1
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko F, Kibona H, Aboud S, Patel K, Mining S. Exploring therapeutic applications of PTEN, TMPRSS2:ERG fusion, and tumour molecular subtypes in prostate cancer management. Front Oncol 2025; 15:1521204. [PMID: 40165885 PMCID: PMC11956161 DOI: 10.3389/fonc.2025.1521204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Prostate cancer is defined by the suppression of genes that suppress tumours and the activation of proto-oncogenes. These are the hallmarks of prostate cancer, and they have been linked to numerous genomic variations, which lead to unfavourable treatment outcomes. Prostate cancer can be categorised into various risk groups of tumour molecular subtypes grounded in the idea of genomic structural variations connected to TMPRSS2:ERG fusion and loss of PTEN. Research suggests that certain genomic alterations may be more prevalent or exhibit different patterns in prostate cancer tumours across populations. Studies have reported a higher frequency of PTEN loss and TMPRSS2:ERG fusion in prostate tumours of Black/African American men, which may contribute to the more aggressive nature of the disease in this population. Thus, therapeutically important information can be obtained from these structural variations, including correlations with poor prognosis and disease severity. Methods Peer-reviewed articles from 1998 to 2024 were sourced from PubMed and Google Scholar. During the review process, the following search terms were employed: "Tumour suppressor genes OR variations OR alterations OR oncogenes OR diagnostics OR ethnicity OR biomarkers OR prostate cancer genomics OR prostate cancer structural variations OR tumour and molecular subtypes OR therapeutic implications OR immunotherapy OR immunogenetics." Results There was a total of 13,012 results for our search query: 5,903 publications from Google Scholar with the patent and citation unchecked filer options, and 7127 articles from PubMed with the abstract, free full text, and full-text options selected. Unpublished works were not involved. Except for four articles published between 1998 and 1999, all other selected articles published in 2000 and later were considered. However, papers with irrelevant information or redundant or duplicate content were not chosen for this review. Thus, 134 met the inclusion criteria and were ultimately retained for this review. Conclusion This review extracted 134 relevant articles about genomic structure variations in prostate cancer. Our findings demonstrate the importance of PTEN and TMPRSS2:ERG fusion and tumour molecular subtyping in prostate cancer precision medicine.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Nazima Dharsee
- Clinical Research, Training and Consultancy Unit, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Fidelice Mafumiko
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
| | - Herry Kibona
- Department of Urology, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Said Aboud
- Head Office, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Simeon Mining
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
2
|
Zhang Y, Li Z, Gao C, Zhang L, Huang Y, Qu H, Shu C, Wei Y, Xu M, Cui F. Radiomic nomogram based on bi-parametric magnetic resonance imaging to predict the International Society of Urological Pathology grading ≥ 3 prostate cancer: a multicenter study. Clin Radiol 2024; 79:e985-e993. [PMID: 38763807 DOI: 10.1016/j.crad.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/29/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
PURPOSE To create a reliable radiomic nomogram for the prediction of the International Society of Urological Pathology (ISUP) grading ≥ 3 prostate cancer (PCa) patients. METHODS patients with verified PCa were obtained from three different hospitals. The patients were divided into training, internal validation, and two external validation groups. A radiomic signature (rad-score) extracted from T2WI, diffusion-weighted imaging, and apparent diffusion coefficient (ADC) maps were constructed in the training cohort. Eight clinical features were performed to develop a clinical model using univariate and multivariate logistic regression. The combined model incorporated the radiomic signature and clinical model. The model's performance was assessed by the receiver operating characteristic (ROC) curve. RESULTS Rad-score, magnetic resonance imaging T-stage, and ADC value were significant predictors of ISUP ≥ 3 PCa. A nomogram of these three factors was shown to have greater diagnostic accuracy than using only the radiomic signature or clinical model alone. The area under the ROC curve was 0.85, 0.88, 0.81, 0.81 for the training, internal, and two external validation cohorts, respectively. In the stratified analysis based on the MR scanner model, the area under the ROC curve of predicting ISUP ≥ 3 PCa for GE, Siemens, and combined groups were 0.84, 0.83, and 0.84, respectively, in the combined training group and an internal validation group. CONCLUSIONS The proposed nomogram has the potential to predict the differentiation degree of ISUP PCa patients.
Collapse
Affiliation(s)
- Y Zhang
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| | - Z Li
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - C Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - L Zhang
- Department of Radiology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Y Huang
- Department of Urology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - H Qu
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - C Shu
- Department of Pathology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Y Wei
- Advanced Analytics, Global Medical Service, GE Healthcare, Hangzhou, 310007, China
| | - M Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - F Cui
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Yang J, Xiao L, Zhou M, Li Y, Cai Y, Gan Y, Tang Y, Hu S. [ 68Ga]Ga‑PSMA‑617 PET-based radiomics model to identify candidates for active surveillance amongst patients with GGG 1-2 prostate cancer at biopsy. Cancer Imaging 2024; 24:86. [PMID: 38965552 PMCID: PMC11229016 DOI: 10.1186/s40644-024-00735-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
PURPOSE To develop a radiomics-based model using [68Ga]Ga-PSMA PET/CT to predict postoperative adverse pathology (AP) in patients with biopsy Gleason Grade Group (GGG) 1-2 prostate cancer (PCa), assisting in the selection of patients for active surveillance (AS). METHODS A total of 75 men with biopsy GGG 1-2 PCa who underwent radical prostatectomy (RP) were enrolled. The patients were randomly divided into a training group (70%) and a testing group (30%). Radiomics features of entire prostate were extracted from the [68Ga]Ga-PSMA PET scans and selected using the minimum redundancy maximum relevance algorithm and the least absolute shrinkage and selection operator regression model. Logistic regression analyses were conducted to construct the prediction models. Receiver operating characteristic (ROC) curve, decision curve analysis (DCA), and calibration curve were employed to evaluate the diagnostic value, clinical utility, and predictive accuracy of the models, respectively. RESULTS Among the 75 patients, 30 had AP confirmed by RP. The clinical model showed an area under the curve (AUC) of 0.821 (0.695-0.947) in the training set and 0.795 (0.603-0.987) in the testing set. The radiomics model achieved AUC values of 0.830 (0.720-0.941) in the training set and 0.829 (0.624-1.000) in the testing set. The combined model, which incorporated the Radiomics score (Radscore) and free prostate-specific antigen (FPSA)/total prostate-specific antigen (TPSA), demonstrated higher diagnostic efficacy than both the clinical and radiomics models, with AUC values of 0.875 (0.780-0.970) in the training set and 0.872 (0.678-1.000) in the testing set. DCA showed that the net benefits of the combined model and radiomics model exceeded those of the clinical model. CONCLUSION The combined model shows potential in stratifying men with biopsy GGG 1-2 PCa based on the presence of AP at final pathology and outperforms models based solely on clinical or radiomics features. It may be expected to aid urologists in better selecting suitable patients for AS.
Collapse
Affiliation(s)
- Jinhui Yang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ling Xiao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Ming Zhou
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yujia Li
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongxiang Tang
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland.
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders (XIANGYA), Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Biological, Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Sanmugalingam N, Sushentsev N, Lee KL, Caglic I, Englman C, Moore CM, Giganti F, Barrett T. The PRECISE Recommendations for Prostate MRI in Patients on Active Surveillance for Prostate Cancer: A Critical Review. AJR Am J Roentgenol 2023; 221:649-660. [PMID: 37341180 DOI: 10.2214/ajr.23.29518] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) recommendations were published in 2016 to standardize the reporting of MRI examinations performed to assess for disease progression in patients on active surveillance for prostate cancer. Although a limited number of studies have reported outcomes from use of PRECISE in clinical practice, the available studies have demonstrated PRECISE to have high pooled NPV but low pooled PPV for predicting progression. Our experience in using PRECISE in clinical practice at two teaching hospitals has highlighted issues with its application and areas requiring clarification. This Clinical Perspective critically appraises PRECISE on the basis of this experience, focusing on the system's key advantages and disadvantages and exploring potential changes to improve the system's utility. These changes include consideration of image quality when applying PRECISE scoring, incorporation of quantitative thresholds for disease progression, adoption of a PRECISE 3F sub-category for progression not qualifying as substantial, and comparisons with both the baseline and most recent prior examinations. Items requiring clarification include derivation of a patient-level score in patients with multiple lesions, intended application of PRECISE score 5 (i.e., if requiring development of disease that is no longer organ-confined), and categorization of new lesions in patients with prior MRI-invisible disease.
Collapse
Affiliation(s)
- Nimalan Sanmugalingam
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Iztok Caglic
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| | - Cameron Englman
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Urology, University College London Hospital NHS Foundation Trust, London, UK
| | - Francesco Giganti
- Division of Surgery & Interventional Science, University College London, London, UK
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Box 218, Cambridge Biomedical Campus, CB2 0QQ, Cambridge, UK
| |
Collapse
|
5
|
Reina Y, Villaquirán C, García-Perdomo HA. Advances in high-risk localized prostate cancer: Staging and management. Curr Probl Cancer 2023; 47:100993. [PMID: 37418998 DOI: 10.1016/j.currproblcancer.2023.100993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/23/2023] [Accepted: 06/25/2023] [Indexed: 07/09/2023]
Abstract
Nearly 15% of individuals with localized prostate cancer are identified as high risk for recurrence and progression of the disease, which is why the correct staging is vital for the definition of correct treatment-also developing novel therapeutic strategies to find a balance between getting better outcomes without sacrificing the quality of life (QoL). In this narrative review, we introduced the current standards of staging and primary treatment of high-risk localized prostate cancer (PCa), based on international guidelines and arguments in the debate, under the light of the most recent literature. It brings essential tools such as PSMA PET/CT and different nomograms (Briganti. MSKCC, Gandaglia) for accurate staging and selecting wisely the definitive therapy. Even though there is a broad discussion over the best local treatment in curative-intent treatment, it looks more important to define which patient profile would adapt correctly to every different treatment, highlighting the benefits and superior outcomes with multimodal treatment.
Collapse
Affiliation(s)
- Yeison Reina
- Division of Urology, Hospital Universitario del Valle, Cali, Colombia; UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| | - Catalina Villaquirán
- Division of Urologic Oncology, Hospital Universitario San Ignacio, Bogota, Colombia
| | - Herney Andrés García-Perdomo
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia; Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia.
| |
Collapse
|
6
|
Thulasi Seetha S, Garanzini E, Tenconi C, Marenghi C, Avuzzi B, Catanzaro M, Stagni S, Villa S, Chiorda BN, Badenchini F, Bertocchi E, Sanduleanu S, Pignoli E, Procopio G, Valdagni R, Rancati T, Nicolai N, Messina A. Stability of Multi-Parametric Prostate MRI Radiomic Features to Variations in Segmentation. J Pers Med 2023; 13:1172. [PMID: 37511785 PMCID: PMC10381192 DOI: 10.3390/jpm13071172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Stability analysis remains a fundamental step in developing a successful imaging biomarker to personalize oncological strategies. This study proposes an in silico contour generation method for simulating segmentation variations to identify stable radiomic features. Ground-truth annotation provided for the whole prostate gland on the multi-parametric MRI sequences (T2w, ADC, and SUB-DCE) were perturbed to mimic segmentation differences observed among human annotators. In total, we generated 15 synthetic contours for a given image-segmentation pair. One thousand two hundred twenty-four unfiltered/filtered radiomic features were extracted applying Pyradiomics, followed by stability assessment using ICC(1,1). Stable features identified in the internal population were then compared with an external population to discover and report robust features. Finally, we also investigated the impact of a wide range of filtering strategies on the stability of features. The percentage of unfiltered (filtered) features that remained robust subjected to segmentation variations were T2w-36% (81%), ADC-36% (94%), and SUB-43% (93%). Our findings suggest that segmentation variations can significantly impact radiomic feature stability but can be mitigated by including pre-filtering strategies as part of the feature extraction pipeline.
Collapse
Affiliation(s)
- Sithin Thulasi Seetha
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.T.S.); (R.V.)
- Department of Precision Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Enrico Garanzini
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (E.G.); (A.M.)
| | - Chiara Tenconi
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
- Department of Oncology and Hematooncology, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Marenghi
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Barbara Avuzzi
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (B.A.); (S.V.); (B.N.C.)
| | - Mario Catanzaro
- Department of Urology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (S.S.); (N.N.)
| | - Silvia Stagni
- Department of Urology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (S.S.); (N.N.)
| | - Sergio Villa
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (B.A.); (S.V.); (B.N.C.)
| | - Barbara Noris Chiorda
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (B.A.); (S.V.); (B.N.C.)
| | - Fabio Badenchini
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Elena Bertocchi
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Sebastian Sanduleanu
- Department of Precision Medicine, GROW—School for Oncology and Developmental Biology, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Emanuele Pignoli
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Giuseppe Procopio
- Unit of Genito-Urinary Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (C.M.); (F.B.); (E.B.); (G.P.)
| | - Riccardo Valdagni
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (S.T.S.); (R.V.)
- Department of Oncology and Hematooncology, Università degli Studi di Milano, 20133 Milan, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Nicola Nicolai
- Department of Urology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (M.C.); (S.S.); (N.N.)
| | - Antonella Messina
- Department of Radiology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (E.G.); (A.M.)
| |
Collapse
|
7
|
Harder FN, Heming CAM, Haider MA. mpMRI Interpretation in Active Surveillance for Prostate Cancer-An overview of the PRECISE score. Abdom Radiol (NY) 2023; 48:2449-2455. [PMID: 37160473 DOI: 10.1007/s00261-023-03912-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023]
Abstract
Active surveillance (AS) is now included in all major guidelines for patients with low-risk PCa and selected patients with intermediate-risk PCa. Several studies have highlighted the potential benefit of multiparametric magnetic resonance imaging (mpMRI) in AS and it has been adopted in some guidelines. However, uncertainty remains about whether serial mpMRI can help to safely reduce the number of required repeat biopsies under AS. In 2017, the European School of Oncology initiated the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) panel which proposed the PRECISE scoring system to assess the likelihood of radiological tumor progression on serial mpMRI. The PRECISE scoring system remains the only major system evaluated in multiple publications. In this review article, we discuss the current body of literature investigating the application of PRECISE as it is not as yet an established standard in mpMRI reporting. We delineate the strengths of PRECISE and its potential added value. Also, we underline potential weaknesses of the PRECISE scoring system, which might be tackled in future versions to further increase its value in AS.
Collapse
Affiliation(s)
- Felix N Harder
- Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
| | - Carolina A M Heming
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada
- Radiology Department, Instituto Nacional do Cancer (INCa), Rio de Janeiro, Brazil
| | - Masoom A Haider
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
- Joint Department of Medical Imaging, University Health Network, Sinai Health System and University of Toronto, Toronto, ON, M5G 1X5, Canada.
| |
Collapse
|
8
|
Thankapannair V, Keates A, Barrett T, Gnanapragasam VJ. Prospective Implementation and Early Outcomes of a Risk-stratified Prostate Cancer Active Surveillance Follow-up Protocol. EUR UROL SUPPL 2023; 49:15-22. [PMID: 36874604 PMCID: PMC9975013 DOI: 10.1016/j.euros.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Background Active surveillance (AS) is a major management option for men with early prostate cancer. Current guidelines however advocate identical AS follow-up for all without considering different disease trajectories. We previously proposed a pragmatic three-tier STRATified CANcer Surveillance (STRATCANS) follow-up strategy based on different progression risks from clinic-pathological and imaging features. Objective To report early outcomes from the implementation of the STRATCANS protocol in our centre. Design setting and participants Men on AS were enrolled into a prospective stratified follow-up programme. Intervention Three tiers of increasing follow-up intensity based on National Institute for Health and Care Excellence (NICE): Cambridge Prognostic Group (CPG) 1 or 2, prostate-specific antigen density, and magnetic resonance imaging (MRI) Likert score at entry. Outcome measurements and statistical analysis Rates of progression to CPG ≥3, any pathological progression, AS attrition, and patient choice for treatment were assessed. Differences in progression were compared with chi-square statistics. Results and limitations Data from 156 men (median age 67.3 yr) were analysed. Of these, 38.4% had CPG2 disease and 27.5% had grade group 2 disease at diagnosis. The median time on AS was 4 yr (interquartile range 3.2-4.9) and 1.5 yr on STRATCANS. Overall, 135/156 (86.5%) men remained on AS or converted to watchful waiting and 6/156 (3.8%) stopped AS by choice by the end of the evaluation period. Of the 156 patients, 66 (42.3%) were allocated to STRATCANS 1 (least intense follow-up), 61 (39.1%) to STRATCANS 2, and 29 (18.6%) to STRATCANS 3 (highest intensity). By increasing STRATCANS tier, progression rates to CPG ≥3 and any progression events were 0% and 4.6%, 3.4% and 8.6%, and 7.4% and 22.2%, respectively (p = 0.019). Modelling resource usage suggested potential reductions in appointments by 22% and MRI by 42% compared with current NICE guideline recommendations (first 12 months of AS). The study is limited by short follow-up, a relatively small cohort, and being single centre. Conclusions A simple risk-tiered AS strategy is possible with early outcomes supporting stratified follow-up intensity. STRATCANS implementation could de-escalate follow-up in men at a low risk of progression while husbanding resources for those who need closer follow-up. Patient summary We report a practical way to personalise follow-up for men on active surveillance for early prostate cancer. Our method may allow reductions in the follow-up burden for men at a low risk of disease change while maintaining vigilance for those at a higher risk.
Collapse
Affiliation(s)
- Vineetha Thankapannair
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alexandra Keates
- Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Cambridge Urology Translational Research and Clinical Trials Office, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge, UK.,Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Sushentsev N, Rundo L, Abrego L, Li Z, Nazarenko T, Warren AY, Gnanapragasam VJ, Sala E, Zaikin A, Barrett T, Blyuss O. Time series radiomics for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2023; 33:3792-3800. [PMID: 36749370 PMCID: PMC10182165 DOI: 10.1007/s00330-023-09438-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Serial MRI is an essential assessment tool in prostate cancer (PCa) patients enrolled on active surveillance (AS). However, it has only moderate sensitivity for predicting histopathological tumour progression at follow-up, which is in part due to the subjective nature of its clinical reporting and variation among centres and readers. In this study, we used a long short-term memory (LSTM) recurrent neural network (RNN) to develop a time series radiomics (TSR) predictive model that analysed longitudinal changes in tumour-derived radiomic features across 297 scans from 76 AS patients, 28 with histopathological PCa progression and 48 with stable disease. Using leave-one-out cross-validation (LOOCV), we found that an LSTM-based model combining TSR and serial PSA density (AUC 0.86 [95% CI: 0.78-0.94]) significantly outperformed a model combining conventional delta-radiomics and delta-PSA density (0.75 [0.64-0.87]; p = 0.048) and achieved comparable performance to expert-performed serial MRI analysis using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) scoring system (0.84 [0.76-0.93]; p = 0.710). The proposed TSR framework, therefore, offers a feasible quantitative tool for standardising serial MRI assessment in PCa AS. It also presents a novel methodological approach to serial image analysis that can be used to support clinical decision-making in multiple scenarios, from continuous disease monitoring to treatment response evaluation. KEY POINTS: •LSTM RNN can be used to predict the outcome of PCa AS using time series changes in tumour-derived radiomic features and PSA density. •Using all available TSR features and serial PSA density yields a significantly better predictive performance compared to using just two time points within the delta-radiomics framework. •The concept of TSR can be applied to other clinical scenarios involving serial imaging, setting out a new field in AI-driven radiology research.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Fisciano, SA, Italy
| | - Luis Abrego
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
| | - Zonglun Li
- Department of Mathematics, University College London, London, UK
| | - Tatiana Nazarenko
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
- Department of Mathematics, University College London, London, UK
| | - Anne Y Warren
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vincent J Gnanapragasam
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge, UK
| | - Evis Sala
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Alexey Zaikin
- Department of Women's Cancer, Institute for Women's Health, University College London, London, UK
- Department of Mathematics, University College London, London, UK
| | - Tristan Barrett
- Department of Radiology, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| | - Oleg Blyuss
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
- Center of Photonics, Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
10
|
Lokeshwar SD, Nguyen J, Rahman SN, Khajir G, Ho R, Ghabili K, Leapman MS, Weinreb JC, Sprenkle PC. Clinical utility of MR/ultrasound fusion-guided biopsy in patients with lower suspicion lesions on active surveillance for low-risk prostate cancer. Urol Oncol 2022; 40:407.e21-407.e27. [DOI: 10.1016/j.urolonc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/05/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
|
11
|
Lin Y, Liu G, Liu C, Xie H, Wang X, Huang Y, Jin L, Chen H. Urothelial carcinoembryonic antigen 1 score for early detection of prostate cancer and risk prediction. Cancer Med 2022; 11:2875-2885. [PMID: 35289508 PMCID: PMC9359874 DOI: 10.1002/cam4.4629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
UCA1 score appears useful in detecting nonhigh-risk (including very low-, low-, or intermediate-risk) prostate cancer. Combination of the PSA level and the UCA1 score may significantly reduce the burden of prostate biopsy.
Collapse
Affiliation(s)
- Youdong Lin
- Department of Clinical Laboratory Medicine, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Guihua Liu
- Department of Children Health Care, Fujian Provincial Maternity and Children's Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chun Liu
- Department of urinary surgery, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Hui Xie
- Department of urinary surgery, Fuzhou NO. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoxian Wang
- Department of Clinical Laboratory Medicine, Fuzhou NO. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Yudian Huang
- Department of Pathology, Fuzhou NO. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, China
| | - Long Jin
- Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Huidan Chen
- Department of Clinical Laboratory Medicine, Fujian Provincial Hospital, Fujian Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
12
|
Lee CH, Vellayappan B, Tan CH. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis. Br J Radiol 2022; 95:20210509. [PMID: 34520694 PMCID: PMC8978226 DOI: 10.1259/bjr.20210509] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To perform a systematic review and meta-analysis comparing diagnostic performance and inter reader agreement between PI-RADS v. 2.1 and PI-RADS v. 2 in the detection of clinically significant prostate cancer (csPCa). METHODS A systematic review was performed, searching the major biomedical databases (Medline, Embase, Scopus), using the keywords "PIRADS 2.1" or "PI RADS 2.1" or "PI-RADS 2.1". Studies reporting on head-to-head diagnostic comparison between PI-RADS v. 2.1 and v. 2 were included. Pooled sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were compared between PI-RADS v. 2.1 and v. 2. Summary receiver operator characteristic graphs were plotted. Analysis was performed for whole gland, and pre-planned subgroup analysis was performed by tumour location (whole gland vs transition zone (TZ)), high b-value DWI (b-value ≥1400 s/mm2), and reader experience (<5 years vs ≥5 years with prostate MRI interpretation). Inter-reader agreement and pooled rates of csPCa for PI-RADS 1-3 lesions were compared between PI-RADS v. 2.1 and v. 2. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool v. 2 (QUADAS-2). RESULTS Eight studies (1836 patients, 1921 lesions) were included. Pooled specificity for PI-RADS v. 2.1 was significantly lower than PI-RADS v. 2 for whole gland (0.62 vs 0.66, p = 0.02). Pooled sensitivities, PPVs and NPVs were not significantly different (p = 0.17, 0.31, 0.41). Pooled specificity for PI-RADS v. 2.1 was significantly lower than PI-RADS v. 2 for TZ only (0.67 vs 0.72, p = 0.01). Pooled sensitivities, PPVs and NPVs were not significantly different (p = 0.06, 0.36, 0.17). Amongst studies utilising diffusion-weighted imaging with highest b-value of ≥1400 s/mm2, pooled sensitivities, specificities, PPVs and NPVs were not significantly different (p = 0.52, 0.4, 0.5, 0.47). There were no significant differences in pooled sensitivities, specificities, PPVs and NPVs between PI-RADS v. 2.1 and PI-RADS v. 2 for less-experienced readers (p = 0.65, 0.37, 0.65, 0.81) and for more experienced readers (p = 0.57, 0.90, 0.91, 0.65). For PI-RADS v. 2.1 alone, there were no significant differences in pooled sensitivity, specificity, PPV and NPV between less and more experienced readers (p = 0.38, 0.70, 1, 0.48). Inter-reader agreement was moderate to substantial for both PI-RADS v. 2.1 and v. 2. There were no significant differences between pooled csPCa rates between PI-RADS v. 2.1 and v. 2 for PI-RADS 1-2 lesions (6.6% vs 7.3%, p = 0.53), or PI-RADS 3 lesions (24.1% vs 26.8%, p = 0.28). CONCLUSIONS Diagnostic performance and inter-reader agreement for PI-RADS v. 2.1 is comparable to PI-RADS v. 2, however the significantly lower specificity of PI-RADS v. 2.1 may result in increased number of unnecessary biopsies. ADVANCES IN KNOWLEDGE 1. Compared to PI-RADS v. 2, PI-RADS v. 2.1 has a non-significantly higher sensitivity but a significantly lower specificity for detection of clinically significant prostate cancer.2. PI-RADS v. 2.1 could potentially result in considerable increase in number of negative targeted biopsy rates for PI-RADS 3 lesions, which could have been potentially avoided.
Collapse
Affiliation(s)
- Chau Hung Lee
- Department of Radiology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | | |
Collapse
|
13
|
Sushentsev N, Rundo L, Blyuss O, Nazarenko T, Suvorov A, Gnanapragasam VJ, Sala E, Barrett T. Comparative performance of MRI-derived PRECISE scores and delta-radiomics models for the prediction of prostate cancer progression in patients on active surveillance. Eur Radiol 2022; 32:680-689. [PMID: 34255161 PMCID: PMC8660717 DOI: 10.1007/s00330-021-08151-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To compare the performance of the PRECISE scoring system against several MRI-derived delta-radiomics models for predicting histopathological prostate cancer (PCa) progression in patients on active surveillance (AS). METHODS The study included AS patients with biopsy-proven PCa with a minimum follow-up of 2 years and at least one repeat targeted biopsy. Histopathological progression was defined as grade group progression from diagnostic biopsy. The control group included patients with both radiologically and histopathologically stable disease. PRECISE scores were applied prospectively by four uro-radiologists with 5-16 years' experience. T2WI- and ADC-derived delta-radiomics features were computed using baseline and latest available MRI scans, with the predictive modelling performed using the parenclitic networks (PN), least absolute shrinkage and selection operator (LASSO) logistic regression, and random forests (RF) algorithms. Standard measures of discrimination and areas under the ROC curve (AUCs) were calculated, with AUCs compared using DeLong's test. RESULTS The study included 64 patients (27 progressors and 37 non-progressors) with a median follow-up of 46 months. PRECISE scores had the highest specificity (94.7%) and positive predictive value (90.9%), whilst RF had the highest sensitivity (92.6%) and negative predictive value (92.6%) for predicting disease progression. The AUC for PRECISE (84.4%) was non-significantly higher than AUCs of 81.5%, 78.0%, and 80.9% for PN, LASSO regression, and RF, respectively (p = 0.64, 0.43, and 0.57, respectively). No significant differences were observed between AUCs of the three delta-radiomics models (p-value range 0.34-0.77). CONCLUSIONS PRECISE and delta-radiomics models achieved comparably good performance for predicting PCa progression in AS patients. KEY POINTS • The observed high specificity and PPV of PRECISE are complemented by the high sensitivity and NPV of delta-radiomics, suggesting a possible synergy between the two image assessment approaches. • The comparable performance of delta-radiomics to PRECISE scores applied by expert readers highlights the prospective use of the former as an objective and standardisable quantitative tool for MRI-guided AS follow-up. • The marginally superior performance of parenclitic networks compared to conventional machine learning algorithms warrants its further use in radiomics research.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
- Department of Radiology, University of Cambridge School of Clinical Medicine, Box 218, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Oleg Blyuss
- School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Tatiana Nazarenko
- Department of Mathematics and Institute for Women's Health, University College London, London, UK
| | - Aleksandr Suvorov
- World-Class Research Center "Digital Biodesign and Personalised Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vincent J Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge, Cambridge, UK
| | - Evis Sala
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
McAllister BJ. Adherence to discharge protocols and prostate‐specific antigen surveillance plans in men without a prostate cancer diagnosis. INTERNATIONAL JOURNAL OF UROLOGICAL NURSING 2021. [DOI: 10.1111/ijun.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Khosravi P, Lysandrou M, Eljalby M, Li Q, Kazemi E, Zisimopoulos P, Sigaras A, Brendel M, Barnes J, Ricketts C, Meleshko D, Yat A, McClure TD, Robinson BD, Sboner A, Elemento O, Chughtai B, Hajirasouliha I. A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion. J Magn Reson Imaging 2021; 54:462-471. [PMID: 33719168 PMCID: PMC8360022 DOI: 10.1002/jmri.27599] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND A definitive diagnosis of prostate cancer requires a biopsy to obtain tissue for pathologic analysis, but this is an invasive procedure and is associated with complications. PURPOSE To develop an artificial intelligence (AI)-based model (named AI-biopsy) for the early diagnosis of prostate cancer using magnetic resonance (MR) images labeled with histopathology information. STUDY TYPE Retrospective. POPULATION Magnetic resonance imaging (MRI) data sets from 400 patients with suspected prostate cancer and with histological data (228 acquired in-house and 172 from external publicly available databases). FIELD STRENGTH/SEQUENCE 1.5 to 3.0 Tesla, T2-weighted image pulse sequences. ASSESSMENT MR images reviewed and selected by two radiologists (with 6 and 17 years of experience). The patient images were labeled with prostate biopsy including Gleason Score (6 to 10) or Grade Group (1 to 5) and reviewed by one pathologist (with 15 years of experience). Deep learning models were developed to distinguish 1) benign from cancerous tumor and 2) high-risk tumor from low-risk tumor. STATISTICAL TESTS To evaluate our models, we calculated negative predictive value, positive predictive value, specificity, sensitivity, and accuracy. We also calculated areas under the receiver operating characteristic (ROC) curves (AUCs) and Cohen's kappa. RESULTS Our computational method (https://github.com/ih-lab/AI-biopsy) achieved AUCs of 0.89 (95% confidence interval [CI]: [0.86-0.92]) and 0.78 (95% CI: [0.74-0.82]) to classify cancer vs. benign and high- vs. low-risk of prostate disease, respectively. DATA CONCLUSION AI-biopsy provided a data-driven and reproducible way to assess cancer risk from MR images and a personalized strategy to potentially reduce the number of unnecessary biopsies. AI-biopsy highlighted the regions of MR images that contained the predictive features the algorithm used for diagnosis using the class activation map method. It is a fully automatic method with a drag-and-drop web interface (https://ai-biopsy.eipm-research.org) that allows radiologists to review AI-assessed MR images in real time. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Pegah Khosravi
- Computational Oncology, Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Maria Lysandrou
- Neuroscience InstituteThe University of ChicagoChicagoIllinoisUSA
| | - Mahmoud Eljalby
- Department of UrologyWeill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
| | - Qianzi Li
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Mathematics and Statistics DepartmentCarleton CollegeNorthfieldMinnesotaUSA
| | - Ehsan Kazemi
- Yale University, Department of Electrical Engineering
| | - Pantelis Zisimopoulos
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Alexandros Sigaras
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Matthew Brendel
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
| | - Josue Barnes
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Camir Ricketts
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Dmitry Meleshko
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Andy Yat
- Department of RadiologyNew York‐Presbyterian HospitalNew YorkNew YorkUSA
| | - Timothy D. McClure
- Department of UrologyWeill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
| | - Brian D. Robinson
- Department of PathologyNew York Presbyterian Hospital‐Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Andrea Sboner
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
- Department of PathologyNew York Presbyterian Hospital‐Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Olivier Elemento
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
- WorldQuant Initiative for Quantitative PredictionWeill Cornell MedicineNew YorkNew YorkUSA
| | - Bilal Chughtai
- Department of UrologyWeill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
| | - Iman Hajirasouliha
- Department of Physiology and BiophysicsInstitute for Computational Biomedicine, Weill Cornell Medicine of Cornell UniversityNew YorkNew YorkUSA
- Caryl and Israel Englander Institute for Precision MedicineThe Meyer Cancer Center, Weill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
16
|
Sushentsev N, Rundo L, Blyuss O, Gnanapragasam VJ, Sala E, Barrett T. MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance. Sci Rep 2021; 11:12917. [PMID: 34155265 PMCID: PMC8217549 DOI: 10.1038/s41598-021-92341-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Nearly half of patients with prostate cancer (PCa) harbour low- or intermediate-risk disease considered suitable for active surveillance (AS). However, up to 44% of patients discontinue AS within the first five years, highlighting the unmet clinical need for robust baseline risk-stratification tools that enable timely and accurate prediction of tumour progression. In this proof-of-concept study, we sought to investigate the added value of MRI-derived radiomic features to standard-of-care clinical parameters for improving baseline prediction of PCa progression in AS patients. Tumour T2-weighted imaging (T2WI) and apparent diffusion coefficient radiomic features were extracted, with rigorous calibration and pre-processing methods applied to select the most robust features for predictive modelling. Following leave-one-out cross-validation, the addition of T2WI-derived radiomic features to clinical variables alone improved the area under the ROC curve for predicting progression from 0.61 (95% confidence interval [CI] 0.481-0.743) to 0.75 (95% CI 0.64-0.86). These exploratory findings demonstrate the potential benefit of MRI-derived radiomics to add incremental benefit to clinical data only models in the baseline prediction of PCa progression on AS, paving the way for future multicentre studies validating the proposed model and evaluating its impact on clinical outcomes.
Collapse
Affiliation(s)
- Nikita Sushentsev
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK.
| | - Leonardo Rundo
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Oleg Blyuss
- School of Physics, Engineering & Computer Science, University of Hertfordshire, Hatfield, UK
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vincent J Gnanapragasam
- Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Urology Translational Research and Clinical Trials Office, University of Cambridge, Cambridge, UK
| | - Evis Sala
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
- Cancer Research UK Cambridge Centre, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Box 218, Cambridge, CB2 0QQ, UK
| |
Collapse
|
17
|
Colarieti A, Thiruchelvam N, Barrett T. Evaluation of image-based prognostic parameters of post-prostatectomy urinary incontinence: A literature review. Int J Urol 2021; 28:890-897. [PMID: 34101272 DOI: 10.1111/iju.14609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Prostate cancer is the second most common male cancer, and radical prostatectomy is a highly effective treatment for intermediate and high-risk disease. However, post-prostatectomy urinary incontinence remains a major functional side-effect in patients undergoing radical prostatectomy. Despite recent improvements in preoperative imaging quality and surgical techniques, it remains challenging to predict or prevent occurrence of this complication. The aim of this research was to review the current published literature on pre- and postoperative imaging evaluation of the prostate and pelvic structures, to identify added value in the prediction of post-prostatectomy urinary incontinence. A computerized bibliographic search of the PubMed library was carried out to identify imaging-based articles evaluating the pelvic floor and surrounding structures pre- and/or postradical prostatectomy to predict post-prostatectomy urinary incontinence. A total of 32 articles were included. Of these, 29 papers assessed the importance of magnetic resonance imaging evaluation, with a total of 16 parameters evaluated. The most common parameters were intravesical protrusion, the membranous urethral length, prostatic volume and periurethral fibrosis. Preoperative membranous urethral length and its preservation after surgery showed the strongest correlation with urinary incontinence. Three studies evaluated ultrasound, with all carried out postoperatively. This technique benefits from a dynamic evaluation, and the results are promising for proximal urethral hypermobility and the degree of bladder neck funneling on the Valsalva maneuver. Several imaging studies evaluated the predictors of post-prostatectomy urinary incontinence, with preoperative membranous urethral length offering the most promise. However, the current literature is limited by the single-center nature of studies, and the heterogeneity in patient populations and methodologies used.
Collapse
Affiliation(s)
- Anna Colarieti
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Nikesh Thiruchelvam
- Department of, Urology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of, Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.,CamPARI Clinic, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
18
|
Lacetera V, Antezza A, Papaveri A, Cappa E, Cervelli B, Gabrielloni G, Montesi M, Morcellini R, Parri G, Recanatini E, Beatrici V. MRI/US fusion prostate biopsy in men on active surveillance: Our experience. ACTA ACUST UNITED AC 2021; 93:88-91. [PMID: 33754618 DOI: 10.4081/aiua.2021.1.88] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
AIM The upgrading or staging in men with prostate cancer (PCA) undergoing active surveillance (AS), defined as Gleason score (GS) ≥ 3+4 or more than 2 area with cancer, was investigated in our experience using the software-based fusion biopsy (FB). METHODS We selected from our database, composed of 620 biopsies, only men on AS according to criteria of John Hopkins Protocol (T1c, < 3 positive cores, GS = 3+3 = 6). Monitoring consisted of PSA measurement every 3 months, a clinical examination every 6 months, confirmatory FB within 6 months and then annual FB in all men. The suspicious MRI lesions were scored according to the Prostate Imaging Reporting and Data System (PI-RADS) classification version 2. FB were performed with a transrectal elastic free-hand fusion platform. The overall and clinically significant cancer detection rate was reported. Secondary, the diagnostic role of systematic biopsies was evaluated. RESULTS We selected 56 patients on AS with mean age 67.4 years, mean PSA 6.7 ng/ml and at least one follow-up MRI-US fusion biopsy (10 had 2 or 3 follow-up biopsies). Lesions detected by MRI were: PIRADS-2 in 5, PIRADS-3 in 28, PIRADS-4 in 18 pts and PIRADS-5 in 5 patients. In each MRI lesion, FB with 2.1 ± 1.1 cores were taken with a mean total cores of 13 ± 2.4 including the systematic cores. The overall cancer detection rate was 71% (40/56): 62% (25/40) in target core and 28% (15/40) in systematic core. The overall significant cancer detection rate was 46% (26/56): 69% (18/26) in target vs 31% (8/26) in random cores. CONCLUSIONS The incidence of clinical significant cancer was 46% in men starting active surveillance, but it was more than doubled using MRI/US Target Biopsy 69% (18/26) rather than random cores (31%, 8/26). However, 1/3 of disease upgrades would have been missed if only the targeted biopsies were performed. Based on our experience, MRI/US fusion target biopsy must be associated to systematic biopsies to improve detection of significant cancer, reducing the risks of misclassification.
Collapse
Affiliation(s)
- Vito Lacetera
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | - Angelo Antezza
- Università Politecnica delle Marche-Azienda Ospedaliera Ospedali Riuniti Torrette di Ancona.
| | - Alessio Papaveri
- Università Politecnica delle Marche-Azienda Ospedaliera Ospedali Riuniti Torrette di Ancona.
| | - Emanuele Cappa
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | - Bernardino Cervelli
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | | | - Michele Montesi
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | - Roberto Morcellini
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | - Gianni Parri
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | - Emilio Recanatini
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| | - Valerio Beatrici
- Azienda Ospedaliera Ospedali Riuniti Marche Nord, Division of Urology, Pesaro.
| |
Collapse
|
19
|
Woitek R, Gallagher FA. The use of hyperpolarised 13C-MRI in clinical body imaging to probe cancer metabolism. Br J Cancer 2021; 124:1187-1198. [PMID: 33504974 PMCID: PMC8007617 DOI: 10.1038/s41416-020-01224-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/30/2023] Open
Abstract
Metabolic reprogramming is one of the hallmarks of cancer and includes the Warburg effect, which is exhibited by many tumours. This can be exploited by positron emission tomography (PET) as part of routine clinical cancer imaging. However, an emerging and alternative method to detect altered metabolism is carbon-13 magnetic resonance imaging (MRI) following injection of hyperpolarised [1-13C]pyruvate. The technique increases the signal-to-noise ratio for the detection of hyperpolarised 13C-labelled metabolites by several orders of magnitude and facilitates the dynamic, noninvasive imaging of the exchange of 13C-pyruvate to 13C-lactate over time. The method has produced promising preclinical results in the area of oncology and is currently being explored in human imaging studies. The first translational studies have demonstrated the safety and feasibility of the technique in patients with prostate, renal, breast and pancreatic cancer, as well as revealing a successful response to treatment in breast and prostate cancer patients at an earlier stage than multiparametric MRI. This review will focus on the strengths of the technique and its applications in the area of oncological body MRI including noninvasive characterisation of disease aggressiveness, mapping of tumour heterogeneity, and early response assessment. A comparison of hyperpolarised 13C-MRI with state-of-the-art multiparametric MRI is likely to reveal the unique additional information and applications offered by the technique.
Collapse
Affiliation(s)
- Ramona Woitek
- Department of Radiology, University of Cambridge, Cambridge, UK.
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
- Cancer Research UK Cambridge Centre, Cambridge, UK.
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Centre, Cambridge, UK
| |
Collapse
|
20
|
Update on Multiparametric Prostate MRI During Active Surveillance: Current and Future Trends and Role of the PRECISE Recommendations. AJR Am J Roentgenol 2021; 216:943-951. [PMID: 32755219 DOI: 10.2214/ajr.20.23985] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Active surveillance for low-to-intermediate risk prostate cancer is a conservative management approach that aims to avoid or delay active treatment until there is evidence of disease progression. In recent years, multiparametric MRI (mpMRI) has been increasingly used in active surveillance and has shown great promise in patient selection and monitoring. This has been corroborated by publication of the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation (PRECISE) recommendations, which define the ideal reporting standards for mpMRI during active surveillance. The PRECISE recommendations include a system that assigns a score from 1 to 5 (the PRECISE score) for the assessment of radiologic change on serial mpMRI scans. PRECISE scores are defined as follows: a score of 3 indicates radiologic stability, a score of 1 or 2 denotes radiologic regression, and a score of 4 or 5 indicates radiologic progression. In the present study, we discuss current and future trends in the use of mpMRI during active surveillance and illustrate the natural history of prostate cancer on serial scans according to the PRECISE recommendations. We highlight how the ability to classify radiologic change on mpMRI with use of the PRECISE recommendations helps clinical decision making.
Collapse
|
21
|
Özden E, Akpınar Ç, İbiş A, Kubilay E, Erden A, Yaman Ö. Effect of lesion diameter and prostate volume on prostate cancer detection rate of magnetic resonance imaging: Transrectal-ultrasonography-guided fusion biopsies using cognitive targeting. Turk J Urol 2021; 47:22-29. [PMID: 33016869 PMCID: PMC7815233 DOI: 10.5152/tud.2020.20238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study aimed to evaluate the effect of prostate volume and lesion size on the clinically significant prostate cancer (csPCa) detection rates of transrectal ultrasonography (TRUS)-guided prostate biopsies, performed by a cognitive targeting method for sampling peripheral zone lesions. MATERIAL AND METHODS We retrospectively enrolled 219 consecutive patients, who underwent multiparametric magnetic resonance imaging with a 3-T scanner and had peripheral zone lesions suspected for prostate cancer. All of these patients underwent combined cognitive targeted biopsy of suspicious lesions and TRUS-guided systematic biopsy. The detection rates of csPCa according to different lesion diameters (<5 mm, 5-9.9 mm, and ≥10 mm) and prostate volumes (<30 mL, 30-49.9 mL, 50-79.9 mL, and ≥80 mL) were calculated per lesion basis. In addition, subgroup analysis of csPCa detection rates was performed according to Prostate Imaging Reporting and Data System scores of lesions. RESULTS The csPCa detection rates according to lesion diameters <5 mm, 5-9.9 mm, and ≥10 mm were 4%, 9.8%, and 33.1%, respectively, and were significantly lower for lesions <10 mm (p<0.001). The csPCa detection rates were 61.5%, 24.1%, 16.2%, and 6.9%, respectively, for prostate volumes <30 mL, 30-49.9 mL, 50-79.9 mL, and ≥80 mL, and were significantly higher for prostate volumes <30 mL (p<0.001). CONCLUSIONS Clinicians should be very careful when they prefer cognitive targeted prostatic biopsy in patients with periferal zone lesions less than 10 mm and with prostate volumes greater than 30 mL, because of significantly low csPCa detection rates.
Collapse
Affiliation(s)
- Eriz Özden
- Department of Urology Ankara University Faculty of Medicine, Ankara, Turkey
| | - Çağrı Akpınar
- Department of Urology Ankara University Faculty of Medicine, Ankara, Turkey
| | - Arif İbiş
- Department of Urology Ankara University Faculty of Medicine, Ankara, Turkey
| | - Eralp Kubilay
- Department of Urology Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ayşe Erden
- Department of Radiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Önder Yaman
- Department of Urology Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
22
|
Abstract
The prostate imaging reporting and data system (PI-RADS) has revolutionized the use of magnetic resonance imaging (MRI) for the management of prostate cancer (PCa). The most recent version 2.1, PI-RADS v2.1, provides specific refinements in the performance, relaxing some recommendations which were not found to be helpful, while reinforcing and clarifying others. The interpretation of T2-weighted imaging (T2WI) in the transition zone (TZ), and the overall assessment of TZ nodules, now allows for a clearer distinction between those which are clearly benign and those which might warrant tissue sampling. Additional changes also resolve discrepancies in T2WI and diffusion-weighted imaging (DWI) of the peripheral zone (PZ). PI-RADS v2.1 is a simpler, more straightforward, and more reproducible method to better communicate between physicians regarding findings on prostate MRI.
Collapse
Affiliation(s)
- Silvina P Dutruel
- Department of Radiology, Weill Cornell Medicine/New York-Presbyterian, 525 E 68th St, Box 141, New York, NY, 10065, USA
| | - Sunil Jeph
- Department of Radiology, Weill Cornell Medicine/New York-Presbyterian, 525 E 68th St, Box 141, New York, NY, 10065, USA
| | - Daniel J A Margolis
- Department of Radiology, Weill Cornell Medicine/New York-Presbyterian, 525 E 68th St, Box 141, New York, NY, 10065, USA.
| | - Natasha Wehrli
- Department of Radiology, Weill Cornell Medicine/New York-Presbyterian, 525 E 68th St, Box 141, New York, NY, 10065, USA
| |
Collapse
|
23
|
Machireddy A, Meermeier N, Coakley F, Song X. Malignancy Detection in Prostate Multi-Parametric MR Images Using U-net with Attention. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1520-1523. [PMID: 33018280 DOI: 10.1109/embc44109.2020.9176050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiparametric magnetic resonance (mpMR) images are increasingly being used for diagnosis and monitoring of prostate cancer. Detection of malignancy from prostate mpMR images requires expertise, is time consuming and prone to human error. The recent developments of U-net have demonstrated promising detection results in many medical applications. Straightforward use of U-net tends to result in over-detection in mpMR images. The recently developed attention mechanism can help retain only features relevant for malignancy detection, thus improving the detection accuracy. In this work, we propose a U-net architecture that is enhanced by the attention mechanism to detect malignancy in prostate mpMR images. This approach resulted in improved performance in terms of higher Dice score and reduced over-detection when compared to U-net in detecting malignancy.
Collapse
|
24
|
Jotwani R, Mehta N, Baig E, Gupta A, Gulati A. Neuromodulation and the Epidemiology of Magnetic Resonance Utilization for Lung, Breast, Colon, and Prostate Cancer. Neuromodulation 2020; 23:912-921. [PMID: 32705734 DOI: 10.1111/ner.13224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/03/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Neuromodulation is a growing therapeutic modality for the treatment of chronic pain. Determining whether a patient is an appropriate candidate for implantation of a neuromodulatory device and whether the device requires an MRI conditional feature necessitates understanding the patient's likelihood of requiring an MRI. Active treatment of cancer represents known high-risk clinical scenarios for MRI. However, the growth of MRI as a tool for diagnosis of cancer also warrants consideration by implanting physicians when assessing high-risk patients. MATERIALS AND METHODS Here, we conduct a systematic review of the literature to determine the epidemiology for MR utilization for breast, lung, prostate, and colon cancer. Out of 126 papers reviewed, 39 were ultimately analyzed to determine the relative likelihood of an MRI in the course of oncologic care. RESULTS We find that there is a low likelihood for MRI to be utilized as part of any screening process and a variable likelihood during the staging and surveillance phases across all cancer subtypes depending on the clinical circumstances. Certain populations present special consideration for MRI screening, such as the high at-risk breast cancer population, and MRI surveillance and staging, such as aging males (>50 years old) at risk for prostate cancer or individuals diagnosed with rectal cancers. CONCLUSION High likelihood of MRI within the oncologic context represents important distinction criteria for neuromodulation as patients may benefit from implantation of an MR conditional system.
Collapse
Affiliation(s)
- Rohan Jotwani
- Department of Anesthesiology, New York-Presbyterian Hospital - Weill Cornell College of Medicine, New York, NY, USA
| | - Neel Mehta
- Department of Anesthesiology, New York-Presbyterian Hospital - Weill Cornell College of Medicine, New York, NY, USA
| | - Ethesham Baig
- Department of Anesthesiology, University of Toronto Western, Toronto, Ontario, Canada
| | - Ajay Gupta
- Department of Radiology, New York-Presbyterian Hospital - Weill Cornell College of Medicine, New York, NY, USA
| | - Amitabh Gulati
- Department of Anesthesiology and Critical Care, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
25
|
Mason BR, Eastham JA, Davis BJ, Mynderse LA, Pugh TJ, Lee RJ, Ippolito JE. Current Status of MRI and PET in the NCCN Guidelines for Prostate Cancer. J Natl Compr Canc Netw 2020; 17:506-513. [PMID: 31085758 DOI: 10.6004/jnccn.2019.7306] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
Abstract
Prostate cancer (PCa) represents a significant source of morbidity and mortality for men in the United States, with approximately 1 in 9 being diagnosed with PCa in their lifetime. The role of imaging in the evaluation of men with PCa has evolved and currently plays a central role in diagnosis, treatment planning, and evaluation of recurrence. Appropriate use of multiparametric MRI (mpMRI) and MRI-guided transrectal ultrasound (MR-TRUS) biopsy increases the detection of clinically significant PCa while decreasing the detection of clinically insignificant PCa. This process may help patients with clinically insignificant PCa avoid the adverse effects of unnecessary therapy. In the setting of a known PCa, patients with low-grade disease can be observed using active surveillance, which often includes a combination of prostate-specific antigen (PSA) testing, serial mpMRI, and, if indicated, follow-up systematic and targeted TRUS-guided tissue sampling. mpMRI can provide important information in the posttreatment setting, but PET/CT is creating a paradigm shift in imaging standards for patients with locally recurrent and metastatic PCa. This article examines the strengths and limitations of mpMRI for initial PCa diagnosis, active surveillance, recurrent disease evaluation, and image-guided biopsies, and the use of PET/CT imaging in men with recurrent PCa. The goal of this review is to provide a rational basis for current NCCN Clinical Practice Guidelines in Oncology for PCa as they pertain to the use of these advanced imaging modalities.
Collapse
Affiliation(s)
- Brandon R Mason
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - James A Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Thomas J Pugh
- Department of Radiation Oncology, University of Colorado, Denver, Colorado; and
| | - Richard J Lee
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Joseph E Ippolito
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
26
|
Abstract
The role of prostate MRI in clinical practice has continued to broaden over time. Multiple iterations of PI-RADS reporting have aided in improving detection and reporting of prostate cancer. In addition, recent recommendations from the PI-RADS Steering Committee promote an MRI-first approach with an MRI-directed prostate cancer diagnostic pathway. It is imperative for radiologists to be knowledgeable and familiar with prostate MRI and PI-RADS recommendations, as there is an increasing demand for prostate imaging by clinicians and patients alike.
Collapse
Affiliation(s)
- Grace C Lo
- Division of Body Imaging, Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, Box 141, New York, NY, 10065, USA.
| | - Daniel J A Margolis
- Division of Body Imaging, Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, Box 141, New York, NY, 10065, USA
| |
Collapse
|
27
|
Utilization of Multiparametric MRI of Prostate in Patients under Consideration for or Already in Active Surveillance: Correlation with Imaging Guided Target Biopsy. Diagnostics (Basel) 2020; 10:diagnostics10070441. [PMID: 32610595 PMCID: PMC7400343 DOI: 10.3390/diagnostics10070441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/25/2022] Open
Abstract
This study sought to assess the value of multiparametric magnetic resonance image (mp-MRI) in patients with a prostate cancer (PCa) Gleason score of 6 or less under consideration for or already in active surveillance and to determine the rate of upgrading by target biopsy. Three hundred and fifty-four consecutive men with an initial transrectal ultrasound-guided (TRUS) biopsy-confirmed PCa Gleason score of 6 or less under clinical consideration for or already in active surveillance underwent mp-MRI and were retrospectively reviewed. One hundred and nineteen of 354 patients had cancer-suspicious regions (CSRs) at mp-MRI. Each CSR was assigned a Prostate Imaging Reporting and Data System (PI-RADS) score based on PI-RADS v2. One hundred and eight of 119 patients underwent confirmatory imaging-guided biopsy for CSRs. Pathology results including Gleason score (GS) and percentage of specimens positive for PCa were recorded. Associations between PI-RADS scores and findings at target biopsy were evaluated using logistic regression. At target biopsy, 81 of 108 patients had PCa (75%). Among them, 77 patients had upgrading (22%, 77 of 354 patients). One hundred and forty-six CSRs in 108 patients had PI-RADS 3 n = 28, 4 n = 66, and 5 n = 52. The upgraded rate for each category of CSR was for PI-RADS 3 (5 of 28, 18%), 4 (47 of 66, 71%) and 5 (49 of 52, 94%). Using logistic regression analysis, differences in PI-RADS scores from 3 to 5 are significantly associated with the probability of disease upgrade (20%, 73%, and 96% for PI-RADS score of 3, 4, and 5, respectively). Adding mp-MRI to patients under consideration for or already in active surveillance helps to identify undiagnosed PCa of a higher GS or higher volume resulting in upgrading in 22%.
Collapse
|
28
|
Zhang Z, Wu HH, Priester A, Magyar C, Afshari Mirak S, Shakeri S, Mohammadian Bajgiran A, Hosseiny M, Azadikhah A, Sung K, Reiter RE, Sisk AE, Raman S, Enzmann DR. Prostate Microstructure in Prostate Cancer Using 3-T MRI with Diffusion-Relaxation Correlation Spectrum Imaging: Validation with Whole-Mount Digital Histopathology. Radiology 2020; 296:348-355. [PMID: 32515678 DOI: 10.1148/radiol.2020192330] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Microstructural MRI has the potential to improve diagnosis and characterization of prostate cancer (PCa), but validation with histopathology is lacking. Purpose To validate ex vivo diffusion-relaxation correlation spectrum imaging (DR-CSI) in the characterization of microstructural tissue compartments in prostate specimens from men with PCa by using registered whole-mount digital histopathology (WMHP) as the reference standard. Materials and Methods Men with PCa who underwent 3-T MRI and robotic-assisted radical prostatectomy between June 2018 and January 2019 were prospectively studied. After prostatectomy, the fresh whole prostate specimens were imaged in patient-specific three-dimensionally printed molds by using 3-T MRI with DR-CSI and were then sliced to create coregistered WMHP slides. The DR-CSI spectral signal component fractions (fA, fB, fC) were compared with epithelial, stromal, and luminal area fractions (fepithelium, fstroma, flumen) quantified in PCa and benign tissue regions. A linear mixed-effects model assessed the correlations between (fA, fB, fC) and (fepithelium, fstroma, flumen), and the strength of correlations was evaluated by using Spearman correlation coefficients. Differences between PCa and benign tissues in terms of DR-CSI signal components and microscopic tissue compartments were assessed using two-sided t tests. Results Prostate specimens from nine men (mean age, 65 years ± 7 [standard deviation]) were evaluated; 20 regions from 17 PCas, along with 20 benign tissue regions of interest, were analyzed. Three DR-CSI spectral signal components (spectral peaks) were consistently identified. The fA, fB, and fC were correlated with fepithelium, fstroma, and flumen (all P < .001), with Spearman correlation coefficients of 0.74 (95% confidence interval [CI]: 0.62, 0.83), 0.80 (95% CI: 0.66, 0.89), and 0.67 (95% CI: 0.51, 0.81), respectively. PCa exhibited differences compared with benign tissues in terms of increased fA (PCa vs benign, 0.37 ± 0.05 vs 0.27 ± 0.06; P < .001), decreased fC (PCa vs benign, 0.18 ± 0.06 vs 0.31 ± 0.13; P = .01), increased fepithelium (PCa vs benign, 0.44 ± 0.13 vs 0.26 ± 0.16; P < .001), and decreased flumen (PCa vs benign, 0.14 ± 0.08 vs 0.27 ± 0.18; P = .004). Conclusion Diffusion-relaxation correlation spectrum imaging signal components correlate with microscopic tissue compartments in the prostate and differ between cancer and benign tissue. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Lee and Hectors in this issue.
Collapse
Affiliation(s)
- Zhaohuan Zhang
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Holden H Wu
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Alan Priester
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Clara Magyar
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Sohrab Afshari Mirak
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Sepideh Shakeri
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Amirhossein Mohammadian Bajgiran
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Melina Hosseiny
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Afshin Azadikhah
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Kyunghyun Sung
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Robert E Reiter
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Anthony E Sisk
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Steven Raman
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| | - Dieter R Enzmann
- From the Department of Radiological Sciences, David Geffen School of Medicine (Z.Z., H.H.W., S.A.M., S.S., A.M.B., M.H., A.A., K.S., S.R., D.R.E.), Department of Bioengineering (Z.Z., H.H.W.), Department of Urology (A.P., R.E.R.), and Department of Pathology and Laboratory Medicine (C.M., A.E.S.), University of California, Los Angeles, 300 UCLA Medical Plaza, Suite B119, Los Angeles, CA 90095
| |
Collapse
|
29
|
McKay RR, Feng FY, Wang AY, Wallis CJD, Moses KA. Recent Advances in the Management of High-Risk Localized Prostate Cancer: Local Therapy, Systemic Therapy, and Biomarkers to Guide Treatment Decisions. Am Soc Clin Oncol Educ Book 2020; 40:1-12. [PMID: 32412803 PMCID: PMC10182417 DOI: 10.1200/edbk_279459] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
High-risk prostate cancer accounts for approximately 15% of all prostate cancer diagnoses. Patients with high-risk disease have an increased risk of developing biochemical recurrence, metastases, and death from prostate cancer. As the optimal management of high-risk disease in patients with prostate cancer continues to evolve, the contemporary treatment paradigm is moving toward a multidisciplinary integrated approach of systemic and local therapy for patients with high-risk disease. The strategies for definitive, adjuvant, and salvage local treatment, including radical prostatectomy or radiation therapy, serve as the backbone of therapy for patients with localized disease. Systemic therapy decisions regarding use in combination with surgery, choice of therapy (hormone therapy, chemotherapy), and treatment duration continue to be refined. As more effective hormonal agents populate the treatment landscape for advanced prostate cancer, including abiraterone and next-generation antiandrogens, an opportunity is provided to explore these treatments in patients with localized disease in the hope of improving the long-term outcome for patients. Integration of innovative blood and tissue-based biomarkers to guide therapy selection for patients with high-risk disease is an area of active research. Contemporary studies are using such biomarkers to stratify patients and select therapies. In this review, we summarize contemporary evidence for local treatment strategies, systemic therapy options, and biomarkers in development for the management of high-risk prostate cancer in patients.
Collapse
Affiliation(s)
- Rana R McKay
- University of California San Diego, San Diego, CA
| | - Felix Y Feng
- University of California San Francisco, San Francisco, CA
| | - Alice Y Wang
- Vanderbilt University Medical Center, Nashville, TN
| | | | | |
Collapse
|
30
|
Sklinda K, Mruk B, Walecki J. Active Surveillance of Prostate Cancer Using Multiparametric Magnetic Resonance Imaging: A Review of the Current Role and Future Perspectives. Med Sci Monit 2020; 26:e920252. [PMID: 32279066 PMCID: PMC7172004 DOI: 10.12659/msm.920252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Clinically, active surveillance involves continuous monitoring of patients who may be at risk for disease. Patients with low-grade and early-stage prostate cancer may benefit from active surveillance, rather than undergoing surgical and medical treatments that are associated with side effects. In these cases, the role of active surveillance is to ensure that there is no progression of the disease. However, active surveillance may be associated with a risk of under-diagnosis. Previously, the assignment of risk categories and patient monitoring were based on digital rectal examination, transrectal prostate biopsy, and monitoring of serum levels of prostate-specific antigen (PSA). Multiparametric magnetic resonance imaging (MRI) of the prostate gland has an estimated negative predictive value of 95% for the detection of prostate cancer, which makes this an effective imaging method for targeting biopsies and for monitoring patients over time. Also, multiparametric MRI-guided biopsy at the initial stage of the risk stratification for patients who are newly diagnosed with prostate cancer may reduce the number of underdiagnosed patients, improve long-term patient prognosis, and reduce the number of patients who are overtreated, which may reduce healthcare costs and reduce treatment morbidity. For these reasons, multiparametric MRI has become an accepted monitoring tool in patients who are enrolled in active surveillance programs. This review aims to present the current status of the use of multiparametric MRI in active surveillance of prostate cancer and to discuss future perspectives, supported by recent literature.
Collapse
Affiliation(s)
- Katarzyna Sklinda
- Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Bartosz Mruk
- Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Jerzy Walecki
- Department of Radiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
31
|
Konopka CJ, Woźniak M, Hedhli J, Siekierzycka A, Skokowski J, Pęksa R, Matuszewski M, Munirathinam G, Kajdacsy-Balla A, Dobrucki IT, Kalinowski L, Dobrucki LW. Quantitative imaging of the receptor for advanced glycation end-products in prostate cancer. Eur J Nucl Med Mol Imaging 2020; 47:2562-2576. [PMID: 32166512 DOI: 10.1007/s00259-020-04721-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/10/2020] [Indexed: 01/11/2023]
Abstract
PURPOSE Current screening and monitoring of prostate cancer (PCa) is insufficient, producing inaccurate diagnoses. Presence of the receptor for advanced glycation end-products (RAGE) is associated with signature characteristics of PCa development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, invasion, and poor patient survival. Therefore, we developed a preclinical multimodal imaging strategy targeted at RAGE to diagnose and monitor PCa. METHODS In this work, RAGE-targeted multimodal nanoparticles (64Cu-Cy5-G4-CML) were synthesized and rendered functional for nuclear and optical imaging using previously established methods. The probe's binding affinity and targeting specificity was assessed in androgen-dependent (LNCaP) and androgen-independent (DU145) prostate cancer cells using flow cytometry and confocal microscopy. In vivo PET-CT imaging was used to evaluate RAGE levels in DU145 and LNCaP xenograft models in mice. Then, tumors were excised post-imaging for histological staining and autoradiography to further assess RAGE levels and targeting efficiency of the tracer. Finally, RAGE levels from human PCa samples of varying Gleason Scores were evaluated using Western blot and immunohistochemical staining. RESULTS PCa cell culture studies confirmed adequate RAGE-targeting with 64Cu-Cy5-G4-CML with KD between 360 and 540 nM as measured by flow cytometry. In vivo PET-CT images of PCa xenografts revealed favorable kinetics, rapid blood clearance, and a non-homogenous, enhanced uptake in tumors, which varied based on cell type and tumor size with mean uptake between 0.5 and 1.4%ID/g. RAGE quantification of human samples confirmed increased RAGE uptake corresponding to increased Gleason scoring. CONCLUSIONS Our study has shown that RAGE-targeted cancer imaging is feasible and could significantly impact PCa management.
Collapse
Affiliation(s)
- Christian J Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Marcin Woźniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jamila Hedhli
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Jarosław Skokowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland.,Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Rafał Pęksa
- Department of Pathology, Medical University of Gdansk, Gdansk, Poland
| | | | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Iwona T Dobrucki
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland.,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Beckman Institute for Advanced Science and Technology, Urbana, IL, USA. .,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland. .,Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL), Gdansk, Poland. .,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.
| |
Collapse
|
32
|
Park J, Yoo S, Cho MC, Jeong CW, Ku JH, Kwak C, Kim HH, Jeong H. Patients with Biopsy Gleason Score 3 + 4 Are Not Appropriate Candidates for Active Surveillance. Urol Int 2019; 104:199-204. [PMID: 31694041 DOI: 10.1159/000503888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/02/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the feasibility of including patients with biopsy Gleason score (bGS) 3 + 4 prostate cancer in an active surveillance (AS) protocol. METHODS A total of 615 patients underwent a radical prostatectomy and satisfied the following requirements: prostate-specific antigen ≤10 ng/dL, clinical stage T1c or T2a, 2 or fewer positive biopsy cores, and bGS 6 or 3 + 4 prostate cancer. The patients were divided into two groups according to their bGS (bGS 6 group, n =534; bGS 3 + 4 group, n = 81). RESULTS The adverse pathological features were significantly higher in the bGS 3 + 4 group (16.7 vs. 49.4%, p< 0.001). Biochemical recurrence (BCR)-free survival was also significantly lower in this group (p < 0.001). In a multivariate analysis, clinical stage (odds ratio [OR] 2.026, p =0.007), maximum percentage of biopsy core involvement (OR 1.015, p = 0.014), and bGS (OR 1.913, p = 0.030) were independent risk factors for adverse pathological features. However, the bGS was the only variable to forecast BCR (hazard ratio 3.567, p < 0.001). CONCLUSIONS A bGS 3 + 4 was the leading risk factor for a worse postoperative prognosis. Therefore, patients with a bGS 3 + 4 are not appropriate candidates for AS.
Collapse
Affiliation(s)
- Juhyun Park
- Department of Urology, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sangjun Yoo
- Department of Urology, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Min Chul Cho
- Department of Urology, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyeon Jeong
- Department of Urology, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea,
| |
Collapse
|
33
|
Jayadevan R, Felker ER, Kwan L, Barsa DE, Zhang H, Sisk AE, Delfin M, Marks LS. Magnetic Resonance Imaging-Guided Confirmatory Biopsy for Initiating Active Surveillance of Prostate Cancer. JAMA Netw Open 2019; 2:e1911019. [PMID: 31509206 PMCID: PMC6739900 DOI: 10.1001/jamanetworkopen.2019.11019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
Importance Transrectal, ultrasonography-guided prostate biopsy often fails to disclose the severity of underlying pathologic findings for prostate cancer. Magnetic resonance imaging (MRI)-guided biopsy may improve the characterization of prostate pathologic results, but few studies have examined its use for the decision to enter active surveillance. Objective To evaluate whether confirmatory biopsy findings by MRI guidance are associated with the risk of pathologic disease upgrading among patients with prostate cancer during active surveillance. Design, Settings, and Participants This retrospective cohort study used prospectively obtained registry data from 332 men with prostate cancer of Gleason grade group (GG) 2 or lower who were referred for active surveillance at a large academic medical center from January 1, 2009, through December 31, 2017. Exposures All confirmatory and follow-up biopsies were performed using MRI guidance with an MRI-ultrasonography fusion device. Patients underwent repeated MRI-guided biopsies every 12 to 24 months. At follow-up sessions, in addition to obtaining systematic samples, lesions seen on MRI were targeted and foci of low-grade prostate cancer were obtained again using tracking technology. Active surveillance was terminated with detection of at least GG3 disease or receipt of treatment. Main Outcomes and Measures The primary outcome was upgrading to at least GG3 disease during active surveillance. Secondary outcomes were the associations of MRI lesion grade, prostate-specific antigen (PSA) level, PSA density, and biopsy method (targeted, systematic, or tracked) with the primary outcome. Results Of 332 patients (mean [SD] age, 62.8 [7.6] years), 39 (11.7%) upgraded to at least GG3 disease during follow-up. The incidence of upgrading was 7.9% (9 of 114) when the confirmatory biopsy finding was normal, 11.4% (20 of 175) when the finding showed GG1 disease, and 23.3% (10 of 43) when the finding was GG2 disease (P = .03). Men with GG2 disease were almost 8 times more likely to upgrade during surveillance compared with those with normal findings but only among those with low PSA density (hazard ratio [HR], 7.82; 95% CI, 2.29-26.68). A PSA density of at least 0.15 ng/mL/mL was associated with increased risk of upgrading among patients with normal findings (HR, 7.21; 95% CI, 1.98-26.24) or GG1 disease (HR, 2.86; 95% CI, 1.16 to 7.03) on confirmatory biopsy. A total of 46% of pathologic disease upgrades would have been missed if only the targeted biopsy was performed and 65% of disease upgrades were detected only with tracked biopsy. Conclusions and Relevance The findings suggest that confirmatory biopsy with MRI guidance is significantly associated with future disease upgrading of prostate cancer, especially when combined with PSA density, and should be considered as an appropriate entry point for active surveillance. Systematic and targeted biopsies were additive in detection of clinically significant cancers. Repeated biopsy at sites at which findings were previously abnormal (tracking biopsy) facilitated detection of cancers not suitable for continued active surveillance.
Collapse
Affiliation(s)
- Rajiv Jayadevan
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles
| | - Ely R. Felker
- Department of Radiology, David Geffen School of Medicine at University of California, Los Angeles
| | - Lorna Kwan
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles
| | - Danielle E. Barsa
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles
| | - Haoyue Zhang
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles
| | - Anthony E. Sisk
- Department of Pathology, David Geffen School of Medicine at University of California, Los Angeles
| | - Merdie Delfin
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles
| | - Leonard S. Marks
- Department of Urology, David Geffen School of Medicine at University of California, Los Angeles
| |
Collapse
|
34
|
Baur ADJ, Penzkofer T. Evaluation of prostate MRI: can machine learning provide support where radiologists need it? Eur Radiol 2019; 29:4751-4753. [DOI: 10.1007/s00330-019-06241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
|
35
|
Gnanapragasam VJ, Barrett T, Thankapannair V, Thurtle D, Rubio-Briones J, Domínguez-Escrig J, Bratt O, Statin P, Muir K, Lophatananon A. Using prognosis to guide inclusion criteria, define standardised endpoints and stratify follow-up in active surveillance for prostate cancer. BJU Int 2019; 124:758-767. [PMID: 31063245 DOI: 10.1111/bju.14800] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To test whether using disease prognosis can inform a rational approach to active surveillance (AS) for early prostate cancer. PATIENTS AND METHODS We previously developed the Cambridge Prognostics Groups (CPG) classification, a five-tiered model that uses prostate-specific antigen (PSA), Grade Group and Stage to predict cancer survival outcomes. We applied the CPG model to a UK and a Swedish prostate cancer cohort to test differences in prostate cancer mortality (PCM) in men managed conservatively or by upfront treatment in CPG2 and 3 (which subdivides the intermediate-risk classification) vs CPG1 (low-risk). We then applied the CPG model to a contemporary UK AS cohort, which was optimally characterised at baseline for disease burden, to identify predictors of true prognostic progression. Results were re-tested in an external AS cohort from Spain. RESULTS In a UK cohort (n = 3659) the 10-year PCM was 2.3% in CPG1, 1.5%/3.5% in treated/untreated CPG2, and 1.9%/8.6% in treated/untreated CPG3. In the Swedish cohort (n = 27 942) the10-year PCM was 1.0% in CPG1, 2.2%/2.7% in treated/untreated CPG2, and 6.1%/12.5% in treated/untreated CPG3. We then tested using progression to CPG3 as a hard endpoint in a modern AS cohort (n = 133). During follow-up (median 3.5 years) only 6% (eight of 133) progressed to CPG3. Predictors of progression were a PSA density ≥0.15 ng/mL/mL and CPG2 at diagnosis. Progression occurred in 1%, 8% and 21% of men with neither factor, only one, or both, respectively. In an independent Spanish AS cohort (n = 143) the corresponding rates were 3%, 10% and 14%, respectively. CONCLUSION Using disease prognosis allows a rational approach to inclusion criteria, discontinuation triggers and risk-stratified management in AS.
Collapse
Affiliation(s)
- Vincent J Gnanapragasam
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, UK.,Department of Urology, Cambridge University Hospitals NHS Trust, Cambridge, UK.,Cambridge Urology Translational Research and Clinical Trials Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - David Thurtle
- Academic Urology Group, Department of Surgery, University of Cambridge, Cambridge, UK
| | | | | | - Ola Bratt
- Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Par Statin
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Kenneth Muir
- Department of Public Health and Epidemiology, University of Manchester, Manchester, UK
| | - Artitaya Lophatananon
- Department of Public Health and Epidemiology, University of Manchester, Manchester, UK
| |
Collapse
|
36
|
Mahran A, Mishra K, Bukavina L, Schumacher F, Quian A, Buzzy C, Nguyen CT, Gulani V, Ponsky LE. Observed racial disparity in the negative predictive value of multi-parametric MRI for the diagnosis for prostate cancer. Int Urol Nephrol 2019; 51:1343-1348. [PMID: 31049779 DOI: 10.1007/s11255-019-02158-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/20/2019] [Indexed: 12/31/2022]
|
37
|
Hambarde P, Talbar SN, Sable N, Mahajan A, Chavan SS, Thakur M. Radiomics for peripheral zone and intra-prostatic urethra segmentation in MR imaging. Biomed Signal Process Control 2019; 51:19-29. [DOI: 10.1016/j.bspc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
38
|
Extent and predictors of grade upgrading and downgrading in an Australian cohort according to the new prostate cancer grade groupings. Asian J Urol 2019; 6:321-329. [PMID: 31768317 PMCID: PMC6872773 DOI: 10.1016/j.ajur.2019.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/06/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Object To determine the extent and impact of upgrading and downgrading among men who underwent radical prostatectomy (RP) according to new grade groupings and to identify predictors of upgrading from biopsy grade Group I and II, and downgrading to grade Group I, in a community setting. Methods Study participants included 2279 men with non-metastatic prostate cancer diagnosed 2006–2015 who underwent prostatectomy, from the multi-institutional South Australia Prostate Cancer Clinical Outcomes Collaborative registry. Extent of up- or down-grading was assessed by comparing biopsy and prostatectomy grade groupings. Risk of biochemical recurrence (BCR) with upgrading was assessed using multivariable competing risk regression. Binomial logistic regression was used to identify pre-treatment predictors of upgrading from grade Groups I and II, and risk group reclassification among men with low risk disease. Results Upgrading occurred in 35% of cases, while downgrading occurred in 13% of cases. Sixty percent with grade Group I disease were upgraded following prostatectomy. Upgrading from grade Group I was associated with greater risk of BCR compared with concordant grading (Hazard ratio: 3.1, 95% confidence interval: 1.7–6.0). Older age, higher prostate-specific antigen levels (PSA), fewer biopsy cores, higher number of positive cores and more recent diagnosis predicted upgrading from grade Group I, while higher PSA and clinical stage predicted upgrading from grade Group II. No clinical risk factors for reclassification were identified. Conclusion Biopsy sampling errors may play an important role in upgrading from grade Group I. Improved clinical assessment of grade is needed to encourage greater uptake of active surveillance.
Collapse
|
39
|
Jensen C, Carl J, Boesen L, Langkilde NC, Østergaard LR. Assessment of prostate cancer prognostic Gleason grade group using zonal-specific features extracted from biparametric MRI using a KNN classifier. J Appl Clin Med Phys 2019; 20:146-153. [PMID: 30712281 PMCID: PMC6370983 DOI: 10.1002/acm2.12542] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose To automatically assess the aggressiveness of prostate cancer (PCa) lesions using zonal‐specific image features extracted from diffusion weighted imaging (DWI) and T2W MRI. Methods Region of interest was extracted from DWI (peripheral zone) and T2W MRI (transitional zone and anterior fibromuscular stroma) around the center of 112 PCa lesions from 99 patients. Image histogram and texture features, 38 in total, were used together with a k‐nearest neighbor classifier to classify lesions into their respective prognostic Grade Group (GG) (proposed by the International Society of Urological Pathology 2014 consensus conference). A semi‐exhaustive feature search was performed (1–6 features in each feature set) and validated using threefold stratified cross validation in a one‐versus‐rest classification setup. Results Classifying PCa lesions into GGs resulted in AUC of 0.87, 0.88, 0.96, 0.98, and 0.91 for GG1, GG2, GG1 + 2, GG3, and GG4 + 5 for the peripheral zone, respectively. The results for transitional zone and anterior fibromuscular stroma were AUC of 0.85, 0.89, 0.83, 0.94, and 0.86 for GG1, GG2, GG1 + 2, GG3, and GG4 + 5, respectively. CONCLUSION This study showed promising results with reasonable AUC values for classification of all GG indicating that zonal‐specific imaging features from DWI and T2W MRI can be used to differentiate between PCa lesions of various aggressiveness.
Collapse
Affiliation(s)
- Carina Jensen
- Department of Medical Physics, Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Jesper Carl
- Department of Oncology, Naestved Sygehus, Zealand University Hospital, Roskilde, Denmark
| | - Lars Boesen
- Department of Urology, Herlev Gentofte University Hospital, Herlev, Denmark
| | | | | |
Collapse
|
40
|
Barrett T, Lawrence EM, Priest AN, Warren AY, Gnanapragasam VJ, Gallagher FA, Sala E. Repeatability of diffusion-weighted MRI of the prostate using whole lesion ADC values, skew and histogram analysis. Eur J Radiol 2019; 110:22-29. [PMID: 30599864 DOI: 10.1016/j.ejrad.2018.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the repeatability of diffusion-weighted imaging parameter including ADC-derived histogram values in prostate cancer. METHODS 10 patients with prostate cancer were prospectively recruited to a retest cohort. 3 T diffusion-weighted MRI of the prostate was acquired consecutively with patient getting off the scanner between studies. Prostatectomy-histopathology defined tumour regions-of-interest were outlined on ADC maps and diffusion-weighted metrics including histograms were calculated. The coefficient of reproducibility (CoR) and Bland-Altman plots were used to assess repeatability. RESULTS 10th centile, 90th centile, and median ADC showed good repeatability with mean difference ranging from -0.005 to -0.025 × 103 mm2s-1, and CoR ranging from 0.271-0.294 × 103 mm2s-1 of scan 1 mean). Two measures of heterogeneity and simplified texture, IQR and mean local range, had only moderate repeatability. IQR had a mean difference of -0.032 × 103 mm2s-1 between scans with CoR 0.181 × 103 mm2s-1 (56% of scan 1 mean). Mean local range had a mean difference -0.008 × 103 mm2s-1 between scans (37% of scan 1 mean). Bland-Altman plots showed good repeatability for test and re-test analysis for median, percentile and mean range values. All ADC values had good reliability regardless of whether the tumour border was included in quantitative analysis. ADC histogram skew had poor repeatability, CoR 0.78 × 103 mm2s-1 (373% of scan 1 mean). CONCLUSION 10th and 90th centile ADC demonstrated sufficient repeatability for clinical use. However, more advanced measures of heterogeneity such as histogram skew, IQR, or mean local range may be limited by their repeatability.
Collapse
Affiliation(s)
- Tristan Barrett
- Department of Radiology, University of Cambridge, Cambridge, UK; Department of Radiology, Addenbrooke's Hospital, Cambridge, UK; CamPARI Clinic, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
| | - Edward M Lawrence
- Department of Radiology, University of Cambridge, Cambridge, UK; Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, United States of America
| | - Andrew N Priest
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Anne Y Warren
- CamPARI Clinic, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK; Department of Histopathology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Vincent J Gnanapragasam
- CamPARI Clinic, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK; Department of Urology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK; Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, UK; Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
41
|
Bryant RJ, Yang B, Philippou Y, Lam K, Obiakor M, Ayers J, Chiocchia V, Gleeson F, MacPherson R, Verrill C, Sooriakumaran P, Hamdy FC, Brewster SF. Does the introduction of prostate multiparametric magnetic resonance imaging into the active surveillance protocol for localized prostate cancer improve patient re-classification? BJU Int 2018; 122:794-800. [PMID: 29645347 DOI: 10.1111/bju.14248] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To determine whether replacement of protocol-driven repeat prostate biopsy (PB) with multiparametric magnetic resonance imaging (mpMRI) ± repeat targeted prostate biopsy (TB) when evaluating men on active surveillance (AS) for low-volume, low- to intermediate-risk prostate cancer (PCa) altered the likelihood of or time to treatment, or reduced the number of repeat biopsies required to trigger treatment. PATIENTS AND METHODS A total of 445 patients underwent AS in the period 2010-2016 at our institution, with a median (interquartile range [IQR]) follow-up of 2.4 (1.2-3.7) years. Up to 2014, patients followed a 'pre-2014' AS protocol, which incorporated PB, and subsequently, according to the 2014 National Institute for Health and Care Excellence (NICE) guidelines, patients followed a '2014-present' AS protocol that included mpMRI. We identified four groups of patients within the cohort: 'no mpMRI and no PB'; 'PB alone'; 'mpMRI ± TB'; and 'PB and mpMRI ± TB'. Kaplan-Meier plots and log-rank tests were used to compare groups. RESULTS Of 445 patients, 132 (30%) discontinued AS and underwent treatment intervention, with a median (IQR) time to treatment of 1.55 (0.71-2.4) years. The commonest trigger for treatment was PCa upgrading after mpMRI and TB (43/132 patients, 29%). No significant difference was observed in the time at which patients receiving a PB alone or receiving mpMRI ± TB discontinued AS to undergo treatment (median 1.9 vs 1.33 years; P = 0.747). Considering only those patients who underwent repeat biopsy, a greater proportion of patients receiving TB after mpMRI discontinued AS compared with those receiving PB alone (29/66 [44%] vs 32/87 [37%]; P = 0.003). On average, a single set of repeat biopsies was needed to trigger treatment regardless of whether this was a PB or TB. CONCLUSIONS Replacing a systematic PB with mpMRI ±TB as part of an AS protocol increased the likelihood of re-classifying patients on AS and identifying men with clinically significant disease requiring treatment. mpMRI ±TB as part of AS thereby represents a significant advance in the oncological safety of the AS protocol.
Collapse
Affiliation(s)
- Richard J Bryant
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Bob Yang
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Yiannis Philippou
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Karla Lam
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Maureen Obiakor
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jennifer Ayers
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Virginia Chiocchia
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Fergus Gleeson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ruth MacPherson
- Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Prasanna Sooriakumaran
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Department of Uro-Oncology, University College London Hospital NHS Foundation Trust, London, UK
| | - Freddie C Hamdy
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Simon F Brewster
- Department of Urology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
42
|
Joseph JV, Brasacchio R, Fung C, Reeder J, Bylund K, Sahasrabudhe D, Yeh SY, Ghazi A, Fultz P, Rubens D, Wu G, Singer E, Schwarz E, Mohile S, Mohler J, Theodorescu D, Lee YF, Okunieff P, McConkey D, Rashid H, Chang C, Fradet Y, Guru K, Kukreja J, Sufrin G, Lotan Y, Bailey H, Noyes K, Schwartz S, Rideout K, Bratslavsky G, Campbell SC, Derweesh I, Abrahamsson PA, Soloway M, Gomella L, Golijanin D, Svatek R, Frye T, Lerner S, Palapattu G, Wilding G, Droller M, Trump D. A Festschrift in Honor of Edward M. Messing, MD, FACS. Bladder Cancer 2018; 4:S1-S43. [PMID: 30443561 PMCID: PMC6226303 DOI: 10.3233/blc-189037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 12/02/2022]
Affiliation(s)
- Jean V. Joseph
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Chunkit Fung
- University of Rochester Medical Center, Rochester, NY, USA
| | - Jay Reeder
- University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin Bylund
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Shu Yuan Yeh
- University of Rochester Medical Center, Rochester, NY, USA
| | - Ahmed Ghazi
- University of Rochester Medical Center, Rochester, NY, USA
| | - Patrick Fultz
- University of Rochester Medical Center, Rochester, NY, USA
| | - Deborah Rubens
- University of Rochester Medical Center, Rochester, NY, USA
| | - Guan Wu
- University of Rochester Medical Center, Rochester, NY, USA
| | - Eric Singer
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Edward Schwarz
- University of Rochester Medical Center, Rochester, NY, USA
| | - Supriya Mohile
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | - Yi Fen Lee
- University of Rochester Medical Center, Rochester, NY, USA
| | - Paul Okunieff
- UF Health Proton Therapy Institute, Gainesville, FL, USA
| | - David McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Hani Rashid
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Yves Fradet
- CHU de Quebec-Hotel-Dieu de Quebec, Quebec, QC, Canada
| | | | | | - Gerald Sufrin
- State University of New York at Buffalo, Buffalo, NY, USA
| | - Yair Lotan
- UT Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Howard Bailey
- University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | - Kathy Rideout
- University of Rochester Medical Center, Rochester, NY, USA
| | | | - Steven C. Campbell
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | | - Leonard Gomella
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Robert Svatek
- UT Health Science Center San Antonio, San Antonio, TX, USA
| | - Thomas Frye
- University of Rochester Medical Center, Rochester, NY, USA
| | - Seth Lerner
- Baylor College of Medicine Medical Center, Houston, TX, USA
| | | | | | | | - Donald Trump
- Virginia Commonwealth University, Fairfax, VA, USA
| |
Collapse
|
43
|
Editorial Comment. J Urol 2018; 200:557-558. [DOI: 10.1016/j.juro.2018.03.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Chiong E, Murphy DG, Akaza H, Buchan NC, Chung BH, Kanesvaran R, Khochikar M, Letran J, Lojanapiwat B, Ng CF, Ong T, Pu YS, Saad M, Schubach K, Türkeri L, Umbas R, Le Chuyen V, Williams S, Ye DW, Davis ID. Management of patients with advanced prostate cancer in the Asia Pacific region: 'real-world' consideration of results from the Advanced Prostate Cancer Consensus Conference (APCCC) 2017. BJU Int 2018; 123:22-34. [PMID: 30019467 DOI: 10.1111/bju.14489] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The Asia Pacific Advanced Prostate Cancer Consensus Conference (APAC APCCC 2018) brought together 20 experts from 15 APAC countries to discuss the real-world application of consensus statements from the second APCCC held in St Gallen in 2017 (APCCC 2017). FINDINGS Differences in genetics, environment, lifestyle, diet and culture are all likely to influence the management of advanced prostate cancer in the APAC region when compared with the rest of the world. When considering the strong APCCC 2017 recommendation for the use of upfront docetaxel in metastatic castration-naïve prostate cancer, the panel noted possible increased toxicity in Asian men receiving docetaxel, which would affect this recommendation in the APAC region. Although androgen receptor-targeting agents appear to be well tolerated in Asian men with metastatic castration-resistant prostate cancer, access to these drugs is very limited for financial reasons across the region. The meeting highlighted that cost and access to contemporary treatments and technologies are key factors influencing therapeutic decision-making in the APAC region. Whilst lower cost/older treatments and technologies may be an option, issues of culture and patient or physician preference mean, these may not always be acceptable. Although generic products can reduce cost in some countries, costs may still be prohibitive for lower-income patients or communities. The panellists noted the opportunity for a coordinated approach across the APAC region to address issues of access and cost. Developments in technologies and treatments are presenting new opportunities for the diagnosis and treatment of advanced prostate cancer. Differences in genetics and epidemiology affect the side-effect profiles of some drugs and influence prescribing. CONCLUSIONS As the field continues to evolve, collaboration across the APAC region will be important to facilitate relevant research and collection and appraisal of data relevant to APAC populations. In the meantime, the APAC APCCC 2018 meeting highlighted the critical importance of a multidisciplinary team-based approach to treatment planning and care, delivery of best-practice care by clinicians with appropriate expertise, and the importance of patient information and support for informed patient choice.
Collapse
Affiliation(s)
- Edmund Chiong
- Department of Urology, National University Hospital, National University Health System Singapore, Singapore City, Singapore
| | - Declan G Murphy
- Division of Cancer Surgery, Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Hideyuki Akaza
- Strategic Investigation on Comprehensive Cancer Network, The University of Tokyo, Tokyo, Japan
| | - Nicholas C Buchan
- Canterbury Urology Research Trust, Christchurch, New Zealand.,Canterbury District Health Board, Christchurch, New Zealand
| | - Byung Ha Chung
- Department of Urology, Yonsei University College of Medicine, Seoul, Korea
| | - Ravindran Kanesvaran
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore City, Singapore
| | | | - Jason Letran
- Section of Urology, Department of Surgery, University of Santo Tomas, Manila, Philippines
| | - Bannakij Lojanapiwat
- Division of Urology, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chi-Fai Ng
- Department of Surgery, SH Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Teng Ong
- Division of Urology, Department of Surgery, University of Malaya, Kuala Lumpur, Malaysia
| | - Yeong-Shiau Pu
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Marniza Saad
- Department of Clinical Oncology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kathryn Schubach
- Australian and New Zealand Urology Nurses (ANZUNS), Melbourne, VIC, Australia
| | - Levent Türkeri
- Department of Urology, Acıbadem University, Istanbul, Turkey
| | - Rainy Umbas
- Department of Urology, University of Indonesia, Jakarta, Indonesia
| | - Vu Le Chuyen
- Department of Urology, Binh dan Hospital, Ho Chi Minh City, Vietnam
| | - Scott Williams
- Division of Radiation Oncology, Peter MacCallum Cancer Centre Melbourne, Melbourne, VIC, Australia.,ANZUP Cancer Trials Group, Sydney, NSW, Australia
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | -
- Lifehouse, Camperdown, Sydney, NSW, Australia
| | - Ian D Davis
- Monash University, Melbourne, VIC, Australia.,Eastern Health, Melbourne, VIC, Australia.,ANZUP Cancer Trials Group, Sydney, NSW, Australia
| |
Collapse
|
45
|
Borque-Fernando Á, Rubio-Briones J, Esteban LM, Dong Y, Calatrava A, Gómez-Ferrer Á, Gómez-Gómez E, Gil Fabra JM, Rodríguez-García N, López González PÁ, García-Rodríguez J, Rodrigo-Aliaga M, Herrera-Imbroda B, Soto-Villalba J, Martínez-Breijo S, Hernández-Cañas V, Soto-Poveda AM, Sánchez-Rodríguez C, Carrillo-George C, Hernández-Martínez YE, Okrongly D. Role of the 4Kscore test as a predictor of reclassification in prostate cancer active surveillance. Prostate Cancer Prostatic Dis 2018; 22:84-90. [PMID: 30108375 DOI: 10.1038/s41391-018-0074-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/30/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Management of active surveillance (AS) in low-risk prostate cancer (PCa) patients could be improved with new biomarkers, such as the 4Kscore test. We analyze its ability to predict tumor reclassification by upgrading at the confirmatory biopsy at 6 months. METHODS Observational, prospective, blinded, and non-randomized study, within the Spanish National Registry on AS (AEU/PIEM/2014/0001; NCT02865330) with 181 patients included after initial Bx and inclusion criteria: PSA ≤10 ng/mL, cT1c-T2a, Grade group 1, ≤2 cores, and ≤5 mm/50% length core involved. Central pathological review of initial and confirmatory Bx was performed on all biopsy specimens. Plasma was collected 6 months after initial Bx and just before confirmatory Bx to determine 4Kscore result. In order to predict reclassification defined as Grade group ≥2, we analyzed 4Kscore, percent free to total (%f/t) PSA ratio, prostate volume, PSA density, family history, body mass index, initial Bx, total cores, initial Bx positive cores, initial Bx % of positive cores, initial Bx maximum cancer core length and initial Bx cancer % involvement. Wilcoxon rank-sum test, non-parametric trend test or Fisher's exact test, as appropriate established differences between groups of reclassification. RESULTS A total of 137 patients met inclusion criteria. Eighteen patients (13.1%) were reclassified at confirmatory Bx. The %f/t PSA ratio and 4Kscore showed differences between the groups of reclassification (Yes/No). Using 7.5% as cutoff for the 4Kscore, we found a sensitivity of 89% and a specificity of 29%, with no reclassifications to Grade group 3 for patients with 4Kscore below 7.5% and 2 (6%) missed Grade group 2 reclassified patients. Using this threshold value there is a biopsy reduction of 27%. Additionally, 4Kscore was also associated with changes in tumor volume. CONCLUSIONS Our preliminary findings suggest that the 4Kscore may be a useful tool in the decision-making process to perform a confirmatory Bx in active surveillance management.
Collapse
Affiliation(s)
- Ángel Borque-Fernando
- Department of Urology, Hospital Universitario Miguel Servet. IIS Aragon., Zaragoza, Spain.
| | - José Rubio-Briones
- Department of Urology, Instituto Valenciano de Oncología, Valencia, Spain
| | - Luis M Esteban
- Escuela Universitaria Politécnica La Almunia, Universidad de Zaragoza, Zaragoza, Spain
| | - Yan Dong
- OPKO Diagnostics, Woburn, MA, USA
| | - Ana Calatrava
- Department of Pathology, Instituto Valenciano de Oncología, Valencia, Spain
| | | | | | - Jesús M Gil Fabra
- Department of Urology, Hospital Universitario Miguel Servet. IIS Aragon., Zaragoza, Spain
| | | | | | | | - Miguel Rodrigo-Aliaga
- Department of Urology, Hospital General Universitario de Castellón, Castellón de La Plana, Spain
| | | | - Juan Soto-Villalba
- Department of Urology, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Sara Martínez-Breijo
- Department of Urology, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Krishna S, Schieda N, McInnes MDF, Flood TA, Thornhill RE. Diagnosis of transition zone prostate cancer using T2-weighted (T2W) MRI: comparison of subjective features and quantitative shape analysis. Eur Radiol 2018; 29:1133-1143. [DOI: 10.1007/s00330-018-5664-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/03/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
|
47
|
Barrett T, Riemer F, McLean MA, Kaggie J, Robb F, Tropp JS, Warren A, Bratt O, Shah N, Gnanapragasam VJ, Gilbert FJ, Graves MJ, Gallagher FA. Quantification of Total and Intracellular Sodium Concentration in Primary Prostate Cancer and Adjacent Normal Prostate Tissue With Magnetic Resonance Imaging. Invest Radiol 2018; 53:450-456. [PMID: 29969108 DOI: 10.1097/rli.0000000000000470] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES The aim of this study was to measure the tissue sodium concentration (TSC) within tumors and normal prostate in prostate cancer patients, using prostatectomy as pathological criterion standard. MATERIALS AND METHODS Fifteen patients with biopsy-proven, magnetic resonance imaging (MRI) visible, intermediate- or high-risk prostate cancer underwent a dedicated research sodium MRI, before treatment with radical prostatectomy. All participants signed written informed consent for this institutional review board-approved prospective study. 3 T MRI acquired using a dedicated multinuclear clamshell transmit coil and a bespoke dual-tuned H/Na endorectal receive coil, with intracellular-sodium imaging acquired using inversion recovery sequences; a phantom-based calibration enabled quantitative sodium maps. Regions of interest were defined for normal peripheral zone (PZ) and transition zone (TZ) and tumor regions, referenced from histopathology maps. A 1-way analysis of variance compared normal and tumor tissue, using Tukey test for multiple comparisons. RESULTS Two patients were excluded due to artifact; software error resulted in 1 further intracellular-sodium failure. Fifteen tumors were detected (13 PZ, 2 TZ) in 13 patients: Gleason 3 + 3 (n = 1), 3 + 4 (6), 3 + 5 (2), 4 + 3 (5), 4 + 5 (1). Both mean TSC and intracellular-sodium were significantly higher in normal PZ (39.2 and 17.5 mmol/L, respectively) versus normal TZ (32.9 and 14.7; P < 0.001 and P = 0.02). Mean TSC in PZ tumor (45.0 mmol/L) was significantly higher than both normal PZ and TZ tissue (P < 0.001). Intracellular sodium in PZ tumors (19.9 mmol/L) was significantly higher than normal TZ (P < 0.001) but not normal PZ (P = 0.05). Mean TSC and intracellular-sodium was lower in Gleason ≤3 + 4 tumors (44.4 and 19.5 mmol/L, respectively) versus ≥4 + 3 (45.6 and 20.2), but this was not significant (P = 0.19 and P = 0.29). CONCLUSIONS Tissue sodium concentration and intracellular sodium concentrations of prostate tumors were quantified, with PZ tumors demonstrating a significantly increased TSC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ola Bratt
- Urology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom
| | - Nimish Shah
- Urology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | |
Collapse
|
48
|
Outcomes of Magnetic Resonance Imaging–Ultrasound Fusion Prostate Biopsy of PI-RADS 3, 4, and 5 Lesions. Can Assoc Radiol J 2018; 69:303-310. [DOI: 10.1016/j.carj.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/16/2018] [Accepted: 03/05/2018] [Indexed: 01/22/2023] Open
|
49
|
Thurtle D, Barrett T, Thankappan-Nair V, Koo B, Warren A, Kastner C, Saeb-Parsy K, Kimberley-Duffell J, Gnanapragasam VJ. Progression and treatment rates using an active surveillance protocol incorporating image-guided baseline biopsies and multiparametric magnetic resonance imaging monitoring for men with favourable-risk prostate cancer. BJU Int 2018; 122:59-65. [PMID: 29438586 DOI: 10.1111/bju.14166] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To assess early outcomes since the introduction of an active surveillance (AS) protocol incorporating multiparametric magnetic resonance imaging (mpMRI)-guided baseline biopsies and image-based surveillance. PATIENTS AND METHODS A new AS protocol mandating image-guided baseline biopsies, annual mpMRI and 3-monthly prostate-specific antigen (PSA) testing, but which retained protocol re-biopsies, was tested. Pathological progression, treatment conversion and triggers for non-protocol biopsy were recorded prospectively. RESULTS Data from 157 men enrolled in the AS protocol (median age 64 years, PSA 6.8 ng/mL, follow-up 39 months) were interrogated. A total of 12 men (7.6%) left the AS programme by choice. Of the 145 men who remained, 104 had re-biopsies either triggered by a rise in PSA level, change in mpMRI findings or by protocol. Overall, 23 men (15.9%) experienced disease progression; pathological changes were observed in 20 men and changes in imaging results were observed in three men. Of these 23 men, 17 switched to treatment, giving a conversion rate of 11.7% (<4% per year). Of the 20 men with pathological progression, this was detected in four of them after a PSA increase triggered a re-biopsy, while in 10 men progression was detected after an mpMRI change. Progression was detected in six men, however, solely after a protocol re-biopsy without prior PSA or mpMRI changes. Using PSA and mpMRI changes alone to detect progression was found to have a sensitivity and specificity of 70.0% and 81.7%, respectively. CONCLUSION Our AS protocol, with thorough baseline assessment and imaging-based surveillance, showed low rates of progression and treatment conversion. Changes in mpMRI findings were the principle trigger for detecting progression by imaging alone or pathologically; however, per protocol re-biopsy still detected a significant number of pathological progressions without mpMRI or PSA changes.
Collapse
Affiliation(s)
- David Thurtle
- Academic Urology Group, University of Cambridge, Cambridge, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tristan Barrett
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
| | - Vineetha Thankappan-Nair
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
| | - Brendan Koo
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
| | - Anne Warren
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
- Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christof Kastner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
| | - Kasra Saeb-Parsy
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
| | - Jenna Kimberley-Duffell
- Cambridge Urology, Translational Research and Clinical Trials, University of Cambridge, Cambridge, UK
| | - Vincent J Gnanapragasam
- Academic Urology Group, University of Cambridge, Cambridge, UK
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- CamPARI-Clinic Cambridge Prostate Cancer Service, University of Cambridge, Cambridge, UK
- Cambridge Urology, Translational Research and Clinical Trials, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Is Prostate Imaging Reporting and Data System Version 2 Sufficiently Discovering Clinically Significant Prostate Cancer? Per-Lesion Radiology-Pathology Correlation Study. AJR Am J Roentgenol 2018; 211:114-120. [DOI: 10.2214/ajr.17.18684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|