1
|
Poetter-Lang S, Ambros R, Messner A, Kristic A, Hodge JC, Bastati N, Schima W, Chernyak V, Bashir MR, Ba-Ssalamah A. Are dilution, slow injection and care bolus technique the causal solution to mitigating arterial-phase artifacts on gadoxetic acid-enhanced MRI? A large-cohort study. Eur Radiol 2024; 34:5215-5227. [PMID: 38243134 PMCID: PMC11254987 DOI: 10.1007/s00330-024-10590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Arterial-phase artifacts are gadoxetic acid (GA)-enhanced MRI's major drawback, ranging from 5 to 39%. We evaluate the effect of dilution and slow injection of GA using automated fluoroscopic triggering on liver MRI arterial-phase (AP) acquisition timing, artifact frequency, and lesion visibility. METHODS AND MATERIALS Saline-diluted 1:1 GA was injected at 1 ml/s into 1413 patients for 3 T liver MRI. Initially, one senior abdominal radiologist, i.e., principal investigator (PI), assessed all MR exams and compared them to previous and follow-up images, as well as the radiology report on record, determining the standard of reference for lesion detection and characterization. Then, three other readers independently evaluated the AP images for artifact type (truncation (TA), transient severe motion (TSM) or mixed), artifact severity (on a 5-point scale), acquisition timing (on a 4-point scale) and visibility (on a 5-point scale) of hypervascular lesions ≥ 5 mm, selected by the PI. Artifact score ≥ 4 and artifact score ≤ 3 were considered significant and non-significant artifacts, respectively. RESULTS Of the 1413 exams, diagnostic-quality arterial-phase images included 1100 (77.8%) without artifacts, 220 (15.6%) with minimal, and 77 (5.4%) with moderate artifacts. Only 16 exams (1.1%) had significant artifacts, 13 (0.9%) with severe artifacts (score 4), and three (0.2%) non-diagnostic artifacts (score 5). AP acquisition timing was optimal in 1369 (96.8%) exams. Of the 449 AP hypervascular lesions, 432 (96.2%) were detected. CONCLUSION Combined dilution and slow injection of GA with MR results in well-timed arterial-phase images in 96.8% and a reduction of exams with significant artifacts to 1.1%. CLINICAL RELEVANCE STATEMENT Hypervascular lesions, in particular HCC detection, hinge on arterial-phase hyperenhancement, making well-timed, artifact-free arterial-phase images a prerequisite for accurate diagnosis. Saline dilution 1:1, slow injection (1 ml/s), and automated bolus triggering reduce artifacts and optimize acquisition timing. KEY POINTS • There was substantial agreement among the three readers regarding the presence and type of arterial-phase (AP) artifacts, acquisition timing, and lesion visibility. • Impaired AP hypervascular lesion visibility occurred in 17 (3.8%) cases; in eight lesions due to mistiming and in nine lesions due to significant artifacts. • When AP timing was suboptimal, it was too late in 40 exams (3%) and too early in 4 exams (0.2%) of exams.
Collapse
Affiliation(s)
- Sarah Poetter-Lang
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Raphael Ambros
- Department of Diagnostic and Interventional Radiology, Clinic Donaustadt, Vienna Healthcare Group, Vienna, Austria
| | - Alina Messner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Antonia Kristic
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nina Bastati
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schima
- Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and Sankt Josef Krankenhaus, Vienna, Austria
| | - Victoria Chernyak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Frenette C, Mendiratta-Lala M, Salgia R, Wong RJ, Sauer BG, Pillai A. ACG Clinical Guideline: Focal Liver Lesions. Am J Gastroenterol 2024; 119:1235-1271. [PMID: 38958301 DOI: 10.14309/ajg.0000000000002857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/25/2024] [Indexed: 07/04/2024]
Abstract
Focal liver lesions (FLLs) have become an increasingly common finding on abdominal imaging, especially asymptomatic and incidental liver lesions. Gastroenterologists and hepatologists often see these patients in consultation and make recommendations for management of multiple types of liver lesions, including hepatocellular adenoma, focal nodular hyperplasia, hemangioma, and hepatic cystic lesions including polycystic liver disease. Malignancy is important to consider in the differential diagnosis of FLLs, and healthcare providers must be familiar with the diagnosis and management of FLLs. This American College of Gastroenterology practice guideline uses the best evidence available to make diagnosis and management recommendations for the most common FLLs.
Collapse
Affiliation(s)
| | | | - Reena Salgia
- Department of Gastroenterology/Hepatology, Henry Ford Health, Detroit, Michigan, USA
| | - Robert J Wong
- Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System and Stanford University School of Medicine, Palo Alto, California, USA
| | - Bryan G Sauer
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, Virginia, USA
| | - Anjana Pillai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago Medical Center, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Xu L, Ren Z, Li G, Xu D, Miao J, Ju J, Mo X, Wang X, Deng H, Xu M. Liver-targeting MRI contrast agent based on galactose functionalized o-carboxymethyl chitosan. Front Bioeng Biotechnol 2023; 11:1134665. [PMID: 37284241 PMCID: PMC10239977 DOI: 10.3389/fbioe.2023.1134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
Commercial gadolinium (Gd)-based contrast agents (GBCAs) play important role in clinical diagnostic of hepatocellular carcinoma, but their diagnostic efficacy remained improved. As small molecules, the imaging contrast and window of GBCAs is limited by low liver targeting and retention. Herein, we developed a liver-targeting gadolinium (Ⅲ) chelated macromolecular MRI contrast agent based on galactose functionalized o-carboxymethyl chitosan, namely, CS-Ga-(Gd-DTPA)n, to improve hepatocyte uptake and liver retention. Compared to Gd-DTPA and non-specific macromolecular agent CS-(Gd-DTPA)n, CS-Ga-(Gd-DTPA)n showed higher hepatocyte uptake, excellent cell and blood biocompatibility in vitro. Furthermore, CS-Ga-(Gd-DTPA)n also exhibited higher relaxivity in vitro, prolonged retention and better T1-weighted signal enhancement in liver. At 10 days post-injection of CS-Ga-(Gd-DTPA)n at a dose of 0.03 mM Gd/Kg, Gd had a little accumulation in liver with no liver function damage. The good performance of CS-Ga-(Gd-DTPA)n gives great confidence in developing liver-specifc MRI contrast agents for clinical translation.
Collapse
Affiliation(s)
- Li Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhanying Ren
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
- Southern University of Science and Technology, Shenzhen, China
| | - Guolin Li
- Department of Stomatology, Shanghai 8th People’s Hospital, Shanghai, China
| | - Danni Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqian Miao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingxuan Ju
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Mo
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Wang
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Xu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| |
Collapse
|
4
|
Deep Learning-Based Automatic Detection and Grading of Motion-Related Artifacts on Gadoxetic Acid-Enhanced Liver MRI. Invest Radiol 2023; 58:166-172. [PMID: 36070544 DOI: 10.1097/rli.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aim of this study was to develop and validate a deep learning-based algorithm (DLA) for automatic detection and grading of motion-related artifacts on arterial phase liver magnetic resonance imaging (MRI). MATERIALS AND METHODS Multistep DLA for detection and grading of motion-related artifacts, based on the modified ResNet-101 and U-net, were trained using 336 arterial phase images of gadoxetic acid-enhanced liver MRI examinations obtained in 2017 (training dataset; mean age, 68.6 years [range, 18-95]; 254 men). Motion-related artifacts were evaluated in 4 different MRI slices using a 3-tier grading system. In the validation dataset, 313 images from the same institution obtained in 2018 (internal validation dataset; mean age, 67.2 years [range, 21-87]; 228 men) and 329 from 3 different institutions (external validation dataset; mean age, 64.0 years [range, 23-90]; 214 men) were included, and the per-slice and per-examination performances for the detection of motion-related artifacts were evaluated. RESULTS The per-slice sensitivity and specificity of the DLA for detecting grade 3 motion-related artifacts were 91.5% (97/106) and 96.8% (1134/1172) in the internal validation dataset and 93.3% (265/284) and 91.6% (948/1035) in the external validation dataset. The per-examination sensitivity and specificity were 92.0% (23/25) and 99.7% (287/288) in the internal validation dataset and 90.0% (72/80) and 96.0% (239/249) in the external validation dataset, respectively. The processing time of the DLA for automatic grading of motion-related artifacts was from 4.11 to 4.22 seconds per MRI examination. CONCLUSIONS The DLA enabled automatic and instant detection and grading of motion-related artifacts on arterial phase gadoxetic acid-enhanced liver MRI.
Collapse
|
5
|
Jang J, Chung YE, Kim S, Hwang D. Fully automatic quantification of transient severe respiratory motion artifact of gadoxetate disodium-enhanced MRI during arterial phase. Med Phys 2022; 49:7247-7261. [PMID: 35754384 DOI: 10.1002/mp.15831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 01/01/2023] Open
Abstract
PURPOSE It is important to fully automate the evaluation of gadoxetate disodium-enhanced arterial phase images because the efficient quantification of transient severe motion artifacts can be used in a variety of applications. Our study proposes a fully automatic evaluation method of motion artifacts during the arterial phase of gadoxetate disodium-enhanced MR imaging. METHODS The proposed method was based on the construction of quality-aware features to represent the motion artifact using MR image statistics and multidirectional filtered coefficients. Using the quality-aware features, the method calculated quantitative quality scores of gadoxetate disodium-enhanced images fully automatically. The performance of our proposed method, as well as two other methods, was acquired by correlating scores against subjective scores from radiologists based on the 5-point scale and binary evaluation. The subjective scores evaluated by two radiologists were severity scores of motion artifacts in the evaluation set on a scale of 1 (no motion artifacts) to 5 (severe motion artifacts). RESULTS Pearson's linear correlation coefficient (PLCC) and Spearman's rank-ordered correlation coefficient (SROCC) values of our proposed method against the subjective scores were 0.9036 and 0.9057, respectively, whereas the PLCC values of two other methods were 0.6525 and 0.8243, and the SROCC values were 0.6070 and 0.8348. Also, in terms of binary quantification of transient severe respiratory motion, the proposed method achieved 0.9310 sensitivity, 0.9048 specificity, and 0.9200 accuracy, whereas the other two methods achieved 0.7586, 0.8996 sensitivities, 0.8098, 0.8905 specificities, and 0.9200, 0.9048 accuracies CONCLUSIONS: This study demonstrated the high performance of the proposed automatic quantification method in evaluating transient severe motion artifacts in arterial phase images.
Collapse
Affiliation(s)
- Jinseong Jang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yong Eun Chung
- Department of Radiology, Yonsei University College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Sungwon Kim
- Department of Radiology, Yonsei University College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Dosik Hwang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.,Department of Radiology and Center for Clinical Imaging Data Science (CCIDS), Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Center for Healthcare Robotics, Korea Institute of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
6
|
Poetter-Lang S, Dovjak GO, Messner A, Ambros R, Polanec SH, Baltzer PAT, Kristic A, Herold A, Hodge JC, Weber M, Bastati N, Ba-Ssalamah A. Influence of dilution on arterial-phase artifacts and signal intensity on gadoxetic acid-enhanced liver MRI. Eur Radiol 2022; 33:523-534. [PMID: 35895119 DOI: 10.1007/s00330-022-08984-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To investigate the effect of saline-diluted gadoxetic acid, done for arterial-phase (AP) artifact reduction, on signal intensity (SI), and hence focal lesion conspicuity on MR imaging. METHODS We retrospectively examined 112 patients who each had at least two serial gadoxetic acid-enhanced liver MRIs performed at 1 ml/s, first with non-diluted (ND), then with 1:1 saline-diluted (D) contrast. Two blinded readers independently analyzed the artifacts and graded dynamic images using a 5-point scale. The absolute SI of liver parenchyma, focal liver lesions (if present), aorta, and portal vein at the level of the celiac trunk and the SI of the paraspinal muscle were measured in all phases. The signal-to-norm (SINorm) of the vascular structures, hepatic parenchyma and focal lesions, and the contrast-to-norm (CNorm) of focal liver lesions were calculated. RESULTS AP artifacts were significantly reduced with dilution. Mean absolute contrast-enhanced liver SI was significantly higher on the D exams compared to the ND exams. Likewise, SINorm of liver parenchyma was significantly higher in all contrast-enhanced phases except transitional phase on the D exams. SINorm values in the AP for the aorta and in the PVP for portal vein were significantly higher on the diluted exams. The CNorm was not significantly different between ND and D exams for lesions in any imaging phase. The interclass correlation coefficient was excellent (0.89). CONCLUSION Gadoxetic acid dilution injected at 1ml/s produces images with significantly fewer AP artifacts but no significant loss in SINorm or CNorm compared to standard non-diluted images. KEY POINTS • Diluted gadoxetic acid at slow injection (1 ml/s) yielded images with higher SINorm of the liver parenchyma and preserved CNorm for focal liver lesions. • Gadoxetic acid-enhanced MRI injected at 1 ml/s is associated with arterial-phase (AP) artifacts in 31% of exams, which may degrade image quality and limits focal liver lesion detection. • Saline dilution of gadoxetic acid 1:1 combined with a slow injection rate of 1 ml/s significantly reduced AP artifacts from 31 to 9% and non-diagnostic AP artifacts from 16 to 1%.
Collapse
Affiliation(s)
- Sarah Poetter-Lang
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Gregor O Dovjak
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alina Messner
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Raphael Ambros
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Stephan H Polanec
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Pascal A T Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Antonia Kristic
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Herold
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nina Bastati
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna (AKH), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Jang EB, Kim DW, Choi SH, Hong SB, Park T, Ko Y, Ham SJ. Transient severe motion artifacts on gadoxetic acid-enhanced MRI: risk factor analysis in 2230 patients. Eur Radiol 2022; 32:8629-8638. [PMID: 35665846 DOI: 10.1007/s00330-022-08885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To determine risk factors for transient severe motion (TSM) artifact on arterial phase of gadoxetic acid-enhanced MRI using a large cohort. METHODS A total of 2230 patients who underwent gadoxetic acid-enhanced MRI was consecutively included. Two readers evaluated respiratory motion artifact on arterial phase images using a 5-point grading scale. Clinical factors including demographic data, underlying disease, laboratory data, presence of ascites and pleural effusion, and previous experience of gadoxetic acid-enhanced MRI were investigated. Univariable and multivariable logistic regression analyses were performed to determine significant risk factors for TSM. Predictive value of TSM was calculated according to the number of significant risk factors. RESULTS Overall incidence of TSM was 5.0% (111/2230). In the multivariable analysis, old age (≥ 65 years; odds ratio [OR] = 2.01 [95% CI, 1.31-3.07]), high body mass index (≥ 25 kg/m2; OR = 1.76 [1.18-2.63]), chronic obstructive pulmonary disease (OR = 6.11 [2.32-16.04]), and moderate to severe pleural effusion (OR = 3.55 [1.65-7.65]) were independent significant risk factors for TSM. Presence of hepatitis B (OR = 0.66 [0.43-0.99]) and previous experience of gadoxetic acid-enhanced MRI (OR = 0.52 [0.33-0.83]) were negative risk factors for TSM. When at least one of the significant factors was present, the predictive risk was 5.7% (109/1916), whereas it was 16.3% (17/104) when at least four factors were present. CONCLUSION Knowing risk factors for transient severe motion artifact on gadoxetic acid-enhanced MRI can be clinically useful for providing diagnostic strategies more tailored to individual patients. KEY POINTS • Old age, high body mass index, chronic obstructive pulmonary disease, and moderate to severe pleural effusion were independent risk factors for transient severe motion artifact on gadoxetic acid-enhanced MRI. • Patients with hepatitis B or previous experience of gadoxetic acid-enhanced MRI were less likely to show transient severe motion artifact. • As the number of risk factors for transient severe motion artifact increased, the predicted risk for it also showed a tendency to increase.
Collapse
Affiliation(s)
- Eun Bee Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Wook Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Taeyong Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yousun Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Su Jung Ham
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
8
|
Hojreh A, Ba-Ssalamah A, Lang C, Poetter-Lang S, Huber WD, Tamandl D. Influence of age on gadoxetic acid disodium-induced transient respiratory motion artifacts in pediatric liver MRI. PLoS One 2022; 17:e0264069. [PMID: 35235594 PMCID: PMC8890729 DOI: 10.1371/journal.pone.0264069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Gd-EOB-DTPA-enhanced liver MRI is frequently compromised by transient severe motion artifacts (TSM) in the arterial phase, which limits image interpretation for the detection and differentiation of focal liver lesions and for the recognition of the arterial vasculature before and after liver transplantation. The purpose of this study was to investigate which patient factors affect TSM in children who undergo Gd-EOB-DTPA-enhanced liver MRI and whether younger children are affected as much as adolescents. METHODS One hundred and forty-eight patients (65 female, 83 male, 0.1-18.9 years old), who underwent 226 Gd-EOB-DTPA-enhanced MRIs were included retrospectively in this single-center study. The occurrence of TSM was assessed by three readers using a four-point Likert scale. The relation to age, gender, body mass index, indication for MRI, requirement for sedation, and MR repetition was investigated using uni- and multivariate logistic regression analysis. RESULTS In Gd-EOB-DTPA-enhanced MRIs, TSM occurred in 24 examinations (10.6%). Patients with TSM were significantly older than patients without TSM (median 14.3 years; range 10.1-18.1 vs. 12.4 years; range 0.1-18.9, p<0.001). TSM never appeared under sedation. Thirty of 50 scans in patients younger than 10 years were without sedation. TSM were not observed in non-sedated patients younger than 10 years of age (p = 0.028). In a logistic regression analysis, age remained the only cofactor independently associated with the occurrence of TSM (hazard ratio 9.152, p = 0.049). CONCLUSION TSM in Gd-EOB-DTPA-enhanced liver MRI do not appear in children under the age of 10 years.
Collapse
Affiliation(s)
- Azadeh Hojreh
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Lang
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesia, Emergency Medicine and Intensive Care, General Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Sarah Poetter-Lang
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Kim DW, Choi SH, Park T, Kim SY, Lee SS, Byun JH. Transient Severe Motion Artifact on Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Invest Radiol 2022; 57:62-70. [PMID: 34224484 DOI: 10.1097/rli.0000000000000806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to determine the incidence of transient severe motion artifact (TSM) on arterial phase gadoxetic acid-enhanced magnetic resonance imaging of the liver and to investigate the causes of heterogeneity in the published literature. MATERIALS AND METHODS Original studies reporting the incidence of TSM were identified in searches of PubMed, Embase, and Cochrane Library databases. The pooled incidence of TSM was calculated using random-effects meta-analysis of single proportions. Subgroup analyses were conducted to explore causes of heterogeneity. RESULTS A total of 24 studies were finally included (single arterial phase, 19 studies with 3065 subjects; multiple arterial phases, 8 studies with 2274 subjects). Studies using single arterial phase imaging reported individual TSM rates varying from 4.8% to 26.7% and a pooled incidence of TSM of 13.0% (95% confidence interval, 10.3%-16.2%), which showed substantial study heterogeneity. The pooled incidence of TSM in the studies using multiple arterial phase imaging was 3.2% (95% confidence interval, 1.9%-5.2%), which was significantly less than in those studies using single arterial phase imaging (P < 0.001). In the subgroup analysis, the geographical region of studies and the definition of TSM were found to be causes of heterogeneity. The incidence of TSM was higher in studies with Western populations from Europe or North America than in those with Eastern (Asia/Pacific) populations (16.0% vs 8.8%, P = 0.005). Regarding the definition of TSM, the incidence of TSM was higher when a 4-point scale was used for its categorization than when a 5-point scale was used (20.0% vs 11.0%, P = 0.008), and a definition considering motion artifact on phases other than arterial phase imaging lowered the incidence of TSM compared with it being defined only on arterial phase imaging (11.3% vs 20.3%, P = 0.018). CONCLUSIONS The incidence of TSM on arterial phase images varied across studies and was associated with the geographical region of studies and the definition of TSM. Careful interpretation of results reporting TSM might therefore be needed.
Collapse
Affiliation(s)
- Dong Wook Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
10
|
Choi ES, Kim JS, Nickel MD, Sung JK, Lee JK. Free-breathing contrast-enhanced multiphase MRI of the liver in patients with a high risk of breath-holding failure: comparison of compressed sensing-accelerated radial and Cartesian acquisition techniques. Acta Radiol 2021; 63:1453-1462. [PMID: 34839679 DOI: 10.1177/02841851211052988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Knowing the advantages and disadvantages of each magnetic resonance (MR) technique, would allow us to choose a sequence better suited in patients with a high risk of breath-holding failure. PURPOSE To compare the image quality of free-breathing contrast-enhanced multiphase MR imaging (MRI) using incoherent Cartesian k-space sampling combined with a motion-resolved compressed sensing reconstruction (XD-VIBE) and Golden-Angle Radial Sparse Parallel MRI (GRASP). MATERIAL AND METHODS A total of 67 patients were included. Overall image quality, motion artifacts, and liver edge sharpness on arterial and portal-venous phase were evaluated by two radiologists. We evaluated the signal intensity ratio between liver in the late arterial phase to aorta at peak enhancement and the detection rate of hypervascular lesions. RESULTS Overall image quality, artifact, and liver edge sharpness scores of XD-VIBE and GRASP were not significantly different (P = 0.070-0.397). Four (reviewer 1, 12.1%) and seven patients (reviewer 2, 21.2%) received non-diagnostic quality in the XD-VIBE group whereas one patient (reviewer 2, 2.9%) received non-diagnostic quality in the GRASP group. The ratio between the aorta and liver signal for GRASP was significantly higher than that of XD-VIBE (0.32 ± 0.10 vs. 0.47 ± 0.13; P < 0.001). The hypervascular lesion detection rate of XD-VIBE (86.7%) was higher than that of GRASP (57.1%) in the arterial phase without a statistically significant difference (P = 0.081). CONCLUSION Overall image quality of XD-VIBE and GRASP were not significantly different. More XD-VIBE examinations were rated non-diagnostic. On the other hand, the relative liver parenchymal enhancement to the aorta in the late arterial phase of GRASP was higher than that of XD-VIBE, which potentially leads to lower detectability of hypervascular lesions on arterial phase images.
Collapse
Affiliation(s)
- Eun Sun Choi
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Jin Sil Kim
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | | | - Jae Kon Sung
- Siemens Healthineers Ltd, Seoul, Republic of Korea
| | - Jeong Kyong Lee
- Department of Radiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Welle CL, Venkatesh SK, Reeder SB, VanBuren WM, Wells ML, Sheedy SP, Fidler JL. Dual contrast liver MRI: a pictorial illustration. Abdom Radiol (NY) 2021; 46:4588-4600. [PMID: 34076723 DOI: 10.1007/s00261-021-03129-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022]
Abstract
Liver magnetic resonance imaging (MRI) is a commonly performed imaging technique with multiple indications and applications. There are two general groups of contrast agents used when imaging the liver, extracellular contrast agents (ECA) and hepatobiliary agents (HBA), each of which has its own advantages and limitations. Liver MRI with ECA provides excellent information on abdominal vasculature and better quality multi-phasic studies for characterization of focal liver lesions. HBA improves lesion detection, provides information regarding liver function and can be helpful for evaluating biliary tree anatomy, excretion, anastomotic stenoses, or leaks. Most liver MRI studies are usually performed with one agent, however in some cases, a second study is performed with another agent to obtain additional information or confirm the findings in the first study. Administering both agents in a single exam can potentially eliminate the need for additional imaging in certain situations. In this pictorial review, the techniques and indications for dual contrast MRI will be detailed with multiple demonstrative examples.
Collapse
Affiliation(s)
| | | | - Scott B Reeder
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | | | | | | | - Jeff L Fidler
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
12
|
Schieda N, van der Pol CB, Walker D, Tsampalieros AK, Maralani PJ, Woo S, Davenport MS. Adverse Events to the Gadolinium-based Contrast Agent Gadoxetic Acid: Systematic Review and Meta-Analysis. Radiology 2020; 297:565-572. [DOI: 10.1148/radiol.2020200073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Vietti Violi N, Argiriadi P, Rosen A, Cherny M, Weiss A, Hernandez-Meza G, Babb JS, Kihira S, Lewis S, Taouli B. Gadoxetate disodium-enhanced MRI: Assessment of arterial phase artifacts and hepatobiliary uptake in a large series. Eur J Radiol 2020; 132:109313. [PMID: 33053495 DOI: 10.1016/j.ejrad.2020.109313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/28/2020] [Accepted: 09/24/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE To report the quality of gadoxetate disodium MRI in a large series by assessing the prevalence of: 1) arterial phase (AP) artifacts and its predictive factors, 2) decreased hepatic contrast uptake during the hepatobiliary phase (HBP). METHODS This retrospective single center study included 851 patients (M/F:537/314, mean age: 63y) with gadoxetate disodium MRI. The MRI protocol included unenhanced, dual arterial [early and late arterial phases (AP)], portal venous, transitional and hepatobiliary phases. Three radiologists graded dynamic images using a 5-scale score (1: no motion, 5: severe, nondiagnostic) for assessment of transient severe motion (TSM, defined as a score ≥4 during at least one AP with a score ≤3 during other phases). HBP uptake was assessed using a 3-scale score (based on portal vein/hepatic signal). The association between demographic, clinical and acquisition parameters with TSM was tested in uni- and multivariate logistic regression. RESULTS TSM was observed in 103/851 patients (12.1 %): 83 (9.8 %) in one AP and 20 (2.3 %) in both APs. A score of 5 (nondiagnostic) was assigned in 7 patients in one AP (0.8 %) and none in both. Presence of TSM was significantly associated with age (p = 0.002) and liver disease (p = 0.033) in univariate but not in multivariate analysis (p > 0.05). No association was found between acquisition parameters and TSM occurrence. Limited or severely limited HBP contrast uptake was observed in 87 patients (10.2 %), and TSM was never associated with severely limited HBP contrast uptake. CONCLUSION TSM was present in approximately 12 % of gadoxetate disodium MRIs, rarely on both APs (2.3 %), and was poorly predicted. TSM was never associated with severely limited HBP contrast uptake.
Collapse
Affiliation(s)
- Naik Vietti Violi
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland.
| | - Pamela Argiriadi
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ally Rosen
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Mathew Cherny
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Amanda Weiss
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | - James S Babb
- Department of Radiology, New York University Langone Medical Center, New York, NY USA.
| | - Shingo Kihira
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Tanabe M, Higashi M, Iida E, Onoda H, Ihara K, Ariyoshi S, Kameda F, Miyoshi K, Furukawa M, Okada M, Ito K. Transient respiratory motion artifacts in multiple arterial phases on abdominal dynamic magnetic resonance imaging: a comparison using gadoxetate disodium and gadobutrol. Jpn J Radiol 2020; 39:178-185. [PMID: 32959222 DOI: 10.1007/s11604-020-01042-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE To compare the occurrence of transient respiratory motion artifacts (TRMAs) in multiple arterial phases on abdominal magnetic resonance (MR) images between those obtained using gadobutrol and gadoxetate disodium. MATERIALS AND METHODS Two hundred and fourteen abdominal MR examinations (101 with gadoxetate disodium, 113 with gadobutrol) were evaluated. Dynamic three-dimensional contrast-enhanced T1-weighted imaging (CAIPIRINHA-Dixon-TWIST-VIBE) including single-breath-hold six arterial phase acquisitions was performed on a 3.0-T MRI scanner. The TRMAs frequency and the mean TRMA scores were compared between patients assessed with gadoxetate disodium and those assessed with gadobutrol. In addition, the timing of TRMAs appearing for the first time was also recorded and compared between the two groups. RESULTS The mean TRMA scores in all arterial phases using gadoxetate disodium were significantly worse than in those using gadobutrol (1.49 ± 0.78 vs. 1.18 ± 0.53, P < .001). Regarding the timing of the occurrence of TRMAs, the severe TRMAs frequency after the third arterial phase was significantly higher in patients using gadoxetate disodium (10/101, 10%) than in those using gadobutrol (0/113, 0%) (P < .001). CONCLUSION In multiple-arterial-phase dynamic MRI, the TRMAs frequency when using gadoxetate disodium increased compared with gadobutrol, due to intolerable respiratory suspension after the third arterial phase.
Collapse
Affiliation(s)
- Masahiro Tanabe
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Mayumi Higashi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Etsushi Iida
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hideko Onoda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Kenichiro Ihara
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shoko Ariyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Fumi Kameda
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Keisuke Miyoshi
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Matakazu Furukawa
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Munemasa Okada
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Katsuyoshi Ito
- Department of Radiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
15
|
Does transient arterial-phase respiratory-motion-related artifact impact on diagnostic performance? An intra-patient comparison of extracellular gadolinium versus gadoxetic acid. Eur Radiol 2020; 30:6694-6701. [DOI: 10.1007/s00330-020-07039-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/03/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023]
|
16
|
Kromrey ML, Tamada D, Johno H, Funayama S, Nagata N, Ichikawa S, Kühn JP, Onishi H, Motosugi U. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network. Eur Radiol 2020; 30:5923-5932. [PMID: 32556463 PMCID: PMC7651696 DOI: 10.1007/s00330-020-07006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
Objectives To reveal the utility of motion artifact reduction with convolutional neural network (MARC) in gadoxetate disodium–enhanced multi-arterial phase MRI of the liver. Methods This retrospective study included 192 patients (131 men, 68.7 ± 10.3 years) receiving gadoxetate disodium–enhanced liver MRI in 2017. Datasets were submitted to a newly developed filter (MARC), consisting of 7 convolutional layers, and trained on 14,190 cropped images generated from abdominal MR images. Motion artifact for training was simulated by adding periodic k-space domain noise to the images. Original and filtered images of pre-contrast and 6 arterial phases (7 image sets per patient resulting in 1344 sets in total) were evaluated regarding motion artifacts on a 4-point scale. Lesion conspicuity in original and filtered images was ranked by side-by-side comparison. Results Of the 1344 original image sets, motion artifact score was 2 in 597, 3 in 165, and 4 in 54 sets. MARC significantly improved image quality over all phases showing an average motion artifact score of 1.97 ± 0.72 compared to 2.53 ± 0.71 in original MR images (p < 0.001). MARC improved motion scores from 2 to 1 in 177/596 (29.65%), from 3 to 2 in 119/165 (72.12%), and from 4 to 3 in 34/54 sets (62.96%). Lesion conspicuity was significantly improved (p < 0.001) without removing anatomical details. Conclusions Motion artifacts and lesion conspicuity of gadoxetate disodium–enhanced arterial phase liver MRI were significantly improved by the MARC filter, especially in cases with substantial artifacts. This method can be of high clinical value in subjects with failing breath-hold in the scan. Key Points • This study presents a newly developed deep learning–based filter for artifact reduction using convolutional neural network (motion artifact reduction with convolutional neural network, MARC). • MARC significantly improved MR image quality after gadoxetate disodium administration by reducing motion artifacts, especially in cases with severely degraded images. • Postprocessing with MARC led to better lesion conspicuity without removing anatomical details.
Collapse
Affiliation(s)
- M-L Kromrey
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany.
| | - D Tamada
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - H Johno
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - S Funayama
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - N Nagata
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - S Ichikawa
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - J-P Kühn
- Institute of Diagnostic and Interventional Radiology, University Medicine, Carl-Gustav Carus University, Dresden, Germany
| | - H Onishi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - U Motosugi
- Department of Radiology, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
17
|
Abstract
Imaging of the biliary system has improved and has allowed MR to become a key noninvasive tool for evaluation of the biliary system. A variety of magnetic resonance cholangiopancreatography techniques have been developed, with improved visualization of the biliary system and biliary pathology. Key avenues of advancement include increasing the speed of acquisition, improving spatial resolution, and reducing artifacts. T1-weighted imaging using gadolinium-based hepatobiliary contrast agents allows for evaluation in additional indications, such as liver donor evaluation, biliary leak identification, and choledochal cyst confirmation. There is potential for further increased utility of MR in the evaluation of the biliary system.
Collapse
Affiliation(s)
| | - Frank H Miller
- Body Imaging Section and Fellowship, Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 North Saint Clair, Suite 800, Chicago, IL 60611, USA
| | - Benjamin M Yeh
- University of California - San Francisco, 505 Parnassus Avenue, M391 Box 0628, San Francisco, CA 94143-0628, USA
| |
Collapse
|
18
|
Wybranski C, Siedek F, Damm R, Gazis A, Wenzel O, Haneder S, Persigehl T, Steinhauser S, Pech M, Fischbach F, Fischbach K. Respiratory motion artefacts in Gd-EOB-DTPA (Primovist/Eovist) and Gd-DOTA (Dotarem)-enhanced dynamic phase liver MRI after intensified and standard pre-scan patient preparation: A bi-institutional analysis. PLoS One 2020; 15:e0230024. [PMID: 32196535 PMCID: PMC7083299 DOI: 10.1371/journal.pone.0230024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/15/2022] Open
Abstract
Objective The objective of this study is to evaluate if intensified pre-scan patient preparation (IPPP) that comprises custom-made educational material on dynamic phase imaging and supervised pre-imaging breath-hold training in addition to standard informative conversation with verbal explanation of breath-hold commands (standard pre-scan patient preparation–SPPP) might reduce the incidence of gadoxetate disodium (Gd-EOB-DTPA)-related transient severe respiratory motion (TSM) and severity of respiratory motion (RM) during dynamic phase liver MRI. Material and methods In this bi-institutional study 100 and 110 patients who received Gd-EOB-DTPA for dynamic phase liver MRI were allocated to either IPPP or SPPP at site A and B. The control group comprised 202 patients who received gadoterate meglumine (Gd-DOTA) of which each 101 patients were allocated to IPPP or SPPP at site B. RM artefacts were scored retrospectively in dynamic phase images (1: none– 5: extensive) by five and two blinded readers at site A and B, respectively, and in the hepatobiliary phase of the Gd-EOB-DTPA-enhanced scans by two blinded readers at either site. Results The incidence of TSM was 15% at site A and 22.7% at site B (p = 0.157). IPPP did not reduce the incidence of TSM in comparison to SPPP: 16.7% vs. 21.6% (p = 0.366). This finding was consistent at site A: 12% vs. 18% (p = 0.401) and site B: 20.6% vs. 25% (p = 0.590). The TSM incidence in patients with IPPP and SPPP did not differ significantly between both sites (p = 0.227; p = 0.390). IPPP did not significantly mitigate RM in comparison to SPPP in any of the Gd-EOB-DTPA-enhanced dynamic phases and the hepatobiliary phase in patients without TSM (all p≥0.072). In the Gd-DOTA control group on the other hand, IPPP significantly mitigated RM in all dynamic phases in comparison to SPPP (all p≤0.031). Conclusions We conclude that Gd-EOB-DTPA-related TSM cannot be mitigated by education and training and that Gd-EOB-DTPA-related breath-hold difficulty does not only affect the subgroup of patients with TSM or exclusively the arterial phase as previously proposed.
Collapse
Affiliation(s)
- Christian Wybranski
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Florian Siedek
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- * E-mail:
| | - Robert Damm
- Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Angelos Gazis
- Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Ortrud Wenzel
- Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Stefan Haneder
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Susanne Steinhauser
- Institute of Medical Statistics and Computational Biology, University Hospital of Cologne, Cologne, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Frank Fischbach
- Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| | - Katharina Fischbach
- Department of Radiology and Nuclear Medicine, University Hospital of Magdeburg, Magdeburg, Germany
| |
Collapse
|
19
|
Abstract
Contrast enhanced MRI of the liver provides valuable information in the evaluation of both chronic liver disease and focal liver lesions. Currently, two classes of MRI contrast agents are available for clinical use, namely the extracellular contrast agent (ECA) and the hepatobiliary agent (HBA). The use of appropriate contrast agents for liver MRI requires knowledge of the clinical situation and question to be answered. ECAs have been used for decades since their introduction into clinical practice and provide excellent dynamic phase information that is useful in characterizing focal liver lesions. In the last decade, HBAs, particularly Gadoxetate, have been found useful for characterizing lesions with functioning hepatocytes and more importantly in evaluating the biliary tree. Gadoxetate, however, provides less satisfactory dynamic phase images compared to ECAs, particularly during the arterial phase. In this perspective article, we will discuss the various intravenous contrast agents used for liver MRI and their ideal utilization.
Collapse
|
20
|
Zech CJ, Ba-Ssalamah A, Berg T, Chandarana H, Chau GY, Grazioli L, Kim MJ, Lee JM, Merkle EM, Murakami T, Ricke J, B. Sirlin C, Song B, Taouli B, Yoshimitsu K, Koh DM. Consensus report from the 8th International Forum for Liver Magnetic Resonance Imaging. Eur Radiol 2020; 30:370-382. [PMID: 31385048 PMCID: PMC6890618 DOI: 10.1007/s00330-019-06369-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The 8th International Forum for Liver Magnetic Resonance Imaging (MRI), held in Basel, Switzerland, in October 2017, brought together clinical and academic radiologists from around the world to discuss developments in and reach consensus on key issues in the field of gadoxetic acid-enhanced liver MRI since the previous Forum held in 2013. METHODS Two main themes in liver MRI were considered in detail at the Forum: the use of gadoxetic acid for contrast-enhanced MRI in patients with liver cirrhosis and the technical performance of gadoxetic acid-enhanced liver MRI, both opportunities and challenges. This article summarises the expert presentations and the delegate voting on consensus statements discussed at the Forum. RESULTS AND CONCLUSIONS It was concluded that gadoxetic acid-enhanced MRI has higher sensitivity for the diagnosis of hepatocellular carcinoma (HCC), when compared with multidetector CT, by utilising features of hyperenhancement in the arterial phase and hypointensity in the hepatobiliary phase (HBP). Recent HCC management guidelines recognise an increasing role for gadoxetic acid-enhanced MRI in early diagnosis and monitoring post-resection. Additional research is needed to define the role of HBP in predicting microvascular invasion, to better define washout during the transitional phase in gadoxetic acid-enhanced MRI for HCC diagnosis, and to reduce the artefacts encountered in the arterial phase. Technical developments are being directed to shortening the MRI protocol for reducing time and patient discomfort and toward utilising faster imaging and non-Cartesian free-breathing approaches that have the potential to improve multiphasic dynamic imaging. KEY POINTS • Gadoxetic acid-enhanced MRI provides higher diagnostic sensitivity than CT for diagnosing HCC. • Gadoxetic acid-enhanced MRI has roles in early-HCC diagnosis and monitoring post-resection response. • Faster imaging and free-breathing approaches have potential to improve multiphasic dynamic imaging.
Collapse
Affiliation(s)
- Christoph J. Zech
- Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berg
- Section of Hepatology, Clinic for Neurology; Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Hersh Chandarana
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
| | - Gar-Yang Chau
- Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, 112 Taiwan
| | - Luigi Grazioli
- Department of Radiology, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Myeong-Jin Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul, 120-752 South Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, 110-744 South Korea
| | - Elmar M. Merkle
- Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Takamichi Murakami
- Department of Diagnostic and Interventional Radiology, Kobe University Graduate School of Medicine, Kobe, 650-0017 Japan
| | - Jens Ricke
- Klinik und Poliklinik für Radiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claude B. Sirlin
- Liver Imaging Group, University of California San Diego, San Diego, CA 92093-0888 USA
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574 USA
| | - Kengo Yoshimitsu
- Department of Radiology, Fukuoka University Faculty of Medicine, Fukuoka City, 801-1011 Japan
| | - Dow-Mu Koh
- Department of Radiology, Royal Marsden Hospital and The Institute of Cancer Research, London, SM2 5NG UK
| |
Collapse
|
21
|
Rate of gadoxetate disodium (Eovist®) induced transient respiratory motion in children and young adults. Abdom Radiol (NY) 2020; 45:101-106. [PMID: 31701191 DOI: 10.1007/s00261-019-02296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Gadoxetate disodium (Eovist®, Bayer Healthcare, Wayne, NJ) is the preferred MR contrast agent for pediatric hepatobiliary imaging. A known limitation of this contrast agent is transient severe respiratory artifacts during arterial phase imaging, and some adult studies have raised caution against its use for evaluation of arterial enhancing lesions. The reported rate of transient severe breathing motion is 5-22% in adult studies. This study seeks to evaluate the frequency of transient severe respiratory motion secondary to gadoxetate disodium in a pediatric cohort. MATERIALS AND METHODS This is a retrospective, IRB-approved study with informed consent waiver. The radiology information system of a children's hospital was searched to identify all MRI studies performed with gadoxetate disodium during January 2016-June 2018. Two readers independently evaluated all phases of a dynamic liver protocol for respiratory motion artifact on a 5-point scale (1 none, 2 mild, 3 moderate, 4 severe-still diagnostic, 5 extreme-not diagnostic). Average scores of the 2 readers for each phase were used for analyses. Transient severe respiratory motion was defined as an increase in artifact score of ≥ 1.5 from pre-contrast to arterial phase that returned to < 3 in equilibrium phase of imaging. RESULTS The study cohort consisted of 140 cases (60% female), age range: 1 month-23 years (median 13 years). 102/140 scans were performed non-sedated. Mean respiratory motion score for each phase of scan for the entire cohort were pre-contrast: 2.23, arterial: 2.56, portal venous: 2.39, and equilibrium: 2.31. Transient severe respiratory motion was seen in 8 non-sedated cases and in 0 sedated cases. The rate of transient severe respiratory motion in a non-sedated pediatric cohort was estimated at 7.84% (8/102 cases). CONCLUSION The rate of transient severe respiratory motion in the non-sedated pediatric population is in the lower end of the range reported in adults. Transient severe respiratory motion is not observed in sedated patients.
Collapse
|
22
|
Effects of gadoxetic acid on image quality of arterial multiphase magnetic resonance imaging of liver: comparison study with gadoteric acid-enhanced MRI. Abdom Radiol (NY) 2019; 44:4037-4047. [PMID: 31471706 DOI: 10.1007/s00261-019-02202-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To compare the effects of gadoxetic acid and gadoteric acid on the image quality of single-breath-hold, triple (first, second, and third) arterial hepatic magnetic resonance imaging (MRI). METHODS Two hundred and eleven patients were divided into two groups according to the contrast materials used (gadoxetic acid, 108 patients and gadoteric acid, 103 patients). All 3.0-T MR examinations included triple arterial phase acquisition using the 4D enhanced T1-weighted high-resolution isotropic volume examination (eTHRIVE) keyhole technique. The image qualities of the pre-contrast and triple arterial phases were assessed in terms of image artifacts, sharpness of the intrahepatic vessel and liver edge, and overall image quality with a 5-point scale for qualitative analysis. RESULTS The image quality of gadoxetic acid-enhanced liver MRI in the triple arterial phases was significantly degraded compared with that of gadoteric acid-enhanced liver MRI, although better image scores were observed in the pre-contrast images in the gadoxetic acid group (P < 0.001). The overall image quality gradually improved from the first to the third arterial phases in both groups (P < 0.003). CONCLUSIONS Intravenous gadoxetic acid could have a detrimental effect on image quality of triple arterial phase MRI with the 4D eTHRIVE Keyhole technique. The third arterial phase images had the best image qualities; thus, they could be used as key scans.
Collapse
|
23
|
Glessgen CG, Moor M, Stieltjes B, Winkel DJ, Block TK, Merkle EM, Heye TJ, Boll DT. Gadoxetate Disodium versus Gadoterate Meglumine: Quantitative Respiratory and Hemodynamic Metrics by Using Compressed-Sensing MRI. Radiology 2019; 293:317-326. [DOI: 10.1148/radiol.2019190187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carl G. Glessgen
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Manuela Moor
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Bram Stieltjes
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - David J. Winkel
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias K. Block
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Elmar M. Merkle
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias J. Heye
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Daniel T. Boll
- From the Department of Radiology, University Hospital of Basel, 4048 Basel, Switzerland (C.G.G., M.M., B.S., D.J.W., E.M.M., T.J.H., D.T.B.); and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| |
Collapse
|
24
|
Ayyala RS, Anupindi SA, Gee MS, Trout AT, Callahan MJ. Intravenous gadolinium-based hepatocyte-specific contrast agents (HSCAs) for contrast-enhanced liver magnetic resonance imaging in pediatric patients: what the radiologist should know. Pediatr Radiol 2019; 49:1256-1268. [PMID: 31350632 DOI: 10.1007/s00247-019-04476-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Hepatocyte-specific contrast agents (HSCAs) are a group of intravenous gadolinium-based MRI contrast agents that can be used to characterize hepatobiliary pathology. The mechanism by which these agents are taken up by hepatocytes and partially excreted into the biliary tree improves characterization of hepatic lesions and biliary abnormalities relative to conventional extracellular gadolinium-based contrast agents (GBCAs). This manuscript presents an overview of HSCA use in pediatric patients with the intent to provide radiologists a guide for clinical use. We review available HSCAs and discuss dosing and age specifications for use in children. We also review various hepatic and biliary indications for HSCA use in children, with emphasis on the imaging characteristics distinct to HSCAs, as well as discussion of pitfalls one can encounter when imaging with HSCAs. Given the growing concern regarding gadolinium deposition in soft tissues and brain, we also discuss safety of HSCA use in children.
Collapse
Affiliation(s)
- Rama S Ayyala
- Department of Diagnostic Imaging, Rhode Island Hospital - Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, 593 Eddy St., Providence, RI, 02903, USA.
| | - Sudha A Anupindi
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
25
|
Kromrey ML, Hori M, Goshima S, Kozaka K, Hyodo T, Nakamura Y, Nishie A, Tamada T, Shimizu T, Kanki A, Motosugi U. Gadoxetate disodium-related event during image acquisition: a prospective multi-institutional study for better MR practice. Eur Radiol 2019; 30:281-290. [DOI: 10.1007/s00330-019-06358-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022]
|
26
|
Chernyak V, Fowler KJ, Heiken JP, Sirlin CB. Use of gadoxetate disodium in patients with chronic liver disease and its implications for liver imaging reporting and data system (LI-RADS). J Magn Reson Imaging 2019; 49:1236-1252. [PMID: 30609194 DOI: 10.1002/jmri.26540] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/23/2018] [Accepted: 09/26/2018] [Indexed: 01/04/2025] Open
Abstract
Use of gadoxetate disodium, a hepatobiliary gadolinium-based agent, in patients with chronic parenchymal liver disease offers the advantage of improved sensitivity for detecting hepatocellular carcinoma (HCC). Imaging features of liver observations on gadoxetate-enhanced MRI may also serve as biomarkers of recurrence-free and overall survival following definitive treatment of HCC. A number of technical and interpretative pitfalls specific to gadoxetate exist, however, and needs to be recognized when protocoling and interpreting MRI exams with this agent. This article reviews the advantages and pitfalls of gadoxetate use in patients at risk for HCC, and the potential impact on Liver Imaging Reporting and Data System (LI-RADS) imaging feature assessment and categorization. Level of Evidence: 5 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;49:1236-1252.
Collapse
Affiliation(s)
- Victoria Chernyak
- Department of Radiology, Montefiore Medical Center, Bronx, New York, USA
| | - Kathryn J Fowler
- Liver Imaging Group, Department of Radiology, University of California - San Diego, California, USA
| | - Jay P Heiken
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Claude B Sirlin
- Liver Imaging Group, Department of Radiology, University of California - San Diego, California, USA
| |
Collapse
|
27
|
Hong SB, Lee NK, Kim S, Seo HI, Kim HS, Kim DU, Kim TU, Ryu HS. Modified CAIPIRINHA-VIBE without view-sharing on gadoxetic acid-enhanced multi-arterial phase MR imaging for diagnosing hepatocellular carcinoma: comparison with the CAIPIRINHA-Dixon-TWIST-VIBE. Eur Radiol 2019; 29:3574-3583. [PMID: 30993435 DOI: 10.1007/s00330-019-06095-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/31/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE We evaluated the detection rate and degree of motion artifact of the modified CAIPIRINHA-VIBE (mC-VIBE) without view-sharing and compare them with the CAIPIRINHA-Dixon-TWIST-VIBE (CDT-VIBE) with view-sharing on multi-arterial gadoxetic acid-enhanced liver MRI in the assessment of hepatocellular carcinoma (HCC). MATERIAL AND METHODS We retrospectively identified 114 pathological-proven hepatic tumors in 114 patients with risk of HCC who underwent multi-arterial gadoxetic acid-enhanced MRI between June 2016 and June 2018. All patients underwent triple arterial phase imaging using the mC-VIBE without view-sharing (54 patients; 49 HCCs and 5 non-HCCs) or the CDT-VIBE with view-sharing (60 patients; 55 HCCs and 5 non-HCCs). We compared the detection rate of two sequences for HCC, with reference to LI-RADS.V.2017. We also compared the mean motion scores and proportions of transient severe motion (TSM) in two sequences. RESULT For the examination using the mC-VIBE, the HCC-detection rate was significantly higher, compared with that using CDT-VIBE (93.9% [46/49] vs 80.0% [44/55], respectively; p = 0.047). For the examination with the mC-VIBE, mean motion scores were significantly lower compared with those of CDT-VIBE for all multi-arterial phases (1.21, 1.19, and 1.15 vs. 1.82, 1.85, and 1.84, respectively; p < 0.001 for all three comparisons). The proportion of TSM in the CDT-VIBE was significantly higher than that in the mC-VIBE (15.0% [9/60] vs 0.0% [0/54], respectively; p = 0.003). CONCLUSION In multi-arterial phase gadoxetic acid-enhanced MRI, the mC-VIBE sequence without view-sharing has slightly higher HCC-detection rate and fewer motion artifacts compared with CDT-VIBE with view-sharing. KEY POINTS • Multi-arterial phase using the mC-VIBE without view-sharing can overcome motion artifacts, resulting in providing optimal arterial phase imaging. • The HCC-detection rate is slightly higher with the mC-VIBE vs. CAIPIRINHA-Dixon-TWIST-VIBE with view-sharing (CDT-VIBE). • View-sharing of CDT-VIBE in the multi-arterial phase is associated with increased frequency of TSM.
Collapse
Affiliation(s)
- Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
| | - Nam Kyung Lee
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea.
| | - Suk Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, South Korea
| | - Hyeong Il Seo
- Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Hyun Sung Kim
- Department of Surgery, Biomedical Research Institute, Pusan National University Yangsan Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Dong Uk Kim
- Department of Internal Medicine, Biomedical Research Institute, Pusan National University Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Tae Un Kim
- Department of Radiology, Biomedical Research Institute, Pusan National University Yangsan Hospital, and Pusan National University School of Medicine, Busan, South Korea
| | - Hwa Seong Ryu
- Department of Radiology, Biomedical Research Institute, Pusan National University Yangsan Hospital, and Pusan National University School of Medicine, Busan, South Korea
| |
Collapse
|
28
|
Relationship between transient severe motion of the liver in gadoxetic acid or iodinated contrast agent-enhanced imaging and arterial oxygen saturation and heart rate changes. Magn Reson Imaging 2018; 53:77-81. [PMID: 30003949 DOI: 10.1016/j.mri.2018.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022]
|
29
|
Tsuboyama T, Jost G, Kim T, Hori M, Onishi H, Pietsch H, Tomiyama N. Experimental studies on artifacts and tumor enhancement on gadoxetic acid-enhanced arterial phase liver MRI in a rabbit VX2 tumor model. Acta Radiol 2018; 59:1029-1037. [PMID: 29235879 DOI: 10.1177/0284185117747134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Rapid injection of gadoxetic acid is reported to produce more frequent artifacts and lower vascular enhancement on arterial phase liver magnetic resonance imaging (MRI). However, its effect on tumor enhancement and the mechanism of the artifacts remain unclear. Purpose To evaluate the effect of rapid injection of gadoxetic acid on artifacts and tumor enhancement during arterial phase liver MRI, and on arterial blood gases (ABGs) which may explain the cause of the artifacts. Material and Methods ABG analysis was performed in 13 free-breathing rabbits after rapid injection (1 mL/s; injection time = 0.6-0.8 s) of gadoxetic acid (0.025 mmol/kg). Dynamic liver MRI was performed in six anesthetized rabbits with VX2 tumors under a ventilation stoppage after rapid and slow injection (0.25 mL/s; injection time = 2.4-3.2 s) of gadoxetic acid. Artifacts and signal enhancement on arterial phase imaging were compared with those obtained after rapid injection of gadopentetic acid (Gd-DTPA, 0.1 mmol/kg) using a Friedman test or Kruskal-Wallis test. Results ABG analysis did not find any significant changes. Artifacts were not related to injection protocols ( P = 0.95). Aortic enhancement with slow injection of gadoxetic acid was significantly higher than that with rapid injection ( P < 0.05), and was comparable to that with Gd-DTPA injection. Tumor enhancement obtained with gadoxetic acid was not significantly different between rapid and slow injection, and was significantly lower than that with Gd-DTPA injection ( P < 0.05). Conclusion Rapid injection of gadoxetic acid did not affect ABGs and may not be the cause of the artifacts. It lowered vascular enhancement but not arterial tumor enhancement.
Collapse
Affiliation(s)
- Takahiro Tsuboyama
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Gregor Jost
- MR and CT Contrast Media Research, Bayer Pharma AG, Berlin, Germany
| | - Tonsok Kim
- Department of Radiology, Naniwa Ikuno Hospital, Osaka, Japan
| | - Masatoshi Hori
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromitsu Onishi
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hubertus Pietsch
- MR and CT Contrast Media Research, Bayer Pharma AG, Berlin, Germany
| | - Noriyuki Tomiyama
- Department of Radiology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Grazioli L, Faletti R, Frittoli B, Battisti G, Ambrosini R, Romanini L, Gatti M, Fonio P. Evaluation of incidence of acute transient dyspnea and related artifacts after administration of gadoxetate disodium: a prospective observational study. Radiol Med 2018; 123:910-917. [PMID: 30084108 DOI: 10.1007/s11547-018-0927-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
|
31
|
Ringe KI, von Falck C, Raatschen HJ, Wacker F, Hinrichs J. Evaluation of transient respiratory motion artifact at gadoxetate disodium-enhanced MRI-Influence of different contrast agent application protocols. PLoS One 2018; 13:e0200887. [PMID: 30024930 PMCID: PMC6053213 DOI: 10.1371/journal.pone.0200887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To evaluate transient severe respiratory motion artifacts (TSM) at gadoxetate disodium-enhanced MRI dependent on the mode of contrast agent application. METHODS 200 patients (71f, 129m; mean 51y) were included in this retrospective IRB-approved study. Contrast application protocols (n = 4) differed with regards to injection rate (2ml or 1ml/sec), dose (weight-based or fixed 10ml) and supplemental oxygen administration (yes/no). SNR measurements were performed in the aorta and portal vein. Qualitatively, three readers assessed arterial phase image quality and TSM independently (4- and 5-point scale, respectively). Quantitative and qualitative results were compared (Kruskal-Wallis test, Dunn's multiple comparison test). The influence of different contrast agent application parameters on the occurrence of respiratory motion artifacts was assessed (univariate analysis). Interrater agreement and reliability were calculated (intraclass correlation coefficient, ICC)). RESULTS Use of a lower contrast injection rate resulted in significantly higher arterial SNR in the aorta and portal vein (p<0.05). TSM was observed in 12% of examinations. Neither injection rate, contrast dose, nor oxygen had a significant influence. Interrater agreement and reliability for evaluation of image quality and respiratory motion were substantial/ almost perfect (ICC = 0.640-0.915). CONCLUSIONS Technical factors regarding the specific mode of contrast application do not seem to significantly reduce the incidence of severe transient respiratory motion artifacts.
Collapse
Affiliation(s)
- Kristina I. Ringe
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Christian von Falck
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Hans-Jürgen Raatschen
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Frank Wacker
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| | - Jan Hinrichs
- Hannover Medical School, Department of Diagnostic and Interventional Radiology, Hannover, Germany
| |
Collapse
|
32
|
Evaluation of Transient Motion During Gadoxetic Acid-Enhanced Multiphasic Liver Magnetic Resonance Imaging Using Free-Breathing Golden-Angle Radial Sparse Parallel Magnetic Resonance Imaging. Invest Radiol 2018; 53:52-61. [PMID: 28902723 DOI: 10.1097/rli.0000000000000409] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aims of this study were to observe the pattern of transient motion after gadoxetic acid administration including incidence, onset, and duration, and to evaluate the clinical feasibility of free-breathing gadoxetic acid-enhanced liver magnetic resonance imaging using golden-angle radial sparse parallel (GRASP) imaging with respiratory gating. MATERIALS AND METHODS In this institutional review board-approved prospective study, 59 patients who provided informed consents were analyzed. Free-breathing dynamic T1-weighted images (T1WIs) were obtained using GRASP at 3 T after a standard dose of gadoxetic acid (0.025 mmol/kg) administration at a rate of 1 mL/s, and development of transient motion was monitored, which is defined as a distinctive respiratory frequency alteration of the self-gating MR signals. Early arterial, late arterial, and portal venous phases retrospectively reconstructed with and without respiratory gating and with different temporal resolutions (nongated 13.3-second, gated 13.3-second, gated 6-second T1WI) were evaluated for image quality and motion artifacts. Diagnostic performance in detecting focal liver lesions was compared among the 3 data sets. RESULTS Transient motion (mean duration, 21.5 ± 13.0 seconds) was observed in 40.0% (23/59) of patients, 73.9% (17/23) of which developed within 15 seconds after gadoxetic acid administration. On late arterial phase, motion artifacts were significantly reduced on gated 13.3-second and 6-second T1WI (3.64 ± 0.34, 3.61 ± 0.36, respectively), compared with nongated 13.3-second T1WI (3.12 ± 0.51, P < 0.0001). Overall, image quality was the highest on gated 13.3-second T1WI (3.76 ± 0.39) followed by gated 6-second and nongated 13.3-second T1WI (3.39 ± 0.55, 2.57 ± 0.57, P < 0.0001). Only gated 6-second T1WI showed significantly higher detection performance than nongated 13.3-second T1WI (figure of merit, 0.69 [0.63-0.76]) vs 0.60 [0.56-0.65], P = 0.004). CONCLUSIONS Transient motion developed in 40% (23/59) of patients shortly after gadoxetic acid administration, and gated free-breathing T1WI using GRASP was able to consistently provide acceptable arterial phase imaging in patients who exhibited transient motion.
Collapse
|
33
|
Morisaka H, Motosugi U, Ichikawa S, Onishi H. Dose-dependence of transient respiratory motion artifacts on gadoxetic acid-enhanced arterial phase MR images. J Magn Reson Imaging 2018; 47:433-438. [DOI: 10.1002/jmri.25764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Hiroyuki Morisaka
- Department of Radiology; University of Yamanashi, Shimokato, Chuo-shi; Yamanashi Japan
- Department of Diagnostic Radiology; Yamane, Hidaka-shi, Saitama Medical University International Medical Center; Saitama Japan
| | - Utaroh Motosugi
- Department of Radiology; University of Yamanashi, Shimokato, Chuo-shi; Yamanashi Japan
| | - Shintaro Ichikawa
- Department of Radiology; University of Yamanashi, Shimokato, Chuo-shi; Yamanashi Japan
| | - Hiroshi Onishi
- Department of Radiology; University of Yamanashi, Shimokato, Chuo-shi; Yamanashi Japan
| |
Collapse
|
34
|
Does injection flow rate have an impact on arterial phase image degradation in liver MRI? A comparison of gadoxetic acid versus gadobutrol. Clin Radiol 2017; 72:994.e1-994.e8. [DOI: 10.1016/j.crad.2017.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/12/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022]
|
35
|
Song JS, Choi EJ, Park EH, Lee JH. Comparison of transient severe motion in gadoxetate disodium and gadopentetate dimeglumine-enhanced MRI: effect of modified breath-holding method. Eur Radiol 2017; 28:1132-1139. [DOI: 10.1007/s00330-017-5070-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/13/2017] [Accepted: 09/11/2017] [Indexed: 01/07/2023]
|
36
|
Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid–Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing. Invest Radiol 2017; 52:596-604. [DOI: 10.1097/rli.0000000000000385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Im WH, Song JS, Park EH, Kwak HS. Transient severe motion in the arterial phase during gadoxetate disodium-enhanced MR imaging: evaluation of patients with multiple MR examinations. Abdom Radiol (NY) 2017; 42:2393-2401. [PMID: 28396919 DOI: 10.1007/s00261-017-1145-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To determine whether patients undergoing multiple gadoxetate disodium-enhanced magnetic resonance (MR) examinations who experienced transient severe motion (TSM) in the arterial phase were affected by the TSM noted in the first examination. MATERIALS AND METHODS 214 patients who underwent three or more repeated gadoxetate disodium-enhanced MR imaging were retrospectively analyzed. Three radiologists scored all of the examinations demonstrating a motion artifact using a five-point rating scale. Risk factor analysis and comparison of TSM recurrence rates were performed in the whole study population as well as in a subpopulation of patients with TSM. RESULTS The overall incidence of TSM was 5.9% (54/922), which was observed in 40 patients. Thirty-two patients had one episode of TSM, and eight patients had recurrent TSM. Although TSM in the first examination increased the risk of recurrent TSM in the whole population (OR 24.45; P < 0.001), the incidence of recurrent TSM was low (2.4%, 22/922). On subpopulation analysis, TSM in the first examination did not influence recurrent TSM (OR 0.36; P = 0.250). CONCLUSION Patients undergoing multiple gadoxetate disodium-enhanced MR examinations who experienced recurrent TSM were not affected by TSM in the first examination. Therefore, a single episode of TSM should not be considered a risk factor of recurrent TSM.
Collapse
Affiliation(s)
- Won Hyeong Im
- Department of Radiology, Chonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
| | - Ji Soo Song
- Department of Radiology, Chonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea.
- Research Institute of Clinical Medicine of Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea.
- Biomedical Research Institute of Chonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea.
| | - Eun Hae Park
- Department of Radiology, Chonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
- Biomedical Research Institute of Chonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
| | - Hyo Sung Kwak
- Department of Radiology, Chonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
- Research Institute of Clinical Medicine of Chonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
- Biomedical Research Institute of Chonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, Chonbuk, 54907, Korea
| |
Collapse
|
38
|
Current State-of-the-Art MRI for Comprehensive Evaluation of Potential Living Liver Donors. AJR Am J Roentgenol 2017; 209:55-66. [DOI: 10.2214/ajr.16.17741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Kim SY. Preoperative Radiologic Evaluation of Cholangiocarcinoma. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 69:159-163. [PMID: 28329917 DOI: 10.4166/kjg.2017.69.3.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In patients with cholangiocarcinoma, surgical resection with curative intent is the only way to achieve cure. Since surgical resection of cholangiocarcinomas is technically demanding, determination of resectability and accurate preoperative staging are crucial. For these purposes, high quality imaging including multidetector computed tomography and magnetic resonance imaging with magnetic resonance cholangiopancreaticography, is mandatory. This article will present recent advances in imaging techniques for cholangiocarginomas, potential pitfalls in imaging evaluation, and a checklist for preoperative radiologic assessment of resectability in these patients with an emphasis on perihilar cholangiocarinoma.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Granata V, Fusco R, Avallone A, Catalano O, Filice F, Leongito M, Palaia R, Izzo F, Petrillo A. Major and ancillary magnetic resonance features of LI-RADS to assess HCC: an overview and update. Infect Agent Cancer 2017; 12:23. [PMID: 28465718 PMCID: PMC5410075 DOI: 10.1186/s13027-017-0132-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/21/2017] [Indexed: 12/23/2022] Open
Abstract
Liver Imaging Reporting and Data System (LI-RADS) is a system for interpreting and reporting of imaging features on multidetector computed tomography (MDCT) and magnetic resonance (MR) studies in patients at risk for hepatocellular carcinoma (HCC). American College of Radiology (ACR) sustained the spread of LI-RADS to homogenizing the interpreting and reporting data of HCC patients. Diagnosis of HCC is due to the presence of major imaging features. Major features are imaging data used to categorize LI-RADS-3, LI-RADS-4, and LI-RADS-5 and include arterial-phase hyperenhancement, tumor diameter, washout appearance, capsule appearance and threshold growth. Ancillary are features that can be used to modify the LI-RADS classification. Ancillary features supporting malignancy (diffusion restriction, moderate T2 hyperintensity, T1 hypointensity on hapatospecifc phase) can be used to upgrade category by one or more categories, but not beyond LI-RADS-4. Our purpose is reporting an overview and update of major and ancillary MR imaging features in assessment of HCC.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Roberta Fusco
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Orlando Catalano
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Francesco Filice
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Maddalena Leongito
- Hepatobiliary Surgery Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Raffaele Palaia
- Hepatobiliary Surgery Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, "Istituto Nazionale Tumori - IRCCS - Fondazione G. Pascale", Via Mariano Semmola, Naples, Italy
| |
Collapse
|
41
|
Diagnosis of Hepatocellular Carcinoma with Gadoxetic Acid-Enhanced MRI: 2016 Consensus Recommendations of the Korean Society of Abdominal Radiology. Korean J Radiol 2017; 18:427-443. [PMID: 28458595 PMCID: PMC5390612 DOI: 10.3348/kjr.2017.18.3.427] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022] Open
Abstract
Diagnosis of hepatocellular carcinoma (HCC) with gadoxetic acid-enhanced liver magnetic resonance imaging (MRI) poses certain unique challenges beyond the scope of current guidelines. The regional heterogeneity of HCC in demographic characteristics, prevalence, surveillance, and socioeconomic status necessitates different treatment approaches, leading to variations in survival outcomes. Considering the medical practices in Korea, the Korean Society of Abdominal Radiology (KSAR) study group for liver diseases has developed expert consensus recommendations for diagnosis of HCC by gadoxetic acid-enhanced MRI with updated perspectives, using a modified Delphi method. During the 39th Scientific Assembly and Annual Meeting of KSAR (2016), consensus was reached on 12 of 16 statements. These recommendations might serve to ensure a more standardized diagnosis of HCC by gadoxetic acid-enhanced MRI.
Collapse
|
42
|
Respiratory motion artifacts during arterial phase imaging with gadoxetic acid: Can the injection protocol minimize this drawback? J Magn Reson Imaging 2017; 46:1107-1114. [DOI: 10.1002/jmri.25657] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 02/06/2023] Open
|
43
|
Effect of Gadoxetate Disodium on Arterial Phase Respiratory Waveforms Using a Quantitative Fast Fourier Transformation–Based Analysis. AJR Am J Roentgenol 2017; 208:328-336. [DOI: 10.2214/ajr.16.16860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Evaluation of Magnetic Resonance (MR) Biomarkers for Assessment of Response With Response Evaluation Criteria in Solid Tumors: Comparison of the Measurements of Neuroendocrine Tumor Liver Metastases (NETLM) With Various MR Sequences and at Multiple Phases of Contrast Administration. J Comput Assist Tomogr 2017; 40:717-22. [PMID: 27636124 DOI: 10.1097/rct.0000000000000425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Our aim was to compare the interobserver and intraobserver variability for the measurement of the size of liver metastases in patients with carcinoid tumors with various magnetic resonance (MR) series. MATERIALS AND METHODS In this retrospective institutional review board-approved study, 30 patients with liver metastases from a carcinoid primary had a complete MR examination of the abdomen at 1.5 T with gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA). The complete MR examination included T1 (in-phase [IP]/out-of-phase [OOP], T2, diffusion-weighted imaging, pre-Gd-EOB-DTPA and post-Gd-EOB-DTPA 3D gradient echo (4 phases plus 20-minute hepatobiliary phase [HBP] Gd]). Four readers reviewed each series independently. The measurement for each lesion was compared to HBP-Gd images. The sensitivity for detection of each lesion was compared to HBP-Gd. Variance component analysis was used to estimate variance due to patient, lesion within patient, and reader by sequence. Linear mixed model was used to compare lesion size between sequences. RESULTS The HBP-Gd had the smallest interreader variability. There was no significant difference between series with respect to interreader variability. Lesion sizes measured in diffusion-weighted imaging was significantly higher. T2-weighted imaging was the closest to HBP-Gd. Lesion sizes measured with the other sequences were significantly smaller. There was significant difference in sensitivity of lesion detection of some series when compared to HBP-Gd. CONCLUSION The HBP-Gd series had the smallest interreader variability and is the recommended series to measure lesion size for evaluation of response to treatment.
Collapse
|
45
|
Limitations of GD-EOB-DTPA-enhanced MRI: can clinical parameters predict suboptimal hepatobiliary phase? Clin Radiol 2017; 72:55-62. [DOI: 10.1016/j.crad.2016.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 01/27/2023]
|
46
|
Furlan A, Close O, Borhani A, Wu Y, Heller M. Respiratory-motion artefacts in liver MRI following injection of gadoxetate disodium and gadobenate dimeglumine: an intra-individual comparative study in cirrhotic patients. Clin Radiol 2017; 72:93.e1-93.e6. [DOI: 10.1016/j.crad.2016.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 06/27/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
|
47
|
Channual S, Pahwa A, Lu DS, Raman SS. Enhancements in hepatobiliary imaging: the spectrum of gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid usages in hepatobiliary magnetic resonance imaging. Abdom Radiol (NY) 2016; 41:1825-41. [PMID: 27225503 DOI: 10.1007/s00261-016-0767-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gadolinium-ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a unique hepatocyte-specific contrast agent approved for clinical use in the United States in 2008. Gd-EOB-DTPA-enhanced MR has shown to improve detection and characterization of hepatic lesions. Gd-EOB-DTPA is now being routinely used in daily clinical practice worldwide. Therefore, it is important for radiologists to be familiar with the potential uses and pitfalls of Gd-EOB-DTPA, which extends beyond the assessment of focal hepatic lesions. The purpose of this article is to review the various usages of Gd-EOB-DTPA in hepatobiliary MR imaging.
Collapse
Affiliation(s)
- Stephanie Channual
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, 757 Westwood Plaza Rm 1921H, Los Angeles, CA, 90095, USA.
| | - Anokh Pahwa
- Department of Radiological Sciences, Olive View-UCLA Medical Center, David Geffen School of Medicine at UCLA, 14445 Olive View Drive, Sylmar, CA, 91342, USA
| | - David S Lu
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, 757 Westwood Plaza Rm 1921H, Los Angeles, CA, 90095, USA
| | - Steven S Raman
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, 757 Westwood Plaza Rm 1921H, Los Angeles, CA, 90095, USA
| |
Collapse
|
48
|
Hepatic Angiomyolipoma Versus Hepatocellular Carcinoma in the Noncirrhotic Liver on Gadoxetic Acid–Enhanced MRI: A Diagnostic Challenge. AJR Am J Roentgenol 2016; 207:562-70. [DOI: 10.2214/ajr.15.15602] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Yoon JH, Lee JM, Yu MH, Kim EJ, Han JK. Triple Arterial Phase MR Imaging with Gadoxetic Acid Using a Combination of Contrast Enhanced Time Robust Angiography, Keyhole, and Viewsharing Techniques and Two-Dimensional Parallel Imaging in Comparison with Conventional Single Arterial Phase. Korean J Radiol 2016; 17:522-32. [PMID: 27390543 PMCID: PMC4936174 DOI: 10.3348/kjr.2016.17.4.522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/07/2016] [Indexed: 01/25/2023] Open
Abstract
Objective To determine whether triple arterial phase acquisition via a combination of Contrast Enhanced Time Robust Angiography, keyhole, temporal viewsharing and parallel imaging can improve arterial phase acquisition with higher spatial resolution than single arterial phase gadoxetic-acid enhanced magnetic resonance imaging (MRI). Materials and Methods Informed consent was waived for this retrospective study by our Institutional Review Board. In 752 consecutive patients who underwent gadoxetic acid-enhanced liver MRI, either single (n = 587) or triple (n = 165) arterial phases was obtained in a single breath-hold under MR fluoroscopy guidance. Arterial phase timing was assessed, and the degree of motion was rated on a four-point scale. The percentage of patients achieving the late arterial phase without significant motion was compared between the two methods using the χ2 test. Results The late arterial phase was captured at least once in 96.4% (159/165) of the triple arterial phase group and in 84.2% (494/587) of the single arterial phase group (p < 0.001). Significant motion artifacts (score ≤ 2) were observed in 13.3% (22/165), 1.2% (2/165), 4.8% (8/165) on 1st, 2nd, and 3rd scans of triple arterial phase acquisitions and 6.0% (35/587) of single phase acquisitions. Thus, the late arterial phase without significant motion artifacts was captured in 96.4% (159/165) of the triple arterial phase group and in 79.9% (469/587) of the single arterial phase group (p < 0.001). Conclusion Triple arterial phase imaging may reliably provide adequate arterial phase imaging for gadoxetic acid-enhanced liver MRI.
Collapse
Affiliation(s)
- Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea.; Department of Radiology, Seoul National University College of Medicine, Seoul 03087, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea.; Department of Radiology, Seoul National University College of Medicine, Seoul 03087, Korea.; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03087, Korea
| | - Mi Hye Yu
- Department of Radiology, Konkuk University Medical Center, Seoul 05030, Korea
| | - Eun Ju Kim
- Philips Healthcare Korea, Seoul 04342, Korea
| | - Joon Koo Han
- Department of Radiology, Seoul National University Hospital, Seoul 03080, Korea.; Department of Radiology, Seoul National University College of Medicine, Seoul 03087, Korea.; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 03087, Korea
| |
Collapse
|
50
|
Saito S, Tanaka K, Tarewaki H, Koyama Y, Hashido T. [Evaluation of Image Quality in Three-dimensional Fat-suppressed T 1-weighted Images with Fast Acquisition Mode for Upper Abdomen]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2016; 72:1122-1127. [PMID: 27867172 DOI: 10.6009/jjrt.2016_jsrt_72.11.1122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We compared the uniformity of fat-suppression and image quality using three-dimensional fat-suppressed T1-weighted gradient-echo sequences that are liver acquisition with volume acceleration (LAVA) and Turbo-LAVA at 3.0T-MRI. The subjects were seven patients with liver disease (mean age, 66.7±8.2 years). The axial slices of two LAVA sequences were used for the comparison of the uniformity of fat-suppression and image quality at a region-of-interest (ROI) of the liver dome, the porta, and the renal hilum. To yield a quantitative measurement of the uniformity of fat suppression, the percentage standard deviation (%SD) was calculated by comparing two sequences. For image signal to noise ratio (SNR), the contrast between the liver and fat (Cliver-fat), and the liver and muscle (Cliver-muscle), the other ROIs were placed in the superficial fat, liver, spleen, pancreas, and muscle. The %SD in Turbo-LAVA (28.1±16.8%) was lower than that in LAVA (41.5±13.4%). The SNRs in Turbo-LAVA (17.8±4.1 [liver], 12.5±3.0 [pancreas], 14.7±1.6 [spleen], 8.2±3.5 [fat]) were lower than those in LAVA (20.9±6.1 [liver], 16.8±4.1 [pancreas], 17.4±2.4 [spleen], 12.0±4.5 [fat]). While, the Cliver-fat in the Turbo-LAVA (0.72±0.06) was significantly higher than that in LAVA (0.59±0.07). Turbo-LAVA sequence offers superior and more homogenous fat-suppression in comparison to LAVA sequence.
Collapse
Affiliation(s)
- Shigeyoshi Saito
- Department of Medical Engineering, Division of Health Sciences, Osaka University, Graduate School of Medicine
| | | | | | | | | |
Collapse
|