1
|
Mirshahvalad SA, Beheshti M, Metser U, Jiang DM, Wong R, Alrekhais I, Veit-Haibach P. Theranostic: A Primer for Radiologists. Can Assoc Radiol J 2025:8465371251338032. [PMID: 40405808 DOI: 10.1177/08465371251338032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025] Open
Abstract
Theranostic represents a transformative approach in precision medicine, integrating diagnostic imaging with targeted radiopharmaceutical therapy to enhance individualized disease management. Rooted in nuclear medicine, this approach uses molecular targeting agents labelled with diagnostic radioisotopes for imaging and therapeutic radioisotopes for treatment, ensuring a seamless transition from diagnosis to therapy. The field has evolved significantly in the last decade, with prostate-specific membrane antigen (PSMA)-targeted radioligand therapy transforming prostate cancer patient management and somatostatin receptor (SSTR)-targeted agents revolutionizing neuroendocrine tumour (NET) treatment. Considering its interdisciplinary nature, collaboration between nuclear medicine specialists, oncologists, radiologists, and other healthcare professionals is critical to refining clinical applications and improving patient outcomes. As prominent members of the theranostic team, radiologists play a pivotal role, from patient selection and imaging-based eligibility assessment to response evaluation and long-term monitoring. In this regard, advanced imaging modalities facilitate the precise evaluation of disease characteristics, guiding treatment decisions. Hence, as theranostics becomes increasingly integrated into patient management, radiologists face the need to be well-versed in both the technical aspects and clinical implications. In this review, we aimed to provide a primer for radiologists to gain a general insight into the theranostic field and its basic principles.
Collapse
Affiliation(s)
- Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Ur Metser
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Di Maria Jiang
- University of Toronto, Toronto, ON, Canada
- Division of Hematology and Medical Oncology, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Rebecca Wong
- University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ibrahim Alrekhais
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Joint Department of Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Buchalska B, Solnik M, Maciejewski K, Fudalej M, Deptała A, Badowska-Kozakiewicz A. Neuroendocrine Neoplasms of the Lungs, Thyroid, and Thymus. Biomedicines 2025; 13:1028. [PMID: 40426858 PMCID: PMC12109128 DOI: 10.3390/biomedicines13051028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Neuroendocrine neoplasms (NENs) comprise a group of tumours that can develop in various internal organs, but in this review, we will describe only those arising in the lungs, thyroid, and thymus. Pulmonary neuroendocrine neoplasms (pulmonary NENs) account for approximately 25% of all lung cancers. They are classified into four groups of tumours: typical carcinoids (TCs), atypical carcinoids (ACs), small cell lung carcinoma, and large cell lung carcinoma. This review focuses on TC and AC. The treatment consists mainly of radiotherapy, chemotherapy, and surgical resection, but novel drugs like atezolizumab are also utilised. The most common neuroendocrine neoplasm of the thyroid gland is medullary thyroid carcinoma (MTC), which commonly possesses RET protooncogene mutations. MTC is treated by a total thyroidectomy. Recently, tyrosine kinase inhibitors (TKIs) have emerged as an effective treatment option for patients with advanced MTC. Neuroendocrine tumours of the thymus (NETTs) are also being treated with a radical surgery.
Collapse
Affiliation(s)
- Barbara Buchalska
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (B.B.); (M.S.); (K.M.)
| | - Małgorzata Solnik
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (B.B.); (M.S.); (K.M.)
| | - Karol Maciejewski
- Students’ Scientific Organization of Cancer Cell Biology, Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland; (B.B.); (M.S.); (K.M.)
| | - Marta Fudalej
- Department Oncology Propaedeutics, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.F.); (A.D.)
| | - Andrzej Deptała
- Department Oncology Propaedeutics, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.F.); (A.D.)
| | - Anna Badowska-Kozakiewicz
- Department Oncology Propaedeutics, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.F.); (A.D.)
| |
Collapse
|
3
|
Rehman IA, Gunderman RB. Theranostics: A primer for medical students and residents. Curr Probl Diagn Radiol 2025:S0363-0188(25)00087-8. [PMID: 40280784 DOI: 10.1067/j.cpradiol.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
A key component of the introduction of any medical innovation is education. Simply put, health professionals not involved in such an innovation's development need to learn about it, and such education needs to be tailored to the needs of different learning communities, including those who will someday incorporate it into the care of their patients and those who will receive queries about it from patients and colleagues. Among such key groups are medical students and residents, and one such promising innovation is theranostics, a burgeoning field whose name is a portmanteau of therapeutics and diagnostics that combines targeted therapeutics with molecular imaging to deliver individualized care. The field is sufficiently new that it is not included in the curricula of many medical schools and residency programs, yet physicians in training need a basic understanding of its current and projected future role in healthcare. This article serves as such an introduction.
Collapse
Affiliation(s)
- Ibrahim A Rehman
- Department of Radiology, Indiana University, 702 North Barnhill Drive, Room 1053, Indianapolis, IN 46202, USA
| | - Richard B Gunderman
- Department of Radiology, Indiana University, 702 North Barnhill Drive, Room 1053, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Satpati D. Cancer Targeting Radiopeptidomimetics in Molecular Nuclear Medicine. Mol Pharm 2025. [PMID: 40078059 DOI: 10.1021/acs.molpharmaceut.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Peptides are highly receptor-affine molecules exhibiting suitable pharmacokinetics. Additionally, low-cost production, simple protocols allowing easy modifications, and tolerance toward harsh reaction conditions make peptides ideal ligands for preparation of radiopharmaceuticals for cancer detection and treatment. However, natural peptides being substrates for enzymes are susceptible to proteolysis, which limits the in vivo lifetime and the target uptake. Therefore, the majority of peptides are not able to progress beyond preclinical research. Advancement of peptides for clinical analysis needs modification to instill improved features. Continuous increase and further expected rise in cancer cases in the next decade require development of more disease-directed and promising radiopharmaceuticals. Redesigned peptide, mimicking the original peptide with similar or improved affinity and high metabolic stability, shall have significant edge. This review outlines the design of peptidomimetics by incorporation of D-amino acids (inverso); reversal of D-amino acid sequence (retro-inverso), and reversal of L-amino acid sequence (retro). Clinically successful radiopeptidomimetics prepared using the three approaches have been elaborated to elucidate the important role of peptidomimetics in cancer management.
Collapse
Affiliation(s)
- Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
5
|
Lorente JS, Sokolov AV, Ferguson G, Schiöth HB, Hauser AS, Gloriam DE. GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov 2025:10.1038/s41573-025-01139-y. [PMID: 40033110 DOI: 10.1038/s41573-025-01139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
G protein-coupled receptors (GPCRs) form one of the largest drug target families, reflecting their involvement in numerous pathophysiological processes. In this Review, we analyse drug discovery trends for the GPCR superfamily, covering compounds, targets and indications that have reached regulatory approval or that are being investigated in clinical trials. We find that there are 516 approved drugs targeting GPCRs, making up 36% of all approved drugs. These drugs act on 121 GPCR targets, one-third of all non-sensory GPCRs. Furthermore, 337 agents targeting 133 GPCRs, including 30 novel targets, are being investigated in clinical trials. Notably, 165 of these agents are approved drugs being tested for additional indications and novel agents are increasingly allosteric modulators and biologics. Remarkably, diabetes and obesity drugs targeting GPCRs had sales of nearly US $30 billion in 2023 and the numbers of clinical trials for GPCR modulators in the metabolic diseases, oncology and immunology areas are increasing strongly. Finally, we highlight the potential of untapped target-disease associations and pathway-biased signalling. Overall, this Review provides an up-to-date reference for the drugged and potentially druggable GPCRome to inform future GPCR drug discovery and development.
Collapse
Affiliation(s)
- Javier Sánchez Lorente
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
| | - Gavin Ferguson
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- ALPX S.A.S., Grenoble, France
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Marshall CH, Antonarakis ES, Patnaik MM. Radiotherapeutics, clonal hematopoiesis, and risk of hematologic malignancies: The good, the bad, the ugly. Blood Rev 2025; 70:101269. [PMID: 39864960 DOI: 10.1016/j.blre.2025.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
While radiotherapeutics have demonstrated significant clinical benefit across multiple cancer types including thyroid cancer, neuroendocrine tumors, and prostate cancer, hematological toxicities can be frequent and challenging. It remains unknown to what extent the hematologic toxicity is driven by clonal processes that preexist and are selected for by treatment induced selection pressures. In this review, we discuss the background leading to the adoption of radiotherapeutics in the treatment of solid tumor malignancies, the risk of hematologic toxicities and myeloid neoplasms and the evidence pointing to potential precursor lesions that may predispose patients to hematologic toxicities. Additionally, we discuss how prevalent clonal hematopoiesis is among patients with solid tumor malignancies and suggest workflows for patients with cytopenias or clonal hematopoiesis who are receiving or have received radiotherapeutic agents.
Collapse
Affiliation(s)
- Catherine H Marshall
- Johns Hopkins School of Medicine, 201 N Broadway, Box 7, Baltimore, MD 21287, United States of America.
| | - Emmanuel S Antonarakis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States of America.
| | - Mrinal M Patnaik
- Mayo Clinic, Division of Hematology, Department of Medicine, 200 1(st) St SW, Rochester, MN 55905, United States of America.
| |
Collapse
|
7
|
Mench A, Winters C, Mittra E, Szidonya L, Hess C, Barbon D, Mallak N. Navigating Radiation Safety After Radiopharmaceutical Therapies: Proposed Workflow and Essential Guidelines for Nonspecialists. J Nucl Med 2025:jnumed.124.268522. [PMID: 40015922 DOI: 10.2967/jnumed.124.268522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
With the increasing use of radiopharmaceutical therapies, there is a critical need to appropriately inform health care professionals (HCPs) who are unfamiliar with these therapies about the radiation safety precautions required when managing recently treated patients. Clear and easily accessible instructions are essential for minimizing radiation exposure to medical staff and simultaneously reducing fear of interacting with a radioactive patient, as these factors can impact the delivery of adequate and timely medical care. In this paper, we present a workflow designed to provide clear guidelines and safety protocols for HCPs who may encounter postradiopharmaceutical therapy patients during urgent medical visits or hospital admissions. This workflow consists of 2 key strategies: an electronic medical record flag system and a physical wristband that alerts the HCP that the patient may be radioactive and includes a link to a website with detailed information. These tools ensure that HCPs who encounter these patients will have immediate access to essential radiation safety information, thereby safeguarding staff and maintaining the continuity of patient care.
Collapse
Affiliation(s)
- Anna Mench
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon; and
| | - Celeste Winters
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon; and
| | - Erik Mittra
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon; and
| | - Laszlo Szidonya
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon; and
| | - Catherine Hess
- Environmental Health and Safety, Oregon Health & Science University, Portland, Oregon
| | - Dennis Barbon
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon; and
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon; and
| |
Collapse
|
8
|
Xiao N, Zhu S, Liu H, Li L, Shi L. Treatment and management of duodenal gangliocytic paraganglioma: A case report. Exp Ther Med 2024; 28:435. [PMID: 39355522 PMCID: PMC11443592 DOI: 10.3892/etm.2024.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/15/2024] [Indexed: 10/03/2024] Open
Abstract
Gangliocytic paraganglioma (GP) is a rare neuroendocrine tumor primarily found in the duodenum, most commonly in the second and third sections of the duodenum. Diagnosis of GP is based on its distinctive histopathological characteristics, which include three types of tumor cells in varying proportions: i) Epithelioid, ii) spindle-like and iii) ganglion-shaped cells. The distribution of the three tumor cell components varies from case to case and a patient may be easily misdiagnosed if one of the components is predominant. Endoscopic submucosal dissection (ESD) or surgical resection is the ideal treatment for duodenal GP (DGP); however, biotherapy, nuclide therapy, chemotherapy, targeted therapy and immunotherapy can be selected individually for patients with postoperative recurrence, metastasis or not suitable for surgery. In the present study, a male patient with DGP experienced recurrence after ESD surgery, and so received octreotide (Novartis; 30 mg/28 days) for 12 consecutive cycles. The patient had no further symptoms of gastrointestinal bleeding and no new lesions or metastases were observed after 47 months of follow-up.
Collapse
Affiliation(s)
- Na Xiao
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Sumin Zhu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Huan Liu
- Department of Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, 221002, P.R. China
| | - Longfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Lihong Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
9
|
Ebner R, Lohse A, Fabritius MP, Rübenthaler J, Wängler C, Wängler B, Schirrmacher R, Völter F, Schmid HP, Unterrainer LM, Öcal O, Hinterberger A, Spitzweg C, Auernhammer CJ, Geyer T, Ricke J, Bartenstein P, Holzgreve A, Grawe F. Validation of the standardization framework SSTR-RADS 1.0 for neuroendocrine tumors using the novel SSTR‑targeting peptide [ 18F]SiTATE. Eur Radiol 2024; 34:7222-7232. [PMID: 38769164 PMCID: PMC11519286 DOI: 10.1007/s00330-024-10788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/27/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVES Somatostatin receptor positron emission tomography/computed tomography (SSTR-PET/CT) using [68Ga]-labeled tracers is a widely used imaging modality for neuroendocrine tumors (NET). Recently, [18F]SiTATE, a SiFAlin tagged [Tyr3]-octreotate (TATE) PET tracer, has shown great potential due to favorable clinical characteristics. We aimed to evaluate the reproducibility of Somatostatin Receptor-Reporting and Data System 1.0 (SSTR-RADS 1.0) for structured interpretation and treatment planning of NET using [18F]SiTATE. METHODS Four readers assessed [18F]SiTATE-PET/CT of 95 patients according to the SSTR-RADS 1.0 criteria at two different time points. Each reader evaluated up to five target lesions per scan. The overall scan score and the decision on peptide receptor radionuclide therapy (PRRT) were considered. Inter- and intra-reader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS The ICC analysis on the inter-reader agreement using SSTR-RADS 1.0 for identical target lesions (ICC ≥ 85%), overall scan score (ICC ≥ 90%), and the decision to recommend PRRT (ICC ≥ 85%) showed excellent agreement. However, significant differences were observed in recommending PRRT among experienced readers (ER) (p = 0.020) and inexperienced readers (IR) (p = 0.004). Compartment-based analysis demonstrated good to excellent inter-reader agreement for most organs (ICC ≥ 74%), except for lymph nodes (ICC ≥ 53%). CONCLUSION SSTR-RADS 1.0 represents a highly reproducible and consistent framework system for stratifying SSTR-targeted PET/CT scans, even using the novel SSTR-ligand [18F]SiTATE. Some inter-reader variability was observed regarding the evaluation of uptake intensity prior to PRRT as well as compartment scoring of lymph nodes, indicating that those categories require special attention during further clinical validation and might be refined in a future SSTR-RADS version 1.1. CLINICAL RELEVANCE STATEMENT SSTR-RADS 1.0 is a consistent framework for categorizing somatostatin receptor-targeted PET/CT scans when using [18F]SiTATE. The framework serves as a valuable tool for facilitating and improving the management of patients with NET. KEY POINTS SSTR-RADS 1.0 is a valuable tool for managing patients with NET. SSTR-RADS 1.0 categorizes patients with showing strong agreement across diverse reader expertise. As an alternative to [68Ga]-labeled PET/CT in neuroendocrine tumor imaging, SSTR-RADS 1.0 reliably classifies [18F]SiTATE-PET/CT.
Collapse
Affiliation(s)
- R Ebner
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany.
| | - A Lohse
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - M P Fabritius
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - J Rübenthaler
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
| | - C Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - B Wängler
- Biomedical Chemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
- Molecular Imaging and Radiochemistry, Clinic of Radiology and Nuclear Medicine, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - R Schirrmacher
- Department of Oncology, Division of Oncological Imaging, University of Alberta, Edmonton, Canada
| | - F Völter
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - H P Schmid
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - L M Unterrainer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - O Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - A Hinterberger
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
| | - C Spitzweg
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - C J Auernhammer
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - T Geyer
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - J Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
| | - P Bartenstein
- Interdisciplinary Center of Neuroendocrine Tumors of the GastroEnteroPancreatic System (GEPNET-KUM, ENETS certified Center of Excellence), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - A Holzgreve
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - F Grawe
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Heidelberg, Germany
- Department of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
10
|
McNeil BL, Ramogida CF. From cyclotrons to chromatography and beyond: a guide to the production and purification of theranostic radiometals. Chem Soc Rev 2024; 53:10409-10449. [PMID: 39360601 DOI: 10.1039/d4cs00802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Recent clinical success with metal-based radiopharmaceuticals has sparked an interest in the potential of these drugs for personalized medicine. Although often overlooked, the success and global impact of nuclear medicine is contingent upon the purity and availability of medical isotopes, commonly referred to as radiometals. For nuclear medicine to reach its true potential and change patient lives, novel production and purification techniques that increase inventory of radiometals are desperately needed. This tutorial review serves as a resource for those both new and experienced in nuclear medicine by providing a detailed explanation of the foundations for the production and purification of radiometals, stemming from nuclear physics, analytical chemistry, and so many other fields, all in one document. The fundamental science behind targetry, particle accelerators, nuclear reactors, nuclear reactions, and radiochemical separation are presented in the context of the field. Finally, a summary of the latest breakthroughs and a critical discussion of the threats and future potential of the most utilized radiometals is also included. With greater understanding of the fundamentals, fellow scientists will be able to better interpret the literature, identify knowledge gaps or problems and ultimately invent new production and purification pathways to increase the global availability of medical isotopes.
Collapse
Affiliation(s)
- Brooke L McNeil
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| |
Collapse
|
11
|
Behmanesh B, Abdi-Saray A, Deevband MR, Amoui M, Haghighatkhah HR. Radiomics Analysis for Clinical Decision Support in 177Lu-DOTATATE Therapy of Metastatic Neuroendocrine Tumors using CT Images. J Biomed Phys Eng 2024; 14:423-434. [PMID: 39391275 PMCID: PMC11462270 DOI: 10.31661/jbpe.v0i0.2112-1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 10/12/2024]
Abstract
Background Radiomics is the computation of quantitative image features extracted from medical imaging modalities to help clinical decision support systems, which could ultimately meliorate personalized management based on individual characteristics. Objective This study aimed to create a predictive model of response to peptide receptor radionuclide therapy (PRRT) using radiomics computed tomography (CT) images to decrease the dose for patients if they are not a candidate for treatment. Material and Methods In the current retrospective study, 34 patients with neuroendocrine tumors whose disease is clinically confirmed participated. Effective factors in the treatment were selected by eXtreme gradient boosting (XGBoost) and minimum redundancy maximum relevance (mRMR). Classifiers of decision trees (DT), random forest (RF), and K-nearest neighbors (KNN) with selected quantitative and clinical features were used for modeling. A confusion matrix was used to evaluate the performance of the model. Results Out of 866 quantitative and clinical features, nine features with the XGBoost method and ten features with the mRMR pattern were selected that had the most relevance in predicting response to treatment. Selected features of the XGBoost method in integration with the RF classifier provided the highest accuracy (accuracy: 89%), and features selected by the mRMR method in combination with the RF classifier showed satisfactory performance (accuracy: 74%). Conclusion This exploratory analysis shows that radiomic features with high accuracy can effectively predict response to personalize treatment.
Collapse
Affiliation(s)
- Baharak Behmanesh
- Department of Nuclear Physics Faculty of Science, Urmia University, Oroumieh, Iran
| | - Akbar Abdi-Saray
- Department of Nuclear Physics Faculty of Science, Urmia University, Oroumieh, Iran
| | - Mohammad Reza Deevband
- Department of Biomedical Engineering and Medical Physics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahasti Amoui
- Department of Nuclear Medicine, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Haghighatkhah
- Department of Radiology and Medical Imaging Center, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Liu Y, Wei Z. Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. CHEM REC 2024; 24:e202400100. [PMID: 39235547 DOI: 10.1002/tcr.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Indexed: 09/06/2024]
Abstract
In this account, we will highlight recent progress in the development of multichannel lanthanide-doped (MC-Ln) nanoprobes for highly efficient serodiagnosis and therapy, with a particular focus on our own work. First, we first provide a classification of the types of MC-Ln nanoprobes based on the contained type and number of signals. The merits of different types of nanoprobes and the reason using lanthanides are elucidated. Then, we provide an overview of the current uses of MC-Ln nanoprobes in serodiagnosis and therapy, focusing on the strategic exploration to improve the diagnostic and therapeutic performance from different perspectives. Finally, we present a prospective outlook on the future development and potential issues of next-generation MC-Ln nanoprobes. We hope that this timely account will update our understanding of MC-Ln and similar nanoprobes for bioapplications and provide helpful references for the state-of-the-art tools for serodiagnosis and therapy.
Collapse
Affiliation(s)
- Yuxin Liu
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Zheng Wei
- Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Sozio SJ, Raynor W, Becker MC, Yudd A, Kempf JS. Carcinoid crisis in Lutetium-177-Dotatate therapy of neuroendocrine tumors: an overview of pathophysiology, risk factors, recognition, and treatment. EJNMMI REPORTS 2024; 8:29. [PMID: 39266864 PMCID: PMC11393224 DOI: 10.1186/s41824-024-00216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/01/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE Lutetium-177-Dotatate (Lutathera®) is a combined radionuclide-peptide that is FDA-approved for the treatment of well-differentiated, somatostatin receptor-positive, gastroenteropancreatic neuroendocrine tumors. Carcinoid crisis is a rare, but potentially life-threatening risk of this radiopharmaceutical, of which prompt recognition and treatment is essential to reducing morbidity. This manuscript provides an overview of the topic to promote awareness of this adverse event, with emphasis on early recognition and management. In addition, we present our institution's experience with Lutetium-177-Dotatate-associated complications across a five-year period. METHODS A literature review of lutetium-177-dotatate therapy and its potential implication of carcinoid crisis was performed. Additionally, a review of our institution's experience is presented. RESULTS The incidence of carcinoid crisis induced by Lutetium-177-Dotatate therapy is estimated to range between 1 and 2% of treatment recipients. Those who have tumors located within the midgut, higher tumor burden, and the presence of metastasis have an increased risk of developing carcinoid crisis, among other risk factors. Carcinoid crisis is most often encountered within 12-48 h of receiving the first treatment dose, with the most common symptoms being nausea/vomiting, flushing, and diarrhea. CONCLUSION Carcinoid crisis is a rare but potentially life-threatening complication of Lutetium-177-Dotatate therapy. Knowledge of risk factors and prompt recognition of symptoms is essential to successful treatment, with early initiation of intravenous octreotide serving a critical step in reducing morbidity of this adverse event.
Collapse
Affiliation(s)
- Stephen J Sozio
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - William Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Murray C Becker
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Anthony Yudd
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jeffrey S Kempf
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
14
|
Prado Wohlwend S, Bello Arques P. Radio theranostics in paragangliomas and pheochromocytomas. Rev Esp Med Nucl Imagen Mol 2024; 43:500017. [PMID: 38735639 DOI: 10.1016/j.remnie.2024.500017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
This continuing education aims to present in a clear and easy-to-understand manner the biology of paragangliomas and pheochromocytomas (PPGLs), the functional imaging studies available for their diagnosis and therapeutic planning, the requirements necessary to administer radioligand therapy (RLT) and the characteristics of these treatments (inclusion criteria, administration protocols, adverse effects and future perspectives). In this pathology we have two RLT options: [131I]MIBG and [177Lu]Lu-DOTA-TATE. The indication for treatment is determined by the expression of its therapeutic target in functional imaging studies, allowing precision and personalized medicine. Although most of the results we have for both treatments have as origin small retrospective series, RLT is presented as a safe and well-tolerated therapeutic option in PPGLs with slow-moderate progression or with uncontrollable symptoms, obtaining high disease control rates.
Collapse
Affiliation(s)
- Stefan Prado Wohlwend
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Clinical Center of Excellence Pheo Para Alliance.
| | - Pilar Bello Arques
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Clinical Center of Excellence Pheo Para Alliance
| |
Collapse
|
15
|
Donzé C, Rubira L, Santoro L, Viarasakd M, Kotzki PO, Deshayes E, Fersing C. 177Lu-Dotatate administration using an infusion pump or a peristaltic pump: comparison of two methods. Eur J Hosp Pharm 2024; 31:207-211. [PMID: 36100369 PMCID: PMC11042268 DOI: 10.1136/ejhpharm-2022-003489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES 177Lu-oxodotreotide (Lutathera) is an intravenous peptide receptor radionuclide therapy to treat unresectable metastatic digestive neuroendocrine tumours. The recommended method for Lutathera administration is gravity infusion; however, other appropriate and safe techniques are possible. This work compares two infusion methods from a medico-economic, radiation protection, efficiency and practicality point of view. METHODS Two infusion methods were studied, either involving a volumetric infusion pump (method 1) or a peristaltic pump (method 2). For each method, the mean residual activity per vial and the mean injection time were compared. Occupational radiation exposure was measured. The cost of initial equipment and consumables for one administration was determined. Feedback from operators and past incidents during injections were collected through a survey. RESULTS Three operators performed 219 Lutathera injections over 70 months: 60.7% (133) with method 1 and 39.3% (86) with method 2. After infusion, the mean residual activity in vial was 124.3±16.9 MBq with method 1 and 80.9±19.3 MBq with method 2 (34.9% decrease). The average administration time was 41±7.2 min with method 1 and 39±8.5 min with method 2. Occupational exposures obtained with both methods were very low and quite similar. Method 1 required an initial investment of 1165.8 US$ plus 4.0 US$ of supplies for each administration. Initial investment for method 2 was comparable (1261.4 US$) but supplies cost per administration was higher (12.5 US$). Two major incidents were recorded with method 1 and none with method 2. From operators' experience, method 2 felt safer and more suitable. CONCLUSIONS Method 2 appeared to be convenient and secure, despite a higher cost per injection. It could also be applied to new radioligand therapies such as 177Lu-PSMA or 225Ac-Dotatate.
Collapse
Affiliation(s)
- Charlotte Donzé
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Léa Rubira
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Lore Santoro
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Malissone Viarasakd
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Emmanuel Deshayes
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Cyril Fersing
- Nuclear medicine department, Institut régional du Cancer de Montpellier (ICM), Univ. Montpellier, Montpellier, France
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
16
|
Zhou Y, Li JW, Uedo N. Multimodal management of foregut neuroendocrine neoplasms. Best Pract Res Clin Gastroenterol 2024; 68:101889. [PMID: 38522885 DOI: 10.1016/j.bpg.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/30/2024] [Indexed: 03/26/2024]
Abstract
The foregut, which includes the esophagus, stomach and duodenum, represents one of the most common sites for neuroendocrine neoplasms. These are highly heterogenous with different risk of progression depending on location, cell-type of origin, size, grade and other factors. Various endoscopic and imaging modalities exist to inform therapeutic decision-making, which may be in the form of surgical or endoscopic resection and medical therapy depending on the extent of the disease after diagnostic evaluation. This narrative review aims to explore the literature on the multimodal management of such foregut neuroendocrine neoplasms.
Collapse
Affiliation(s)
- Yichan Zhou
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, China
| | - James Weiquan Li
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Japan; Department of Gastroenterology and Hepatology, Changi General Hospital, Singapore Health Services, Singapore
| | - Noriya Uedo
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Japan.
| |
Collapse
|
17
|
Mittra ES, Wong RKS, Winters C, Brown A, Murley S, Kennecke H. Establishing a robust radioligand therapy program: A practical approach for North American centers. Cancer Med 2024; 13:e6780. [PMID: 38214130 PMCID: PMC10905220 DOI: 10.1002/cam4.6780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Radioligand therapy (RLT) is a targeted approach to treating cancer that has been shown to be safe and effective in a variety of disease states, including gastroenteropancreatic neuroendocrine tumors, lymphoma, and most recently, advanced prostate cancer. In the United States, patient access to this therapy is currently variable. Implementation of new RLT programs and expansion of existing programs are needed to broaden patient access to and standardize the delivery of RLT, especially as new therapies are introduced into clinical practice. Drawing from experience in establishing RLT programs in different settings, we have developed practical recommendations for building and implementing a robust RLT program. In this review, we present our recommendations for minimal requirements and optimal requirements, as well as system considerations, and special issues associated with implementing an RLT program in North American centers.
Collapse
Affiliation(s)
- Erik S. Mittra
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Rebecca K. S. Wong
- Department of Radiation Oncology, Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | - Celeste Winters
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Adam Brown
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Shondra Murley
- Department of Nuclear MedicineWest Tennessee HealthcareJacksonTennesseeUSA
| | | |
Collapse
|
18
|
Virarkar MK, Montanarella M, Itani M, Calimano-Ramirez L, Gopireddy D, Bhosale P. PET/MRI imaging in neuroendocrine neoplasm. Abdom Radiol (NY) 2023; 48:3585-3600. [PMID: 36525051 DOI: 10.1007/s00261-022-03757-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Molecular imaging plays a vital role in the management of neuroendocrine neoplasms (NENs). Somatostatin receptor (SSTR) PET is critical for evaluating NENs, ascertaining peptide receptor radionuclide therapy (PRRT) eligibility, and treatment response. SSTR-PET/MRI can provide a one-stop-shop multiparametric evaluation of NENs. The acquisition of complementary imaging information in PET/MRI has distinct advantages over PET/CT and MR imaging acquisitions. The purpose of this manuscript is to provide a comprehensive overview of PET/MRI and a current review of recent PET/MRI advances in the diagnosis, staging, treatment, and surveillance of NENs.
Collapse
Affiliation(s)
- Mayur K Virarkar
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Matthew Montanarella
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis School of Medicine, 510 S Kings Highway Blvd, Campus Box 8131, St Louis, MO, 63110, USA
| | - Luis Calimano-Ramirez
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA.
| | - Dheeraj Gopireddy
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, 32209, USA
| | - Priya Bhosale
- Division of Diagnostic Imaging, Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Blanc A, Todorovic M, Dude I, Merkens H, Bénard F, Perrin DM. Toward tryptathionine-stapled one-bead-one-compound (OBOC) libraries: solid phase synthesis of a bioactive octretoate analog. Org Biomol Chem 2023; 21:8112-8116. [PMID: 37772608 DOI: 10.1039/d3ob01378b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
New somatostatin analogs are highly desirable for diagnosing and treating neuroendocrine tumors (NETs). Here we describe the solid-phase synthesis of a new octreotate (TATE) analog where the disulfide bond is replaced with a tryptathionine (Ttn) staple as part of an effort to prototyping a one-bead-one-compound (OBOC) library of Ttn-stapled peptides. Library design provides the potential for on- and off-bead screening. To validate our method, we labelled Ttn-TATE with a fluorescent dye to demonstrate binding to soluble somatostatin receptor subtype-2 and staining of Ar42J rat prostate cancer cells. By exploring this staple in the context of a ligand of known affinity, this method paves the way for an OBOC library construction of bioactive octreotate analogs and, more broadly speaking, tryptathionine-staped peptide macrocycles.
Collapse
Affiliation(s)
- Antoine Blanc
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| | - Mihajlo Todorovic
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| | - Iulia Dude
- Molecular Oncology, British Columbia Cancer Agency Research Centre, 675 West10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Helen Merkens
- Molecular Oncology, British Columbia Cancer Agency Research Centre, 675 West10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - François Bénard
- Molecular Oncology, British Columbia Cancer Agency Research Centre, 675 West10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - David M Perrin
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| |
Collapse
|
20
|
Kaur J, Vijayvergia N. Narrative Review of Immunotherapy in Gastroentero-Pancreatic Neuroendocrine Neoplasms. Curr Oncol 2023; 30:8653-8664. [PMID: 37754542 PMCID: PMC10527684 DOI: 10.3390/curroncol30090627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Gastroentero-pancreatic Neuroendocrine Neoplasms (GEP-NENs) are a diverse group of rare tumors that arise from neuroendocrine cells in the gastrointestinal tract and pancreas, and they can vary significantly in terms of clinical behavior and prognosis. Immunotherapy, particularly immune checkpoint inhibitors, has shown remarkable success in various malignancies by harnessing the body's immune system to target and eliminate cancer cells. Immune checkpoint inhibitor clinical studies in GEP-NENs have yielded promising outcomes, particularly in individuals with advanced and refractory disease. Objective responses and disease stabilization have been observed in some cases, even in those previously unresponsive to traditional treatments like chemotherapy or targeted therapies. However, it's important to note that the efficacy of immunotherapy in GEP-NENs can vary widely depending on tumor characteristics, the immune microenvironment, and patient factors. As such, identifying predictive biomarkers to select the most suitable patients for immunotherapy remains an ongoing challenge. Immunotherapy has considerable potential for treating GEP-NENs, but research is still in its early stages. Several combinations are being explored to enhance the effectiveness of immunotherapy and improve the outcomes of treatment, such as combining immunotherapy with other targeted therapies or chemotherapy.
Collapse
Affiliation(s)
| | - Namrata Vijayvergia
- Department of Hematology/Oncology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA;
| |
Collapse
|
21
|
Bolcaen J, Combrink N, Spoormans K, More S, Vandevoorde C, Fisher R, Kleynhans J. Biodosimetry, can it find its way to the nuclear medicine clinic? FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1209823. [PMID: 39355046 PMCID: PMC11440959 DOI: 10.3389/fnume.2023.1209823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2024]
Abstract
Personalised dosimetry based on molecular imaging is a field that has grown exponentially in the last decade due to the increasing success of Radioligand Therapy (RLT). Despite advances in imaging-based 3D dose estimation, the administered dose of a therapeutic radiopharmaceutical for RLT is often non-personalised, with standardised dose regimens administered every 4-6 weeks. Biodosimetry markers, such as chromosomal aberrations, could be used alongside image-based dosimetry as a tool for individualised dose estimation to further understand normal tissue toxicity and refine the administered dose. In this review we give an overview of biodosimetry markers that are used for blood dose estimation, followed by an overview of their current results when applied in RLT patients. Finally, an in-depth discussion will provide a perspective on the potential for the use of biodosimetry in the nuclear medicine clinic.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Nastassja Combrink
- Nuclear Medicine Division, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kaat Spoormans
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Stuart More
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlot Vandevoorde
- Biophysics Departement, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Randall Fisher
- Radiation Biophysics Division, SSC Laboratory, iThemba Laboratory for Accelerator Based Sciences (iThemba LABS), Cape Town, South Africa
| | - Janke Kleynhans
- Radiopharmaceutical Research, Department of Pharmacy and Pharmacology, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
22
|
Weber M, Telli T, Kersting D, Seifert R. Prognostic Implications of PET-Derived Tumor Volume and Uptake in Patients with Neuroendocrine Tumors. Cancers (Basel) 2023; 15:3581. [PMID: 37509242 PMCID: PMC10377105 DOI: 10.3390/cancers15143581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Historically, molecular imaging of somatostatin receptor (SSTR) expression in patients with neuroendocrine tumors (NET) was performed using SSTR scintigraphy (SRS). Sustained advances in medical imaging have led to its gradual replacement with SSTR positron-emission tomography (SSTR-PET). The higher sensitivity in comparison to SRS on the one hand and conventional cross-sectional imaging, on the other hand, enables more accurate staging and allows for image quantification. In addition, in recent years, a growing body of evidence has assessed the prognostic implications of SSTR-PET-derived prognostic biomarkers for NET patients, with the aim of risk stratification, outcome prognostication, and prediction of response to peptide receptor radionuclide therapy. In this narrative review, we give an overview of studies examining the prognostic value of advanced SSTR-PET-derived (semi-)quantitative metrics like tumor volume, uptake, and composite metrics. Complementing this analysis, a discussion of the current trends, clinical implications, and future directions is provided.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - Tugce Telli
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - David Kersting
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
23
|
Scarinci I, Valente M, Pérez P. A machine learning-based model for a dose point kernel calculation. EJNMMI Phys 2023; 10:41. [PMID: 37358735 DOI: 10.1186/s40658-023-00560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/13/2023] [Indexed: 06/27/2023] Open
Abstract
PURPOSE Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study reports on the design, implementation, and test of a multi-target regressor approach to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. METHODS DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Regressor Chains (RC) with three different coefficients regularization/shrinkage models were used as base regressors. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the beta emitters sDPK were applied to a patient-specific case calculating the Voxel Dose Kernel (VDK) for a hepatic radioembolization treatment with [Formula: see text]Y. RESULTS The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than [Formula: see text] in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than [Formula: see text] were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations. CONCLUSION An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required short computation times.
Collapse
Affiliation(s)
- Ignacio Scarinci
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, 5000, Córdoba, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, 5000, Córdoba, Argentina
| | - Mauro Valente
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, 5000, Córdoba, Argentina.
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, 5000, Córdoba, Argentina.
- Centro de Excelencia en Física e Ingeniería en Salud (CFIS) & Departamento de Ciencias Físicas, Universidad de la Frontera, Avenida Francisco Salazar 01145, 4811230, Temuco, Cautín, Chile.
| | - Pedro Pérez
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, 5000, Córdoba, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, 5000, Córdoba, Argentina
| |
Collapse
|
24
|
Ladrière T, Faudemer J, Levigoureux E, Peyronnet D, Desmonts C, Vigne J. Safety and Therapeutic Optimization of Lutetium-177 Based Radiopharmaceuticals. Pharmaceutics 2023; 15:pharmaceutics15041240. [PMID: 37111725 PMCID: PMC10145759 DOI: 10.3390/pharmaceutics15041240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using Lutetium-177 (177Lu) based radiopharmaceuticals has emerged as a therapeutic area in the field of nuclear medicine and oncology, allowing for personalized medicine. Since the first market authorization in 2018 of [¹⁷⁷Lu]Lu-DOTATATE (Lutathera®) targeting somatostatin receptor type 2 in the treatment of gastroenteropancreatic neuroendocrine tumors, intensive research has led to transfer innovative 177Lu containing pharmaceuticals to the clinic. Recently, a second market authorization in the field was obtained for [¹⁷⁷Lu]Lu-PSMA-617 (Pluvicto®) in the treatment of prostate cancer. The efficacy of 177Lu radiopharmaceuticals are now quite well-reported and data on the safety and management of patients are needed. This review will focus on several clinically tested and reported tailored approaches to enhance the risk-benefit trade-off of radioligand therapy. The aim is to help clinicians and nuclear medicine staff set up safe and optimized procedures using the approved 177Lu based radiopharmaceuticals.
Collapse
Affiliation(s)
- Typhanie Ladrière
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Julie Faudemer
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Elise Levigoureux
- Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69677 Bron, France
| | - Damien Peyronnet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Cédric Desmonts
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- INSERM U1086, ANTICIPE, Normandy University, UNICAEN, 14000 Caen, France
| | - Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- PhIND, Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, INSERM U1237, Normandie Université, UNICAEN, 14000 Caen, France
| |
Collapse
|
25
|
Deng H, Ding M, Wang Y, Li W, Liu G, Tang Y. ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types. Comput Biol Med 2023; 158:106844. [PMID: 37058760 DOI: 10.1016/j.compbiomed.2023.106844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Anticancer peptides (ACPs), a series of short bioactive peptides, are promising candidates in fighting against cancer due to their high activity, low toxicity, and not likely cause drug resistance. The accurate identification of ACPs and classification of their functional types is of great importance for investigating their mechanisms of action and developing peptide-based anticancer therapies. Here, we provided a computational tool, called ACP-MLC, to address binary classification and multi-label classification of ACPs for a given peptide sequence. Briefly, ACP-MLC is a two-level prediction engine, in which the 1st-level model predicts whether a query sequence is an ACP or not by random forest algorithm, and the 2nd-level model predicts which tissue types the sequence might target by the binary relevance algorithm. Development and evaluation by high-quality datasets, our ACP-MLC yielded an area under the receiver operating characteristic curve (AUC) of 0.888 on the independent test set for the 1st-level prediction, and obtained 0.157 hamming loss, 0.577 subset accuracy, 0.802 F1-scoremacro, and 0.826 F1-scoremicro on the independent test set for the 2nd-level prediction. A systematic comparison demonstrated that ACP-MLC outperformed existing binary classifiers and other multi-label learning classifiers for ACP prediction. Finally, we interpreted the important features of ACP-MLC by the SHAP method. User-friendly software and the datasets are available at https://github.com/Nicole-DH/ACP-MLC. We believe that the ACP-MLC would be a powerful tool in ACP discovery.
Collapse
|
26
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
27
|
Calais J, Eulau SM, Gardner L, Hauke RJ, Kendi AT, Shore ND, Zhao S. Incorporating radioligand therapy in clinical practice in the United States for patients with prostate cancer. Cancer Treat Rev 2023; 115:102524. [PMID: 36933329 DOI: 10.1016/j.ctrv.2023.102524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Prostate cancer (PC) is the second most commonly diagnosed cancer in the United States. Advanced PC evolves to metastatic castration-resistant PC (mCRPC). Theranostics combining prostate-specific membrane antigen-targeted positron emission tomography imaging and radioligand therapy (RLT) represents a precision medicine approach to PC treatment. With the recent approval of lutetium Lu 177 (177Lu) vipivotide tetraxetan for men with mCRPC, the utilization of RLT will increase. In this review, we suggest a framework for incorporating RLT for PC into clinical practice. A search of PubMed and Google Scholar was performed using keywords related to PC, RLT, prostate-specific membrane antigen, and novel RLT centers. The authors also provided opinions based on their clinical experience. The setup and operation of an RLT center requires the diligence and cooperation of a well-trained multidisciplinary team committed to patient safety and clinical efficacy. Administrative systems should ensure that treatment scheduling, reimbursement, and patient monitoring are efficient. For optimal outcomes, the clinical care team must have an organizational plan that delineates the full range of required tasks. Establishing new RLT centers for treatment of PC is possible with appropriate multidisciplinary planning. We provide an overview of the key elements to consider when establishing a safe, efficient, and high-quality RLT center.
Collapse
Affiliation(s)
- Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Stephen M Eulau
- Swedish Cancer Institute at Swedish Medical Center, 1221 Madison Street, Seattle, WA, USA.
| | - Linda Gardner
- Department of Nuclear Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Ralph J Hauke
- Nebraska Cancer Specialists, 17201 Wright Street, Suite 200, Omaha, NE 68130, USA.
| | - Ayse T Kendi
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| | - Neal D Shore
- Carolina Urologic Research Center/GenesisCare, US, Myrtle Beach, SC 29572, USA.
| | - Song Zhao
- Swedish Cancer Institute at Swedish Medical Center, 1221 Madison Street, Seattle, WA, USA.
| |
Collapse
|
28
|
Gomena J, Vári B, Oláh-Szabó R, Biri-Kovács B, Bősze S, Borbély A, Soós Á, Ranđelović I, Tóvári J, Mező G. Targeting the Gastrin-Releasing Peptide Receptor (GRP-R) in Cancer Therapy: Development of Bombesin-Based Peptide-Drug Conjugates. Int J Mol Sci 2023; 24:3400. [PMID: 36834815 PMCID: PMC9967152 DOI: 10.3390/ijms24043400] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Targeted tumour therapy has proved to be an efficient alternative to overcome the limitations of conventional chemotherapy. Among several receptors upregulated in cancer cells, the gastrin-releasing peptide receptor (GRP-R) has recently emerged as a promising target for cancer imaging, diagnosing and treatment due to its overexpression on cancerous tissues such as breast, prostate, pancreatic and small-cell lung cancer. Herein, we report on the in vitro and in vivo selective delivery of the cytotoxic drug daunorubicin to prostate and breast cancer, by targeting GRP-R. Exploiting many bombesin analogues as homing peptides, including a newly developed peptide, we produced eleven daunorubicin-containing peptide-drug conjugates (PDCs), acting as drug delivery systems to safely reach the tumour environment. Two of our bioconjugates revealed remarkable anti-proliferative activity, an efficient uptake by all three tested human breast and prostate cancer cell lines, high stability in plasma and a prompt release of the drug-containing metabolite by lysosomal enzymes. Moreover, they revealed a safe profile and a consistent reduction of the tumour volume in vivo. In conclusion, we highlight the importance of GRP-R binding PDCs in targeted cancer therapy, with the possibility of further tailoring and optimisation.
Collapse
Affiliation(s)
- Jacopo Gomena
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Balázs Vári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Rita Oláh-Szabó
- Department of Genetics, Cell and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
| | - Beáta Biri-Kovács
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Adina Borbély
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, 1117 Budapest, Hungary
| | - Ádám Soós
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Ivan Ranđelović
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
- KINETO Lab Ltd., 1037 Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary
| | - Gábor Mező
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| |
Collapse
|
29
|
Santoro M, Della Gala G, Paolani G, Zagni F, Civollani S, Strolin S, Strigari L. A novel figure of merit to investigate 68Ga PET/CT image quality based on patient weight and lesion size using Q.Clear reconstruction algorithm: A phantom study. Phys Med 2023; 106:102523. [PMID: 36641902 DOI: 10.1016/j.ejmp.2022.102523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Q.Clear is a Bayesian penalised-likelihood algorithm that uses a β-value for positron emission tomography(PET)/computed tomography(CT) image reconstruction(IR). Our study proposes a novel figure of merit, named CRBV, to compare the Q.Clear performances using 68Ga PET/CT image with the ordered-subset-expectation-maximization(OSEM) algorithm and to identify the optimal β-values for these images using two phantoms mimicking normal and overweight patients. METHODS NEMA IQ phantom with or without a ring of water-filled plastic bags (NEMAstd and NEMAow, respectively) was acquired and reconstructed with OSEM and Q.Clear at various β-values and minutes/bed position(min/bp). Contrast recovery(CR), background variability(BV) and CRBV were calculated. Highest CRBV values were used to identify optimal β-value ranges. RESULTS Q.Clear with 250 ≤ β ≤ 800 improved CRBV compared to OSEM for all the investigated spheres and acquisition setups. Outside of this range, Q.Clear still outperformed OSEM with few exceptions depending on spheres diameters and phantoms(e.g.,β-value = 1600 for diameters ≤ 17 mm using the NEMAow phantom). Regarding the CRBV performance for IR optimization, for the 4 min/bp NEMAstd IR, β-values = 300 ÷ 350 allowed to simultaneously optimize all diameters(except for the 10 mm); for the NEMAow IR, β-values = 350 ÷ 500 were needed for diameters > 20 mm, while β-values = 200 ÷ 250 were selected for the remaining diameters. For the 2 min/bp, β-value = 500 was suitable for diameters > 17 mm in both NEMAstd and NEMAow IR, while for smaller diameters β-value = 200 and β-values = 250 ÷ 350 were obtained for NEMAstd and NEMAow, respectively. CONCLUSION Almost all tested β-values of Q.Clear improved the CRBV compared to OSEM. In both phantoms, simulating normal and over-weight patients, optimal β-values were found according to lesion sizes and investigated acquisition times.
Collapse
Affiliation(s)
- Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Medical Physics Specialization School, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Giuseppe Della Gala
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Medical Physics Specialization School, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Federico Zagni
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Simona Civollani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| |
Collapse
|
30
|
Al[ 18F]F-NOTA-Octreotide Is Comparable to [ 68Ga]Ga-DOTA-TATE for PET/CT Imaging of Neuroendocrine Tumours in the Latin-American Population. Cancers (Basel) 2023; 15:cancers15020439. [PMID: 36672388 PMCID: PMC9856643 DOI: 10.3390/cancers15020439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
PET imaging of neuroendocrine tumours (NET) is well established for staging and therapy follow-up. The short half-life, increasing costs, and regulatory issues significantly limit the availability of approved imaging agents, such as [68Ga]Ga-DOTA-TATE. Al[18F]F-NOTA-Octreotide provides a similar biodistribution and tumour uptake, can be produced on a large scale and may improve access to precision imaging. Here we prospectively compared the clinical utility of [68Ga]Ga-DOTA-TATE and Al[18F]F-NOTA-Octreotide in the Latin-American population. Our results showed that in patients with stage IV NETs [68Ga]Ga-DOTA-TATE presents higher physiological uptake than Al[18F]F-NOTA-Octreotide in the liver, hypophysis, salivary glands, adrenal glands (all p < 0.001), pancreatic uncinated process, kidneys, and small intestine (all p < 0.05). Nevertheless, despite the lower background uptake of Al[18F]F-NOTA-Octreotide, comparative analysis of tumour-to-liver (TLR) and tumour-to-spleen (TSR) showed no statistically significant difference for lesions in the liver, bone, lymph nodes, and other tissues. Only three discordant lesions in highly-metastases livers were detected by [68Ga]Ga-DOTA-TATE but not by Al[18F]F-NOTA-Octreotide and only one discordant lesion was detected by Al[18F]F-NOTA-Octreotide but not by [68Ga]Ga-DOTA-TATE. Non-inferiority analysis showed that Al[18F]F-NOTA-Octreotide is comparable to [68Ga]Ga-DOTA-TATE. Hence, our results demonstrate that Al[18F]F-NOTA-Octreotide provided excellent image quality, visualized NET lesions with high sensitivity and represents a highly promising, clinical alternative to [68Ga]Ga-DOTA-TATE.
Collapse
|
31
|
Scarinci I, Valente M, Pérez P. A Machine Learning based model for a Dose Point Kernel calculation. RESEARCH SQUARE 2023:rs.3.rs-2419706. [PMID: 36711517 PMCID: PMC9882689 DOI: 10.21203/rs.3.rs-2419706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Absorbed dose calculation by kernel convolution requires the prior determination of dose point kernels (DPK). This study shows applications of machine learning to generate the DPKs for monoenergetic sources and a model to obtain DPKs for beta emitters. METHODS DPK for monoenergetic electron sources were calculated using the FLUKA Monte Carlo (MC) code for many materials of clinical interest and initial energies ranging from 10 to 3000 keV. Three machine learning (ML) algorithms were trained using the MC DPKs. Electron monoenergetic scaled DPKs (sDPKs) were used to assess the corresponding sDPKs for beta emitters typically used in nuclear medicine, which were compared against reference published data. Finally, the ML sDPK approach was applied to a patient-specific case calculating the dose voxel kernels (DVK) for a hepatic radioembolization treatment with \(^{90}\)Y. RESULTS The three trained machine learning models demonstrated a promising capacity to predict the sDPK for both monoenergetic emissions and beta emitters of clinical interest attaining differences lower than \(10%\) in the mean average percentage error (MAPE) as compared with previous studies. Furthermore, differences lower than \(7 %\) were obtained for the absorbed dose in patient-specific dosimetry comparing against full stochastic MC calculations. CONCLUSION An ML model was developed to assess dosimetry calculations in nuclear medicine. The implemented approach has shown the capacity to accurately predict the sDPK for monoenergetic beta sources in a wide range of energy in different materials. The ML model to calculate the sDPK for beta-emitting radionuclides allowed to obtain VDK useful to achieve reliable patient-specific absorbed dose distributions required remarkable short computation times.
Collapse
Affiliation(s)
- Ignacio Scarinci
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, Córdoba, 5000, Córdoba, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n,, Córdoba, 5000, Córdoba, Argentina
| | - Mauro Valente
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, Córdoba, 5000, Córdoba, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n,, Córdoba, 5000, Córdoba, Argentina
- Centro de Excelencia en Física e Ingeniería en Salud (CFIS) & Departamento de Ciencias Físicas, Universidad de la Frontera, Avenida Francisco Salazar 01145, Temuco, 4811230, Cautín, Chile
| | - Pedro Pérez
- Instituto de Física Enrique Gaviola (IFEG), CONICET, Av. Medina Allende s/n, Córdoba, 5000, Córdoba, Argentina
- Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes de Rayos X (LIIFAMIRx), Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n,, Córdoba, 5000, Córdoba, Argentina
| |
Collapse
|
32
|
A double photon coincidence detection method for medical gamma-ray imaging. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Cascade nuclides emit two or more gamma rays successively through an intermediate state. The coincidence detection of cascade gamma rays provides several advantages in gamma-ray imaging. In this review article, three applications of the double photon coincidence method are reviewed. Double-photon emission imaging with mechanical collimators and Compton double-photon emission imaging can identify radioactive source positions with their angular-resolving detectors, and reduce the crosstalk between nuclides. In addition, a novel method of coincidence Compton imaging is proposed by taking coincidence detection between a Compton event and a photopeak events. Although this type of coincidence Compton imaging cannot specify the location, it can be useful in multi-nuclide Compton imaging.
Collapse
|
33
|
Galgano SJ, Morani AC, Gopireddy DR, Sharbidre K, Bates DDB, Goenka AH, Arif-Tiwari H, Itani M, Iravani A, Javadi S, Faria S, Lall C, Bergsland E, Verma S, Francis IR, Halperin DM, Chatterjee D, Bhosale P, Yano M. Pancreatic neuroendocrine neoplasms: a 2022 update for radiologists. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:3962-3970. [PMID: 35244755 DOI: 10.1007/s00261-022-03466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic neuroendocrine neoplasms (PaNENs) are a unique group of pancreatic neoplasms with a wide range of clinical presentations and behaviors. Given their heterogeneous appearance and increasing detection on cross-sectional imaging, it is essential that radiologists understand the variable presentation and distinctions PaNENs display compared to other pancreatic neoplasms. Additionally, some of these neoplasms may be hormonally functional, and it is imperative that radiologists be aware of the common clinical presentations of hormonally active PaNENs. Knowledge of PaNEN pathology and treatments may influence which imaging modality is optimal for each patient. Each imaging modality used for PaNENs has distinct advantages and disadvantages, particularly in different treatment settings. Thus, the focus of this manuscript is to provide an update for the radiologist on PaNEN pathology, imaging, and treatments.
Collapse
Affiliation(s)
- Samuel J Galgano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Dheeraj R Gopireddy
- Department of Radiology, University of Florida-Jacksonville, Jacksonville, FL, USA
| | - Kedar Sharbidre
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David D B Bates
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ajit H Goenka
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Hina Arif-Tiwari
- Department of Radiology, University of Arizona-Tuscon, Tuscon, AZ, USA
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Amir Iravani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Sanaz Javadi
- Department of Radiology, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Silvana Faria
- Department of Radiology, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Chandana Lall
- Department of Radiology, University of Florida-Jacksonville, Jacksonville, FL, USA
| | - Emily Bergsland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sadhna Verma
- Department of Radiology, University of Cincinnati, Cincinnati, OH, USA
| | - Isaac R Francis
- Department of Radiology, Michigan Medicine, Ann Arbor, MI, USA
| | - Daniel M Halperin
- Department of Gastrointestinal Medical Oncology, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Deyali Chatterjee
- Department of Pathology, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Priya Bhosale
- Department of Radiology, M.D. Anderson Cancer Center, Houston, TX, USA
| | - Motoyo Yano
- Department of Radiology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| |
Collapse
|
34
|
Resch K, Hung R, Abele J. Gastrointestinal neuroendocrine tumor with discordant metastatic disease on 111In-pentetreotide SPECT/CT, 18F-DOPA PET/CT and 68Ga-HA-DOTATATE PET/CT. Eur J Hybrid Imaging 2022; 6:13. [PMID: 35781170 PMCID: PMC9250908 DOI: 10.1186/s41824-022-00134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractA 62-year-old man with resected, pathology-proven small bowel neuroendocrine tumor underwent 111In-pentetreotide SPECT/CT, 18F-DOPA PET/CT and 68Ga-HA-DOTATATE PET/CT to assess metastatic disease. The 111In-pentetreotide SPECT/CT scan showed no metastatic disease. Both 18F-DOPA and 68Ga-HA-DOTATATE PET/CT showed hepatic and peritoneal metastatic disease. However, the burden of 18F-DOPA-avid metastatic disease was far greater compared to the burden of 68Ga-HA-DOTATATE-avid metastatic disease.
Collapse
|
35
|
Delpassand ES, Tworowska I, Esfandiari R, Torgue J, Hurt J, Shafie A, Núñez R. Targeted α-Emitter Therapy with 212Pb-DOTAMTATE for the Treatment of Metastatic SSTR-Expressing Neuroendocrine Tumors: First-in-Humans Dose-Escalation Clinical Trial. J Nucl Med 2022; 63:1326-1333. [PMID: 34992153 PMCID: PMC9454455 DOI: 10.2967/jnumed.121.263230] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/04/2022] [Indexed: 01/26/2023] Open
Abstract
Peptide receptor radiotherapy with somatostatin analogs has been successfully used for years as a treatment for somatostatin-overexpressing tumors. Treatment of neuroendocrine tumors (NETs) with the β-particle emitter 177Lu-DOTATATE is currently considered the standard of care for subjects with gastroenteropancreatic NETs. Despite the success of 177Lu-DOTATATE, there remains significant room for improvement in terms of both safety and efficacy. Targeted α-emitter therapy with isotopes such as 212Pb has the potential to improve both. Here, we present the preliminary results of the phase 1 first-in-humans dose-escalation trial evaluating 212Pb-DOTAMTATE (a bifunctional metal chelator [DOTAM] and the SSTR-targeting peptide [TATE]) in patients with somatostatin receptor-positive NETs. Methods: Twenty subjects with histologically confirmed NETs, prior positive somatostatin analog scans, and no prior history of 177Lu/90Y/111In peptide receptor radiotherapy, with different primary sites of the disease, were enrolled. Treatment began with single ascending doses of 212Pb-DOTAMTATE, with subsequent cohorts receiving an incremental 30% dose increase, which was continued until a tumor response or a dose-limiting toxicity was observed. This was followed by a multiple ascending dose regimen. The recommended phase 2 dose regimen consisted of 4 cycles of 2.50 MBq/kg (67.6 μCi/kg) of 212Pb-DOTAMTATE administered at 8-wk intervals, intravenously. Results: Ten subjects received the highest dose, 2.50 MBq/kg/cycle (67.6 μCi/kg/cycle). Treatment was well tolerated, with the most common treatment-emergent adverse events being nausea, fatigue, and alopecia. No serious treatment-emergent adverse events were related to the study drug, and no subjects required treatment delay or a dose reduction. An objective radiologic response of 80% was observed for the first 10 subjects treated at the recommended phase 2 dose. Conclusion: Targeted α-therapy with 212Pb-DOTAMTATE has been shown to be well tolerated. Preliminary efficacy results are highly promising. If these results are confirmed in a larger, multicenter clinical trial, 212Pb-DOTAMTATE would provide a substantial benefit over currently Food and Drug Administration-approved therapies for patients with metastatic or inoperable SSTR-expressing NETs regardless of the grade and location of the primary tumor.
Collapse
Affiliation(s)
- Ebrahim S. Delpassand
- Excel Diagnostics and Nuclear Oncology Center, Houston, Texas;,RadioMedix, Inc., Houston, Texas; and
| | | | | | | | | | - Afshin Shafie
- Excel Diagnostics and Nuclear Oncology Center, Houston, Texas
| | - Rodolfo Núñez
- Excel Diagnostics and Nuclear Oncology Center, Houston, Texas;
| |
Collapse
|
36
|
Graf A, Welch J, Bansal R, Mandl A, Parekh VI, Cochran C, Levy E, Nilubol N, Patel D, Sadowski S, Jha S, Agarwal SK, Millo C, Blau JE, Simonds WF, Weinstein LS, Del Rivero J. Metastatic Grade 3 Neuroendocrine Tumor in Multiple Endocrine Neoplasia Type 1 (MEN1) Expressing Somatostatin Receptors. J Endocr Soc 2022; 6:bvac122. [DOI: 10.1210/jendso/bvac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) can occur in 30-90% of patients with Multiple Endocrine Neoplasia Type 1 (MEN1). However, only 1% of GEP-NETs are Grade 3 (G3). Given the rarity of these aggressive tumors, treatment of advanced G3 GEP-NETs in MEN1 is based on the treatment guidelines for sporadic GEP-NETs. We report a 43-year-old male with germline MEN1 followed at our institution with clinical features including hyperparathyroidism, a non-functional pancreatic NET, and Zollinger-Ellison Syndrome. On routine surveillances imaging, at age 40, computer tomography (CT/ positron emission tomography (PET)) imaging showed two arterially enhancing intraluminal masses on the medial aspect of the gastric wall. Anatomical imaging confirmed two enhancing masses within the pancreas and a rounded mass-like thickening along the lesser curvature of the stomach. The gastric mass was resected, and pathology reported a well-differentiated G3 NET with a Ki-67 >20%. The patient continued active surveillance. Eighteen months later cross-sectional imaging studies showed findings consistent with metastatic disease within the right hepatic lobe and bland embolization was done. On follow-up scans, including 68Ga-DOTATATE (68Ga-DOTA(0)-Tyr(3)-octreotate) imaging, interval increase in number and avidity of metastatic lesions were compatible with disease progression. Given a paucity of treatment recommendations for G3 tumors in MEN1, the patient was counseled based on standard NET treatment guidelines and recommended 177Lu-DOTATATE treatment. PRRT (peptide receptor radionuclide therapy) with 177Lu-DOTATATE ( 177Lu-tetraazacyclododecanetetraacetic acid-octreotide) is an important therapeutic modality for patients with somatostatin receptor-positive (SSTR) NETs. However, prospective studies are needed to understand the role of PRRT in G3 NETs.
Collapse
Affiliation(s)
- Akua Graf
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - James Welch
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Rashika Bansal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Adel Mandl
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Vaishali I Parekh
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Craig Cochran
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Elliot Levy
- Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD
| | - Naris Nilubol
- Endocrine Surgery Section, Surgical Oncology Program, National Cancer Institute , Bethesda, MD
| | - Dhaval Patel
- Endocrine Surgery Section, Surgical Oncology Program, National Cancer Institute , Bethesda, MD
| | - Samira Sadowski
- Endocrine Surgery Section, Surgical Oncology Program, National Cancer Institute , Bethesda, MD
| | - Smita Jha
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Sunita K Agarwal
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Corina Millo
- Radiology and Imaging Sciences, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, MD
| | - Jenny E Blau
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
- Presently employed full-time at Astra-Zeneca , Gaithersburg, MD
| | - William F Simonds
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health , Bethesda, MD
| | - Jaydira Del Rivero
- Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
37
|
Simón M, Jørgensen JT, Khare HA, Christensen C, Nielsen CH, Kjaer A. Combination of [ 177Lu]Lu-DOTA-TATE Targeted Radionuclide Therapy and Photothermal Therapy as a Promising Approach for Cancer Treatment: In Vivo Studies in a Human Xenograft Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14061284. [PMID: 35745856 PMCID: PMC9227845 DOI: 10.3390/pharmaceutics14061284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) relies on α- and β-emitting radionuclides bound to a peptide that commonly targets somatostatin receptors (SSTRs) for the localized killing of tumors through ionizing radiation. A Lutetium-177 (177Lu)-based probe linked to the somatostatin analog octreotate ([177Lu]Lu-DOTA-TATE) is approved for the treatment of certain SSTR-expressing tumors and has been shown to improve survival. However, a limiting factor of PRRT is the potential toxicity derived from the high doses needed to kill the tumor. This could be circumvented by combining PRRT with other treatments for an enhanced anti-tumor effect. Photothermal therapy (PTT) relies on nanoparticle-induced hyperthermia for cancer treatment and could be a useful add-on to PRRT. Here, we investigate a strategy combining [177Lu]Lu-DOTA-TATE PRRT and nanoshell (NS)-based PTT for the treatment of SSTR-expressing small-cell lung tumors in mice. Our results showed that the combination treatment improved survival compared to PRRT alone, but only when PTT was performed one day after [177Lu]Lu-DOTA-TATE injection (one of the timepoints examined), showcasing the effect of treatment timing in relation to outcome. Furthermore, the combination treatment was well-tolerated in the mice. This indicates that strategies involving NS-based PTT as an add-on to PRRT could be promising and should be investigated further.
Collapse
Affiliation(s)
- Marina Simón
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Jesper Tranekjær Jørgensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Harshvardhan A. Khare
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
| | - Camilla Christensen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Minerva Imaging, 3650 Ølstykke, Denmark
| | - Carsten Haagen Nielsen
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Minerva Imaging, 3650 Ølstykke, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine & Cluster for Molecular Imaging, Copenhagen University Hospital—Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (M.S.); (J.T.J.); (H.A.K.); (C.C.); (C.H.N.)
- Correspondence:
| |
Collapse
|
38
|
Love C, Desai NB, Abraham T, Banks KP, Bodei L, Boike T, Brown RKJ, Bushnell DL, DeBlanche LE, Dominello MM, Francis T, Grady EC, Hobbs RF, Hope TA, Kempf JS, Pryma DA, Rule W, Savir-Baruch B, Sethi I, Subramaniam RM, Xiao Y, Schechter NR. ACR-ACNM-ASTRO-SNMMI Practice Parameter for Lutetium-177 (Lu-177) DOTATATE Therapy. Am J Clin Oncol 2022; 45:233-242. [PMID: 35507413 DOI: 10.1097/coc.0000000000000903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This practice parameter (PP) for Lutetium-177 (Lu-177) DOTATATE peptide receptor radionuclide therapy (PRRT) aims to guide authorized users in selection of appropriate adult candidates with gastroeneropancreatic neuroendocrine tumors (GEP-NETs) from foregut, midgut, and hindgut. The essential selection criteria include somatostatin receptor-positive GEP-NETs, which are usually inoperable and progressed despite standard therapy. Lu-177 DOTATATE is a radiopharmaceutical with high avidity for somatostatin receptors that are overexpressed by these tumors. This document ensures safe handling of Lu-177 DOTATATE by the authorized users and safe management of affected patients. METHODS The document was developed according to the systematic process developed by the American College of Radiology (ACR) and described on the ACR Web site (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards). The PP development was led by 2 ACR Committees on Practice Parameters (Nuclear Medicine and Molecular Imaging and Radiation Oncology) collaboratively with the American College of Nuclear Medicine, American Society of Radiation Oncology, and Society of Nuclear Medicine and Molecular Imaging. RESULTS The Lu-177 DOTATATE PP reviewed pharmacology, indications, adverse effects, personnel qualifications, and required clinical evaluation before starting the treatment, as well as the recommended posttherapy monitoring, quality assurance, documentation, and appropriate radiation safety instructions provided in written form and explained to the patients. CONCLUSIONS Lu-177 DOTATATE is available for therapy of inoperable and/or advanced GEP-NETs when conventional therapy had failed. It can reduce tumor size, improve symptoms, and increase the progression free survival. The PP document provides clinical guidance for authorized users to assure an appropriate, consistent, and safe practice of Lu-177 DOTATATE.
Collapse
Affiliation(s)
- Charito Love
- Albert Einstein College of Medicine, New York
- New York Cancer and Blood Specialists, Port Jefferson Station, NY
| | | | - Tony Abraham
- New York Cancer and Blood Specialists, Port Jefferson Station, NY
| | - Kevin P Banks
- Uniformed Services University, Bethesda, MD
- San Antonio Military Medical Center, San Antonio, TX
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Thomas Boike
- Genesis Care USA/MHP Radiation Oncology, Asheville, NC
| | - Richard K J Brown
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | | | | | | | | | - Erin C Grady
- Emory University School of Medicine, Atlanta, GA
| | | | - Thomas A Hope
- University of California, San Francisco, San Francisco, CA
| | - Jeffrey S Kempf
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Daniel A Pryma
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | - Ila Sethi
- Emory University School of Medicine, Atlanta, GA
| | | | - Ying Xiao
- University of Pennsylvania, Philadelphia, PA
| | - Naomi R Schechter
- Keck Medical Center of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
39
|
Love C, Desai NB, Abraham T, Banks KP, Bodei L, Boike T, Brown RKJ, Bushnell DL, DeBlanche LE, Dominello MM, Francis T, Grady EC, Hobbs RF, Hope TA, Kempf JS, Pryma DA, Rule W, Savir-Baruch B, Sethi I, Subramaniam RM, Xiao Y, Schechter NR. ACR-ACNM-ASTRO-SNMMI Practice Parameter for Lutetium-177 (Lu-177) DOTATATE Therapy. Clin Nucl Med 2022; 47:503-511. [PMID: 35507433 DOI: 10.1097/rlu.0000000000004182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This practice parameter (PP) for Lutetium-177 (Lu-177) DOTATATE peptide receptor radionuclide therapy (PRRT) aims to guide authorized users in selection of appropriate adult candidates with gastroeneropancreatic neuroendocrine tumors (GEP-NETs) from foregut, midgut, and hindgut. The essential selection criteria include somatostatin receptor-positive GEP-NETs, which are usually inoperable and progressed despite standard therapy. Lu-177 DOTATATE is a radiopharmaceutical with high avidity for somatostatin receptors that are overexpressed by these tumors. This document ensures safe handling of Lu-177 DOTATATE by the authorized users and safe management of affected patients. METHODS The document was developed according to the systematic process developed by the American College of Radiology (ACR) and described on the ACR Web site (https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards). The PP development was led by 2 ACR Committees on Practice Parameters (Nuclear Medicine and Molecular Imaging and Radiation Oncology) collaboratively with the American College of Nuclear Medicine, American Society of Radiation Oncology, and Society of Nuclear Medicine and Molecular Imaging. RESULTS The Lu-177 DOTATATE PP reviewed pharmacology, indications, adverse effects, personnel qualifications, and required clinical evaluation before starting the treatment, as well as the recommended posttherapy monitoring, quality assurance, documentation, and appropriate radiation safety instructions provided in written form and explained to the patients. CONCLUSIONS Lu-177 DOTATATE is available for therapy of inoperable and/or advanced GEP-NETs when conventional therapy had failed. It can reduce tumor size, improve symptoms, and increase the progression free survival. The PP document provides clinical guidance for authorized users to assure an appropriate, consistent, and safe practice of Lu-177 DOTATATE.
Collapse
Affiliation(s)
| | | | - Tony Abraham
- New York Cancer and Blood Specialists, Port Jefferson Station, NY
| | | | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, NY
| | - Thomas Boike
- Genesis Care USA/MHP Radiation Oncology, Asheville, NC
| | - Richard K J Brown
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT
| | | | | | | | | | - Erin C Grady
- Emory University School of Medicine, Atlanta, GA
| | | | - Thomas A Hope
- University of California, San Francisco, San Francisco, CA
| | - Jeffrey S Kempf
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Daniel A Pryma
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | | - Ila Sethi
- Emory University School of Medicine, Atlanta, GA
| | | | - Ying Xiao
- University of Pennsylvania, Philadelphia, PA
| | - Naomi R Schechter
- Keck Medical Center of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA
| |
Collapse
|
40
|
Tronchin S, Forster JC, Hickson K, Bezak E. Dosimetry in targeted alpha therapy. A systematic review: current findings and what is needed. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fe0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues. Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases. Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation. Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.
Collapse
|
41
|
Grey N, Silosky M, Lieu CH, Chin BB. Current status and future of targeted peptide receptor radionuclide positron emission tomography imaging and therapy of gastroenteropancreatic-neuroendocrine tumors. World J Gastroenterol 2022; 28:1768-1780. [PMID: 35633909 PMCID: PMC9099199 DOI: 10.3748/wjg.v28.i17.1768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/07/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Theranostics is the highly targeted molecular imaging and therapy of tumors. Targeted peptide receptor radionuclide therapy has taken the lead in demonstrating the safety and effectiveness of this molecular approach to treating cancers. Metastatic, well-differentiated gastroenteropancreatic neuroendocrine tumors may be most effectively imaged and treated with DOTATATE ligands. We review the current practice, safety, advantages, and limitations of DOTATATE based theranostics. Finally, we briefly describe the exciting new areas of development and future directions of gastroenteropancreatic neuroendocrine tumor theranostics.
Collapse
Affiliation(s)
- Neil Grey
- Radiology-Nuclear Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Michael Silosky
- Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Christopher H Lieu
- Medical Oncology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Bennett B Chin
- Department of Radiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
42
|
Peng D, Liu H, Huang L, Cao J, Chen Y. 225Ac-DOTATATE therapy in a case of metastatic pheochromocytoma. Eur J Nucl Med Mol Imaging 2022; 49:3596-3597. [PMID: 35522323 DOI: 10.1007/s00259-022-05826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Dengsai Peng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China
| | - Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China
| | - Ling Huang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 646000, People's Republic of China
| | - Jianpeng Cao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China. .,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
43
|
Evaluation of radiation safety of the newly established national New Zealand 177–Lutetium (177-Lu or Lutate) Peptide Receptor Radiation Therapy (PRRT) service, a palliative treatment for patients with metastatic neuroendocrine tumours. J Med Imaging Radiat Sci 2022; 53:S22-S30. [DOI: 10.1016/j.jmir.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022]
|
44
|
Kohno S. Diagnosis and Surgical Treatment of Gastroenteropancreatic Neuroendocrine Neoplasms: A Literature Review. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:115-125. [PMID: 35399177 PMCID: PMC8962810 DOI: 10.21873/cdp.10085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
This review aimed to highlight the characteristics and surgical treatments of tumours, and answer questions regarding the assessment of gastrointestinal neuroendocrine neoplasms (NENs) and optimal therapy. NENs comprise tumours that can produce hormones and cause a secretory syndrome. The diagnostic method and accuracy differ depending on the site of occurrence; hence, the relevant scientific society has created NEN treatment guidelines for each organ. Gastroenteric pancreatic (GEP) NENs have been unified and classified together according to the 2019 World Health Organization classification. Treatment is based on complete tumour resection, and when metastatic or primary lesions cannot be completely resected, lesions and symptoms are treated. Except for surgery for NENs, chemotherapy, molecularly targeted drugs, transarterial chemoembolization, etc., have also been confirmed as treatments. GEP NEN treatment methods will continue to advance and change because of surgery and other advances in treatment and diagnostic methods.
Collapse
Affiliation(s)
- Shuzo Kohno
- Department of Surgery, The Jikei University Katsushika Medical Center, Tokyo, Japan
| |
Collapse
|
45
|
Zhang B, Li S, Sun Z, Chen X, Qi B, Zhang Q, Zhang G, Shang D. Challenges in treatment of a patient suffering from neuroendocrine tumor G1 of the hilar bile duct: a case report. BMC Gastroenterol 2022; 22:13. [PMID: 34998372 PMCID: PMC8742925 DOI: 10.1186/s12876-021-02019-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Neuroendocrine tumors (NETs) arise from neuroendocrine cells and are extremely rare in the biliary tract. Currently, there are no guidelines for the diagnosis and treatment of biliary NETs. We presented a case with NETs G1 of the hilar bile duct and the challenges for her treatment. Case presentation A 24-year-old woman was presented to our department with painless jaundice and pruritus, and the preoperative diagnosis was Bismuth type II hilar cholangiocarcinoma. She underwent Roux-en-Y hepaticojejunostomy with excision of the extrahepatic biliary tree and radical lymphadenectomy. Unexpectedly, postoperative pathological and immunohistochemical examination indicated a perihilar bile duct NETs G1 with the microscopic invasion of the resected right hepatic duct. Then the patient received 3 cycles of adjuvant chemotherapy (Gemcitabine and tegafur-gimeracil-oteracil potassium capsule). At present, this patient has been following up for 24 months without recurrence or disease progression. Conclusion We know little of biliary NETs because of its rarity. There are currently no guidelines for the diagnosis and treatment of biliary NETs. We reported a case of perihilar bile duct NETs G1 with R1 resection, as far as we know this is the first report. More information about biliary NETs should be registered.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Shuang Li
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhen Sun
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Department of General Surgery, The Second Hospital of Jilin University, Changchun, 130022, Jilin, China
| | - Xu Chen
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Bing Qi
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Qingkai Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Guixin Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China.,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China. .,Institute of Integrative Medicine, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
46
|
Terapia con péptidos radiomarcados con [177Lu]Lu-DOTA-TATE. Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Kabasakal L, Demirci E, Selçuk NA. Radionuclide Therapy in Neuroendocrine Tumors. RADIONUCLIDE THERAPY 2022:173-186. [DOI: 10.1007/978-3-030-97220-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
48
|
Schnitzer ML, Kremer C, Hertel A, Haselmann V, von Münchhausen N, Schoenberg SO, Froelich MF. Economic assessment of molecular imaging in the oncology treatment process. Eur J Radiol 2021; 146:110105. [PMID: 34920293 DOI: 10.1016/j.ejrad.2021.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
The development towards targeted treatments in oncology has been accompanied by significant improvements in molecular imaging. Yet, broad application of novel imaging techniques has partly been slowed down due to economical considerations. Building on the broad positive evidence of its diagnostic accuracy, modelling of effects on long-term costs and effectiveness may help to foster a broader application and acceptance of comprehensive molecular imaging techniques, such as PET/MRI. In this article, common economic evaluation techniques and cost-effectiveness analysis (CEA) evaluation methods will be introduced including Markov models and incremental cost-effectiveness ratios (ICER). This is complemented with a review of literature on recently published cost-effectiveness of molecular imaging. Additionally, the strategic relevance of CEAs for the molecular imaging community is discussed and combined with a global outlook.
Collapse
Affiliation(s)
- Moritz L Schnitzer
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Christophe Kremer
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Alexander Hertel
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Verena Haselmann
- Department of Clinical Chemistry, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Niklas von Münchhausen
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stefan O Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
49
|
Prado-Wohlwend S, Bernal-Vergara JC, Utrera-Costero A, Cañón-Sánchez JR, Agudelo-Cifuentes M, Bello-Arques P. Peptide receptor radionuclide therapy with [ 177Lu]Lu-DOTA-TATE. Rev Esp Med Nucl Imagen Mol 2021; 41:55-65. [PMID: 34920969 DOI: 10.1016/j.remnie.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022]
Abstract
This continuing education aims to present in a clear and easy-to-understand way, the biology of neuroendocrine tumors (NETs), the characteristics of somatostatin receptors, the selection of patients for radiolabelled peptide therapy (PRRT), the inclusion criteria to benefit from treatment with the minimum possible adverse effects, the administration protocol, follow-up and response evaluation. The functional imaging studies necessary to explore the biology of the tumor and to individualize the treatment are also carried out, and constitute the cornerstone for the development of teragnosis. Clinical trials are being developed to better define the position of PRRT within the broad therapeutic options, and among the future perspectives, there are several lines of research to improve the objective response rate and survival with PRRT, focused on the development of new agonists and somatostatin receptor antagonists, new radionuclides and radiosensitizing combination therapies. In conclusion, PRRT is a great therapeutic, well-tolerated and safe tool with generally mild and self-limited acute side effects, that must be sequenced at the best moment of the evolution of the disease of patients with NET. Candidate patients for PRRT should always be evaluated by a multidisciplinary clinical committee.
Collapse
Affiliation(s)
- S Prado-Wohlwend
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - J C Bernal-Vergara
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - A Utrera-Costero
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - J R Cañón-Sánchez
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - M Agudelo-Cifuentes
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - P Bello-Arques
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | -
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
50
|
Verger E, Cheng J, de Santis V, Iafrate M, Jackson JA, Imberti C, Fruhwirth GO, Blower PJ, Ma MT, Burnham DR, Terry SYA. Validation of the plasmid study to relate DNA damaging effects of radionuclides to those from external beam radiotherapy. Nucl Med Biol 2021; 100-101:36-43. [PMID: 34153932 PMCID: PMC7611685 DOI: 10.1016/j.nucmedbio.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The biological consequences of absorbed radiation doses are ill-defined for radiopharmaceuticals, unlike for external beam radiotherapy (EBRT). A reliable assay that assesses the biological consequences of any radionuclide is much needed. Here, we evaluated the cell-free plasmid DNA assay to determine the relative biological effects of radionuclides such as Auger electron-emitting [67Ga]GaCl3 or [111In]InCl3 compared to EBRT. METHODS Supercoiled pBR322 plasmid DNA (1.25 or 5 ng/μL) was incubated with 0.5 or 1 MBq [67Ga]GaCl3 or [111In]InCl3 for up to 73 h or was exposed to EBRT (137Cs; 5 Gy/min; 0-40 Gy). The induction of relaxed and linear plasmid DNA, representing single and double strand breaks, respectively, was assessed by gel electrophoresis. Chelated forms of 67Ga were also investigated using DOTA and THP. Topological conversion rates for supercoiled-to-relaxed (ksrx) or relaxed-to-linear (krlx) DNA were obtained by fitting a kinetic model. RESULTS DNA damage increased both with EBRT dose and incubation time for [67Ga]GaCl3 and [111In]InCl3. Damage caused by [67Ga]GaCl3 decreased when chelated. [67Ga]GaCl3 proved more damaging than [111In]InCl3; 1.25 ng/μL DNA incubated with 0.5 MBq [67Ga]GaCl3 for 2 h led to a 70% decrease of intact plasmid DNA as opposed to only a 19% decrease for [111In]InCl3. For both EBRT and radionuclides, conversion rates were slower for 5 ng/μL than 1.25 ng/μL plasmid DNA. DNA damage caused by 1 Gy EBRT was the equivalent to damage caused by 0.5 MBq unchelated [67Ga]GaCl3 and [111In]InCl3 after 2.05 ± 0.36 and 9.3 ± 0.77 h of incubation, respectively. CONCLUSIONS This work has highlighted the power of the plasmid DNA assay for a rapid determination of the relative biological effects of radionuclides compared to external beam radiotherapy. It is envisaged this approach will enable the systematic assessment of imaging and therapeutic radionuclides, including Auger electron-emitters, to further inform radiopharmaceutical design and application.
Collapse
Affiliation(s)
- Elise Verger
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Jordan Cheng
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Vittorio de Santis
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Madeleine Iafrate
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Jessica A Jackson
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Cinzia Imberti
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom; Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital Campus, London SE1 1UL, United Kingdom
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Michelle T Ma
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Daniel R Burnham
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Samantha Y A Terry
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|