1
|
Li H, Zhu Y, Wang X, Feng Y, Qian Y, Ma Q, Li X, Chen Y, Chen K. Joining Forces: The Combined Application of Therapeutic Viruses and Nanomaterials in Cancer Therapy. Molecules 2023; 28:7679. [PMID: 38005401 PMCID: PMC10674375 DOI: 10.3390/molecules28227679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.
Collapse
Affiliation(s)
- Hongyu Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
- Ocean College, Beibu Gulf University, Qinzhou 535011, China
| | - Yunhuan Zhu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xin Wang
- Center of Infectious Disease Research, School of Life Science, Westlake University, Hangzhou 310024, China;
| | - Yilu Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yuncheng Qian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Qiman Ma
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Xinyuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Yihan Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Y.Z.); (Y.F.); (Y.Q.); (Q.M.); (X.L.); (Y.C.)
| |
Collapse
|
2
|
Fang C, Xiao G, Wang T, Song L, Peng B, Xu B, Zhang K. Emerging Nano-/Biotechnology Drives Oncolytic Virus-Activated and Combined Cancer Immunotherapy. RESEARCH 2023; 6:0108. [PMID: 37040283 PMCID: PMC10079287 DOI: 10.34133/research.0108] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/15/2023] [Indexed: 04/05/2023]
Abstract
Oncolytic viruses (OVs) as one promising antitumor methods have made important contributions to tumor immunotherapy, which arouse increasing attention. They provide the dual mechanisms including direct killing effect toward tumor cells and immune activation for elevating antitumor responses, which have been proved in many preclinical studies. Especially, natural or genetically modified viruses as clinical immune preparations have emerged as a new promising approach objective to oncology treatment. The approval of talimogene laherparepvec (T-VEC) by the U.S. Food and Drug Administration (FDA) for the therapy of advanced melanoma could be considered as a milestone achievement in the clinical translation of OV. In this review, we first discussed the antitumor mechanisms of OVs with an emphasis on targeting, replication, and propagation. We further outlined the state of the art of current OVs in tumor and underlined the activated biological effects especially including immunity. More significantly, the enhanced immune responses based on OVs were systematically discussed from different perspectives such as combination with immunotherapy, genetic engineering of OVs, integration with nanobiotechnology or nanoparticles, and antiviral response counteraction, where their principles were shed light on. The development of OVs in the clinics was also highlighted to analyze the actuality and concerns of different OV applications in clinical trials. At last, the future perspectives and challenges of OVs as an already widely accepted treatment means were discussed. This review will provide a systematic review and deep insight into OV development and also offer new opportunities and guidance pathways to drive the further clinical translation.
Collapse
Affiliation(s)
- Chao Fang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Gaozhe Xiao
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| | - Taixia Wang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Li Song
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bo Peng
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
| | - Bin Xu
- Department of Urology, Shanghai Ninth People’s Hospital,
Shanghai Jiaotong University School of Medicine, No. 639 Zhizaoju Road, Huangpu, Shanghai 200011, China
| | - Kun Zhang
- Central Laboratory and Department of Urology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine,
Tongji University, No. 301 Yan-chang-zhong Road, Shanghai 200072, China
- National Center for International Research of Bio-targeting Theranostics,
Guangxi Medical University, No. 22 Shuangyong Road 22, Nanning, Guangxi 530021, China
| |
Collapse
|
3
|
Dong F, Su L, Tan J, Luo H. The anticancer effect of
EGFR
‐targeting artificial
microRNA
controlled by
SLPI
promoter in nasopharyngeal carcinoma. J Clin Lab Anal 2022; 36:e24729. [DOI: 10.1002/jcla.24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Feilin Dong
- Medical College Soochow University Suzhou China
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| | - Lizhong Su
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| | - Jun Tan
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| | - Hui Luo
- Department of Otolaryngology, Otolaryngology & Head and Neck Center, Cancer Center Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College) Hangzhou China
| |
Collapse
|
4
|
Choi S, Lee YR, Kim KM, Choi E, Jeon BH. Dual Function of Secreted APE1/Ref-1 in TNBC Tumorigenesis: An Apoptotic Initiator and a Regulator of Chronic Inflammatory Signaling. Int J Mol Sci 2022; 23:ijms23169021. [PMID: 36012284 PMCID: PMC9409365 DOI: 10.3390/ijms23169021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The simultaneous regulation of cancer cells and inflammatory immune cells in the tumor microenvironment (TME) can be an effective strategy in treating aggressive breast cancer types, such as triple-negative breast cancer (TNBC). Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multi-functional nuclear protein that can be stimulated and then secreted. The extracellular APE1/Ref-1 causes a reduction in disulfide bonds in cytokine receptors, resulting in their conformational changes, thereby inhibiting inflammatory signaling. Furthermore, the secreted APE1/Ref-1 in response to acetylation has been shown to bind to a receptor for the advanced glycation end product (RAGE), initiating the apoptotic cell death of TNBC in vitro and in vivo. This study used PPTLS-APE1/Ref-1 in an adenovirus vector (Ad-PPTLS-APE1/Ref-1) for the constant expression of extracellular APE1/Ref-1, and our results demonstrated its dual function as an apoptotic initiator and inflammation regulator. Injecting MDA-MB 231 orthotopic xenografts with the Ad-PPTLS-APE1/Ref-1 inhibited tumor growth and development in response to acetylation. Moreover, Ad-PPTLS-APE1/Ref-1 generated reactive oxygen species (ROS), and tumor tissues derived from these xenografts exhibited apoptotic bodies. Compared to normal mice, a comparable ratio of anti- and pro-inflammatory cytokines was observed in the plasma of Ad-PPTLS-APE1/Ref-1-injected mice. Mechanistically, the disturbed cytokine receptor by reducing activity of PPTLS-APE1/Ref-1 inhibited inflammatory signaling leading to the inactivation of the p21-activated kinase 1-mediated signal transducer and activator of transcription 3/nuclear factor-κB axis in tumor tissues. These results suggest that the regulation of inflammatory signaling with adenoviral-mediated PPTLS-APE1/Ref-1 in tumors modulates the secretion of pro-inflammatory cytokines in TME, thereby inhibiting aggressive cancer cell progression, and could be considered as a promising and safe therapeutic strategy for treating TNBCs.
Collapse
Affiliation(s)
- Sunga Choi
- Department of Bioinformatics and Biosystems, Seongnam Campus of Korea Polytechnics, Seongnam-si 13122, Korea
- Correspondence: ; Tel.: +82-31-739-4140; Fax: +82-31-739-3375
| | - Yu-Ran Lee
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Ki-Mo Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Korea
| | - Euna Choi
- Department of Biology, Union University, Jackson, TN 38305, USA
| | - Byeong-Hwa Jeon
- Research Institute of Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| |
Collapse
|
5
|
Rojas JM, Sevilla N, Martín V. A New Look at Vaccine Strategies Against PPRV Focused on Adenoviral Candidates. Front Vet Sci 2021; 8:729879. [PMID: 34568477 PMCID: PMC8455998 DOI: 10.3389/fvets.2021.729879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
Peste des petits ruminants virus (PPRV) is a virus that mainly infects goats and sheep causing significant economic loss in Africa and Asia, but also posing a serious threat to Europe, as recent outbreaks in Georgia (2016) and Bulgaria (2018) have been reported. In order to carry out the eradication of PPRV, an objective set for 2030 by the Office International des Epizooties (OIE) and the Food and Agriculture Organization of the United Nations (FAO), close collaboration between governments, pharmaceutical companies, farmers and researchers, among others, is needed. Today, more than ever, as seen in the response to the SARS-CoV2 pandemic that we are currently experiencing, these goals are feasible. We summarize in this review the current vaccination approaches against PPRV in the field, discussing their advantages and shortfalls, as well as the development and generation of new vaccination strategies, focusing on the potential use of adenovirus as vaccine platform against PPRV and more broadly against other ruminant pathogens.
Collapse
Affiliation(s)
| | | | - Verónica Martín
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
6
|
Zafar S, Quixabeira DCA, Kudling TV, Cervera-Carrascon V, Santos JM, Grönberg-Vähä-Koskela S, Zhao F, Aronen P, Heiniö C, Havunen R, Sorsa S, Kanerva A, Hemminki A. Ad5/3 is able to avoid neutralization by binding to erythrocytes and lymphocytes. Cancer Gene Ther 2021; 28:442-454. [PMID: 32920593 PMCID: PMC8119244 DOI: 10.1038/s41417-020-00226-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Oncolytic adenoviruses are promising cancer therapeutic agents. Clinical data have shown adenoviruses' ability to transduce tumors after systemic delivery in human cancer patients, despite antibodies. In the present work, we have focused on the interaction of a chimeric adenovirus Ad5/3 with human lymphocytes and human erythrocytes. Ad5/3 binding with human lymphocytes and erythrocytes was observed to occur in a reversible manner, which allowed viral transduction of tumors, and oncolytic potency of Ad5/3 in vitro and in vivo, with or without neutralizing antibodies. Immunodeficient mice bearing xenograft tumors showed enhanced tumor transduction following systemic administration, when Ad5/3 virus was bound to lymphocytes or erythrocytes (P < 0.05). In conclusion, our findings reveal that chimeric Ad5/3 adenovirus reaches non-injected tumors in the presence of neutralizing antibodies: it occurs through reversible binding to lymphocytes and erythrocytes.
Collapse
Affiliation(s)
- Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Dafne Carolina Alves Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Tatiana Viktorovna Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao Manuel Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Susanna Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Fang Zhao
- Advanced Microscopy Unit (AMU), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pasi Aronen
- Biostatistics Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Camilla Heiniö
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Suvi Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program and Department of Oncology, University of Helsinki, Helsinki, Finland.
- TILT Biotherapeutics Ltd, Helsinki, Finland.
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
7
|
Yano S, Tazawa H, Kishimoto H, Kagawa S, Fujiwara T, Hoffman RM. Real-Time Fluorescence Image-Guided Oncolytic Virotherapy for Precise Cancer Treatment. Int J Mol Sci 2021; 22:E879. [PMID: 33477279 PMCID: PMC7830621 DOI: 10.3390/ijms22020879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy is one of the most promising, emerging cancer therapeutics. We generated three types of telomerase-specific replication-competent oncolytic adenovirus: OBP-301; a green fluorescent protein (GFP)-expressing adenovirus, OBP-401; and Killer-Red-armed OBP-301. These oncolytic adenoviruses are driven by the human telomerase reverse transcriptase (hTERT) promoter; therefore, they conditionally replicate preferentially in cancer cells. Fluorescence imaging enables visualization of invasion and metastasis in vivo at the subcellular level; including molecular dynamics of cancer cells, resulting in greater precision therapy. In the present review, we focused on fluorescence imaging applications to develop precision targeting for oncolytic virotherapy. Cell-cycle imaging with the fluorescence ubiquitination cell cycle indicator (FUCCI) demonstrated that combination therapy of an oncolytic adenovirus and a cytotoxic agent could precisely target quiescent, chemoresistant cancer stem cells (CSCs) based on decoying the cancer cells to cycle to S-phase by viral treatment, thereby rendering them chemosensitive. Non-invasive fluorescence imaging demonstrated that complete tumor resection with a precise margin, preservation of function, and prevention of distant metastasis, was achieved with fluorescence-guided surgery (FGS) with a GFP-reporter adenovirus. A combination of fluorescence imaging and laser ablation using a KillerRed-protein reporter adenovirus resulted in effective photodynamic cancer therapy (PDT). Thus, imaging technology and the designer oncolytic adenoviruses may have clinical potential for precise cancer targeting by indicating the optimal time for administering therapeutic agents; accurate surgical guidance for complete resection of tumors; and precise targeted cancer-specific photosensitization.
Collapse
Affiliation(s)
- Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center for Graduate Medical Education, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Center of Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (H.T.); (H.K.); (S.K.); (T.F.)
| | - Robert M. Hoffman
- AntiCancer, Inc., San Diego, CA 92111, USA;
- Department of Surgery, University of California, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Chen F, Zhang Z, Yu Y, Liu Q, Pu F. HSulf‑1 and palbociclib exert synergistic antitumor effects on RB‑positive triple‑negative breast cancer. Int J Oncol 2020; 57:223-236. [PMID: 32377705 PMCID: PMC7252455 DOI: 10.3892/ijo.2020.5057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Human sulfatase-1 (HSulf-1) is emerging as a novel prognostic biomarker in breast cancer. Previous studies demonstrated HSulf-1 to function as a negative regulator of cyclin D1 in breast cancer. Accumulating preclinical evidence is supporting the efficacy of cyclin-dependent kinase (CDK) 4/6 inhibitors against the luminal androgen receptor sub-type of triple-negative breast cancer (TNBC). It was therefore hypothesized that HSulf-1 may cooperate with CDK4/6 inhibitors to control cell cycle progression in breast cancer cells. HSulf-1 expression was found to be downregulated in TNBC tissues and cell lines compared with that in healthy tissues and non-breast cancer cell lines, respectively. High levels of HSulf-1 expression was also found to be associated with increased progression-free survival and overall survival in patients with TNBC. Functionally, it was demonstrated that HSulf-1 served as tumor suppressor in TNBC by inducing cell cycle arrest and apoptosis whilst inhibiting proliferation, epithelial-mesenchymal transition, migration and invasion. Subsequent overexpression of HSulf-1 coupled with treatment with the CDK4/6 inhibitor palbociclib exhibited a synergistic antitumor effect on retinoblastoma (RB)-positive TNBC. Further studies revealed the mechanism underlying this cooperative antiproliferative effect involved to be due to the prohibitive effects of HSulf-1 on the palbociclib-induced accumulation of cyclin D1 through AKT/STAT3 and ERK1/2/STAT3 signaling. Taken together, findings from the present study not only suggest that HSulf-1 may be a potential therapeutic target for TNBC, but also indicate that combinatorial treatment could be an alternative therapeutic option for RB-positive TNBC, which may open novel perspectives.
Collapse
Affiliation(s)
- Fengxia Chen
- Department of Medical Oncology, General Hospital of The Yangtze River Shipping, Wuhan Polytechnic University, Wuhan, Hubei 430010, P.R. China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yihan Yu
- Department of Pediatrics, The Third Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, P.R. China
| | - Qiuyu Liu
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Feifei Pu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
9
|
Tazawa H, Hasei J, Yano S, Kagawa S, Ozaki T, Fujiwara T. Bone and Soft-Tissue Sarcoma: A New Target for Telomerase-Specific Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12020478. [PMID: 32085583 PMCID: PMC7072448 DOI: 10.3390/cancers12020478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Adenovirus serotype 5 (Ad5) is widely and frequently used as a virus vector in cancer gene therapy and oncolytic virotherapy. Oncolytic virotherapy is a novel antitumor treatment for inducing lytic cell death in tumor cells without affecting normal cells. Based on the Ad5 genome, we have generated three types of telomerase-specific replication-competent oncolytic adenoviruses: OBP-301 (Telomelysin), green fluorescent protein (GFP)-expressing OBP-401 (TelomeScan), and tumor suppressor p53-armed OBP-702. These viruses drive the expression of the adenoviral E1A and E1B genes under the control of the hTERT (human telomerase reverse transcriptase-encoding gene) promoter, providing tumor-specific virus replication. This review focuses on the therapeutic potential of three hTERT promoter-driven oncolytic adenoviruses against bone and soft-tissue sarcoma cells with telomerase activity. OBP-301 induces the antitumor effect in monotherapy or combination therapy with chemotherapeutic drugs via induction of autophagy and apoptosis. OBP-401 enables visualization of sarcoma cells within normal tissues by serving as a tumor-specific labeling reagent for fluorescence-guided surgery via induction of GFP expression. OBP-702 exhibits a profound antitumor effect in OBP-301-resistant sarcoma cells via activation of the p53 signaling pathway. Taken together, telomerase-specific oncolytic adenoviruses are promising antitumor reagents that are expected to provide novel therapeutic options for the treatment of bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Correspondence: ; Tel.: +81-86-235-7491; Fax: +81-86-235-7492
| | - Joe Hasei
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| |
Collapse
|
10
|
Ingusci S, Verlengia G, Soukupova M, Zucchini S, Simonato M. Gene Therapy Tools for Brain Diseases. Front Pharmacol 2019; 10:724. [PMID: 31312139 PMCID: PMC6613496 DOI: 10.3389/fphar.2019.00724] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/05/2019] [Indexed: 01/20/2023] Open
Abstract
Neurological disorders affecting the central nervous system (CNS) are still incompletely understood. Many of these disorders lack a cure and are seeking more specific and effective treatments. In fact, in spite of advancements in knowledge of the CNS function, the treatment of neurological disorders with modern medical and surgical approaches remains difficult for many reasons, such as the complexity of the CNS, the limited regenerative capacity of the tissue, and the difficulty in conveying conventional drugs to the organ due to the blood-brain barrier. Gene therapy, allowing the delivery of genetic materials that encodes potential therapeutic molecules, represents an attractive option. Gene therapy can result in a stable or inducible expression of transgene(s), and can allow a nearly specific expression in target cells. In this review, we will discuss the most commonly used tools for the delivery of genetic material in the CNS, including viral and non-viral vectors; their main applications; their advantages and disadvantages. We will discuss mechanisms of genetic regulation through cell-specific and inducible promoters, which allow to express gene products only in specific cells and to control their transcriptional activation. In addition, we will describe the applications to CNS diseases of post-transcriptional regulation systems (RNA interference); of systems allowing spatial or temporal control of expression [optogenetics and Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)]; and of gene editing technologies (CRISPR/Cas9, Zinc finger proteins). Particular attention will be reserved to viral vectors derived from herpes simplex type 1, a potential tool for the delivery and expression of multiple transgene cassettes simultaneously.
Collapse
Affiliation(s)
- Selene Ingusci
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Gianluca Verlengia
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| | - Marie Soukupova
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy
| | - Silvia Zucchini
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Technopole of Ferrara, LTTA Laboratory for Advanced Therapies, Ferrara, Italy
| | - Michele Simonato
- Department of Medical Sciences and National Institute of Neuroscience, University of Ferrara, Ferrara, Italy.,Division of Neuroscience, University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
11
|
Höti N, Johnson TJ, Chowdhury WH, Rodriguez R. Loss of Cyclin-Dependent Kinase Inhibitor Alters Oncolytic Adenovirus Replication and Promotes More Efficient Virus Production. Cancers (Basel) 2018; 10:cancers10060202. [PMID: 29914081 PMCID: PMC6025342 DOI: 10.3390/cancers10060202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 01/01/2023] Open
Abstract
We elucidate the role of p21/Waf-1, a cyclin-dependent kinase inhibitor, on the oncolytic infection and replication cycle of adenovirus by studying both mRNA and adenoviral proteins expression. We found that infection in the absence of p21 causes a significant increase in adenoviral genomes and late gene expression. Similarly, the oncolytic adenoviral infected p21−/− cells have earlier formation of replication foci and robust replication kinetics that were not observed in the wild type p21/Waf-1 intact cells. These findings suggest a culmination that the presence of intact p21 in host cells causes defects in the oncolytic viral life cycle which results in the production of immature and noninfectious particles.
Collapse
Affiliation(s)
- Naseruddin Höti
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Tamara Jane Johnson
- James Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Wasim H Chowdhury
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| | - Ronald Rodriguez
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
12
|
Jeong KY, Kim EK, Park MH, Kim HM. Perspective on Cancer Therapeutics Utilizing Analysis of Circulating Tumor Cells. Diagnostics (Basel) 2018; 8:23. [PMID: 29641512 PMCID: PMC6023425 DOI: 10.3390/diagnostics8020023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment-such as surgery, chemotherapy, and/or radiation therapy-is selected. A new assay has been developed that detects circulating tumor cells (CTCs). Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Division, Metimedi Pharmaceuticals Co., 263, Central-ro, Yeonsu-Gu, Incheon 22006, Korea.
| | - Eun Kyung Kim
- R&D Division, Metimedi Pharmaceuticals Co., 263, Central-ro, Yeonsu-Gu, Incheon 22006, Korea.
| | - Min Hee Park
- R&D Division, Metimedi Pharmaceuticals Co., 263, Central-ro, Yeonsu-Gu, Incheon 22006, Korea.
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
13
|
Perspective on Cancer Therapeutics Utilizing Analysis of Circulating Tumor Cells. DIAGNOSTICS (BASEL, SWITZERLAND) 2018. [PMID: 29641512 DOI: 10.3390/diagnostics8020023.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various methods are available for cancer screening, and the methods are performed depending on the origin site of cancer. Among these methods, biopsy followed by medical imaging is the most common. After cancer progression is determined, an optimal treatment-such as surgery, chemotherapy, and/or radiation therapy-is selected. A new assay has been developed that detects circulating tumor cells (CTCs). Tracking changes in CTCs may reveal important tumoral sensitivity information or resistance patterns to specific regimens and prompt changes in therapy on a personalized basis. Characterization of CTCs at the DNA, RNA, and protein levels is important for gaining insight for clinical applications. A small number of CTCs can be analyzed to obtain genome information such as the progression of cancer including metastasis, even in a single cluster. Although many clinical studies, particularly CTC enumeration and detection of specific oncogene expression, have increased the success rate of diagnosis and predicting prognosis, there is no consensus regarding the technical approaches and various aspects of the methodology, making it difficult to standardize optimal methods for CTC analysis. However, ongoing technological advances are currently being achieved and large-scale clinical studies are being conducted. Applying CTC analysis in the clinic would be very useful for advancing diagnosis, prognosis prediction, and therapeutics.
Collapse
|
14
|
Kasala D, Lee SH, Hong JW, Choi JW, Nam K, Chung YH, Kim SW, Yun CO. Synergistic antitumor effect mediated by a paclitaxel-conjugated polymeric micelle-coated oncolytic adenovirus. Biomaterials 2017; 145:207-222. [DOI: 10.1016/j.biomaterials.2017.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/17/2017] [Accepted: 08/17/2017] [Indexed: 01/06/2023]
|
15
|
Asad AS, Moreno Ayala MA, Gottardo MF, Zuccato C, Nicola Candia AJ, Zanetti FA, Seilicovich A, Candolfi M. Viral gene therapy for breast cancer: progress and challenges. Expert Opin Biol Ther 2017; 17:945-959. [DOI: 10.1080/14712598.2017.1338684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antonela S. Asad
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela A. Moreno Ayala
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. Florencia Gottardo
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Camila Zuccato
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Javier Nicola Candia
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia A. Zanetti
- Instituto de Ciencia y Tecnología César Milstein (ICT Milstein), Unidad Ejecutora del Consejo Nacional de Investigaciones Científicas y Técnicas, Fundación Pablo Cassará, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Departamento de Biología Celular e Histología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED-CONICET/UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Yamamoto Y, Nagasato M, Yoshida T, Aoki K. Recent advances in genetic modification of adenovirus vectors for cancer treatment. Cancer Sci 2017; 108:831-837. [PMID: 28266780 PMCID: PMC5448613 DOI: 10.1111/cas.13228] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
Adenoviruses are widely used to deliver genes to a variety of cell types and have been used in a number of clinical trials for gene therapy and oncolytic virotherapy. However, several concerns must be addressed for the clinical use of adenovirus vectors. Selective delivery of a therapeutic gene by adenovirus vectors to target cancer is precluded by the widespread distribution of the primary cellular receptors. The systemic administration of adenoviruses results in hepatic tropism independent of the primary receptors. Adenoviruses induce strong innate and acquired immunity in vivo. Furthermore, several modifications to these vectors are necessary to enhance their oncolytic activity and ensure patient safety. As such, the adenovirus genome has been engineered to overcome these problems. The first part of the present review outlines recent progress in the genetic modification of adenovirus vectors for cancer treatment. In addition, several groups have recently developed cancer-targeting adenovirus vectors by using libraries that display random peptides on a fiber knob. Pancreatic cancer-targeting sequences have been isolated, and these oncolytic vectors have been shown by our group to be associated with a higher gene transduction efficiency and more potent oncolytic activity in cell lines, murine models, and surgical specimens of pancreatic cancer. In the second part of this review, we explain that combining cancer-targeting strategies can be a promising approach to increase the clinical usefulness of oncolytic adenovirus vectors.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Masaki Nagasato
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazunori Aoki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
17
|
Antitumor Efficacy of SLPI Promoter-Controlled Expression of Artificial microRNA Targeting EGFR in a Squamous Cell Carcinoma Cell Line. Pathol Oncol Res 2017; 23:829-835. [PMID: 28101799 DOI: 10.1007/s12253-016-0160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to develop a recombinant adenovirus with secretory leukoprotease inhibitor (SLPI) promoter-controlled expression for gene therapy of squamous cell carcinoma (SCC). An artificial microRNA targeting epidermal growth factor receptor (EGFR) was designed, and used to construct a replication-defective recombinant adenovirus with SLPI promoter-controlled expression. The silencing efficiency of this vector (Ad-SLPI-EGFRamiR) was detected in Hep-2 cells. Western blotting showed that the expression of 170 kD EGFR was significantly reduced in Hep-2 cells 72 h after infection with Ad-SLPI-EGFRamiR. At a multiplicity of infection (MOI) of 200 pfu/cell, proliferation of Hep-2 cells was highly inhibited by Ad-SLPI-EGFRamiR (inhibition rate: ~70%). The apoptosis rate of Hep-2 cells at 72 h after infection with Ad-SLPI-EGFRamiR at a MOI 35 pfu/cell was 32.8%. The adenovirus constructed was able to specifically inhibit the growth of SCC cells in vitro.
Collapse
|
18
|
Evans J, Salamonsen LA, Winship A, Menkhorst E, Nie G, Gargett CE, Dimitriadis E. Fertile ground: human endometrial programming and lessons in health and disease. Nat Rev Endocrinol 2016; 12:654-667. [PMID: 27448058 DOI: 10.1038/nrendo.2016.116] [Citation(s) in RCA: 213] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human endometrium is a highly dynamic tissue that is cyclically shed, repaired, regenerated and remodelled, primarily under the orchestration of oestrogen and progesterone, in preparation for embryo implantation. Humans are among the very few species that menstruate and that, consequently, are equipped with unique cellular and molecular mechanisms controlling these cyclic processes. Many reproductive pathologies are specific to menstruating species, and studies in animal models rarely translate to humans. Abnormal remodelling and regeneration of the human endometrium leads to a range of reproductive complications. Furthermore, the processes regulating endometrial remodelling and implantation, including those controlling hormonal impact, breakdown and repair, stem/progenitor cell activation, inflammation and cell invasion have broad applications to other fields. This Review presents current knowledge regarding the normal and abnormal function of the human endometrium. The development of biomarkers for prediction of uterine diseases and pregnancy disorders and future avenues of investigation to improve fertility and enhance endometrial function are also discussed.
Collapse
Affiliation(s)
- Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Physiology, Monash University, Clayton, 3800, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, 3800, Australia
| | - Amy Winship
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
| | - Ellen Menkhorst
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
| | - Guiying Nie
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia
| | - Caroline E Gargett
- Department of Obstetrics and Gynaecology, Monash University, Clayton, 3800, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, 3168, Australia
| | - Eva Dimitriadis
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Australia
- Department of Molecular and Translational Medicine, Monash University, Clayton, 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, 3800, Australia
| |
Collapse
|
19
|
Dobbins GC, Ugai H, Curiel DT, Gillespie GY. A Multi Targeting Conditionally Replicating Adenovirus Displays Enhanced Oncolysis while Maintaining Expression of Immunotherapeutic Agents. PLoS One 2015; 10:e0145272. [PMID: 26689910 PMCID: PMC4687127 DOI: 10.1371/journal.pone.0145272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
Studies have demonstrated that oncolytic adenoviruses based on a 24 base pair deletion in the viral E1A gene (D24) may be promising therapeutics for treating a number of cancer types. In order to increase the therapeutic potential of these oncolytic viruses, a novel conditionally replicating adenovirus targeting multiple receptors upregulated on tumors was generated by incorporating an Ad5/3 fiber with a carboxyl terminus RGD ligand. The virus displayed full cytopathic effect in all tumor lines assayed at low titers with improved cytotoxicity over Ad5-RGD D24, Ad5/3 D24 and an HSV oncolytic virus. The virus was then engineered to deliver immunotherapeutic agents such as GM-CSF while maintaining enhanced heterogenic oncolysis.
Collapse
Affiliation(s)
- G. Clement Dobbins
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (GCD); (GYG)
| | - Hideyo Ugai
- Cancer Biology Division, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - David T. Curiel
- Biologic Therapeutics Center, Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, Missouri, United States of America
| | - G. Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (GCD); (GYG)
| |
Collapse
|
20
|
Sakr HI, Coleman DT, Cardelli JA, Mathis JM. Characterization of an Oncolytic Adenovirus Vector Constructed to Target the cMet Receptor. Oncolytic Virother 2015; 4:119-132. [PMID: 26866014 PMCID: PMC4746000 DOI: 10.2147/ov.s87369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cMet receptor is a homodimer with tyrosine kinase activity. Upon stimulation with its ligand, hepatocyte growth factor (HGF), the receptor mediates wide physiologic actions. The HGF-cMet signaling pathway is dysregulated in many cancers, which makes cMet an important target for novel therapeutic interventions. Oncolytic adenoviruses (Ads) have been used for the past three decades as a promising therapeutic approach for a wide array of neoplastic diseases. To date, achieving cancer-specific replication of oncolytic Ads has been accomplished by either viral genome deletions or by incorporating tumor selective promoters. To achieve novel specificity of oncolytic Ad infection of cancer cells that overexpress cMet, we inserted the HGF NK2 sequence, corresponding to a competitive antagonist of HGF binding to the cMet receptor, into the Ad serotype 5 (Ad5) fiber gene. The resulting vector, Ad5-pIX-RFP-FF/NK2, was rescued, amplified in HEK293 cells, and characterized. Binding specificity and viral infectivity were tested in various cancer cell lines that express varying levels of cMet and hCAR (the Ad5 receptor). We found that Ad5-pIX-RFP-FF/NK2 demonstrated binding specificity to the cMet receptor. In addition, there was enhanced viral infectivity and virus replication compared with a non-targeted Ad vector. Although NK2 weakly induces cMet receptor activation, our results showed no receptor phosphorylation in the context of an oncolytic Ad virus. In summary, these results suggest that an oncolytic Ad retargeted to the cMet receptor is a promising vector for developing a novel cancer therapeutic agent.
Collapse
Affiliation(s)
- Hany I Sakr
- Department of Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, LA, USA; Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - David T Coleman
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - James A Cardelli
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - J Michael Mathis
- Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
21
|
Liu GY, Li ZJ, Li QL, Jin Y, Zhu YH, Wang YH, Liu MY, Li YG, Li Y. Enhanced growth suppression of TERT-positive tumor cells by oncolytic adenovirus armed with CCL20 and CD40L. Int Immunopharmacol 2015. [PMID: 26208317 DOI: 10.1016/j.intimp.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conditionally replicating adenoviruses (CRAds) selectively replicate in cancer cells and induce cell lysis, which represents a potential platform for cancer immunotherapy. The chemokine CCL20 exerts antitumor activity via chemoattraction of immature dendritic cells (DCs) and lymphocytes. However, the activation and maturation status of DCs is a limiting factor in the DCs -based immunity response. CD40L induces the phenotypic maturation of DCs, mediates DCs cytokine secretion, and increases the expression of FasL, which mediates apoptosis. We constructed a CCL20/CD40L co-expression CRAds (Ad-CCL20-CD40L) based on the AdEasy system. Ad-CCL20-CD40L was constructed from three plasmids, pGTE-CD40L, pShuttle-CMV-CCL20 and AdEasy-1, and was homologously recombined and propagated in the Escherichia coli strain BJ5183 and the packaging cell line HEK-293, respectively. Ad-CCL20-CD40L selectively replicates in TERT-positive tumor cells because the pGTE-CD40L plasmid contains the telomerase reverse transcriptase promoter (TERTp). Our results showed that Ad-CCL20-CD40L induced oncolytic effects and tumor-specific cytotoxicity of cytotoxic T lymphocytes (CTLs) in vitro. This study suggests that Ad-CCL20-CD40L can induce the antitumor immune response and that this platform can be modified to generate novel CRAds with other transgenes.
Collapse
Affiliation(s)
- Guang-Yao Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Zhi-Jie Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Qing-Lin Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Yan Jin
- Second Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Yu-Hui Zhu
- Second Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Yue-Hui Wang
- Second Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Ya-Gang Li
- Fourth Hospital of Jilin University, Changchun 130062, PR China
| | - Yang Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
22
|
Choi JW, Park JW, Na Y, Jung SJ, Hwang JK, Choi D, Lee KG, Yun CO. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials 2015; 65:163-74. [PMID: 26164117 DOI: 10.1016/j.biomaterials.2015.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022]
Abstract
Adenovirus (Ad) is a widely used vector for cancer gene therapy but its therapeutic efficacy is limited by low coxsackievirus and adenovirus receptor (CAR) expression in tumors and non-specifically targeted infection. Ad infectivity and specificity can be markedly improved by creating Ad-magnetic nanoparticles cluster complexes and directing their migration with an external magnetic field (MGF). We electrostatically complexed GFP-expressing, replication-incompetent Ad (dAd) with PEGylated and cross-linked iron oxide nanoparticles (PCION), generating dAd-PCION complexes. The dAd-PCION showed increased transduction efficiency, independent of CAR expression, in the absence or presence of an MGF. Cancer cell killing and intracellular oncolytic Ad (HmT)-PCION replication significantly increased with MGF exposure. Site-directed, magnetically-targeted delivery of the HmT-PCION elicited significantly greater therapeutic efficacy versus treatment with naked HmT or HmT-PCION without MGF in CAR-negative MCF7 tumors. Immunohistochemical tumor analysis showed increased oncolytic Ad replication in tumors following infection by HmT-PCION using an MGF. Whole-body bioluminescence imaging of tumor-bearing mice showed a 450-fold increased tumor-to-liver ratio for HmT-PCION with, versus without, MGF. These results demonstrate the feasibility and potential of external MGF-responsive PCION-coated oncolytic Ads as smart hybrid vectors for cancer gene therapy.
Collapse
Affiliation(s)
- Joung-Woo Choi
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Ji Won Park
- Graduated School, Dept. of Polymer Science & Engineering, SungKyunKwan University, Suwon 440-746, Republic of Korea
| | - Youjin Na
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Soo-Jung Jung
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea
| | - June Kyu Hwang
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Dongho Choi
- Department of Surgery, College of Medicine, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Kyeong Geun Lee
- Department of Surgery, College of Medicine, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Li S, Qi Z, Li H, Hu J, Wang D, Wang X, Feng Z. Conditionally replicating oncolytic adenoviral vector expressing arresten and tumor necrosis factor-related apoptosis-inducing ligand experimentally suppresses lung carcinoma progression. Mol Med Rep 2015; 12:2068-74. [PMID: 25891208 DOI: 10.3892/mmr.2015.3624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 01/21/2015] [Indexed: 11/06/2022] Open
Abstract
Current methods of treatment for lung carcinoma are ineffective for the majority of patients. Conditionally replicating adenoviruses (CRAds) represent a potential novel treatment for a number of neoplastic diseases, including lung carcinoma. The present study aimed to investigate the synergistic mechanisms underlying the anti-angiogenesis gene, arresten, and the apoptosis-inducing gene, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), in order to evaluate their therapeutic potential in lung cancer. The two genes were expressed by CRAd, which was confirmed using reverse transcription-polymerase chain reaction and western blotting. In vitro analyses demonstrated that CRAd adenoviruses are capable of selectively inhibiting A549 lung cancer cell growth and replication but not in that of healthy cells. In vivo analyses demonstrated that the infection of A549 cell lines using CRAd armed with the two genes (CRAd-arresten-TRAIL) enhanced the tumor inhibition, compared with cells infected with CRAd-arresten, CRAd-TRAIL or CRAd, and with the control group. CRAd-arresten-TRAIL may therefore be useful in the treatment of lung cancer.
Collapse
Affiliation(s)
- Shudong Li
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Zongli Qi
- Laboratory Center, Shaanxi Provincial People's Hospital, Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Huijin Li
- Laboratory Center, Shaanxi Provincial People's Hospital, Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Jun Hu
- Laboratory Center, Shaanxi Provincial People's Hospital, Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Dongyang Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Xin Wang
- Laboratory Center, Shaanxi Provincial People's Hospital, Third Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710068, P.R. China
| | - Zhenzhen Feng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| |
Collapse
|
24
|
Yamamoto Y, Hiraoka N, Goto N, Rin Y, Miura K, Narumi K, Uchida H, Tagawa M, Aoki K. A targeting ligand enhances infectivity and cytotoxicity of an oncolytic adenovirus in human pancreatic cancer tissues. J Control Release 2014; 192:284-93. [PMID: 25108153 DOI: 10.1016/j.jconrel.2014.07.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/12/2014] [Accepted: 07/29/2014] [Indexed: 12/13/2022]
Abstract
The addition of a targeting strategy is necessary to enhance oncolysis and secure safety of a conditionally replicative adenovirus (CRAd). We have constructed an adenovirus library displaying random peptides on the fiber, and have successfully identified a pancreatic cancer-targeting ligand (SYENFSA). Here, the usefulness of cancer-targeted CRAd for pancreatic cancer was examined as a preclinical study. First, we constructed a survivin promoter-regulated CRAd expressing enhanced green fluorescent protein gene (EGFP), which displayed the identified targeting ligand (AdSur-SYE). The AdSur-SYE resulted in higher gene transduction efficiency and oncolytic potency than the untargeted CRAd (AdSur) in several pancreatic cancer cell lines. An intratumoral injection of AdSur-SYE significantly suppressed the growth of subcutaneous tumors, in which AdSur-SYE effectively proliferated and spread. An ectopic infection in adjacent tissues and organs of intratumorally injected AdSur-SYE was decreased compared with AdSur. Then, to examine whether the targeting ligand actually enhanced the infectivity of CRAd in human pancreatic cancer tissues, tumor cells prepared from surgical specimens were infected with viruses. The AdSur-SYE increased gene transduction efficiency 6.4-fold higher than did AdSur in single cells derived from human pancreatic cancer, whereas the infectivity of both vectors was almost the same in the pancreas and other cancers. Immunostaining showed that most EGFP(+) cells were cytokeratin-positive in the sliced tissues, indicating that pancreatic cancer cells but not stromal cells were injected with AdSur-SYE. AdSur-SYE resulted in a stronger oncolysis in the primary pancreatic cancer cells co-cultured with mouse embryonic fibroblasts than AdSur did. CRAd in combination with a tumor-targeting ligand is promising as a next-generation of oncolytic virotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, 432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Nobuyoshi Hiraoka
- Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Naoko Goto
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yosei Rin
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, 432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Kazuki Miura
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, 432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Kenta Narumi
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Hiroaki Uchida
- Laboratory of Oncology, Tokyo University of Pharmacy and Life Sciences, 432-1 Horinouchi, Hachioji, Tokyo 192-0355, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona-chou, Chuo-ku, Chiba 260-0801, Japan
| | - Kazunori Aoki
- Division of Gene and Immune Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| |
Collapse
|
25
|
Recombinant adenovirus snake venom cystatin inhibits the growth, invasion, and metastasis of B16F10 cells in vitro and in vivo. Melanoma Res 2014; 23:444-51. [PMID: 24128788 DOI: 10.1097/cmr.0000000000000031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies have shown that transfection of the snake venom cystatin (sv-cystatin) gene can inhibit the invasion and metastasis of tumor cells. The aim of this study was to investigate the pharmaceutical applications of sv-cystatin in melanoma gene therapy. We constructed a recombinant adenovirus carrying sv-cystatin (Ad/sv-cystatin) and a control virus (Ad/null). Matrigel assays were used to assess melanoma cell migration and invasiveness in vitro. The antimelanoma effects of Ad/sv-cystatin were assessed in a syngeneic mouse model with an experimental lung colonization assay. Ad/sv-cystatin significantly inhibited the invasion and growth of B16F10 cells in vitro compared with control and Ad/null. Ad/sv-cystatin significantly inhibited experimental lung colonization in C57BL/6 mice as compared with that in control (P<0.001) and Ad/null-treated mice (P<0.001), with an inhibition rate of 51 and 46%, respectively. Ad/sv-cystatin slowed the increase in lung weight in C57BL/6 mice as compared with that in control mice (P<0.001) and Ad/null-treated mice (P<0.001), with an inhibition rate of 40 and 35%, respectively. Our results indicate that Ad/sv-cystatin suppresses mouse melanoma invasion, metastasis, and growth in vitro and in vivo. Our findings provide support for the further examination of the pharmaceutical applications of Ad/sv-cystatin.
Collapse
|
26
|
Hendrickx R, Stichling N, Koelen J, Kuryk L, Lipiec A, Greber UF. Innate immunity to adenovirus. Hum Gene Ther 2014; 25:265-84. [PMID: 24512150 DOI: 10.1089/hum.2014.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human adenoviruses are the most widely used vectors in gene medicine, with applications ranging from oncolytic therapies to vaccinations, but adenovirus vectors are not without side effects. In addition, natural adenoviruses pose severe risks for immunocompromised people, yet infections are usually mild and self-limiting in immunocompetent individuals. Here we describe how adenoviruses are recognized by the host innate defense system during entry and replication in immune and nonimmune cells. Innate defense protects the host and represents a major barrier to using adenoviruses as therapeutic interventions in humans. Innate response against adenoviruses involves intrinsic factors present at constant levels, and innate factors mounted by the host cell upon viral challenge. These factors exert antiviral effects by directly binding to viruses or viral components, or shield the virus, for example, soluble factors, such as blood clotting components, the complement system, preexisting immunoglobulins, or defensins. In addition, Toll-like receptors and lectins in the plasma membrane and endosomes are intrinsic factors against adenoviruses. Important innate factors restricting adenovirus in the cytosol are tripartite motif-containing proteins, nucleotide-binding oligomerization domain-like inflammatory receptors, and DNA sensors triggering interferon, such as DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 and cyclic guanosine monophosphate-adenosine monophosphate synthase. Adenovirus tunes the function of antiviral autophagy, and counters innate defense by virtue of its early proteins E1A, E1B, E3, and E4 and two virus-associated noncoding RNAs VA-I and VA-II. We conclude by discussing strategies to engineer adenovirus vectors with attenuated innate responses and enhanced delivery features.
Collapse
Affiliation(s)
- Rodinde Hendrickx
- 1 Institute of Molecular Life Sciences, University of Zurich , CH-8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Recent developments in DNA vaccine research provide a new momentum for this rather young and potentially disruptive technology. Gene-based vaccines are capable of eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria, and tuberculosis, for which the conventional vaccine technologies have failed so far. The recent identification and characterization of genes coding for tumor antigens has stimulated the development of DNA-based antigen-specific cancer vaccines. Although most academic researchers consider the production of reasonable amounts of plasmid DNA (pDNA) for immunological studies relatively easy to solve, problems often arise during this first phase of production. In this chapter we review the current state of the art of pDNA production at small (shake flasks) and mid-scales (lab-scale bioreactor fermentations) and address new trends in vector design and strain engineering. We will guide the reader through the different stages of process design starting from choosing the most appropriate plasmid backbone, choosing the right Escherichia coli (E. coli) strain for production, and cultivation media and scale-up issues. In addition, we will address some points concerning the safety and potency of the produced plasmids, with special focus on producing antibiotic resistance-free plasmids. The main goal of this chapter is to make immunologists aware of the fact that production of the pDNA vaccine has to be performed with as much as attention and care as the rest of their research.
Collapse
|
28
|
Bridle BW, Clouthier D, Zhang L, Pol J, Chen L, Lichty BD, Bramson JL, Wan Y. Oncolytic vesicular stomatitis virus quantitatively and qualitatively improves primary CD8 + T-cell responses to anticancer vaccines. Oncoimmunology 2013; 2:e26013. [PMID: 24083086 PMCID: PMC3782525 DOI: 10.4161/onci.26013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022] Open
Abstract
The ability of heterologous prime-boost vaccination to elicit robust CD8+ T cell responses has been well documented. In contrast, relatively little is known about how this immunotherapeutic strategy impacts the functional qualities of expanded T cells in the course of effector and memory responses. Using vesicular stomatitis virus (VSV) as a boosting vector in mice, we demonstrate that a massive secondary expansion of CD8+ T cells can be achieved shortly after priming with recombinant adenoviral vectors. Importantly, VSV-boosted CD8+ T cells were more potent than those primed by adenoviruses only, as measured by cytokine production, granzyme B expression, and functional avidity. Upon adoptive transfer, equivalent numbers of VSV-expanded CD8+ T cells were more effective (on a per-cell basis) in mediating antitumor and antiviral immunity than T cells only primed with adenoviruses. Furthermore, VSV boosting accelerated the progression of expanded CD8+ T lymphocytes to a central memory phenotype, thereby altering the effector memory profile typically associated with adenoviral vaccination. Finally, the functional superiority of VSV-expanded T cells remained evident 100 d after boosting, suggesting that VSV-driven immunological responses are of sufficient duration for therapeutic applications. Our data strongly support the choice of VSV as a boosting vector in prime-boost vaccination strategies, enabling a rapid amplification of CD8+ T cells and improving the quality of expanded T cells during both early and late immunological responses.
Collapse
Affiliation(s)
- Byram W Bridle
- Department of Pathobiology University of Guelph Guelph, ON Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. Cancer Gene Ther 2012; 19:888-98. [PMID: 23099884 DOI: 10.1038/cgt.2012.79] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Despite the tremendous potential of adenovirus (Ad) as a delivery vector for cancer gene therapy, its use in clinical settings has been limited, mainly as a result of the limited infectivity in many tumors and the wide tissue tropism associated with Ad. To modify the tropism of the virus, we have inserted the epidermal growth factor-like domain of the human heregulin-α (HRG) into the HI loop of Ad5 fiber. This insertion had no adverse effect on fiber trimerization nor did it affect incorporation of the modified fiber into infectious viral particles. Virions bearing modified fiber displayed growth characteristics and viral yields indistinguishable from those of wild-type (wt) virus. Most importantly, HRG-tagged virions showed enhanced infection of cells expressing the cognate receptors HER3/ErbB3 and HER4/ErbB4. This was significantly reduced in the presence of soluble HRG. Furthermore, HER3-expressing Chinese hamster ovary (CHO) cells were transduced by the HRG-modified virus, but not by wt virus. In contrast, CHO cells expressing the coxsackie-Ad receptor were transduced with both viruses. However, infection of an in vivo breast cancer xenograft model after intratumoral injection was similar with both viruses, suggesting that the tumor microenvironment and/or the route of delivery have important roles in infection of target cells with fiber-modified Ads.
Collapse
|
30
|
Williams BJ, Bhatia S, Adams LK, Boling S, Carroll JL, Li XL, Rogers DL, Korokhov N, Kovesdi I, Pereboev AV, Curiel DT, Mathis JM. Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector. PLoS One 2012; 7:e46981. [PMID: 23056548 PMCID: PMC3466199 DOI: 10.1371/journal.pone.0046981] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP Binding Cassette Transporter, Subfamily B, Member 3
- ATP-Binding Cassette Transporters/genetics
- Adenoviridae/genetics
- Adjuvants, Immunologic/metabolism
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Antigens, Surface/genetics
- Antigens, Surface/metabolism
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Survival/genetics
- Cell Survival/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/virology
- Genetic Vectors/genetics
- Glutamate Carboxypeptidase II/genetics
- Glutamate Carboxypeptidase II/metabolism
- HLA-A Antigens/genetics
- Humans
- Interferon-gamma/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Killer Cells, Natural/virology
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Targeted Therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/prevention & control
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/virology
- Vaccination/methods
Collapse
Affiliation(s)
- Briana Jill Williams
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Shilpa Bhatia
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Lisa K. Adams
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Susan Boling
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Jennifer L. Carroll
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xiao-Lin Li
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Donna L. Rogers
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Nikolay Korokhov
- VectorLogics, Inc., Birmingham, Alabama, United States of America
| | - Imre Kovesdi
- VectorLogics, Inc., Birmingham, Alabama, United States of America
| | - Alexander V. Pereboev
- Departments of Medicine and Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David T. Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - J. Michael Mathis
- Gene Therapy Program, Departments of Urology, Biochemistry and Molecular Biology, and Cellular Biology and Anatomy, and the Feist-Weiller Cancer Center, LSU Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
31
|
Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential. J Virol 2012; 86:10418-31. [PMID: 22787235 DOI: 10.1128/jvi.00848-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.
Collapse
|
32
|
Characterization of malleability and immunological properties of human adenovirus type 3 hexon hypervariable region 1. Arch Virol 2012; 157:1709-18. [PMID: 22669318 DOI: 10.1007/s00705-012-1364-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 04/26/2012] [Indexed: 12/20/2022]
Abstract
Adenovirus (Ad) capsids that display exogenous epitopes can be potently immunogenic, eliciting a potent humoral response against components of the capsid. We used the epitopes flag, his(6)flag, his(6)lgsflag and AdV4HVR5 as model antigens to characterize the hexon hypervariable region (HVR) 1 as a site for epitope insertion. A peptide of up to 17 amino acids could be incorporated into HVR1 of the Ad3 hexon without adversely affecting the biological characteristics of the virus. Multiple vaccinations with capsid-modified Ad3 induced a humoral response against the epitope inserted in HVR1. However, antiserum against the his(6)flag or his(6)lgsflag epitope did not recognize glutathione S-transferase (GST)-his(6) and GST-flag fusion protein. Our study illustrates that there is an immune response against the new epitope within the amino acids of his(6)flag or his(6)lgsflag epitopes. This discovery could be a warning for the generation of multivalent vaccine vectors by incorporation of multiple epitopes into single HVRs.
Collapse
|
33
|
Jiang G, Zhang K, Jiang AJ, Xu D, Xin Y, Wei ZP, Zheng JN, Liu YQ. A conditionally replicating adenovirus carrying interleukin-24 sensitizes melanoma cells to radiotherapy via apoptosis. Mol Oncol 2012; 6:383-91. [PMID: 22673233 DOI: 10.1016/j.molonc.2012.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 12/11/2022] Open
Abstract
Combinatorial therapy is the current trend of the development of novel cancer treatments due to the high heterogenous nature of solid tumors. In this study, we investigated the effects of the combined use of a conditionally replicating adenovirus carrying IL-24 (ZD55-IL-24) and radiotherapy on the proliferation and apoptosis of melanoma A375 cells in vitro and in vivo. Compared with either agent used alone, ZD55-IL-24 combined with radiotherapy significantly inhibited cell proliferation, accompanied with increased apoptosis. Radiotherapy did not affect the expression of IL-24 and E1A of ZD55-IL-24-treated cells, but increased the expression of Bax, promoted the activation of caspase-3, while decreasing Bcl-2 levels. Thus, this synergistic effect of ZD55-IL-24 in combination with radiotherapy provides a novel strategy for the development of melanoma therapies, and is a promising approach for further clinical development.
Collapse
Affiliation(s)
- Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rein DT, Volkmer A, Bauerschmitz G, Beyer IM, Janni W, Fleisch MC, Welter AK, Bauerschlag D, Schöndorf T, Breidenbach M. Combination of a MDR1-targeted replicative adenovirus and chemotherapy for the therapy of pretreated ovarian cancer. J Cancer Res Clin Oncol 2012; 138:603-10. [PMID: 22209976 DOI: 10.1007/s00432-011-1135-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/20/2011] [Indexed: 12/25/2022]
Abstract
PURPOSE Targeted oncolytic adenoviruses capable of replication selectively in cancer cells are an appealing approach for the treatment of various cancer types refractory to conventional therapies. The aim of this study was to evaluate the effect of Ad5/3MDR1E1, a multidrug resistance gene 1 (MDR1)-targeted fiber-modified replication-competent adenovirus for the therapy of platinum-pretreated ovarian cancer in combination with cytostatic agents. METHODS MDR1-specific tumor cell killing of Ad5/3MDR1E1 was systematically evaluated in chemotherapy naïve and pretreated ovarian cancer cells in vitro. Combinations of Ad5/3MDR1E1 and cytostatic agents were studied in vivo and in vitro. An in vivo hepatotoxicity model was used to evaluate liver toxicity. RESULTS We demonstrate efficient oncolysis of Ad5/3MDR1E1 in chemotherapy-resistant ovarian cancer cells as well as therapeutic efficacy in an orthotopic mouse model. Further, combining Ad5/3MDR1E1 with paclitaxel resulted in greater therapeutic benefit than either agent alone. CONCLUSION These preclinical data suggest that a fiber-modified adenovirus vector under the control of the MDR1 promoter represents a promising treatment strategy for platinum-pretreated ovarian cancer as a single agent or in combination with conventional anticancer drugs.
Collapse
Affiliation(s)
- Daniel T Rein
- Department of Obstetrics and Gynecology, University of Düsseldorf Medical Center, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Antitumor potential of SLPI promoter controlled recombinant caspase-3 expression in laryngeal carcinoma. Cancer Gene Ther 2012; 19:328-35. [PMID: 22388454 DOI: 10.1038/cgt.2012.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this study is to develop a specific and efficient targeted gene therapy candidate approach for laryngeal carcinomas. Several promoters of human squamous cell carcinoma antigen 2(SCCA2), secretory leukocyte protease inhibitor (SLPI) and Survivin genes were cloned from human genomic DNA and evaluated for tumor-specific transcription potential in human laryngeal carcinoma Hep-2 cells by dual luciferase assays. One SLPI promoter fragment (677 bp) showed the highest efficiency and specificity, and was used to control the expression of a recombinant active caspases-3 (revCasp3), which could trigger apoptosis without activation of its upstream cascade elements once expressed in a cell, in an adenoviral vector (Ad-SLPI-revCasp3), and its antitumor efficacy was assessed. In vitro infection with Ad-SLPI-revCasp3 showed revCasp3 could be specifically expressed in Hep-2 cells, resulting in efficient activation of endogenous Caspase-3 and subsequent apoptosis of Hep-2 cells. In Hep-2 nude mice xenograft model, intratumoral administration of Ad-SLPI-revCasp3 significantly inhibited tumor growth without obvious loss of body weight and obvious hepatic toxicity. In summary, our study showed the specific and efficient apoptosis-inducing potential of Ad-SLPI-revCasp3, and this makes it a new candidate approach of targeted gene therapy for laryngeal squamous cell carcinoma, which needs further systematic investigation.
Collapse
|
36
|
Jiang G, Zhang L, Xin Y, Pei DS, Wei ZP, Liu YQ, Zheng JN. Conditionally replicating adenoviruses carrying mda-7/IL-24 for cancer therapy. Acta Oncol 2012; 51:285-92. [PMID: 21995527 DOI: 10.3109/0284186x.2011.621447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) suppresses growth and induces apoptosis in a broad range of human cancers without significant cytotoxicity to normal cells. Conditionally replicating adenoviruses (CRAds) not only have the ability to destroy cancer cells but may also be potential vectors for the expression of therapeutic genes. METHODS This review provides an overview of specifications for a novel anti-tumor approach CRAds carrying IL-24, and discusses recent progress in this field. RESULTS Studies in multiple laboratories report that CRAds carrying IL-24 selectively induced apoptosis in some cancer cells, and enhanced selective toxicity to cancer cells when combined with chemotherapeutic agents. CONCLUSION CRAds carrying IL-24 may prove a novel and effective approach for the treatment of cancers.
Collapse
Affiliation(s)
- Guan Jiang
- Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Interaction between mouse adenovirus type 1 and cell surface heparan sulfate proteoglycans. PLoS One 2012; 7:e31454. [PMID: 22347482 PMCID: PMC3274534 DOI: 10.1371/journal.pone.0031454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/10/2012] [Indexed: 12/04/2022] Open
Abstract
Application of human adenovirus type 5 (Ad5) derived vectors for cancer gene therapy has been limited by the poor cell surface expression, on some tumor cell types, of the primary Ad5 receptor, the coxsackie-adenovirus-receptor (CAR), as well as the accumulation of Ad5 in the liver following interaction with blood coagulation factor X (FX) and subsequent tethering of the FX-Ad5 complex to heparan sulfate proteoglycan (HSPG) on liver cells. As an alternative vector, mouse adenovirus type 1 (MAV-1) is particularly attractive, since this non-human adenovirus displays pronounced endothelial cell tropism and does not use CAR as a cellular attachment receptor. We here demonstrate that MAV-1 uses cell surface heparan sulfate proteoglycans (HSPGs) as primary cellular attachment receptor. Direct binding of MAV-1 to heparan sulfate-coated plates proved to be markedly more efficient compared to that of Ad5. Experiments with modified heparins revealed that the interaction of MAV-1 to HSPGs depends on their N-sulfation and, to a lesser extent, 6-O-sulfation rate. Whereas the interaction between Ad5 and HSPGs was enhanced by FX, this was not the case for MAV-1. A slot blot assay demonstrated the ability of MAV-1 to directly interact with FX, although the amount of FX complexed to MAV-1 was much lower than observed for Ad5. Analysis of the binding of MAV-1 and Ad5 to the NCI-60 panel of different human tumor cell lines revealed the preference of MAV-1 for ovarian carcinoma cells. Together, the data presented here enlarge our insight into the HSPG receptor usage of MAV-1 and support the development of an MAV-1-derived gene vector for human cancer therapy.
Collapse
|
38
|
Bassett JD, Swift SL, Bramson JL. Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Expert Rev Vaccines 2012; 10:1307-19. [PMID: 21919620 DOI: 10.1586/erv.11.88] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant adenoviruses have emerged as promising viral vectors for CD8(+) T-cell vaccines. Our studies have indicated that unlike most acute infections, the CD8(+) T-cell memory population elicited by recombinant human adenovirus serotype 5 (rHuAd5) displays a dominant effector memory phenotype. Persistent, low-level transgene expression from the rHuAd5 vector sustains the CD8(+) T-cell memory population and a nonhematopoietic cell compartment appears to be involved in long-term presentation of adenoviral antigens. Although we are beginning to learn more about the factors that control the maintenance and functionality of memory CD8(+) T cells, we do not yet fully understand what comprises a protective CD8(+) T-cell response. Results from upcoming Phase II clinical trials will be important for determining whether rHuAd5 T-cell vaccines are effective in humans and should help identify correlates of CD8(+) T-cell protection.
Collapse
Affiliation(s)
- Jennifer D Bassett
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Room MDCL-5071, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | |
Collapse
|
39
|
A simple detection system for adenovirus receptor expression using a telomerase-specific replication-competent adenovirus. Gene Ther 2012; 20:112-8. [PMID: 22241176 DOI: 10.1038/gt.2011.213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adenovirus serotype 5 (Ad5) is frequently used as an effective vector for induction of therapeutic transgenes in cancer gene therapy or of tumor cell lysis in oncolytic virotherapy. Ad5 can infect target cells through binding with the coxsackie and adenovirus receptor (CAR). Thus, the infectious ability of Ad5-based vectors depends on the CAR expression level in target cells. There are conventional methods to evaluate the CAR expression level in human target cells, including flow cytometry, western blotting and immunohistochemistry. Here, we show a simple system for detection and assessment of functional CAR expression in human tumor cells, using the green fluorescent protein (GFP)-expressing telomerase-specific replication-competent adenovirus OBP-401. OBP-401 infection induced detectable GFP expression in CAR-expressing tumor cells, but not in CAR-negative tumor cells, nor in CAR-positive normal fibroblasts, 24 h after infection. OBP-401-mediated GFP expression was significantly associated with CAR expression in tumor cells. OBP-401 infection detected tumor cells with low CAR expression more efficiently than conventional methods. OBP-401 also distinguished CAR-positive tumor tissues from CAR-negative tumor and normal tissues in biopsy samples. These results suggest that GFP-expressing telomerase-specific replication-competent adenovirus is a very potent diagnostic tool for assessment of functional CAR expression in tumor cells for Ad5-based antitumor therapy.
Collapse
|
40
|
Han Z, Hong Z, Gao Q, Chen C, Hao Z, Ji T, Hu W, Yan Y, Feng J, Liao S, Wu P, Wang D, Wang S, Zhou J, Ma D. A Potent Oncolytic Adenovirus Selectively Blocks the STAT3 Signaling Pathway and Potentiates Cisplatin Antitumor Activity in Ovarian Cancer. Hum Gene Ther 2012; 23:32-45. [PMID: 21875334 DOI: 10.1089/hum.2011.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Zhiqiang Han
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhenya Hong
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Qinglei Gao
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Caihong Chen
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhou Hao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Teng Ji
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencheng Hu
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuting Yan
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jing Feng
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shujie Liao
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Peng Wu
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Daowen Wang
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shixuan Wang
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ding Ma
- Cancer Biology Research Center, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
41
|
Tresilwised N, Pithayanukul P, Holm PS, Schillinger U, Plank C, Mykhaylyk O. Effects of nanoparticle coatings on the activity of oncolytic adenovirus-magnetic nanoparticle complexes. Biomaterials 2011; 33:256-69. [PMID: 21978891 DOI: 10.1016/j.biomaterials.2011.09.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/13/2011] [Indexed: 12/13/2022]
Abstract
Limitations to adenovirus infectivity can be overcome by association with magnetic nanoparticles and enforced infection by magnetic field influence. Here we examined three core-shell-type iron oxide magnetic nanoparticles differing in their surface coatings, particle sizes and magnetic properties for their ability to enhance the oncolytic potency of adenovirus Ad520 and to stabilize it against the inhibitory effects of serum or a neutralizing antibody. It was found that the physicochemical properties of magnetic nanoparticles are critical determinants of the properties which govern the oncolytic productivities of their complexes with Ad520. Although high serum concentration during infection or a neutralizing antibody had strong inhibitory influence on the uptake or oncolytic productivity of the naked virus, one particle type was identified which conferred high protection against both inhibitory factors while enhancing the oncolytic productivity of the internalized virus. This particle type equipped with a silica coating and adsorbed polyethylenimine, displaying a high magnetic moment and high saturation magnetization, mediated a 50% reduction of tumor growth rate versus control upon intratumoral injection of its complex with Ad520 and magnetic field influence, whereas Ad520 alone was inefficient. The correlations between physical properties of the magnetic particles or virus complexes and oncolytic potency are described herein.
Collapse
|
42
|
Pesonen S, Diaconu I, Cerullo V, Escutenaire S, Raki M, Kangasniemi L, Nokisalmi P, Dotti G, Guse K, Laasonen L, Partanen K, Karli E, Haavisto E, Oksanen M, Karioja-Kallio A, Hannuksela P, Holm SL, Kauppinen S, Joensuu T, Kanerva A, Hemminki A. Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors. Int J Cancer 2011; 130:1937-47. [PMID: 21630267 DOI: 10.1002/ijc.26216] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/09/2011] [Indexed: 01/06/2023]
Abstract
The safety of oncolytic viruses for treatment of cancer has been shown in clinical trials while antitumor efficacy has often remained modest. As expression of the coxsackie-adenovirus receptor may be variable in advanced tumors, we developed Ad5-D24-RGD, a p16/Rb pathway selective oncolytic adenovirus featuring RGD-4C modification of the fiber. This allows viral entry through alpha-v-beta integrins frequently highly expressed in advanced tumors. Advanced tumors are often immunosuppressive which results in lack of tumor eradication despite abnormal epitopes being present. Granulocyte-macrophage colony stimulating factor (GMCSF) is a potent activator of immune system with established antitumor properties. To stimulate antitumor immunity and break tumor associated immunotolerance, we constructed Ad5-RGD-D24-GMCSF, featuring GMCSF controlled by the adenoviral E3 promoter. Preliminary safety of Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of human cancer was established. Treatments with Ad5-D24-RGD (N = 9) and Ad5-RGD-D24-GMCSF (N = 7) were well tolerated. Typical side effects were grade 1-2 fatigue, fever and injection site pain. 77% (10/13) of evaluable patients showed virus in circulation for at least 2 weeks. In 3 out of 6 evaluable patients, disease previously progressing stabilized after a single treatment with Ad5-RGD-D24-GMCSF. In addition, 2/3 patients had stabilization or reduction in tumor marker levels. All patients treated with Ad5-D24-RGD showed disease progression in radiological analysis, although 3/6 had temporary reduction or stabilization of marker levels. Induction of tumor and adenovirus specific immunity was demonstrated with ELISPOT in Ad5-RGD-D24-GMCSF treated patients. RGD modified oncolytic adenoviruses with or without GMCSF seem safe for further clinical development.
Collapse
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Transplantation Laboratory, Haartman Institute and Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Treatment of chemotherapy resistant ovarian cancer with a MDR1 targeted oncolytic adenovirus. Gynecol Oncol 2011; 123:138-46. [PMID: 21741695 DOI: 10.1016/j.ygyno.2011.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/03/2011] [Accepted: 06/08/2011] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Multidrug resistance gene 1 (MDR1) mediated resistance to chemotherapeutic agents is a major obstacle for the therapy of various cancer types. The use of conditionally replicating adenoviruses (CRAds) is dependent on molecular differences between tumor cells and non tumor cells. Transcriptional targeting of CRAd replication is an effective way to control replication regulation. The aim of this study was to evaluate the effect of a MDR1 targeted fiber-modified CRAd against chemotherapy resistant ovarian cancer. METHODS MDR1 expression was evaluated in chemotherapy naïve and pretreated ovarian cancer cells and various control cells. We constructed 2 variants of a fiber-modified CRAd, Ad5/3MDR1E1 and Ad5/3MDR1E1∆24 containing the MDR1 promoter to control viral replication via the E1A gene. The MDR promoter activity and cell killing efficacy were evaluated in vitro. Orthotopic murine models of peritoneally disseminated ovarian cancer were utilized to evaluate the preclinical efficacy of MDR targeted CRAds in vivo. To evaluate the liver toxicity of MDR1 targeted CRAds, we compared Ad5/3MDR1E1 with Ad5/3∆24, a CRAd that replicates in cancer cells inactive in the Rb/p16 pathway by use of an in vivo hepatotoxicity model. RESULTS We demonstrate efficient oncolysis of Ad5/3MDR1E1 in both chemotherapy resistant ovarian cancer cell lines and in primary tumor cells from pretreated patients as well as therapeutic efficacy in an orthotopic mouse model. Ad5/3MDR1E1 demonstrated significantly decreased liver toxicity compared to other 5/3-fiber modified control vectors examined. CONCLUSIONS In summary, Ad5/3MDR1E1 is an efficient and safe gene therapy approach for specific targeting of chemotherapy resistant cancer cells.
Collapse
|
44
|
Dent P, Curiel DT, Fisher PB. The potential of virus-based gene therapies for treatment of metastatic kidney cancer. Expert Rev Anticancer Ther 2011; 11:809-11. [PMID: 21707273 DOI: 10.1586/era.11.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Jiang G, Xin Y, Zheng JN, Liu YQ. Combining conditionally replicating adenovirus-mediated gene therapy with chemotherapy: a novel antitumor approach. Int J Cancer 2011; 129:263-74. [PMID: 21509783 DOI: 10.1002/ijc.25948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/05/2011] [Indexed: 12/16/2022]
Abstract
Despite significant improvements in diagnosis and innovations in the therapy of specific cancers, effective treatment of neoplastic diseases still presents major challenges. Recent studies have shown that conditionally replicating adenoviruses (CRAds) not only have the ability to destroy cancer cells but may also be potential vectors for the expression of therapeutic genes. Several studies in animal models have demonstrated that the combination of CRAds-mediated gene therapy and chemotherapy has greater therapeutic benefit than either treatment modality alone. In this review, an overview of specifications for a novel antitumor approach combining CRAd-gene therapy and chemotherapy is provided and recent progress in this field is discussed.
Collapse
Affiliation(s)
- Guan Jiang
- Center for Disease Control and Prevention of Xuzhou City, Xuzhou 221006, China
| | | | | | | |
Collapse
|
46
|
Rajendran S, O'Hanlon D, Morrissey D, O'Donovan T, O'Sullivan GC, Tangney M. Preclinical evaluation of gene delivery methods for the treatment of loco-regional disease in breast cancer. Exp Biol Med (Maywood) 2011; 236:423-34. [DOI: 10.1258/ebm.2011.010234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Preclinical results with various gene therapy strategies indicate significant potential for new cancer treatments. However, many therapeutics fail at clinical trial, often due to differences in tissue physiology between animal models and humans, and tumor phenotype variation. Clinical data relevant to treatment strategies may be generated prior to clinical trial through experimentation using intact patient tissue ex vivo. We developed a novel tumor slice model culture system that is universally applicable to gene delivery methods, using a realtime luminescence detection method to assess gene delivery. Methods investigated include viruses (adenovirus [Ad] and adeno-associated virus), lipofection, ultrasound (US), electroporation and naked DNA. Viability and tumor populations within the slices were well maintained for seven days, and gene delivery was qualitatively and quantitatively examinable for all vectors. Ad was the most efficient gene delivery vector with transduction efficiency >50%. US proved the optimal non-viral gene delivery method in human tumor slices. The nature of the ex vivo culture system permitted examination of specific elements. Parameters shown to diminish Ad gene delivery included blood, regions of low viability and secondary disease. US gene delivery was significantly reduced by blood and skin, while tissue hyperthermia improved gene delivery. US achieved improved efficacy for secondary disease. The ex vivo model was also suitable for examination of tissue-specific effects on vector expression, with Ad expression mediated by the CXCR4 promoter shown to provide a tumor selective advantage over the ubiquitously active cytomegalovirus promoter. In conclusion, this is the first study incorporating patient tissue models in comparing gene delivery from various vectors, providing knowledge on cell-type specificity and examining the crucial biological factors determining successful gene delivery. The results highlight the importance of in-depth preclinical assessment of novel therapeutics and may serve as a platform for further testing of current, novel gene delivery approaches.
Collapse
Affiliation(s)
- Simon Rajendran
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
- Department of Surgery, South Infirmary Victoria University Hospital, Cork, Ireland
| | - Deirdre O'Hanlon
- Department of Surgery, South Infirmary Victoria University Hospital, Cork, Ireland
| | - David Morrissey
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| | - Tracey O'Donovan
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| | - Gerald C O'Sullivan
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| | - Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital and Leslie C Quick Jnr. Laboratory, University College Cork
| |
Collapse
|
47
|
Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets 2011; 15:31-51. [PMID: 21142802 DOI: 10.1517/14728222.2011.538682] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE OF THE FIELD High mortality rates with cancers warrant further development of earlier diagnostics and better treatment strategies. Membrane-bound erythropoietin-producing hepatocellular receptor tyrosine kinase class A2 (EphA2) is overexpressed in breast, prostate, urinary bladder, skin, lung, ovary and brain cancers. AREAS COVERED IN THIS REVIEW EphA2 overexpression in cancers, its signaling mechanisms and strategies to target its deregulation. WHAT THE READER WILL GAIN High EphA2 expression in cancer cells is correlated with a poor prognosis associated with recurrence due to enhanced metastasis. Interaction of the EphA2 receptor with its ligand (e.g., ephrinA1) triggers events that are deregulated and implicated in carcinogenesis. EphrinA1-independent oncogenic activity and ephrinA1-dependent tumor suppressor roles for EphA2 are described. Molecular interactions of EphA2 with signaling proteins are associated with the modulation of cytoskeleton dynamics, cell adhesion, proliferation, differentiation and metastasis. The deregulated signaling by EphA2 and its involvement in oncogenesis provide multiple avenues for the rational design of intervention approaches. TAKE HOME MESSAGE EphA2 has been tested as a drug target using multiple approaches such as agonist antibodies, RNA interference, immunotherapy, virus vector-mediated gene transfer, small-molecule inhibitors and nanoparticles. With over a decade of research, encouraging results with targeting of EphA2 expression in various pre-clinical cancer models necessitate further studies.
Collapse
Affiliation(s)
- Manish Tandon
- Purdue University, Department of Comparative Pathobiology, Bindley Bioscience Center, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
48
|
Hochberg M, Kunicher N, Gilead L, Maly A, Falk H, Ingber A, Panet A. Tropism of herpes simplex virus type 1 to nonmelanoma skin cancers. Br J Dermatol 2011; 164:273-81. [DOI: 10.1111/j.1365-2133.2010.10094.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Intracellular trafficking and gene expression of pH-sensitive, artificially enveloped adenoviruses in vitro and in vivo. Biomaterials 2011; 32:3085-93. [PMID: 21269689 DOI: 10.1016/j.biomaterials.2010.12.043] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/28/2010] [Indexed: 01/01/2023]
Abstract
Recombinant adenovirus (Ad) has shown great promise in gene therapy. Artificial envelopment of adenovirus within lipid bilayers has previously been shown to decrease the immunogenicity and hepatic affinity of naked Ad in vivo. Unfortunately, this also resulted in a significant reduction of gene expression, which we attributed to poor endosomal release of the Ad from its artificial lipid envelope. In this work, we explored the artificial envelopment of Ad within pH-sensitive DOPE:CHEMS bilayers and characterized this vector by TEM, AFM, dot blot, dynamic light scattering and zeta potential measurements. The artificially enveloped viral vectors exhibited good stability at physiological pH but immediately collapsed and released naked Ad virions at pH 5.5. Intracellular trafficking using confocal laser scanning microscopy (CLSM) revealed that Cy3-labelled Ad enveloped in DOPE:CHEMS bilayers exhibited the characteristic Ad distribution within the cytoplasm that led to virion accumulation around the nuclear membrane, indicating endosomal release of Ad. We obtained equivalent levels of gene expression as those of naked Ad in a series of CAR-positive (CAR+) and CAR-negative (CAR-) cell lines. This suggested that the mechanism of infection for the artificially enveloped Ad remained dependent on the presence of CAR receptors. Finally, the pH-sensitive enveloped Ad were injected intratumorally in human cervical carcinoma xenograft-bearing nude mice, also illustrating their capacity for efficient in vivo marker gene expression. This study is a step forward toward the engineering of functional, artificially enveloped adenovirus vectors for gene transfer applications.
Collapse
|
50
|
Hemminki O, Bauerschmitz G, Hemmi S, Lavilla-Alonso S, Diaconu I, Guse K, Koski A, Desmond RA, Lappalainen M, Kanerva A, Cerullo V, Pesonen S, Hemminki A. Oncolytic adenovirus based on serotype 3. Cancer Gene Ther 2010; 18:288-96. [PMID: 21183947 DOI: 10.1038/cgt.2010.79] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oncolytic adenoviruses have been safe in clinical trials but the efficacy has been mostly limited. All published trials have been performed with serotype 5 based viruses. The expression level of the Ad5 receptor CAR may be variable in advanced tumors. In contrast, the Ad3 receptor remains unclear, but is known to be abundantly expressed in most tumors. Therefore, we hypothesized that a fully serotype 3 oncolytic adenovirus might be useful for treating cancer. Patients exposed to adenoviruses develop high titers of serotype-specific neutralizing antibodies, which might compromise re-administration. Thus, having different serotype oncolytic viruses available might facilitate repeated dosing in humans. Ad3-hTERT-E1A is a fully serotype 3 oncolytic adenovirus controlled by the promoter of the catalytic domain of human telomerase. It was effective in vitro on cell lines representing seven major cancer types, although low toxicity was seen in non-malignant cells. In vivo, the virus had anti-tumor efficacy in three different animal models. Although in vitro oncolysis mediated by Ad3-hTERT-E1A and wild-type Ad3 occurred more slowly than with Ad5 or Ad5/3 (Ad3 fiber knob in Ad5) based viruses, in vivo the virus was at least as potent as controls. Anti-tumor efficacy was retained in presence of neutralizing anti-Ad5 antibodies whereas Ad5 based controls were blocked. In summary, we report generation of a non-Ad5 based oncolytic adenovirus, which might be useful for testing in cancer patients, especially in the context of high anti-Ad5 neutralizing antibodies.
Collapse
Affiliation(s)
- O Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Haartman Institute and Transplantation Laboratory and Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|