of pulmonary nodules and mediastinal lymph nodes. DECT-based lung ventilation imaging is also available with noble gases with high atomic numbers, such as xenon, which is similar to iodine. A ventilation map of the lung can be used to image various pulmonary diseases such as chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Yoshiyuki Ozawa
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keigo Tamokami
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Keitaro Nishikimi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Yuka Oshima
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Nayu Hamabuchi
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Matsuyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Takahiro Ueda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
11
|
Karmali D, Sowho M, Bose S, Pearce J, Tejwani V, Diamant Z, Yarlagadda K, Ponce E, Eikelis N, Otvos T, Khan A, Lester M, Fouras A, Kirkness J, Siddharthan T. Functional imaging for assessing regional lung ventilation in preclinical and clinical research. Front Med (Lausanne) 2023; 10:1160292. [PMID: 37261124 PMCID: PMC10228734 DOI: 10.3389/fmed.2023.1160292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/17/2023] [Indexed: 06/02/2023] Open
Abstract
Dynamic heterogeneity in lung ventilation is an important measure of pulmonary function and may be characteristic of early pulmonary disease. While standard indices like spirometry, body plethysmography, and blood gases have been utilized to assess lung function, they do not provide adequate information on regional ventilatory distribution nor function assessments of ventilation during the respiratory cycle. Emerging technologies such as xenon CT, volumetric CT, functional MRI and X-ray velocimetry can assess regional ventilation using non-invasive radiographic methods that may complement current methods of assessing lung function. As a supplement to current modalities of pulmonary function assessment, functional lung imaging has the potential to identify respiratory disease phenotypes with distinct natural histories. Moreover, these novel technologies may offer an optimal strategy to evaluate the effectiveness of novel therapies and therapies targeting localized small airways disease in preclinical and clinical research. In this review, we aim to discuss the features of functional lung imaging, as well as its potential application and limitations to adoption in research.
Collapse
Affiliation(s)
- Dipan Karmali
- Division of Pulmonary and Critical Care, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Mudiaga Sowho
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sonali Bose
- Division of Pulmonary and Critical Care, Icahn School of Medicine, Mount Sinai, NY, United States
| | - Jackson Pearce
- School of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Vickram Tejwani
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Zuzana Diamant
- Department of Microbiology Immunology and Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Keerthi Yarlagadda
- Division of Pulmonary and Critical Care, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Erick Ponce
- Division of Pulmonary and Critical Care, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | | | | | - Akram Khan
- Division of Pulmonary and Critical Care, Oregon Health and Science University, Portland, OR, United States
| | - Michael Lester
- Department of Pulmonary and Critical Care Medicine, Vanderbilt Medical Center, Nashville, CA, United States
| | | | | | - Trishul Siddharthan
- Division of Pulmonary and Critical Care, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
12
|
Foo CT, Langton D, Thompson BR, Thien F. Functional lung imaging using novel and emerging MRI techniques. Front Med (Lausanne) 2023; 10:1060940. [PMID: 37181360 PMCID: PMC10166823 DOI: 10.3389/fmed.2023.1060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability in the world. While early diagnosis is key, this has proven difficult due to the lack of sensitive and non-invasive tools. Computed tomography is regarded as the gold standard for structural lung imaging but lacks functional information and involves significant radiation exposure. Lung magnetic resonance imaging (MRI) has historically been challenging due to its short T2 and low proton density. Hyperpolarised gas MRI is an emerging technique that is able to overcome these difficulties, permitting the functional and microstructural evaluation of the lung. Other novel imaging techniques such as fluorinated gas MRI, oxygen-enhanced MRI, Fourier decomposition MRI and phase-resolved functional lung imaging can also be used to interrogate lung function though they are currently at varying stages of development. This article provides a clinically focused review of these contrast and non-contrast MR imaging techniques and their current applications in lung disease.
Collapse
Affiliation(s)
- Chuan T. Foo
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
- Department of Thoracic Medicine, Peninsula Health, Frankston, VIC, Australia
| | - Bruce R. Thompson
- Melbourne School of Health Science, Melbourne University, Melbourne, VIC, Australia
| | - Francis Thien
- Department of Respiratory Medicine, Eastern Health, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Huang YS, Chen JLY, Lan HT, Tai MH, Kuo SH, Shih JY, Chang YC. Xenon-Enhanced Ventilation Computed Tomography for Functional Lung Avoidance Radiation Therapy in Patients With Lung Cancer. Int J Radiat Oncol Biol Phys 2023; 115:356-365. [PMID: 36029910 DOI: 10.1016/j.ijrobp.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 07/19/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE This phase 2 trial aimed to determine whether xenon-enhanced ventilation computed tomography (XeCT)-guided functional-lung-avoidance radiation therapy could reduce the radiation pneumonitis (RP) rate in patients with lung cancer undergoing definitive chemoradiation therapy. METHODS AND MATERIALS Functional lung ventilation was measured via pulmonary function testing (PFT) and XeCT. A standard plan (SP) without reference to XeCT and a functional-lung-avoidance plan (fAP) optimized for lowering the radiation dose to the functional lung at the guidance of XeCT were designed. Dosimetric parameters and predicted RP risks modeled by biological evaluation were compared between the 2 plans in a treatment planning system (TPS). All patients received the approved fAP. The primary endpoint was the rate of grade ≥2 RP, and the secondary endpoints were the survival outcomes. The study hypothesis was that fAP could reduce the rate of grade ≥2 RP to 12% compared with a 30% historical rate. RESULTS Thirty-six patients were evaluated. Xenon-enhanced total functional lung volumes positively correlated with PFT ventilation parameters (forced vital capacity, P = .012; forced expiratory volume in 1 second, P = .035), whereas they were not correlated with the diffusion capacity parameter. We observed a 17% rate of grade ≥2 RP (6 of 36 patients), which was significantly different (P = .040) compared with the historical control. Compared with the SP, the fAP significantly spared the total ventilated lung, leading to a reduction in predicted grade ≥2 RP (P = .001) by TPS biological evaluation. The median follow-up was 15.2 months. The 1-year local control (LC), disseminated failure-free survival (DFFS), and overall survival (OS) rates were 88%, 66%, and 91%, respectively. The median LC and OS were not reached, and the median DFFS was 24.0 months (95% confidence interval, 15.7-32.3 months). CONCLUSIONS This report of XeCT-guided functional-lung-avoidance radiation therapy provided evidence showing its feasibility in clinical practice. Its benefit should be assessed in a broader multicenter trial setting.
Collapse
Affiliation(s)
- Yu-Sen Huang
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenny Ling-Yu Chen
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan; Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Ting Lan
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hwa Tai
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Hsin Kuo
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jin-Yuan Shih
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yeun-Chung Chang
- Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
14
|
Tanguay J, Basharat F. Xenon-enhanced dual-energy tomosynthesis for functional imaging of respiratory disease-Concept and phantom study. Med Phys 2023; 50:719-736. [PMID: 36419344 DOI: 10.1002/mp.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Xenon-enhanced dual-energy (DE) computed tomography (CT) and hyperpolarized noble-gas magnetic resonance imaging (MRI) provide maps of lung ventilation that can be used to detect chronic obstructive pulmonary disease (COPD) early in its development and predict respiratory exacerbations. However, xenon-enhanced DE-CT requires high radiation doses and hyper-polarized noble-gas MRI is expensive and only available at a handful of institutions globally. PURPOSE To present xenon-enhanced dual-energy tomosynthesis (XeDET) for low-dose, low-cost functional imaging of respiratory disease in an experimental phantom study. METHODS We propose using digital tomosynthesis to produce Xe-enhanced low-energy (LE) and high-energy (HE) coronal images. DE subtraction of the LE and HE images is used to suppress soft tissues. We used an imaging phantom to investigate image quality in terms of the area under the reciever operating characteristic curve (AUC) for the Non-PreWhitening model observer with an Eye filter and internal noise (NPWEi). The phantom simulated anatomic clutter due to lung parenchyma and attenuation due to soft tissue and lung tissue. Aluminum slats were used to simulate rib structures. A stepwedge consisting of an acrylic casing with sealed cylindrical air-filled cavities was used to simulate ventilation defects with step thicknesses of 0.5, 1, and 2 cm and cylindrical radii of 0.5, 0.75, and 1 cm. The phantom was ventilated with Xe and projection data were acquired using a flat-panel detector, a tube-voltage combination of 60/140 kV with 1.2 mm of copper filtration on the HE spectrum and an angular range of ± 15 ∘ $\pm 15^{\circ}$ in 1° increments. The AUC of a NPWEi observer that has access only to a single coronal slice was calculated from measurements of the three-dimensional noise power spectrum and signal template. The AUC was calculated as a function of ventilation defect thickness and radius for total patient entrance air kermas ranging from 1.42 to 2.84 mGy with and without rib-simulating Al slats. For the AUC analysis, the observer internal noise level was obtained from an ad hoc calibration to a high-dose data set. RESULTS XeDET was able to suppress parenchyma-simulating clutter in coronal images enabling visualization of the simulated ventilation defects, but the limited angle acquisition resulted in residual clutter due to out-of-plane bone-mimmicking structures. The signal power of the defects increased linearly with defect radius and showed a ten-fold to fifteen-fold increase in signal power when the defect thickness increased from 0.5 to 2 cm. These trends agreed with theoretical predictions. Along the depth dimension, the power of the defects decreased exponentially with distance from the center of the defects with full-width half maxima that varied from 1.85 to 2.85 cm depending on the defect thickness and radius. The AUCs of the 1-cm-radius defect that was 2 cm in thickness ranged from good (0.8-0.9) to excellent (0.9-1.0) over the range of air kermas considered. CONCLUSIONS Xenon-enhanced DE tomosynthesis has the potential to enable functional imaging of respiratory disease and should be further investigated as a low-cost alternative to MRI-based approaches and a low-dose alternative to CT-based approaches.
Collapse
Affiliation(s)
- Jesse Tanguay
- Department of Physics, Toronto Metropoliton University (formerly Ryerson University), Toronto, ON, Canada
| | - Fateen Basharat
- Department of Physics, Toronto Metropoliton University (formerly Ryerson University), Toronto, ON, Canada
| |
Collapse
|
15
|
Ahookhosh K, Vanoirbeek J, Vande Velde G. Lung function measurements in preclinical research: What has been done and where is it headed? Front Physiol 2023; 14:1130096. [PMID: 37035677 PMCID: PMC10073442 DOI: 10.3389/fphys.2023.1130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Due to the close interaction of lung morphology and functions, repeatable measurements of pulmonary function during longitudinal studies on lung pathophysiology and treatment efficacy have been a great area of interest for lung researchers. Spirometry, as a simple and quick procedure that depends on the maximal inspiration of the patient, is the most common lung function test in clinics that measures lung volumes against time. Similarly, in the preclinical area, plethysmography techniques offer lung functional parameters related to lung volumes. In the past few decades, many innovative techniques have been introduced for in vivo lung function measurements, while each one of these techniques has their own advantages and disadvantages. Before each experiment, depending on the sensitivity of the required pulmonary functional parameters, it should be decided whether an invasive or non-invasive approach is desired. On one hand, invasive techniques offer sensitive and specific readouts related to lung mechanics in anesthetized and tracheotomized animals at endpoints. On the other hand, non-invasive techniques allow repeatable lung function measurements in conscious, free-breathing animals with readouts related to the lung volumes. The biggest disadvantage of these standard techniques for lung function measurements is considering the lung as a single unit and providing only global readouts. However, recent advances in lung imaging modalities such as x-ray computed tomography and magnetic resonance imaging opened new doors toward obtaining both anatomical and functional information from the same scan session, without the requirement for any extra pulmonary functional measurements, in more regional and non-invasive manners. Consequently, a new field of study called pulmonary functional imaging was born which focuses on introducing new techniques for regional quantification of lung function non-invasively using imaging-based techniques. This narrative review provides first an overview of both invasive and non-invasive conventional methods for lung function measurements, mostly focused on small animals for preclinical research, including discussions about their advantages and disadvantages. Then, we focus on those newly developed, non-invasive, imaging-based techniques that can provide either global or regional lung functional readouts at multiple time-points.
Collapse
Affiliation(s)
- Kaveh Ahookhosh
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- *Correspondence: Greetje Vande Velde,
| |
Collapse
|
16
|
Basharat F, Tanguay J. Experimental feasibility of xenon-enhanced dual-energy radiography for imaging of lung function. Phys Med Biol 2022; 67. [PMID: 36395522 DOI: 10.1088/1361-6560/aca3f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. We experimentally investigated the feasibility of two-dimensional xenon-enhanced dual-energy (XeDE) radiography for imaging of lung function. We optimized image quality under quantum-noise-limited conditions using a chest phantom consisting of a rectangular chamber representing the thoracic volume and PMMA slabs simulating x-ray attenuation by soft tissue. A sealed, air-filled cavity with thin PMMA walls was positioned inside the chamber to simulate a 2 cm thick ventilation defect. The chamber was ventilated with xenon and dual-energy imaging was performed using a diagnostic x-ray tube and a flat-panel detector. The contrast-to-noise ratio of ventilation defects normalized by patient x-ray exposure maximized at a kV-pair of approximately 60/140-kV and when approximately one third of the total exposure was allocated to the HE image. We used the optimized technique to image a second phantom that contained lung-parenchyma-mimicking PMMA clutter, rib-mimicking aluminum slats and an insert that simulated ventilation defects with thicknesses ranging from 0.5 cm to 2 cm and diameters ranging from 1 cm to 2 cm. From the resulting images we computed the area under the receiver operating characteristic curve (AUC) of the non-prewhitening model observer with an eye filter and internal noise. For a xenon concentration of 75%, good AUCs (i.e. 0.8-0.9) to excellent AUCs (i.e. >0.9) were obtained when the defect diameter is greater than 1.3 cm and defect thickness is 1 cm. When the xenon concentration was reduced to 50%, the AUC was ∼0.9 for defects 1.2 cm in diameter and ∼1.5 cm in thickness. Two-dimensional XeDE radiography may therefore enable detection of functional abnormalities associated with early-stage COPD, for which xenon ventilation defects can occupy up to 20% of the lung volume, and should be further developed as a low-cost alternative to MRI-based approaches and a low-dose alternative to CT-based approaches.
Collapse
Affiliation(s)
- Fateen Basharat
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Jesse Tanguay
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| |
Collapse
|
17
|
Farag A, Fielding J, Catanzano T. Role of Dual-energy Computed Tomography in Diagnosis of Acute Pulmonary Emboli, a Review. Semin Ultrasound CT MR 2022; 43:333-343. [PMID: 35738818 DOI: 10.1053/j.sult.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Prompt diagnosis of pulmonary embolism is essential to avert morbidity and mortality. There are a number of diagnostic options for identification of a pulmonary embolism, including laboratory and imaging investigations. While computed tomography pulmonary angiography (CTPA) has largely supplanted nuclear medicine ventilation/perfusion studies, there remain significant limitations in the optimal performance of CTPA. Dual-energy computed tomography has the ability to overcome many of the limitations of standard of care CTPA, including rescue of poor contrast boluses and the ability to evaluate pulmonary perfusion defects.
Collapse
Affiliation(s)
- Ahmed Farag
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Jordan Fielding
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA
| | - Tara Catanzano
- Department of Radiology, UMass Chan Medical School-Baystate, Springfield, MA.
| |
Collapse
|
18
|
Gupta A, Sood A, Fuhrer E, Djanashvili K, Agrawal G. Polysaccharide-Based Theranostic Systems for Combined Imaging and Cancer Therapy: Recent Advances and Challenges. ACS Biomater Sci Eng 2022; 8:2281-2306. [PMID: 35513349 DOI: 10.1021/acsbiomaterials.1c01631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Designing novel systems for efficient cancer treatment and improving the quality of life for patients is a prime requirement in the healthcare sector. In this regard, theranostics have recently emerged as a unique platform, which combines the benefits of both diagnosis and therapeutics delivery. Theranostics have the desired contrast agent and the drugs combined in a single carrier, thus providing the opportunity for real-time imaging to monitor the therapy results. This helps in reducing the hazards related to treatment overdose or underdose and gives the possibility of personalized therapy. Polysaccharides, as natural biomolecules, have been widely explored to develop theranostics, as they act as a matrix for simultaneously loading both contrast agents and drugs for their utility in drug delivery and imaging. Additionally, their remarkable physicochemical attributes (biodegradability, satisfactory safety profile, abundance, and diversity in functionality and charge) can be tuned via postmodification, which offers numerous possibilities to develop theranostics with desired characteristics. Hence, we provide an overview of recent advances in polysaccharide matrix-based theranostics for drug delivery combined with magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computed tomography, and ultrasound imaging. Herein, we also summarize the toxicity assessment of polysaccharides, associated contrast agents, and nanotoxicity along with the challenges and future research directions.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh-175075, India
| | - Ankur Sood
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh-175075, India
| | - Erwin Fuhrer
- School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh-175075, India
| | - Kristina Djanashvili
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Garima Agrawal
- School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh-175075, India
| |
Collapse
|
19
|
Ball L, Scaramuzzo G, Herrmann J, Cereda M. Lung aeration, ventilation, and perfusion imaging. Curr Opin Crit Care 2022; 28:302-307. [PMID: 35653251 PMCID: PMC9178949 DOI: 10.1097/mcc.0000000000000942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Lung imaging is a cornerstone of the management of patients admitted to the intensive care unit (ICU), providing anatomical and functional information on the respiratory system function. The aim of this review is to provide an overview of mechanisms and applications of conventional and emerging lung imaging techniques in critically ill patients. RECENT FINDINGS Chest radiographs provide information on lung structure and have several limitations in the ICU setting; however, scoring systems can be used to stratify patient severity and predict clinical outcomes. Computed tomography (CT) is the gold standard for assessment of lung aeration but requires moving the patients to the CT facility. Dual-energy CT has been recently applied to simultaneous study of lung aeration and perfusion in patients with respiratory failure. Lung ultrasound has an established role in the routine bedside assessment of ICU patients, but has poor spatial resolution and largely relies on the analysis of artifacts. Electrical impedance tomography is an emerging technique capable of depicting ventilation and perfusion at the bedside and at the regional level. SUMMARY Clinicians should be confident with the technical aspects, indications, and limitations of each lung imaging technique to improve patient care.
Collapse
Affiliation(s)
- Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Intensive Care, Ospedale Policlinico San Martino, IRCCS per l’Oncologia e le Neuroscienze, Genoa, Italy
| | - Gaetano Scaramuzzo
- Department of Translational medicine, University of Ferrara, Ferrara, Italy
- Anesthesia and intensive care, Arcispedale Sant’Anna, Ferrara, Italy
| | - Jake Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, United States of America
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
San José Estépar R. Artificial intelligence in functional imaging of the lung. Br J Radiol 2022; 95:20210527. [PMID: 34890215 PMCID: PMC9153712 DOI: 10.1259/bjr.20210527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022] Open
Abstract
Artificial intelligence (AI) is transforming the way we perform advanced imaging. From high-resolution image reconstruction to predicting functional response from clinically acquired data, AI is promising to revolutionize clinical evaluation of lung performance, pushing the boundary in pulmonary functional imaging for patients suffering from respiratory conditions. In this review, we overview the current developments and expound on some of the encouraging new frontiers. We focus on the recent advances in machine learning and deep learning that enable reconstructing images, quantitating, and predicting functional responses of the lung. Finally, we shed light on the potential opportunities and challenges ahead in adopting AI for functional lung imaging in clinical settings.
Collapse
Affiliation(s)
- Raúl San José Estépar
- Applied Chest Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, United States
| |
Collapse
|
21
|
Miller J, DiMaso L, Huang‐Vredevoogd J, Shah J, Lawless M. Characterization of size-specific effects during dual-energy CT material decomposition of non-iodine materials. J Appl Clin Med Phys 2021; 22:168-176. [PMID: 34783427 PMCID: PMC8664138 DOI: 10.1002/acm2.13471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The dual-energy CT (DECT) LiverVNC application class in the Siemens Syngo.via software has been used to perform non-iodine material decompositions. However, the LiverVNC application is designed with an optional size-specific calibration based on iodine measurements. This work investigates the effects of this iodine-based size-specific calibration on non-iodine material decomposition and benchmarks alternative methods for size-specific calibrations. METHODS Calcium quantification was performed with split-filter and sequential-scanning DECT techniques on the Siemens SOMATOM Definition Edge CT scanner. Images were acquired of the Gammex MECT abdomen and head phantom containing calcium inserts with concentrations ranging from 50-300 mgCa/ml. Several workflows were explored investigating the effects of size-specific dual-energy ratios (DERs) and the beam hardening correction (BHC) function in the LiverVNC application. Effects of image noise were also investigated by varying CTDIvol and using iterative reconstruction (ADMIRE). RESULTS With the default BHC activated, Syngo.via underestimated the calcium concentrations in the abdomen for sequential-scanning acquisitions, leaving residual calcium in the virtual non-contrast images and underestimating calcium in the enhancement images for all DERs. Activation of the BHC with split-filter images resulted in a calcium over- or underestimation depending on the DER. With the BHC inactivated, the use of a single DER led to an under- or overestimate of calcium concentration depending on phantom size and DECT modality. Optimal results were found with BHC inactivated using size-specific DERs. CTDIvol levels and ADMIRE had no significant effect on results. CONCLUSION When performing non-iodine material decomposition in the LiverVNC application class, it is important to understand the implications of the BHC function and to account for patient size appropriately. The BHC in the LiverVNC application is specific to iodine and leads to inaccurate quantification of other materials. The inaccuracies can be overcome by deactivating the BHC function and using size-specific DERs, which provided the most accurate calcium quantification.
Collapse
Affiliation(s)
- Jessica Miller
- Department of Human OncologyUniversity of WisconsinMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of WisconsinMadisonWisconsinUSA
| | - Lianna DiMaso
- Department of Human OncologyUniversity of WisconsinMadisonWisconsinUSA
| | - Jessie Huang‐Vredevoogd
- Department of Human OncologyUniversity of WisconsinMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of WisconsinMadisonWisconsinUSA
| | - Jainil Shah
- Siemens Medical Solutions USA, Inc.MalvernPennsylvaniaUSA
| | - Michael Lawless
- Department of Human OncologyUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
22
|
Hong YJ, Shim J, Lee SM, Im DJ, Hur J. Dual-Energy CT for Pulmonary Embolism: Current and Evolving Clinical Applications. Korean J Radiol 2021; 22:1555-1568. [PMID: 34448383 PMCID: PMC8390816 DOI: 10.3348/kjr.2020.1512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary embolism (PE) is a potentially fatal disease if the diagnosis or treatment is delayed. Currently, multidetector computed tomography (MDCT) is considered the standard imaging method for diagnosing PE. Dual-energy CT (DECT) has the advantages of MDCT and can provide functional information for patients with PE. The aim of this review is to present the potential clinical applications of DECT in PE, focusing on the diagnosis and risk stratification of PE.
Collapse
Affiliation(s)
- Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jina Shim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Jin Im
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Hur
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Review of Technical Advancements and Clinical Applications of Photon-counting Computed Tomography in Imaging of the Thorax. J Thorac Imaging 2021; 36:84-94. [PMID: 33399350 DOI: 10.1097/rti.0000000000000569] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Photon-counting computed tomography (CT) is a developing technology that has the potential to address some limitations of CT imaging and bring about improvements and potentially new applications to this field. Photon-counting detectors have a fundamentally different detection mechanism from conventional CT energy-integrating detectors that can improve dose efficiency, spatial resolution, and energy-discrimination capabilities. In the past decade, promising human studies have been reported in the literature that have demonstrated benefits of this relatively new technology for various clinical applications. In this review, we provide a succinct description of the photon-counting detector technology and its detection mechanism in comparison with energy-integrating detectors in a manner understandable for clinicians and radiologists, introduce benefits and some of the existing challenges present in this technology, and provide an overview of the current status and potential clinical applications of this technology in imaging of the thorax by providing example images acquired with an investigational whole-body photon-counting CT scanner.
Collapse
|
24
|
Gulhane A, Chen DL. Imaging in Asthma. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
25
|
Basharat F, Belli M, Kirby M, Tanguay J. Theoretical feasibility of dual‐energy radiography for structural and functional imaging of chronic obstructive pulmonary disease. Med Phys 2020; 47:6191-6206. [DOI: 10.1002/mp.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 09/12/2020] [Accepted: 09/25/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Michael Belli
- Department of Physics Ryerson University Toronto ON Canada
| | - Miranda Kirby
- Department of Physics Ryerson University Toronto ON Canada
| | - Jesse Tanguay
- Department of Physics Ryerson University Toronto ON Canada
| |
Collapse
|
26
|
Hata A, Yamada Y, Tanaka R, Nishino M, Hida T, Hino T, Ueyama M, Yanagawa M, Kamitani T, Kurosaki A, Sanada S, Jinzaki M, Ishigami K, Tomiyama N, Honda H, Kudoh S, Hatabu H. Dynamic Chest X-Ray Using a Flat-Panel Detector System: Technique and Applications. Korean J Radiol 2020; 22:634-651. [PMID: 33289365 PMCID: PMC8005348 DOI: 10.3348/kjr.2020.1136] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Dynamic X-ray (DXR) is a functional imaging technique that uses sequential images obtained by a flat-panel detector (FPD). This article aims to describe the mechanism of DXR and the analysis methods used as well as review the clinical evidence for its use. DXR analyzes dynamic changes on the basis of X-ray translucency and can be used for analysis of diaphragmatic kinetics, ventilation, and lung perfusion. It offers many advantages such as a high temporal resolution and flexibility in body positioning. Many clinical studies have reported the feasibility of DXR and its characteristic findings in pulmonary diseases. DXR may serve as an alternative to pulmonary function tests in patients requiring contact inhibition, including patients with suspected or confirmed coronavirus disease 2019 or other infectious diseases. Thus, DXR has a great potential to play an important role in the clinical setting. Further investigations are needed to utilize DXR more effectively and to establish it as a valuable diagnostic tool.
Collapse
Affiliation(s)
- Akinori Hata
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Yoshitake Yamada
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Rie Tanaka
- Department of Radiological Technology, School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Mizuki Nishino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tomoyuki Hida
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takuya Hino
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Masako Ueyama
- Department of Health Care, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Masahiro Yanagawa
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Kamitani
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsuko Kurosaki
- Department of Diagnostic Radiology, Fukujuji Hospital, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shigeru Sanada
- Clinical Engineering, Komatsu University, Ishikawa, Japan
| | - Masahiro Jinzaki
- Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoji Kudoh
- Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroto Hatabu
- Center for Pulmonary Functional Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Kim M, Doganay O, Hwang HJ, Seo JB, Gleeson FV. Lobar Ventilation in Patients with COPD Assessed with the Full-Scale Airway Network Flow Model and Xenon-enhanced Dual-Energy CT. Radiology 2020; 298:201-209. [PMID: 33231530 DOI: 10.1148/radiol.2020202485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background The full-scale airway network (FAN) flow model shows excellent agreement with limited functional imaging data but requires further validation prior to clinical use. Purpose To validate the ventilation distributions computed with the FAN flow model with xenon ventilation from xenon-enhanced dual-energy (DE) CT in participants with chronic obstructive pulmonary disease (COPD). Materials and Methods In this prospective study, the FAN model extracted structural data from xenon-enhanced DE CT images of men with COPD scanned between June 2012 and July 2013 to compute gas ventilation dynamics. The ventilation distributions on the middle cross-section plane, percentage lobar ventilation, and ventilation heterogeneity quantified by the coefficient of variation (CV) were compared between xenon-enhanced DE CT imaging and the FAN model. The relationship between the ventilation parameters with the densitometry and pulmonary function test results was demonstrated. The agreements and correlations between the parameters were measured using the concordance correlation coefficient and the Pearson correlation coefficient. Results Twenty-two men with COPD (mean age, 67 years ± 7 [standard deviation]) were evaluated. The percentage lobar ventilation computed with FAN showed a strong positive correlation with xenon-enhanced DE CT data (r = 0.7, P < .001). Ninety-five percent of lobar ventilation CV differences lay within 95% confidence intervals. Correlations of the percentage lobar ventilation were negative for percentage emphysema (xenon-enhanced DE CT: r = -0.38, P < .001; FAN: r = -0.23, P = .02) but were positive for percentage normal tissue volume (xenon-enhanced DE CT: r = 0.78, P < .001; FAN: r = 0.45, P < .001). Lung CVs of FAN revealed negative correlations with the spirometry results (CVFAN vs percentage predicted forced expiratory volume in 1 second: r = -0.75, P < .001; CVFAN vs ratio of forced expiratory volume in 1 second to forced vital capacity: r = -0.67, P < .001). Conclusion The full-scale airway network modeled lobar ventilation in patients with chronic obstructive pulmonary disease correlated with the xenon-enhanced dual-energy CT imaging data. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Parraga and Eddy in this issue.
Collapse
Affiliation(s)
- Minsuok Kim
- From the School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, England (M.K.); Healthy Science Institute, Ege University, Izmir, Turkey (O.D.); Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (H.J.H., J.B.S.); Department of Oncology, University of Oxford, Oxford, England (F.V.G.); and Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Headington, England (F.V.G.)
| | - Ozkan Doganay
- From the School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, England (M.K.); Healthy Science Institute, Ege University, Izmir, Turkey (O.D.); Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (H.J.H., J.B.S.); Department of Oncology, University of Oxford, Oxford, England (F.V.G.); and Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Headington, England (F.V.G.)
| | - Hye Jeon Hwang
- From the School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, England (M.K.); Healthy Science Institute, Ege University, Izmir, Turkey (O.D.); Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (H.J.H., J.B.S.); Department of Oncology, University of Oxford, Oxford, England (F.V.G.); and Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Headington, England (F.V.G.)
| | - Joon Beom Seo
- From the School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, England (M.K.); Healthy Science Institute, Ege University, Izmir, Turkey (O.D.); Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (H.J.H., J.B.S.); Department of Oncology, University of Oxford, Oxford, England (F.V.G.); and Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Headington, England (F.V.G.)
| | - Fergus V Gleeson
- From the School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, England (M.K.); Healthy Science Institute, Ege University, Izmir, Turkey (O.D.); Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (H.J.H., J.B.S.); Department of Oncology, University of Oxford, Oxford, England (F.V.G.); and Department of Radiology, The Churchill Hospital, Oxford University Hospitals NHS Trust, Headington, England (F.V.G.)
| |
Collapse
|
28
|
Abstract
Lung emphysema represents a major public health burden and still accounts for five percent of all deaths worldwide. Hence, it is essential to further understand this disease in order to develop effective diagnostic and therapeutic strategies. Lung emphysema is an irreversible enlargement of the airways distal to the terminal bronchi (i.e., the alveoli) due to the destruction of the alveolar walls. The two most important causes of emphysema are (I) smoking and (II) α1-antitrypsin-deficiency. In the former lung emphysema is predominant in the upper lung parts, the latter is characterized by a predominance in the basal areas of the lungs. Since quantification and evaluation of the distribution of lung emphysema is crucial in treatment planning, imaging plays a central role. Imaging modalities in lung emphysema are manifold: computed tomography (CT) imaging is nowadays the gold standard. However, emerging imaging techniques like dynamic or functional magnetic resonance imaging (MRI), scintigraphy and lately also the implementation of radiomics and artificial intelligence are more and more diffused in the evaluation, diagnosis and quantification of lung emphysema. The aim of this review is to shortly present the different subtypes of lung emphysema, to give an overview on prediction and risk assessment in emphysematous disease and to discuss not only the traditional, but also the new imaging techniques for diagnosis, quantification and evaluation of lung emphysema.
Collapse
Affiliation(s)
- Katharina Martini
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Functional lung imaging with synchrotron radiation: Methods and preclinical applications. Phys Med 2020; 79:22-35. [PMID: 33070047 DOI: 10.1016/j.ejmp.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 01/05/2023] Open
Abstract
Many lung disease processes are characterized by structural and functional heterogeneity that is not directly appreciable with traditional physiological measurements. Experimental methods and lung function modeling to study regional lung function are crucial for better understanding of disease mechanisms and for targeting treatment. Synchrotron radiation offers useful properties to this end: coherence, utilized in phase-contrast imaging, and high flux and a wide energy spectrum which allow the selection of very narrow energy bands of radiation, thus allowing imaging at very specific energies. K-edge subtraction imaging (KES) has thus been developed at synchrotrons for both human and small animal imaging. The unique properties of synchrotron radiation extend X-ray computed tomography (CT) capabilities to quantitatively assess lung morphology, and also to map regional lung ventilation, perfusion, inflammation and biomechanical properties, with microscopic spatial resolution. Four-dimensional imaging, allows the investigation of the dynamics of regional lung functional parameters simultaneously with structural deformation of the lung as a function of time. This review summarizes synchrotron radiation imaging methods and overviews examples of its application in the study of disease mechanisms in preclinical animal models, as well as the potential for clinical translation both through the knowledge gained using these techniques and transfer of imaging technology to laboratory X-ray sources.
Collapse
|
30
|
Rajiah P, Parakh A, Kay F, Baruah D, Kambadakone AR, Leng S. Update on Multienergy CT: Physics, Principles, and Applications. Radiographics 2020; 40:1284-1308. [DOI: 10.1148/rg.2020200038] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Prabhakar Rajiah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Anushri Parakh
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Fernando Kay
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Dhiraj Baruah
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Avinash R. Kambadakone
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| | - Shuai Leng
- From the Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905 (P.R., S.L.); Department of Radiology, Massachusetts General Hospital, Boston, Mass (A.P., A.R.K.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (F.K.); and Department of Radiology, Medical University of South Carolina, Charleston, SC (D.B.)
| |
Collapse
|
31
|
Jacobsen MC, Thrower SL. Multi-energy computed tomography and material quantification: Current barriers and opportunities for advancement. Med Phys 2020; 47:3752-3771. [PMID: 32453879 PMCID: PMC8495770 DOI: 10.1002/mp.14241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.
Collapse
Affiliation(s)
- Megan C. Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara L. Thrower
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
32
|
Cereda M, Xin Y, Goffi A, Herrmann J, Kaczka DW, Kavanagh BP, Perchiazzi G, Yoshida T, Rizi RR. Imaging the Injured Lung: Mechanisms of Action and Clinical Use. Anesthesiology 2019; 131:716-749. [PMID: 30664057 PMCID: PMC6692186 DOI: 10.1097/aln.0000000000002583] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Acute respiratory distress syndrome (ARDS) consists of acute hypoxemic respiratory failure characterized by massive and heterogeneously distributed loss of lung aeration caused by diffuse inflammation and edema present in interstitial and alveolar spaces. It is defined by consensus criteria, which include diffuse infiltrates on chest imaging-either plain radiography or computed tomography. This review will summarize how imaging sciences can inform modern respiratory management of ARDS and continue to increase the understanding of the acutely injured lung. This review also describes newer imaging methodologies that are likely to inform future clinical decision-making and potentially improve outcome. For each imaging modality, this review systematically describes the underlying principles, technology involved, measurements obtained, insights gained by the technique, emerging approaches, limitations, and future developments. Finally, integrated approaches are considered whereby multimodal imaging may impact management of ARDS.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Goffi
- Interdepartmental Division of Critical Care Medicine and Department of Medicine, University of Toronto, ON, Canada
| | - Jacob Herrmann
- Departments of Anesthesia and Biomedical Engineering, University of Iowa, IA
| | - David W. Kaczka
- Departments of Anesthesia, Radiology, and Biomedical Engineering, University of Iowa, IA
| | | | - Gaetano Perchiazzi
- Hedenstierna Laboratory and Uppsala University Hospital, Uppsala University, Sweden
| | - Takeshi Yoshida
- Hospital for Sick Children, University of Toronto, ON, Canada
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
33
|
Martin SS, van Assen M, Griffith LP, De Cecco CN, Varga-Szemes A, Bauer MJ, Wichmann JL, Vogl TJ, Schoepf UJ. Dual-Energy CT Pulmonary Angiography: Quantification of Disease Burden and Impact on Management. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0297-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
De Santis D, Eid M, De Cecco CN, Jacobs BE, Albrecht MH, Varga-Szemes A, Tesche C, Caruso D, Laghi A, Schoepf UJ. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging. Radiol Clin North Am 2018; 56:521-534. [PMID: 29936945 DOI: 10.1016/j.rcl.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications.
Collapse
Affiliation(s)
- Domenico De Santis
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Marwen Eid
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Carlo N De Cecco
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Brian E Jacobs
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Moritz H Albrecht
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Christian Tesche
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Lazarettstraße 36, Munich 80636, Germany
| | - Damiano Caruso
- Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Laghi
- Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA.
| |
Collapse
|
35
|
Comparison of Xenon-Enhanced Area-Detector CT and Krypton Ventilation SPECT/CT for Assessment of Pulmonary Functional Loss and Disease Severity in Smokers. AJR Am J Roentgenol 2017; 210:W45-W53. [PMID: 29220212 DOI: 10.2214/ajr.17.18709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The objective of this study was to compare the capability of xenon-enhanced area-detector CT (ADCT) performed with a subtraction technique and coregistered 81mKr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity in smokers. SUBJECTS AND METHODS Forty-six consecutive smokers (32 men and 14 women; mean age, 67.0 years) underwent prospective unenhanced and xenon-enhanced ADCT, 81mKr-ventilation SPECT/CT, and pulmonary function tests. Disease severity was evaluated according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification. CT-based functional lung volume (FLV), the percentage of wall area to total airway area (WA%), and ventilated FLV on xenon-enhanced ADCT and SPECT/CT were calculated for each smoker. All indexes were correlated with percentage of forced expiratory volume in 1 second (%FEV1) using step-wise regression analyses, and univariate and multivariate logistic regression analyses were performed. In addition, the diagnostic accuracy of the proposed model was compared with that of each radiologic index by means of McNemar analysis. RESULTS Multivariate logistic regression showed that %FEV1 was significantly affected (r = 0.77, r2 = 0.59) by two factors: the first factor, ventilated FLV on xenon-enhanced ADCT (p < 0.0001); and the second factor, WA% (p = 0.004). Univariate logistic regression analyses indicated that all indexes significantly affected GOLD classification (p < 0.05). Multivariate logistic regression analyses revealed that ventilated FLV on xenon-enhanced ADCT and CT-based FLV significantly influenced GOLD classification (p < 0.0001). The diagnostic accuracy of the proposed model was significantly higher than that of ventilated FLV on SPECT/CT (p = 0.03) and WA% (p = 0.008). CONCLUSION Xenon-enhanced ADCT is more effective than 81mKr-ventilation SPECT/CT for the assessment of pulmonary functional loss and disease severity.
Collapse
|
36
|
Hyperpolarized 129Xenon Magnetic Resonance Imaging to Quantify Regional Ventilation Differences in Mild to Moderate Asthma: A Prospective Comparison Between Semiautomated Ventilation Defect Percentage Calculation and Pulmonary Function Tests. Invest Radiol 2017; 52:120-127. [PMID: 27662575 DOI: 10.1097/rli.0000000000000322] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to investigate ventilation in mild to moderate asthmatic patients and age-matched controls using hyperpolarized (HP) Xenon magnetic resonance imaging (MRI) and correlate findings with pulmonary function tests (PFTs). MATERIALS AND METHODS This single-center, Health Insurance Portability and Accountability Act-compliant prospective study was approved by our institutional review board. Thirty subjects (10 young asthmatic patients, 26 ± 6 years; 3 males, 7 females; 10 older asthmatic patients, 64 ± 6 years; 3 males, 7 females; 10 healthy controls) were enrolled. After repeated PFTs 1 week apart, the subjects underwent 2 MRI scans within 10 minutes, inhaling 1-L volumes containing 0.5 to 1 L of Xe. Xe ventilation signal was quantified by linear binning, from which the ventilation defect percentage (VDP) was derived. Differences in VDP among subgroups and variability with age were evaluated using 1-tailed t tests. Correlation of VDP with PFTs was tested using Pearson correlation coefficient. Reproducibility of VDP was assessed using Bland-Altman plots, linear regression (R), intraclass correlation coefficient, and concordance correlation coefficient. RESULTS Ventilation defect percentage was significantly higher in young asthmatic patients versus young healthy subjects (8.4% ± 3.2% vs 5.6% ± 1.7%, P = 0.031), but not in older asthmatic patients versus age-matched controls (16.8% ± 10.3% vs 11.6% ± 6.6%, P = 0.13). Ventilation defect percentage was found to increase significantly with age (healthy, P = 0.05; asthmatic patients, P = 0.033). Ventilation defect percentage was highly reproducible (R = 0.976; intraclass correlation coefficient, 0.977; concordance correlation coefficient, 0.976) and significantly correlated with FEV1% (r = -0.42, P = 0.025), FEF25%-75% (r = -0.45, P = 0.019), FEV1/FVC (r = -0.71, P < 0.0001), FeNO (r = 0.69, P < 0.0001), and RV/TLC (r = 0.51, P = 0.0067). Bland-Altman analysis showed a bias for VDP of -0.88 ± 1.52 (FEV1%, -0.33 ± 7.18). CONCLUSIONS Xenon MRI is able to depict airway obstructions in mild to moderate asthma and significantly correlates with PFTs.
Collapse
|
37
|
Yeh BM, FitzGerald PF, Edic PM, Lambert JW, Colborn RE, Marino ME, Evans PM, Roberts JC, Wang ZJ, Wong MJ, Bonitatibus PJ. Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies. Adv Drug Deliv Rev 2017; 113:201-222. [PMID: 27620496 PMCID: PMC5344792 DOI: 10.1016/j.addr.2016.09.001] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
Abstract
The introduction of spectral CT imaging in the form of fast clinical dual-energy CT enabled contrast material to be differentiated from other radiodense materials, improved lesion detection in contrast-enhanced scans, and changed the way that existing iodine and barium contrast materials are used in clinical practice. More profoundly, spectral CT can differentiate between individual contrast materials that have different reporter elements such that high-resolution CT imaging of multiple contrast agents can be obtained in a single pass of the CT scanner. These spectral CT capabilities would be even more impactful with the development of contrast materials designed to complement the existing clinical iodine- and barium-based agents. New biocompatible high-atomic number contrast materials with different biodistribution and X-ray attenuation properties than existing agents will expand the diagnostic power of spectral CT imaging without penalties in radiation dose or scan time.
Collapse
Affiliation(s)
- Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143-0628, United States.
| | - Paul F FitzGerald
- General Electric Global Research, One Research Circle, Niskayuna, NY 12309, United States
| | - Peter M Edic
- General Electric Global Research, One Research Circle, Niskayuna, NY 12309, United States
| | - Jack W Lambert
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143-0628, United States
| | - Robert E Colborn
- General Electric Global Research, One Research Circle, Niskayuna, NY 12309, United States
| | - Michael E Marino
- General Electric Global Research, One Research Circle, Niskayuna, NY 12309, United States
| | - Paul M Evans
- GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham, Buckinghamshire HP7 9LL, United Kingdom
| | - Jeannette C Roberts
- General Electric Global Research, One Research Circle, Niskayuna, NY 12309, United States
| | - Zhen J Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143-0628, United States
| | - Margaret J Wong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143-0628, United States
| | - Peter J Bonitatibus
- General Electric Global Research, One Research Circle, Niskayuna, NY 12309, United States
| |
Collapse
|
38
|
Sugino K, Kobayashi M, Nakamura Y, Gocho K, Ishida F, Isobe K, Shiraga N, Homma S. Xenon-Enhanced Dual-Energy CT Imaging in Combined Pulmonary Fibrosis and Emphysema. PLoS One 2017; 12:e0170289. [PMID: 28107411 PMCID: PMC5249235 DOI: 10.1371/journal.pone.0170289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/03/2017] [Indexed: 12/01/2022] Open
Abstract
Background Little has been reported on the feasibility of xenon-enhanced dual-energy computed tomography (Xe-DECT) in the visual and quantitative analysis of combined pulmonary fibrosis and emphysema (CPFE). Objectives We compared CPFE with idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), as well as correlation with parameters of pulmonary function tests (PFTs). Methods Studied in 3 groups were 25 patients with CPFE, 25 with IPF without emphysema (IPF alone), 30 with COPD. Xe-DECT of the patients’ entire thorax was taken from apex to base after a patient’s single deep inspiration of 35% stable nonradioactive xenon. The differences in several parameters of PFTs and percentage of areas enhanced by xenon between 3 groups were compared and analyzed retrospectively. Results The percentage of areas enhanced by xenon in both lungs were calculated as CPFE/IPF alone/COPD = 72.2 ± 15.1% / 82.2 ± 14.7% /45.2 ± 23.2%, respectively. In the entire patients, the percentage of areas enhanced by xenon showed significantly a positive correlation with FEV1/FVC (R = 0.558, P < 0.0001) and %FEV1, (R = 0.528, P < 0.0001) and a negative correlation with %RV (R = -0.594, P < 0.0001) and RV/TLC (R = -0.579, P < 0.0001). The percentage of areas enhanced by xenon in patients with CPFE showed significantly a negative correlation with RV/TLC (R = -0.529, P = 0.007). Xenon enhancement of CPFE indicated 3 different patterns such as upper predominant, diffuse, and multifocal defect. The percentage of areas enhanced by xenon in upper predominant defect pattern was significantly higher than that in diffuse defect and multifocal defect pattern among these 3 different patterns in CPFE. Conclusion The percentage of areas enhanced by xenon demonstrated strong correlations with obstructive ventilation impairment. Therefore, we conclude that Xe-DECT may be useful for distinguishing emphysema lesion from fibrotic lesion in CPFE.
Collapse
Affiliation(s)
- Keishi Sugino
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
- * E-mail:
| | - Masahiro Kobayashi
- Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Yasuhiko Nakamura
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Kyoko Gocho
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Fumiaki Ishida
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Kazutoshi Isobe
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Diagnostic Radiology, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University Omori Medical Center, 6-11-1, Omori-nishi, Ota-ku, Tokyo, Japan
| |
Collapse
|
39
|
White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 3. J Comput Assist Tomogr 2017; 41:1-7. [DOI: 10.1097/rct.0000000000000538] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Kyoyama H, Hirata Y, Kikuchi S, Sakai K, Saito Y, Mikami S, Moriyama G, Yanagita H, Watanabe W, Otani K, Honda N, Uematsu K. Evaluation of pulmonary function using single-breath-hold dual-energy computed tomography with xenon: Results of a preliminary study. Medicine (Baltimore) 2017; 96:e5937. [PMID: 28099359 PMCID: PMC5279104 DOI: 10.1097/md.0000000000005937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Xenon-enhanced dual-energy computed tomography (xenon-enhanced CT) can provide lung ventilation maps that may be useful for assessing structural and functional abnormalities of the lung. Xenon-enhanced CT has been performed using a multiple-breath-hold technique during xenon washout. We recently developed xenon-enhanced CT using a single-breath-hold technique to assess ventilation. We sought to evaluate whether xenon-enhanced CT using a single-breath-hold technique correlates with pulmonary function testing (PFT) results.Twenty-six patients, including 11 chronic obstructive pulmonary disease (COPD) patients, underwent xenon-enhanced CT and PFT. Three of the COPD patients underwent xenon-enhanced CT before and after bronchodilator treatment. Images from xenon-CT were obtained by dual-source CT during a breath-hold after a single vital-capacity inspiration of a xenon-oxygen gas mixture. Image postprocessing by 3-material decomposition generated conventional CT and xenon-enhanced images.Low-attenuation areas on xenon images matched low-attenuation areas on conventional CT in 21 cases but matched normal-attenuation areas in 5 cases. Volumes of Hounsfield unit (HU) histograms of xenon images correlated moderately and highly with vital capacity (VC) and total lung capacity (TLC), respectively (r = 0.68 and 0.85). Means and modes of histograms weakly correlated with VC (r = 0.39 and 0.38), moderately with forced expiratory volume in 1 second (FEV1) (r = 0.59 and 0.56), weakly with the ratio of FEV1 to FVC (r = 0.46 and 0.42), and moderately with the ratio of FEV1 to its predicted value (r = 0.64 and 0.60). Mode and volume of histograms increased in 2 COPD patients after the improvement of FEV1 with bronchodilators. Inhalation of xenon gas caused no adverse effects.Xenon-enhanced CT using a single-breath-hold technique depicted functional abnormalities not detectable on thin-slice CT. Mode, mean, and volume of HU histograms of xenon images reflected pulmonary function. Xenon images obtained with xenon-enhanced CT using a single-breath-hold technique can qualitatively depict pulmonary ventilation. A larger study comprising only COPD patients should be conducted, as xenon-enhanced CT is expected to be a promising technique for the management of COPD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hisami Yanagita
- Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama
| | - Wataru Watanabe
- Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama
| | - Katharina Otani
- Research and Collaborations Department, Siemens Healthcare KK, Tokyo, Japan
| | - Norinari Honda
- Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama
| | | |
Collapse
|
41
|
State-of-the-Art Pulmonary CT Angiography for Acute Pulmonary Embolism. AJR Am J Roentgenol 2016; 208:495-504. [PMID: 27897042 DOI: 10.2214/ajr.16.17202] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Pulmonary CT angiography (CTA) is the imaging modality of choice in suspected acute pulmonary embolism (PE). Current pulmonary CTA techniques involve ever lower doses of contrast medium and radiation along with advanced postprocessing applications to enhance image quality, diagnostic accuracy, and provide added value in patient management. The objective of this article is to summarize these current developments and discuss the appropriate use of state-of-the-art pulmonary CTA. CONCLUSION Pulmonary CTA is well established as a fast and reliable means of excluding or diagnosing PE. Continued developments in CT system hardware and postprocessing techniques will allow incremental reductions in radiation and contrast material requirements while improving image quality. Advances in risk stratification and prognostication from pulmonary CTA examinations should further refine its clinical value while minimizing the potential harm from overutilization and overdiagnosis.
Collapse
|
42
|
Xenon-enhanced CT using subtraction CT: Basic and preliminary clinical studies for comparison of its efficacy with that of dual-energy CT and ventilation SPECT/CT to assess regional ventilation and pulmonary functional loss in smokers. Eur J Radiol 2016; 86:41-51. [PMID: 28027764 DOI: 10.1016/j.ejrad.2016.10.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE To prospectively and directly compare the capability for assessments of regional ventilation and pulmonary functional loss in smokers of xenon-ventilation CT obtained with the dual-energy CT (DE-CT) and subtraction CT (Sub-CT) MATERIALS AND METHODS: Twenty-three consecutive smokers (15 men and 8 women, mean age: 69.7±8.7years) underwent prospective unenhanced and xenon-enhanced CTs, the latter by Sub-CT and DE-CT methods, ventilation SPECT and pulmonary function tests. Sub-CT was generated from unenhanced and xenon-enhanced CT, and all co-registered SPECT/CT data were produced from SPECT and unenhanced CT data. For each method, regional ventilation was assessed by using a 11-point scoring system on a per-lobe basis. To determine the functional lung volume by each method, it was also calculated for individual sublets with a previously reported method. To determine inter-observer agreement for each method, ventilation defect assessment was evaluated by using the χ2 test with weighted kappa statistics. For evaluation of the efficacy of each method for pulmonary functional loss assessment, functional lung volume was correlated with%FEV1. RESULTS Each inter-observer agreement was rated as substantial (Sub-CT: κ=0.69, p<0.0001; DE-CT: κ=0.64, p<0.0001; SPECT/CT: κ=0.64, p<0.0001). Functional lung volume for each method showed significant to good correlation with%FEV1 (Sub-CT: r=0.72, p=0.0001; DE-CT: r=0.74, p<0.0001; SPECT/CT: r=0.66, p=0.0006). CONCLUSION Xenon-enhanced CT obtained by Sub-CT can be considered at least as efficacious as that obtained by DE-CT and SPECT/CT for assessment of ventilation abnormality and pulmonary functional loss in smokers.
Collapse
|
43
|
Pusterla O, Bauman G, Wielpütz MO, Nyilas S, Latzin P, Heussel CP, Bieri O. Rapid 3D in vivo 1H human lung respiratory imaging at 1.5 T using ultra-fast balanced steady-state free precession. Magn Reson Med 2016; 78:1059-1069. [DOI: 10.1002/mrm.26503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/17/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Orso Pusterla
- Division of Radiological Physics, Department of Radiology; University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology; University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University Hospital Heidelberg; Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg; Heidelberg Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL); Heidelberg Germany
| | - Sylvia Nyilas
- Division of Respiratory Medicine, Department of Pediatrics; University Children's Hospital of Bern; Bern Switzerland
- Department of Pediatric Pneumology; University Children's Hospital Basel (UKBB); Basel Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics; University Children's Hospital of Bern; Bern Switzerland
- Department of Pediatric Pneumology; University Children's Hospital Basel (UKBB); Basel Switzerland
| | - Claus P. Heussel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University Hospital Heidelberg; Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg; Heidelberg Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL); Heidelberg Germany
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology; University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| |
Collapse
|
44
|
van Elmpt W, Landry G, Das M, Verhaegen F. Dual energy CT in radiotherapy: Current applications and future outlook. Radiother Oncol 2016; 119:137-44. [DOI: 10.1016/j.radonc.2016.02.026] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 02/28/2016] [Indexed: 11/17/2022]
|
45
|
Hoffman EA, Lynch DA, Barr RG, van Beek EJR, Parraga G. Pulmonary CT and MRI phenotypes that help explain chronic pulmonary obstruction disease pathophysiology and outcomes. J Magn Reson Imaging 2016; 43:544-57. [PMID: 26199216 PMCID: PMC5207206 DOI: 10.1002/jmri.25010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022] Open
Abstract
Pulmonary x-ray computed tomographic (CT) and magnetic resonance imaging (MRI) research and development has been motivated, in part, by the quest to subphenotype common chronic lung diseases such as chronic obstructive pulmonary disease (COPD). For thoracic CT and MRI, the main COPD research tools, disease biomarkers are being validated that go beyond anatomy and structure to include pulmonary functional measurements such as regional ventilation, perfusion, and inflammation. In addition, there has also been a drive to improve spatial and contrast resolution while at the same time reducing or eliminating radiation exposure. Therefore, this review focuses on our evolving understanding of patient-relevant and clinically important COPD endpoints and how current and emerging MRI and CT tools and measurements may be exploited for their identification, quantification, and utilization. Since reviews of the imaging physics of pulmonary CT and MRI and reviews of other COPD imaging methods were previously published and well-summarized, we focus on the current clinical challenges in COPD and the potential of newly emerging MR and CT imaging measurements to address them. Here we summarize MRI and CT imaging methods and their clinical translation for generating reproducible and sensitive measurements of COPD related to pulmonary ventilation and perfusion as well as parenchyma morphology. The key clinical problems in COPD provide an important framework in which pulmonary imaging needs to rapidly move in order to address the staggering burden, costs, as well as the mortality and morbidity associated with COPD.
Collapse
Affiliation(s)
- Eric A Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - David A Lynch
- Department of Radiology, National Jewish Health Center, Denver, Colorado, USA
| | - R Graham Barr
- Division of General Medicine, Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia University Medical Center, New York, New York, USA
| | - Edwin J R van Beek
- Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, Scotland, UK
| | - Grace Parraga
- Robarts Research Institute, University of Western Ontario, London, Canada
- Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
46
|
Abstract
OBJECTIVES The objective of this study was to assess the feasibility and safety of krypton ventilation imaging with intraindividual comparison to xenon ventilation computed tomography (CT). MATERIALS AND METHODS In a first step, attenuation of different concentrations of xenon and krypton was analyzed in a phantom setting. Thereafter, 7 male New Zealand white rabbits (4.4-6.0 kg) were included in an animal study. After orotracheal intubation, an unenhanced CT scan was obtained in end-inspiratory breath-hold. Thereafter, xenon- (30%) and krypton-enhanced (70%) ventilation CT was performed in random order. After a 2-minute wash-in of gas A, CT imaging was performed. After a 45-minute wash-out period and another 2-minute wash-in of gas B, another CT scan was performed using the same scan protocol. Heart rate and oxygen saturation were measured. Unenhanced and krypton or xenon data were registered and subtracted using a nonrigid image registration tool. Enhancement was quantified and statistically analyzed. RESULTS One animal had to be excluded from data analysis owing to problems during intubation. The CT scans in the remaining 6 animals were completed without complications. There were no relevant differences in oxygen saturation or heart rate between the scans. Xenon resulted in a mean increase of enhancement of 35.3 ± 5.5 HU, whereas krypton achieved a mean increase of 21.9 ± 1.8 HU in enhancement (P = 0.0055). CONCLUSIONS The use of krypton for lung ventilation imaging appears to be feasible and safe. Despite the use of a markedly higher concentration of krypton, enhancement is significantly worse when compared with xenon CT ventilation imaging, but sufficiently high for CT ventilation imaging studies.
Collapse
|
47
|
Where do we stand? Functional imaging in acute and chronic pulmonary embolism with state-of-the-art CT. Eur J Radiol 2015; 84:2432-7. [DOI: 10.1016/j.ejrad.2015.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/17/2015] [Indexed: 01/26/2023]
|
48
|
|
49
|
|
50
|
|