1
|
Aggarwal R, Kumar P, Kumar S, Tiwari S, Chaturvedi RK. Synthesis and biological evaluation of novel Trifluoromethylated Arylidene-hydrazinyl-thiazoles as neuroprotective agents. Bioorg Chem 2025; 159:108390. [PMID: 40139118 DOI: 10.1016/j.bioorg.2025.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Neurodegenerative diseases, a substantial global health challenge affecting millions, underscore the pressing need for novel and effective pharmacotherapeutic drugs to address these disorders. In this concern, a library of novel trifluoromethylated arylidene-hydrazinyl-thiazoles has been synthesized and assessed for their anti-neurodegenerative potential. Multicomponent regioselective chemical transformation has been carried out utilizing thiosemicarbazide, trifluoromethylated 1,3-diketones and heteroaryl aldehydes in the presence of N-bromosuccinimide (NBS) in refluxing ethanol. The regioisomeric structure of the synthesized products was unambiguously characterized by employing heteronuclear 2D NMR spectroscopic studies. All the synthesized derivatives were evaluated for their anti-neurodegenerative properties on rat brain hippocampus-derived Neural Stem Cells (NSCs), examining their impact on survival, proliferation and neuronal differentiation in vitro. Among the tested thiazole derivatives, compounds 4a, 4b, 4c, 4f, 4 g, 4b' and 4i' demonstrated a remarkable increase in the number of neuronal cells as compared to the control group within the NSC culture and also exhibited the ability to promote NSC differentiation towards the neuronal lineage. Additionally, the selected compounds showed protection against amyloid beta (Aβ)-induced neurotoxicity in NSCs culture. Incorporating the trifluoromethyl group into the thiazole scaffold is a pivotal factor in augmenting biopotency, resulting in a marked increase in the count of neuronal cells compared to their non-fluorinated thiazole counterparts.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India; Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research, New Delhi 110012, India.
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Saurabh Tiwari
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajnish Kumar Chaturvedi
- Molecular Neurotoxicology and Cell Integrity Laboratory, Systems Toxicology and Health Risk Assessment Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Mallick D, Acharjee A, Acharjee P, Trigun SK. Restoration of hippocampal adult neurogenesis by CDRI-08 (Bacopa monnieri extract) relates with the recovery of BDNF-TrkB levels in male rats with moderate grade hepatic encephalopathy. Int J Dev Neurosci 2024; 84:510-519. [PMID: 38795011 DOI: 10.1002/jdn.10350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024] Open
Abstract
Modulation of in vivo adult neurogenesis (AN) is an evolving concept in managing neurodegenerative diseases. CDRI-08, a bacoside-enriched fraction of Bacopa monnieri, has been demonstrated for its neuroprotective actions, but its effect on AN remains unexplored. This article describes the status of AN by monitoring neuronal stem cells (NSCs) proliferation, differentiation/maturation markers and BDNF-TrkB levels (NSCs signalling players) vs. the level of neurodegeneration and their modulations by CDRI-08 in the hippocampal dentate gyrus (DG) of male rats with moderate grade hepatic encephalopathy (MoHE). For NSC proliferation, 10 mg/kg b.w. 5-bromo-2'-deoxyuridine (BrdU) was administered i.p. during the last 3 days, and for the NSC differentiation study, it was given during the first 3 days to the control, the MoHE (developed by 100 mg/kg b.w. of thioacetamide i.p. up to 10 days) and to the MoHE male rats co-treated with 350 mg/kg b.w. CDRI-08. Compared with the control rats, the hippocampus DG region of MoHE rats showed significant decreases in the number of Nestin+/BrdU+ and SOX2+/BrdU+ (proliferating) and DCX+/BrdU+ and NeuN+/BrdU+ (differentiating) NSCs. This was consistent with a similar decline in BDNF+/TrkB+ NSCs. However, all these NSC marker positive cells were observed to be recovered to their control levels, with a concordant restoration of total cell numbers in the DG of the CDRI-08-treated MoHE rats. The findings suggest that the restoration of hippocampal AN by CDRI-08 is consistent with the recovery of BDNF-TrkB-expressing NSCs in the MoHE rat model of neurodegeneration.
Collapse
Affiliation(s)
- Debasmit Mallick
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arup Acharjee
- Department of Zoology, University of Allahabad, Prayagraj, India
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Contador I, Buch-Vicente B, del Ser T, Llamas-Velasco S, Villarejo-Galende A, Benito-León J, Bermejo-Pareja F. Charting Alzheimer's Disease and Dementia: Epidemiological Insights, Risk Factors and Prevention Pathways. J Clin Med 2024; 13:4100. [PMID: 39064140 PMCID: PMC11278014 DOI: 10.3390/jcm13144100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, is a complex and multifactorial condition without cure at present. The latest treatments, based on anti-amyloid monoclonal antibodies, have only a modest effect in reducing the progression of cognitive decline in AD, whereas the possibility of preventing AD has become a crucial area of research. In fact, recent studies have observed a decrease in dementia incidence in developed regions such as the US and Europe. However, these trends have not been mirrored in non-Western countries (Japan or China), and the contributing factors of this reduction remain unclear. The Lancet Commission has delineated a constrained classification of 12 risk factors across different life stages. Nevertheless, the scientific literature has pointed to over 200 factors-including sociodemographic, medical, psychological, and sociocultural conditions-related to the development of dementia/AD. This narrative review aims to synthesize the risk/protective factors of dementia/AD. Essentially, we found that risk/protective factors vary between individuals and populations, complicating the creation of a unified prevention strategy. Moreover, dementia/AD explanatory mechanisms involve a diverse array of genetic and environmental factors that interact from the early stages of life. In the future, studies across different population-based cohorts are essential to validate risk/protective factors of dementia. This evidence would help develop public health policies to decrease the incidence of dementia.
Collapse
Affiliation(s)
- Israel Contador
- Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, 17117 Stockholm, Sweden
| | - Bárbara Buch-Vicente
- Department of Basic Psychology, Psychobiology, and Methodology of Behavioral Sciences, Faculty of Psychology, University of Salamanca, 37005 Salamanca, Spain
| | - Teodoro del Ser
- Alzheimer Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| | - Sara Llamas-Velasco
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Alberto Villarejo-Galende
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Julián Benito-León
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain; (S.L.-V.); (A.V.-G.); (J.B.-L.)
- Department of Neurology, University Hospital 12 de Octubre, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Félix Bermejo-Pareja
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| |
Collapse
|
4
|
Scopa C, Barnada SM, Cicardi ME, Singer M, Trotti D, Trizzino M. JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer's disease. Nat Commun 2023; 14:8021. [PMID: 38049398 PMCID: PMC10696058 DOI: 10.1038/s41467-023-43728-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Adult neurogenic decline, inflammation, and neurodegeneration are phenotypic hallmarks of Alzheimer's disease (AD). Mobilization of transposable elements (TEs) in heterochromatic regions was recently reported in AD, but the underlying mechanisms are still underappreciated. Combining functional genomics with the differentiation of familial and sporadic AD patient derived-iPSCs into hippocampal progenitors, CA3 neurons, and cerebral organoids, we found that the upregulation of the AP-1 subunit, c-Jun, triggers decondensation of genomic regions containing TEs. This leads to the cytoplasmic accumulation of HERVK-derived RNA-DNA hybrids, the activation of the cGAS-STING cascade, and increased levels of cleaved caspase-3, suggesting the initiation of programmed cell death in AD progenitors and neurons. Notably, inhibiting c-Jun effectively blocks all these downstream molecular processes and rescues neuronal death and the impaired neurogenesis phenotype in AD progenitors. Our findings open new avenues for identifying therapeutic strategies and biomarkers to counteract disease progression and diagnose AD in the early, pre-symptomatic stages.
Collapse
Affiliation(s)
- Chiara Scopa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Samantha M Barnada
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria E Cicardi
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mo Singer
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
5
|
del Ser T, Valeriano-Lorenzo E, Jáñez-Escalada L, Ávila-Villanueva M, Frades B, Zea MA, Valentí M, Zhang L, Fernández-Blázquez MA. Dimensions of cognitive reserve and their predictive power of cognitive performance and decline in the elderly. FRONTIERS IN DEMENTIA 2023; 2:1099059. [PMID: 39081990 PMCID: PMC11285562 DOI: 10.3389/frdem.2023.1099059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/03/2023] [Indexed: 08/02/2024]
Abstract
Background The relative importance of different components of cognitive reserve (CR), as well as their differences by gender, are poorly established. Objective To explore several dimensions of CR, their differences by gender, and their effects on cognitive performance and trajectory in a cohort of older people without relevant psychiatric, neurologic, or systemic conditions. Methods Twenty-one variables related to the education, occupation, social activities, and life habits of 1,093 home-dwelling and cognitively healthy individuals, between 68 and 86 years old, were explored using factorial analyses to delineate several dimensions of CR. These dimensions were contrasted with baseline cognitive performance, follow-up over 5 years of participants' cognitive trajectory, conversion to mild cognitive impairment (MCI), and brain volumes using regression and growth curve models, controlling for gender, age, marital status, number of medications, trait anxiety, depression, and ApoE genotype. Results Five highly intercorrelated dimensions of CR were identified, with some differences in their structure and effects based on gender. Three of them, education/occupation, midlife cognitive activities, and leisure activities, were significantly associated with late-life cognitive performance, accounting for more than 20% of its variance. The education/occupation had positive effect on the rate of cognitive decline during the 5-year follow up in individuals with final diagnosis of MCI but showed a reduced risk for MCI in men. None of these dimensions showed significant relationships with gray or white matter volumes. Conclusion Proxy markers of CR can be represented by five interrelated dimensions. Education/occupation, midlife cognitive activities, and leisure activities are associated with better cognitive performance in old age and provide a buffer against cognitive impairment. Education/occupation may delay the clinical onset of MCI and is also associated with the rate of change in cognitive performance.
Collapse
Affiliation(s)
- Teodoro del Ser
- Clinical Department, Alzheimer's Center Reina Sofia—CIEN Foundation, Madrid, Spain
| | | | - Luis Jáñez-Escalada
- Clinical Department, Alzheimer's Center Reina Sofia—CIEN Foundation, Madrid, Spain
- Institute of Knowledge Technology, Complutense University, Madrid, Spain
| | | | - Belén Frades
- Clinical Department, Alzheimer's Center Reina Sofia—CIEN Foundation, Madrid, Spain
| | - María-Ascensión Zea
- Clinical Department, Alzheimer's Center Reina Sofia—CIEN Foundation, Madrid, Spain
| | - Meritxell Valentí
- Clinical Department, Alzheimer's Center Reina Sofia—CIEN Foundation, Madrid, Spain
| | - Linda Zhang
- Neuroimaging Department, Alzheimer's Center Reina Sofia—CIEN Foundation, Madrid, Spain
| | | |
Collapse
|
6
|
Morr AS, Nowicki M, Bertalan G, Vieira Silva R, Infante Duarte C, Koch SP, Boehm-Sturm P, Krügel U, Braun J, Steiner B, Käs JA, Fuhs T, Sack I. Mechanical properties of murine hippocampal subregions investigated by atomic force microscopy and in vivo magnetic resonance elastography. Sci Rep 2022; 12:16723. [PMID: 36202964 PMCID: PMC9537158 DOI: 10.1038/s41598-022-21105-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
The hippocampus is a very heterogeneous brain structure with different mechanical properties reflecting its functional variety. In particular, adult neurogenesis in rodent hippocampus has been associated with specific viscoelastic properties in vivo and ex vivo. Here, we study the microscopic mechanical properties of hippocampal subregions using ex vivo atomic force microscopy (AFM) in correlation with the expression of GFP in presence of the nestin promoter, providing a marker of neurogenic activity. We further use magnetic resonance elastography (MRE) to investigate whether in vivo mechanical properties reveal similar spatial patterns, however, on a much coarser scale. AFM showed that tissue stiffness increases with increasing distance from the subgranular zone (p = 0.0069), and that stiffness is 39% lower in GFP than non-GFP regions (p = 0.0004). Consistently, MRE showed that dentate gyrus is, on average, softer than Ammon´s horn (shear wave speed = 3.2 ± 0.2 m/s versus 4.4 ± 0.3 m/s, p = 0.01) with another 3.4% decrease towards the subgranular zone (p = 0.0001). The marked reduction in stiffness measured by AFM in areas of high neurogenic activity is consistent with softer MRE values, indicating the sensitivity of macroscopic mechanical properties in vivo to micromechanical structures as formed by the neurogenic niche of the hippocampus.
Collapse
Affiliation(s)
- Anna S Morr
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Gergely Bertalan
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Rafaela Vieira Silva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carmen Infante Duarte
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Paul Koch
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Steiner
- Clinic for Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef A Käs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Thomas Fuhs
- Section of Soft Matter Physics, Peter Debye Institute for Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Environmental stimulation in Huntington disease patients and animal models. Neurobiol Dis 2022; 171:105725. [DOI: 10.1016/j.nbd.2022.105725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
|
8
|
The effects of genotype on inflammatory response in hippocampal progenitor cells: A computational approach. Brain Behav Immun Health 2021; 15:100286. [PMID: 34345870 PMCID: PMC8261829 DOI: 10.1016/j.bbih.2021.100286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Cell culture models are valuable tools to study biological mechanisms underlying health and disease in a controlled environment. Although their genotype influences their phenotype, subtle genetic variations in cell lines are rarely characterised and taken into account for in vitro studies. To investigate how the genetic makeup of a cell line might affect the cellular response to inflammation, we characterised the single nucleotide variants (SNPs) relevant to inflammation-related genes in an established hippocampal progenitor cell line (HPC0A07/03C) that is frequently used as an in vitro model for hippocampal neurogenesis (HN). SNPs were identified using a genotyping array, and genes associated with chronic inflammatory and neuroinflammatory response gene ontology terms were retrieved using the AmiGO application. SNPs associated with these genes were then extracted from the genotyping dataset, for which a literature search was conducted, yielding relevant research articles for a total of 17 SNPs. Of these variants, 10 were found to potentially affect hippocampal neurogenesis whereby a majority (n=7) is likely to reduce neurogenesis under inflammatory conditions. Taken together, the existing literature seems to suggest that all stages of hippocampal neurogenesis could be negatively affected due to the genetic makeup in HPC0A07/03C cells under inflammation. Additional experiments will be needed to validate these specific findings in a laboratory setting. However, this computational approach already confirms that in vitro studies in general should control for cell lines subtle genetic variations which could mask or exacerbate findings.
Collapse
|
9
|
Bender H, Fietz SA, Richter F, Stanojlovic M. Alpha-Synuclein Pathology Coincides With Increased Number of Early Stage Neural Progenitors in the Adult Hippocampus. Front Cell Dev Biol 2021; 9:691560. [PMID: 34307368 PMCID: PMC8293917 DOI: 10.3389/fcell.2021.691560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Alpha-synuclein pathology driven impairment in adult neurogenesis was proposed as a potential cause of, or at least contributor to, memory impairment observed in both patients and animal models of Parkinson’s disease (PD) and Dementia with Lewy Bodies (DLB). Mice overexpressing wild-type alpha-synuclein under the Thy-1 promoter (Thy1-aSyn, line 61) uniquely replicate early cognitive deficits together with multiple other characteristic motor and non-motor symptoms, alpha-synuclein pathology and dopamine loss. Here we report overt intracellular accumulation of phosphorylated alpha-synuclein in the hippocampus of these transgenic mice. To test whether this alters adult neurogenesis and total number of mature neurons, we employed immunohistochemistry and an unbiased stereology approach to quantify the distinct neural progenitor cells and neurons in the hippocampal granule cell layer and subgranular zone of 6 (prodromal stage) and 16-month (dopamine loss) old Thy1-aSyn mice. Surprisingly, we observed an increase in the number of early stage, i.e., Pax6 expressing, progenitors whereas the numbers of late stage, i.e., Tbr2 expressing, progenitors and neurons were not altered. Astroglia marker was increased in the hippocampus of transgenic mice, but this was not specific to the regions where adult neurogenesis takes place, arguing against a commitment of additional early stage progenitors to the astroglia lineage. Together, this uncovers a novel aspect of alpha-synuclein pathology in adult neurogenesis. Studying its mechanisms in Thy1-aSyn mice could lead to discovery of effective therapeutic interventions for cognitive dysfunction in PD and DLB.
Collapse
Affiliation(s)
- Hannah Bender
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Milos Stanojlovic
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
10
|
Yuan P, Ding L, Chen H, Wang Y, Li C, Zhao S, Yang X, Ma Y, Zhu J, Qi X, Zhang Y, Xia X, Zheng JC. Neural Stem Cell-Derived Exosomes Regulate Neural Stem Cell Differentiation Through miR-9-Hes1 Axis. Front Cell Dev Biol 2021; 9:601600. [PMID: 34055767 PMCID: PMC8155619 DOI: 10.3389/fcell.2021.601600] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Exosomes, a key element of the central nervous system microenvironment, mediate intercellular communication via horizontally transferring bioactive molecules. Emerging evidence has implicated exosomes in the regulation of neurogenesis. Recently, we compared the neurogenic potential of exosomes released from primary mouse embryonic neural stem cells (NSCs) and astrocyte-reprogrammed NSCs, and observed diverse neurogenic potential of those two exosome populations in vitro. However, the roles of NSC-derived exosomes on NSC differentiation and the underlying mechanisms remain largely unknown. In this study, we firstly demonstrated that NSC-derived exosomes facilitate the differentiation of NSCs and the maturation of both neuronal and glial cells in defined conditions. We then identified miR-9, a pro-neural miRNA, as the most abundantly expressed miRNA in NSC-derived exosomes. The silencing of miR-9 in exosomes abrogates the positive effects of NSC-derived exosomes on the differentiation of NSCs. We further identified Hes1 as miR-9 downstream target, as the transfection of Hes1 siRNA restored the differentiation promoting potential of NSC-derived exosomes after knocking down exosomal miR-9. Thus, our data indicate that NSC-derived exosomes facilitate the differentiation of NSCs via transferring miR-9, which sheds light on the development of cell-free therapeutic strategies for treating neurodegeneration.
Collapse
Affiliation(s)
- Ping Yuan
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
- Department of Cardio-Pulmonary Circulation, School of Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Lu Ding
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Huili Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Shu Zhao
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xiaoyu Yang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Jie Zhu
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Yanyan Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tenth People’s Hospital of Tongji University, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Bae HJ, Kim J, Jeon SJ, Kim J, Goo N, Jeong Y, Cho K, Cai M, Jung SY, Kwon KJ, Ryu JH. Green tea extract containing enhanced levels of epimerized catechins attenuates scopolamine-induced memory impairment in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112923. [PMID: 32360798 DOI: 10.1016/j.jep.2020.112923] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea has been used as a traditional medicine to control brain function and digestion. Recent works suggest that drinking green tea could prevent cognitive function impairment. During tea manufacturing processes, such as brewing and sterilization, green tea catechins are epimerized. However, the effects of heat-epimerized catechins on cognitive function are still unknown. To take this advantage, we developed a new green tea extract, high temperature processed-green tea extract (HTP-GTE), which has a similar catechin composition to green tea beverages. AIM OF THE STUDY This study aimed to investigate the effect of HTP-GTE on scopolamine-induced cognitive dysfunction and neuronal differentiation, and to elucidate its underlying mechanisms of action. MATERIALS AND METHODS The neuronal differentiation promoting effects of HTP-GTE in SH-SY5Y cells was assessed by evaluating neurite length and the expression level of synaptophysin. The DNA methylation status at the synaptophysin promoter was determined in differentiated SH-SY5Y cells and in the hippocampi of mice. HTP-GTE was administered for 10 days at doses of 30, 100 and 300 mg/kg (p.o.) to mice, and its effects on cognitive functions were measured by Y-maze and passive avoidance tests under scopolamine-induced cholinergic blockade state. RESULTS HTP-GTE induced neuronal differentiation and neurite outgrowth via the upregulation of synaptophysin gene expression. These beneficial effects of HTP-GTE resulted from reducing DNA methylation levels at the synaptophysin promoter via the suppression of DNMT1 activity. The administration of HTP-GTE ameliorated cognitive impairments in a scopolamine-treated mouse model. CONCLUSIONS These results suggest that HTP-GTE could alleviate cognitive impairment by regulating synaptophysin expression and DNA methylation levels. Taken together, HTP-GTE would be a promising treatment for the cognitive impairment observed in dysfunction of the cholinergic neurotransmitter system.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jihyun Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Se Jin Jeon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, South Korea
| | - Jaehoon Kim
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nayeon Goo
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yongwoo Jeong
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyungnam Cho
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mudan Cai
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Ja Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, 05029, South Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
12
|
Poiana G, Gioia R, Sineri S, Cardarelli S, Lupo G, Cacci E. Transcriptional regulation of adult neural stem/progenitor cells: tales from the subventricular zone. Neural Regen Res 2020; 15:1773-1783. [PMID: 32246617 PMCID: PMC7513981 DOI: 10.4103/1673-5374.280301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.
Collapse
Affiliation(s)
- Giancarlo Poiana
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Roberta Gioia
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Serena Sineri
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Silvia Cardarelli
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Giuseppe Lupo
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Rossi R, Ciofalo M. Current Advances in the Synthesis and Biological Evaluation of Pharmacologically Relevant 1,2,4,5-Tetrasubstituted-1H-Imidazole Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
:
In recent years, the synthesis and evaluation of the
biological properties of 1,2,4,5-tetrasubstituted-1H-imidazole
derivatives have been the subject of a large number of studies
by academia and industry. In these studies it has been shown
that this large and highly differentiated class of heteroarene
derivatives includes high valuable compounds having important
biological and pharmacological properties such as
antibacterial, antifungal, anthelmintic, anti-inflammatory, anticancer,
antiviral, antihypertensive, cholesterol-lowering, antifibrotic,
antiuricemic, antidiabetic, antileishmanial and antiulcer
activities.
:
The present review with 411 references, in which we focused on the literature data published mainly from 2011
to 2017, aims to update the readers on the recent developments on the synthesis and biological evaluation of
pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives with an emphasis on their different
molecular targets and their potential use as drugs to treat various types of diseases. Reference was also
made to substantial literature data acquired before 2011 in this burgeoning research area.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa - via Moruzzi, 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo - Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
| |
Collapse
|
14
|
Wang S, Huang L, Zhang Y, Peng Y, Wang X, Peng Y. Protective Effects of L-3-n-Butylphthalide Against H2O2-Induced Injury in Neural Stem Cells by Activation of PI3K/Akt and Mash1 Pathway. Neuroscience 2018; 393:164-174. [DOI: 10.1016/j.neuroscience.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022]
|
15
|
Zhang W, Wang W, Yu DX, Xiao Z, He Z. Application of nanodiagnostics and nanotherapy to CNS diseases. Nanomedicine (Lond) 2018; 13:2341-2371. [PMID: 30088440 DOI: 10.2217/nnm-2018-0163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease, Parkinson's disease and stroke are the most common CNS diseases, all characterized by progressive cellular dysfunction and death in specific areas of the nervous system. Therapeutic development for these diseases has lagged behind other disease areas due to difficulties in early diagnosis, long disease courses and drug delivery challenges, not least due to the blood-brain barrier. Over recent decades, nanotechnology has been explored as a potential tool for the diagnosis, treatment and monitoring of CNS diseases. In this review, we describe the application of nanotechnology to common CNS diseases, highlighting disease pathogenesis and the underlying mechanisms and promising functional outcomes that make nanomaterials ideal candidates for early diagnosis and therapy. Moreover, we discuss the limitations of nanotechnology, and possible solutions.
Collapse
Affiliation(s)
- Weiyuan Zhang
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China
| | - Wenyue Wang
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - David X Yu
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhicheng Xiao
- Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| | - Zhiyong He
- Yunnan Key Laboratory of Stem Cell & Regenerative Medicine, Institute of Molecular & Clinical Medicine, Kunming Medical University, Kunming 650500, PR China.,Department of Anatomy & Developmental Biology, Monash University, Clayton, 3800 Clayton, Melbourne 3800, Australia
| |
Collapse
|
16
|
Peng L, Bonaguidi MA. Function and Dysfunction of Adult Hippocampal Neurogenesis in Regeneration and Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:23-28. [PMID: 29030053 DOI: 10.1016/j.ajpath.2017.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 12/17/2022]
Abstract
The hippocampus is the only known brain region where physiological neurogenesis continues into adulthood across mammalian species and in humans. However, disease and injury can change the level of adult hippocampal neurogenesis, which plays an important role in regulating cognitive and emotional abilities. Alterations in hippocampal neurogenesis can mediate treatment of mental illness or affect the brain's capacity for repair and regeneration. In the present review, we evaluate how adult neurogenesis contributes to the repair and regeneration of hippocampal circuitry in the face of diseases and injuries. We also discuss possible future directions for harnessing adult neurogenesis for therapeutic use.
Collapse
Affiliation(s)
- Lei Peng
- Broad California Institute for Regenerative Medicine (CIRM) Center, University of Southern California Keck School of Medicine, Los Angeles, California; Department of Stem Cell Biology and Regenerative Medicine, Neuroscience Graduate Program, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Michael A Bonaguidi
- Broad California Institute for Regenerative Medicine (CIRM) Center, University of Southern California Keck School of Medicine, Los Angeles, California; Department of Stem Cell Biology and Regenerative Medicine, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, California; Department of Gerontology, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, California; Department of Biomedical Engineering, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
17
|
Kumar A, Pareek V, Faiq MA, Kumar P, Raza K, Prasoon P, Dantham S, Mochan S. Regulatory role of NGFs in neurocognitive functions. Rev Neurosci 2017; 28:649-673. [DOI: 10.1515/revneuro-2016-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
AbstractNerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
- Department of Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, Puducherry 609602, India
| | - Vikas Pareek
- Computational Neuroscience and Neuroimaging Division, National Brain Research Centre (NBRC), Manesar, Haryana 122051, India
| | - Muneeb A. Faiq
- Department of Ophthalmology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pavan Kumar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Khursheed Raza
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Pranav Prasoon
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Subrahamanyam Dantham
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Sankat Mochan
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| |
Collapse
|
18
|
Gao C, Wang Q, Chung SK, Shen J. Crosstalk of metabolic factors and neurogenic signaling in adult neurogenesis: Implication of metabolic regulation for mental and neurological diseases. Neurochem Int 2017; 106:24-36. [DOI: 10.1016/j.neuint.2017.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/10/2017] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
|
19
|
Joshi PC, Samineni R, Bhattacharya D, Reddy BR, Veeraval L, Das T, Maitra S, Wahul AB, Karri S, Pabbaraja S, Mehta G, Kumar A, Chakravarty S. A 2-oxa-spiro[5.4]decane scaffold displays neurotrophic, neurogenic and anti-neuroinflammatory activities with high potential for development as a versatile CNS therapeutic. Sci Rep 2017; 7:1492. [PMID: 28473714 PMCID: PMC5431446 DOI: 10.1038/s41598-017-01297-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/24/2017] [Indexed: 11/11/2022] Open
Abstract
Following our recent discovery of a new scaffold exhibiting significant neurotrophic and neurogenic activities, a structurally tweaked analogue, embodying a 2-oxa-spiro [5.4]decane framework, has been conceptualised and found to be more potent and versatile. It exhibits enhanced neurotrophic and neurogenic action in in vitro, ex vivo and in vivo models and also shows robust neuroprotection in mouse acute cerebral stroke model. The observed attributes are traceable to the predominant activation of the TrkB-PI3K-AKT-CREB pathway. In addition, it also exhibits remarkable anti-neuroinflammatory activity by concurrently down-regulating pro-inflammatory cytokines IL-1α and IL-6, thereby providing a unique molecule with a trinity of neuroactivities, i.e. neurotrophic, neurogenic and anti-inflammatory. The new chemical entity disclosed here has the potential to be advanced as a versatile therapeutic molecule to treat stroke, depression, and possibly other neuropsychiatric disorders associated with attenuated neurotrophic/ neurogenic activity, together with heightened neuroinflammation.
Collapse
Affiliation(s)
- Pranav Chintamani Joshi
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India
| | - Ramesh Samineni
- Natural Products Chemistry, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India
| | - Dwaipayan Bhattacharya
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India
| | - Bommana Raghunath Reddy
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Lenin Veeraval
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India
| | - Tapatee Das
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Swati Maitra
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India
| | - Abhipradnya Bipin Wahul
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shailaja Karri
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India
| | - Srihari Pabbaraja
- Natural Products Chemistry, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Arvind Kumar
- CSIR- Centre for Cellular and Molecular Biology, Habsiguda, Uppal Road, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sumana Chakravarty
- Chemical Biology, CSIR- Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India. .,Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
20
|
Kim M, Costello J. DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 2017; 49:e322. [PMID: 28450738 PMCID: PMC6130213 DOI: 10.1038/emm.2017.10] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
DNA methylation is a stable epigenetic mark that can be inherited through multiple cell divisions. During development and cell differentiation, DNA methylation is dynamic, but some DNA methylation patterns may be retained as a form of epigenetic memory. DNA methylation profiles can be useful for the lineage classification and quality control of stem cells such as embryonic stem cells, induced pluripotent cells and mesenchymal stem cells. During cancer initiation and progression, genome-wide and gene-specific DNA methylation changes occur as a consequence of mutated or deregulated chromatin regulators. Early aberrant DNA methylation states occurring during transformation appear to be retained during tumor evolution. Similarly, DNA methylation differences among different regions of a tumor reflect the history of cancer cells and their response to the tumor microenvironment. Therefore, DNA methylation can be a useful molecular marker for cancer diagnosis and drug treatment.
Collapse
Affiliation(s)
- Mirang Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - Joseph Costello
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| |
Collapse
|
21
|
Bátiz LF, Castro MA, Burgos PV, Velásquez ZD, Muñoz RI, Lafourcade CA, Troncoso-Escudero P, Wyneken U. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2016; 9:501. [PMID: 26834560 PMCID: PMC4717294 DOI: 10.3389/fncel.2015.00501] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Adult neurogenesis has been convincingly demonstrated in two regions of the mammalian brain: the sub-granular zone (SGZ) of the dentate gyrus (DG) in the hippocampus, and the sub-ventricular zone (SVZ) of the lateral ventricles (LV). SGZ newborn neurons are destined to the granular cell layer (GCL) of the DG, while new neurons from the SVZ neurons migrate rostrally into the olfactory bulb (OB). The process of adult neurogenesis persists throughout life and is supported by a pool of neural stem cells (NSCs), which reside in a unique and specialized microenvironment known as "neurogenic niche". Neurogenic niches are structured by a complex organization of different cell types, including the NSC-neuron lineage, glial cells and vascular cells. Thus, cell-to-cell communication plays a key role in the dynamic modulation of homeostasis and plasticity of the adult neurogenic process. Specific cell-cell contacts and extracellular signals originated locally provide the necessary support and regulate the balance between self-renewal and differentiation of NSCs. Furthermore, extracellular signals originated at distant locations, including other brain regions or systemic organs, may reach the niche through the cerebrospinal fluid (CSF) or the vasculature and influence its nature. The role of several secreted molecules, such as cytokines, growth factors, neurotransmitters, and hormones, in the biology of adult NSCs, has been systematically addressed. Interestingly, in addition to these well-recognized signals, a novel type of intercellular messengers has been identified recently: the extracellular vesicles (EVs). EVs, and particularly exosomes, are implicated in the transfer of mRNAs, microRNAs (miRNAs), proteins and lipids between cells and thus are able to modify the function of recipient cells. Exosomes appear to play a significant role in different stem cell niches such as the mesenchymal stem cell niche, cancer stem cell niche and pre-metastatic niche; however, their roles in adult neurogenic niches remain virtually unexplored. This review focuses on the current knowledge regarding the functional relationship between cellular and extracellular components of the adult SVZ and SGZ neurogenic niches, and the growing evidence that supports the potential role of exosomes in the physiology and pathology of adult neurogenesis.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Maite A Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Patricia V Burgos
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Program for Cell Biology and Microscopy, Universidad Austral de ChileValdivia, Chile; Instituto de Fisiología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Zahady D Velásquez
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Rosa I Muñoz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de ChileValdivia, Chile
| | - Carlos A Lafourcade
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| | - Paulina Troncoso-Escudero
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de ChileValdivia, Chile; Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de ChileValdivia, Chile
| | - Ursula Wyneken
- Laboratorio de Neurociencias, Facultad de Medicina, Universidad de Los Andes Santiago, Chile
| |
Collapse
|
22
|
Kempermann G. Activity Dependency and Aging in the Regulation of Adult Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018929. [PMID: 26525149 PMCID: PMC4632662 DOI: 10.1101/cshperspect.a018929] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Age and activity might be considered the two antagonistic key regulators of adult neurogenesis. Adult neurogenesis decreases with age but remains present, albeit at a very low level, even in the oldest individuals. Activity, be it physical or cognitive, increases adult neurogenesis and thereby seems to counteract age effects. It is, thus, proposed that activity-dependent regulation of adult neurogenesis might contribute to some sort of "neural reserve," the brain's ability to compensate functional loss associated with aging or neurodegeneration. Activity can have nonspecific and specific effects on adult neurogenesis. Mechanistically, nonspecific stimuli that largely affect precursor cell stages might be related by the local microenvironment, whereas more specific, survival-promoting effects take place at later stages of neuronal development and require the synaptic integration of the new cell and its particular synaptic plasticity.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE) Dresden and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
23
|
Tiwari SK, Seth B, Agarwal S, Yadav A, Karmakar M, Gupta SK, Choubey V, Sharma A, Chaturvedi RK. Ethosuximide Induces Hippocampal Neurogenesis and Reverses Cognitive Deficits in an Amyloid-β Toxin-induced Alzheimer Rat Model via the Phosphatidylinositol 3-Kinase (PI3K)/Akt/Wnt/β-Catenin Pathway. J Biol Chem 2015; 290:28540-28558. [PMID: 26420483 DOI: 10.1074/jbc.m115.652586] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 01/20/2023] Open
Abstract
Neurogenesis involves generation of new neurons through finely tuned multistep processes, such as neural stem cell (NSC) proliferation, migration, differentiation, and integration into existing neuronal circuitry in the dentate gyrus of the hippocampus and subventricular zone. Adult hippocampal neurogenesis is involved in cognitive functions and altered in various neurodegenerative disorders, including Alzheimer disease (AD). Ethosuximide (ETH), an anticonvulsant drug is used for the treatment of epileptic seizures. However, the effects of ETH on adult hippocampal neurogenesis and the underlying cellular and molecular mechanism(s) are yet unexplored. Herein, we studied the effects of ETH on rat multipotent NSC proliferation and neuronal differentiation and adult hippocampal neurogenesis in an amyloid β (Aβ) toxin-induced rat model of AD-like phenotypes. ETH potently induced NSC proliferation and neuronal differentiation in the hippocampus-derived NSC in vitro. ETH enhanced NSC proliferation and neuronal differentiation and reduced Aβ toxin-mediated toxicity and neurodegeneration, leading to behavioral recovery in the rat AD model. ETH inhibited Aβ-mediated suppression of neurogenic and Akt/Wnt/β-catenin pathway gene expression in the hippocampus. ETH activated the PI3K·Akt and Wnt·β-catenin transduction pathways that are known to be involved in the regulation of neurogenesis. Inhibition of the PI3K·Akt and Wnt·β-catenin pathways effectively blocked the mitogenic and neurogenic effects of ETH. In silico molecular target prediction docking studies suggest that ETH interacts with Akt, Dkk-1, and GSK-3β. Our findings suggest that ETH stimulates NSC proliferation and differentiation in vitro and adult hippocampal neurogenesis via the PI3K·Akt and Wnt·β-catenin signaling.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| | - Swati Agarwal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| | - Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| | - Madhumita Karmakar
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| | - Shailendra Kumar Gupta
- Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| | - Vinay Choubey
- Department of Pharmacology, Centre of Excellence for Translational Medicine; University of Tartu, Tartu 50411, Estonia
| | - Abhay Sharma
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, 110025 New Delhi, India.
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Toxicology Research, 80 MG Marg, Lucknow 226001, India
| |
Collapse
|
24
|
Current Neurogenic and Neuroprotective Strategies to Prevent and Treat Neurodegenerative and Neuropsychiatric Disorders. Neuromolecular Med 2015; 17:404-22. [PMID: 26374113 DOI: 10.1007/s12017-015-8369-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/22/2015] [Indexed: 12/31/2022]
Abstract
The adult central nervous system is commonly known to have a very limited regenerative capacity. The presence of functional stem cells in the brain can therefore be seen as a paradox, since in other organs these are known to counterbalance cell loss derived from pathological conditions. This fact has therefore raised the possibility to stimulate neural stem cell differentiation and proliferation or survival by either stem cell replacement therapy or direct administration of neurotrophic factors or other proneurogenic molecules, which in turn has also originated regenerative medicine for the treatment of otherwise incurable neurodegenerative and neuropsychiatric disorders that take a huge toll on society. This may be facilitated by the fact that many of these disorders converge on similar pathophysiological pathways: excitotoxicity, oxidative stress, neuroinflammation, mitochondrial failure, excessive intracellular calcium and apoptosis. This review will therefore focus on the most promising achievements in promoting neuroprotection and neuroregeneration reported to date.
Collapse
|
25
|
Grassmann F, Fleckenstein M, Chew EY, Strunz T, Schmitz-Valckenberg S, Göbel AP, Klein ML, Ratnapriya R, Swaroop A, Holz FG, Weber BHF. Clinical and genetic factors associated with progression of geographic atrophy lesions in age-related macular degeneration. PLoS One 2015; 10:e0126636. [PMID: 25962167 PMCID: PMC4427438 DOI: 10.1371/journal.pone.0126636] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 04/05/2015] [Indexed: 12/29/2022] Open
Abstract
Worldwide, age-related macular degeneration (AMD) is a serious threat to vision loss in individuals over 50 years of age with a pooled prevalence of approximately 9%. For 2020, the number of people afflicted with this condition is estimated to reach 200 million. While AMD lesions presenting as geographic atrophy (GA) show high inter-individual variability, only little is known about prognostic factors. Here, we aimed to elucidate the contribution of clinical, demographic and genetic factors on GA progression. Analyzing the currently largest dataset on GA lesion growth (N = 388), our findings suggest a significant and independent contribution of three factors on GA lesion growth including at least two genetic factors (ARMS2_rs10490924 [P < 0.00088] and C3_rs2230199 [P < 0.00015]) as well as one clinical component (presence of GA in the fellow eye [P < 0.00023]). These correlations jointly explain up to 7.2% of the observed inter-individual variance in GA lesion progression and should be considered in strategy planning of interventional clinical trials aimed at evaluating novel treatment options in advanced GA due to AMD.
Collapse
Affiliation(s)
- Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Regensburg, D-93053, Germany
| | | | - Emily Y. Chew
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892–1204, United States of America
| | - Tobias Strunz
- Institute of Human Genetics, University of Regensburg, Regensburg, D-93053, Germany
| | | | - Arno P. Göbel
- Department of Ophthalmology, University of Bonn, Bonn, D-53127, Germany
| | - Michael L. Klein
- Macular Degeneration Center, Casey Eye Institute, Oregon Health & Science University, and Devers Eye Institute, Portland, Oregon 97239, United States of America
| | - Rinki Ratnapriya
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892–1204, United States of America
| | - Anand Swaroop
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892–1204, United States of America
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, D-53127, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, D-93053, Germany
- * E-mail:
| |
Collapse
|
26
|
Abstract
Mitochondria are organelles derived from primitive symbiosis between archeon ancestors and prokaryotic α-proteobacteria species, which lost the capacity of synthetizing most proteins encoded the bacterial DNA, along the evolutionary process of eukaryotes. Nowadays, mitochondria are constituted by small circular mitochondrial DNA of 16 kb, responsible for the control of several proteins, including polypeptides of the electron transport chain. Throughout evolution, these organelles acquired the capacity of regulating energy production and metabolism, thus becoming central modulators of cell fate. In fact, mitochondria are crucial for a variety of cellular processes, including adenosine triphosphate production by oxidative phosphorylation, intracellular Ca(2+) homeostasis, generation of reactive oxygen species, and also cellular specialization in a variety of tissues that ultimately relies on specific mitochondrial specialization and maturation. In this review, we discuss recent evidence extending the importance of mitochondrial function and energy metabolism to the context of neuronal development and adult neurogenesis.
Collapse
Affiliation(s)
- Joana M Xavier
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
27
|
REES TOBIAS. Developmental diseases-an introduction to the neurological human (in motion). AMERICAN ETHNOLOGIST 2015. [DOI: 10.1111/amet.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- TOBIAS REES
- Social Studies of Medicine; McGill University; 3647 Peel Street, Montreal, Quebec H3A 1×1 Canada
| |
Collapse
|
28
|
Zhang P, Xie MQ, Ding YQ, Liao M, Qi SS, Chen SX, Gu QQ, Zhou P, Sun CY. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice. Neuroscience 2015; 290:214-26. [PMID: 25637494 DOI: 10.1016/j.neuroscience.2015.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 12/12/2022]
Abstract
An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ.
Collapse
Affiliation(s)
- P Zhang
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - M Q Xie
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Y-Q Ding
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - M Liao
- Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Department of Histology and Embryology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - S S Qi
- Department of Pharmacy, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province 325000, China
| | - S X Chen
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - Q Q Gu
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - P Zhou
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China
| | - C Y Sun
- Department of Anatomy, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China; Institute of Neuroscience, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang Province 325035, China.
| |
Collapse
|
29
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
30
|
Qiu L, Zhang W, Tan EK, Zeng L. Deciphering the function and regulation of microRNAs in Alzheimer's disease and Parkinson's disease. ACS Chem Neurosci 2014; 5:884-94. [PMID: 25210999 DOI: 10.1021/cn500149w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are single stranded, noncoding RNA molecules that are encoded by eukaryotic nuclear DNA. miRNAs function through imperfect base-pairing with complementary sequences of target mRNA molecules, which is typically via the cleavage of target mRNA with transcriptional repression or translational degradation. An increasing number of studies identified dysregulation of miRNAs in neurodegenerative disease and suggest that alterations in the miRNA regulatory pathway could contribute to the disease pathogenesis. However, molecular mechanisms underlying the pathological implications of dysregulated miRNA expression and regulation of the key genes that are involved in neurodegenerative diseases remain largely unknown. Here, we review the evidence for the functional role of dysregulated miRNAs involved in disease pathogenesis, as well as how miRNAs govern neuronal functions either upstream or downstream of target genes that are disease pathogenic factors. Furthermore, we review the cellular feedback regulation between miRNAs and target genes in neurodegenerative diseases, with a focus on Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lifeng Qiu
- Neural
Stem Cell Research Lab, Research Department, National Neuroscience Institute, 308433, Singapore
| | - Wei Zhang
- Neural
Stem Cell Research Lab, Research Department, National Neuroscience Institute, 308433, Singapore
| | - Eng King Tan
- Department
of Neurology, National Neuroscience Institute, SGH Campus, 169856, Singapore
- Research
Department, National Neuroscience Institute, 308433, Singapore
- Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, 169857, Singapore
| | - Li Zeng
- Neural
Stem Cell Research Lab, Research Department, National Neuroscience Institute, 308433, Singapore
- Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, 169857, Singapore
| |
Collapse
|
31
|
Jang W, Park HH, Lee KY, Lee YJ, Kim HT, Koh SH. 1,25-dyhydroxyvitamin D3 Attenuates l-DOPA-Induced Neurotoxicity in Neural Stem Cells. Mol Neurobiol 2014; 51:558-70. [DOI: 10.1007/s12035-014-8835-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/25/2014] [Indexed: 11/27/2022]
|
32
|
Vishwakarma SK, Bardia A, Tiwari SK, Paspala SA, Khan AA. Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review. J Adv Res 2014; 5:277-294. [PMID: 25685495 PMCID: PMC4294738 DOI: 10.1016/j.jare.2013.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/10/2013] [Accepted: 04/28/2013] [Indexed: 12/14/2022] Open
Abstract
Since last few years, an impressive amount of data has been generated regarding the basic in vitro and in vivo biology of neural stem cells (NSCs) and there is much far hope for the success in cell replacement therapies for several human neurodegenerative diseases and stroke. The discovery of adult neurogenesis (the endogenous production of new neurons) in the mammalian brain more than 40 years ago has resulted in a wealth of knowledge about stem cells biology in neuroscience research. Various studies have done in search of a suitable source for NSCs which could be used in animal models to understand the basic and transplantation biology before treating to human. The difficulties in isolating pure population of NSCs limit the study of neural stem behavior and factors that regulate them. Several studies on human fetal brain and spinal cord derived NSCs in animal models have shown some interesting results for cell replacement therapies in many neurodegenerative diseases and stroke models. Also the methods and conditions used for in vitro culture of these cells provide an important base for their applicability and specificity in a definite target of the disease. Various important developments and modifications have been made in stem cells research which is needed to be more specified and enrolment in clinical studies using advanced approaches. This review explains about the current perspectives and suitable sources for NSCs isolation, characterization, in vitro proliferation and their use in cell replacement therapies for the treatment of various neurodegenerative diseases and strokes.
Collapse
Affiliation(s)
- Sandeep K. Vishwakarma
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
- Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
| | - Avinash Bardia
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
| | - Santosh K. Tiwari
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
| | - Syed A.B. Paspala
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
- Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
| | - Aleem A. Khan
- Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
- Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
| |
Collapse
|
33
|
NF-κB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:612798. [PMID: 24678511 PMCID: PMC3942292 DOI: 10.1155/2014/612798] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/28/2013] [Indexed: 12/18/2022]
Abstract
Adult hippocampal neurogenesis is a peculiar form of process of neuroplasticity that in recent years has gained great attention for its potential implication in cognition and in emotional behavior in physiological conditions. Moreover, a vast array of experimental studies suggested that adult hippocampal neurogenesis may be altered in various neuropsychiatric disorders, including major depression, where its disregulation may contribute to cognitive impairment and/or emotional aspects associated with those diseases. An intriguing area of interest is the potential influence of drugs on adult neurogenesis. In particular, several psychoactive drugs, including antidepressants, were shown to positively modulate adult hippocampal neurogenesis. Among molecules which could regulate adult hippocampal neurogenesis the NF-κB family of transcription factors has been receiving particular attention from our and other laboratories. Herein we review recent data supporting the involvement of NF-κB signaling pathways in the regulation of adult neurogenesis and in the effects of drugs that are endowed with proneurogenic and antidepressant activity. The potential implications of these findings on our current understanding of the process of adult neurogenesis in physiological and pathological conditions and on the search for novel antidepressants are also discussed.
Collapse
|
34
|
Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, Karmakar M, Kumari M, Chauhan LKS, Patel DK, Srivastava V, Singh D, Gupta SK, Tripathi A, Chaturvedi RK, Gupta KC. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS NANO 2014; 8:76-103. [PMID: 24467380 DOI: 10.1021/nn405077y] [Citation(s) in RCA: 390] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Neurogenesis, a process of generation of new neurons, is reported to be reduced in several neurodegenerative disorders including Alzheimer's disease (AD). Induction of neurogenesis by targeting endogenous neural stem cells (NSC) could be a promising therapeutic approach to such diseases by influencing the brain self-regenerative capacity. Curcumin, a neuroprotective agent, has poor brain bioavailability. Herein, we report that curcumin-encapsulated PLGA nanoparticles (Cur-PLGA-NPs) potently induce NSC proliferation and neuronal differentiation in vitro and in the hippocampus and subventricular zone of adult rats, as compared to uncoated bulk curcumin. Cur-PLGA-NPs induce neurogenesis by internalization into the hippocampal NSC. Cur-PLGA-NPs significantly increase expression of genes involved in cell proliferation (reelin, nestin, and Pax6) and neuronal differentiation (neurogenin, neuroD1, neuregulin, neuroligin, and Stat3). Curcumin nanoparticles increase neuronal differentiation by activating the Wnt/β-catenin pathway, involved in regulation of neurogenesis. These nanoparticles caused enhanced nuclear translocation of β-catenin, decreased GSK-3β levels, and increased promoter activity of the TCF/LEF and cyclin-D1. Pharmacological and siRNA-mediated genetic inhibition of the Wnt pathway blocked neurogenesis-stimulating effects of curcumin. These nanoparticles reverse learning and memory impairments in an amyloid beta induced rat model of AD-like phenotypes, by inducing neurogenesis. In silico molecular docking studies suggest that curcumin interacts with Wif-1, Dkk, and GSK-3β. These results suggest that curcumin nanoparticles induce adult neurogenesis through activation of the canonical Wnt/β-catenin pathway and may offer a therapeutic approach to treating neurodegenerative diseases such as AD, by enhancing a brain self-repair mechanism.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80 MG Marg, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Arai Y, Huttner WB, Calegari F. Neural Stem Cells. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Reetz J, Herchenröder O, Schmidt A, Pützer BM. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
37
|
Morales-Garcia JA, Luna-Medina R, Alonso-Gil S, Sanz-SanCristobal M, Palomo V, Gil C, Santos A, Martinez A, Perez-Castillo A. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci 2012; 3:963-71. [PMID: 23173075 DOI: 10.1021/cn300110c] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/24/2012] [Indexed: 02/07/2023] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase originally identified as a regulator of glycogen metabolism but it also plays a pivotal role in numerous cellular functions, including differentiation, cell cycle regulation, and proliferation. The dentate gyrus of the hippocampus, together with the subventricular zone of the lateral ventricles, is one of the regions in which neurogenesis takes place in the adult brain. Here, using a chemical genetic approach that involves the use of several diverse inhibitors of GSK-3 as pharmacological tools, we show that inhibition of GSK-3 induces proliferation, migration, and differentiation of neural stem cells toward a neuronal phenotype in in vitro studies. Also, we demonstrate that inhibition of GSK-3 with the small molecule NP03112, called tideglusib, induces neurogenesis in the dentate gyrus of the hippocampus of adult rats. Taken together, our results suggest that GSK-3 should be considered as a new target molecule for modulating the production and integration of new neurons in the hippocampus as a treatment for neurodegenerative diseases or brain injury and, consequently, its inhibitors may represent new potential therapeutic drugs in neuroregenerative medicine.
Collapse
Affiliation(s)
- Jose A. Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Rosario Luna-Medina
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| | - Valle Palomo
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006-Madrid,
Spain
| | - Carmen Gil
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006-Madrid,
Spain
| | - Angel Santos
- Departamento de Bioquímica
y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040-Madrid,
Spain
| | - Ana Martinez
- Instituto de Química Médica, CSIC, Juan de la Cierva, 3, 28006-Madrid,
Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4 and
Centro de Investigación Biomédica en Red sobre Enfermedades
Neurodegenerativas (CIBERNED), 28029-Madrid, Spain
| |
Collapse
|
38
|
Steiner B, Roch M, Holtkamp N, Kurtz A. Systemically administered human bone marrow-derived mesenchymal stem home into peripheral organs but do not induce neuroprotective effects in the MCAo-mouse model for cerebral ischemia. Neurosci Lett 2012; 513:25-30. [DOI: 10.1016/j.neulet.2012.01.078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 01/01/2023]
|
39
|
Transduction of E13 murine neural precursor cells by non-immunogenic recombinant adeno-associated viruses induces major changes in neuronal phenotype. Neuroscience 2012; 210:82-98. [PMID: 22406416 DOI: 10.1016/j.neuroscience.2012.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/21/2022]
Abstract
Neural precursor cells (NPCs) provide a cellular model to compare transduction efficiency and toxicity for a series of recombinant adeno-associated viruses (rAAVs). Results led to the choice of rAAV9 as a preferred candidate to transduce NPCs for in vivo transplantation. Importantly, transduction promoted a neuronal phenotype characterized by neurofilament M (NFM) with a concomitant decrease in the embryonic marker, nestin, without significant change in glial fibrillary acidic protein (GFAP). In marked contrast to recent studies for induced pluripotent stem cells (iPSCs), exposure to rAAVs is non-immunogenic and these do not result in genetic abnormalities, thus bolstering the earlier use of NPCs such as those isolated from E13 murine cells for clinical applications. Mechanisms of cellular interactions were explored by treatment with genistein, a pan-specific inhibitor of protein receptor tyrosine kinases (PRTKs) that blocked the transduction and differentiation, thus implying a central role for this pathway for inducing infectivity along with observed phenotypic changes and as a method for drug design. Implantation of transduced NPCs into adult mouse hippocampus survived up to 28 days producing a time line for targeting or migration to dentate gyrus and CA3-1 compatible with future clinical applications. Furthermore, a majority showed commitment to highly differentiated neuronal phenotypes. Lack of toxicity and immune response of rAAVs plus ability for expansion of NPCs in vitro auger well for their isolation and suggest potential therapeutic applications in repair or replacement of diseased neurons in neurodegeneration.
Collapse
|
40
|
Zhou ZD, Sathiyamoorthy S, Tan EK. LINGO-1 and Neurodegeneration: Pathophysiologic Clues for Essential Tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2012; 2. [PMID: 23439882 PMCID: PMC3569903 DOI: 10.7916/d8pz57jv] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023]
Abstract
Essential tremor (ET), one of the most common adult-onset movement disorders, has been associated with cerebellar Purkinje cell degeneration and formation of brainstem Lewy bodies. Recent findings suggest that genetic variants of the leucine-rich repeat and Ig domain containing 1 (LINGO-1) gene could be risk factors for ET. The LINGO-1 protein contains both leucine-rich repeat (LRR) and immunoglobulin (Ig)-like domains in its extracellular region, as well as a transmembrane domain and a short cytoplasmic tail. LINGO-1 can form a ternary complex with Nogo-66 receptor (NgR1) and p75. Binding of LINGO-1 with NgR1 can activate the NgR1 signaling pathway, leading to inhibition of oligodendrocyte differentiation and myelination in the central nervous system. LINGO-1 has also been found to bind with epidermal growth factor receptor (EGFR) and induce downregulation of the activity of EGFR-PI3K-Akt signaling, which might decrease Purkinje cell survival. Therefore, it is possible that genetic variants of LINGO-1, either alone or in combination with other genetic or environmental factors, act to increase LINGO-1 expression levels in Purkinje cells and confer a risk to Purkinje cell survival in the cerebellum.Here, we provide a concise summary of the link between LINGO-1 and neurodegeneration and discuss various hypotheses as to how this could be potentially relevant to ET pathogenesis.
Collapse
|
41
|
Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I, Iqbal K. An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol 2012; 123:133-51. [PMID: 22083255 DOI: 10.1007/s00401-011-0908-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/30/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) is multifactorial and, to date, no single cause of the sporadic form of this disease, which accounts for over 99% of the cases, has been established. In AD brain, protein phosphatase-2A (PP2A) activity is known to be compromised due to the cleavage and translocation of its potent endogenous inhibitor, I2PP2A, from the neuronal nucleus to the cytoplasm. Here, we show that adeno-associated virus vector-induced expression of the N-terminal I2NTF and C-terminal I2CTF halves of I2PP2A , also called SET, in brain reproduced key features of AD in Wistar rats. The I2NTF-CTF rats showed a decrease in brain PP2A activity, abnormal hyperphosphorylation and aggregation of tau, a loss of neuronal plasticity and impairment in spatial reference and working memories. To test whether early pharmacologic intervention with a neurotrophic molecule could rescue neurodegeneration and behavioral deficits, 2.5-month-old I2NTF-CTF rats and control littermates were treated for 40 days with Peptide 6, an 11-mer peptide corresponding to an active region of the ciliary neurotrophic factor. Peripheral administration of Peptide 6 rescued neurodegeneration and cognitive deficit in I2NTF-CTF animals by increasing dentate gyrus neurogenesis and mRNA level of brain derived neurotrophic factor. Moreover, Peptide 6-treated I2NTF-CTF rats showed a significant increase in dendritic and synaptic density as reflected by increased expression of synapsin I, synaptophysin and MAP2, especially in the pyramidal neurons of CA1 and CA3 of the hippocampus.
Collapse
|
42
|
Spritzer MD, Ibler E, Inglis W, Curtis MG. Testosterone and social isolation influence adult neurogenesis in the dentate gyrus of male rats. Neuroscience 2011; 195:180-90. [PMID: 21875652 DOI: 10.1016/j.neuroscience.2011.08.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 12/24/2022]
Abstract
Testosterone has been previously shown to enhance adult neurogenesis within the dentate gyrus of adult male rats, whereas social isolation has been shown to cause a decrease in adult neurogenesis under some conditions. The current study tested the combined effects of testosterone and social isolation upon adult neurogenesis using two experiments involving adult male rats. For both experiments, half of the subjects were pair-housed and half were housed individually for the duration of the experiments (34 days). For experiment 1, the subjects were divided into four groups (n=8/group): (1) sham/pair-housed, (2) sham/isolated, (3) castrate/pair-housed, and (4) castrate/isolated. Rats in the castrate groups were bilaterally castrated, and rats in the sham groups were sham castrated. For experiment 2, all rats were castrated, and the effects of testosterone were tested using daily injections of testosterone propionate (0.500 mg/rat for 15 days) or the oil vehicle. Subjects were divided into four groups (n=8/group): (1) oil/pair-housed, (2) oil/isolated, (3) testosterone/pair-housed, and (4) testosterone/isolated. All rats were injected with 5-bromo-2'-deoxyuridine (BrdU, 200 mg/kg body mass), and immunohistochemistry was used to determine levels of neurogenesis following a 16-day cell survival period. For experiment 1, castrated subjects had significantly fewer BrdU-labeled cells along the granule cell layer and subgranular zone (GCL+SGZ) of the dentate gyrus than did intact subjects, and this effect was mainly due to low levels of neurogenesis in the castrate/isolated group. For experiment 2, social isolation caused a significant decrease in neurogenesis within the GCL+SGZ relative to the pair-housed groups. Testosterone injections did not buffer against this effect but instead tended to cause a decrease in neurogenesis. Thus, social isolation reduced hippocampal neurogenesis, but the effects of testosterone were inconsistent. This suggests that normal circulating levels of testosterone may buffer against the neurogenesis-impairing effects of isolation, whereas high doses of testosterone do not.
Collapse
Affiliation(s)
- M D Spritzer
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Schizophrenia is a common mental illness resulting from a complex interplay of genetic and environmental risk factors. Establishing its primary molecular and cellular aetiopathologies has proved difficult. However, this is a vital step towards the rational development of useful disease biomarkers and new therapeutic strategies. The advent and large-scale application of genomic, transcriptomic, proteomic and metabolomic technologies are generating data sets required to achieve this goal. This discovery phase, typified by its objective and hypothesis-free approach, is described in the first part of the review. The accumulating biological information, when viewed as a whole, reveals a number of biological process and subcellular locations that contribute to schizophrenia causation. The data also show that each technique targets different aspects of central nervous system function in the disease state. In the second part of the review, key schizophrenia candidate genes are discussed more fully. Two higher-order processes - adult neurogenesis and inflammation - that appear to have pathological relevance are also described in detail. Finally, three areas where progress would have a large impact on schizophrenia biology are discussed: deducing the causes of schizophrenia in the individual, explaining the phenomenon of cross-disorder risk factors, and distinguishing causative disease factors from those that are reactive or compensatory.
Collapse
|
44
|
Young CC, Brooks KJ, Buchan AM, Szele FG. Cellular and molecular determinants of stroke-induced changes in subventricular zone cell migration. Antioxid Redox Signal 2011; 14:1877-88. [PMID: 20673127 PMCID: PMC3078507 DOI: 10.1089/ars.2010.3435] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A remarkable aspect of adult neurogenesis is that the tight regulation of subventricular zone (SVZ) neuroblast migration is altered after ischemic stroke and newborn neurons emigrate towards the injury. This phenomenon is an essential component of endogenous repair and also serves to illuminate normal mechanisms and rules that govern SVZ migration. Stroke causes inflammation that leads to cytokine and chemokine release, and SVZ neuroblasts that express their receptors are recruited. Metalloproteinases create pathways and new blood vessels provide a scaffold to facilitate neuroblast migration between the SVZ and the infarct. Most experiments have studied the peri-lesion parenchyma and relatively little is known about SVZ remodeling after stroke. Migration in the SVZ is tightly regulated by cellular interactions and molecular signaling; how are these altered after stroke to allow emigration? Do ependymal cells contribute to this process, given their reported neurogenic potential? How does stroke affect ependymal cell regulation of cerebrospinal fluid flow? Given the heterogeneity of SVZ progenitors, do all types of neuroblasts migrate out, or is this confined to specific subtypes of cells? We discuss these and other questions in our review and propose experiments to address them.
Collapse
Affiliation(s)
- Christopher C Young
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
45
|
Pützer BM, Schmidt A. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
46
|
Neural Stem Cells. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
47
|
Abstract
Neurodegenerative diseases are characterized by neurodegenerative changes or apoptosis of neurons involved in networks, leading to permanent paralysis and loss of sensation below the site of the injury. Cell replacement therapy has provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases. In recent years, neurons and glial cells have successfully been generated from stem cells, and extensive efforts by investigators to develop stem cell-based brain transplantation therapies have been carried out. We review here notable previously published experimental and preclinical studies involving stem cell-based cell for neurodegenerative diseases and discuss the future prospects for stem cell therapy of neurological disorders in the clinical setting. Steady and solid progress in stem cell research in both basic and preclinical settings should support the hope for development of stem cell-based cell therapies for neurological diseases.
Collapse
Affiliation(s)
| | | | | | - Ning Zhang
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86 57186021763; Fax: +86 57187022776
| |
Collapse
|
48
|
Spitzer P, Klafki HW, Blennow K, Buée L, Esselmann H, Herruka SK, Jimenez C, Klivenyi P, Lewczuk P, Maler JM, Markus K, Meyer HE, Morris C, Müller T, Otto M, Parnetti L, Soininen H, Schraen S, Teunissen C, Vecsei L, Zetterberg H, Wiltfang J. cNEUPRO: Novel Biomarkers for Neurodegenerative Diseases. Int J Alzheimers Dis 2010; 2010. [PMID: 20886057 PMCID: PMC2945639 DOI: 10.4061/2010/548145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/05/2010] [Indexed: 12/04/2022] Open
Abstract
“clinical NEUroPROteomics of neurodegenerative diseases” (cNEUPRO) is a Specific Targeted Research Project (STREP) within the sixth framework program of the European Commission dedicated to the search for novel biomarker candidates for Alzheimer's disease and other neurodegenerative diseases. The ultimate goal of cNEUPRO is to identify one or more valid biomarker(s) in blood and CSF applicable to support the early and differential diagnosis of dementia disorders. The consortium covers all steps required for the discovery of novel biomarker candidates such as acquisition of high quality CSF and blood samples from relevant patient groups and controls, analysis of body fluids by various methods, and finally assay development and assay validation. Here we report the standardized procedures for diagnosis and preanalytical sample-handling within the project, as well as the status of the ongoing research activities and some first results.
Collapse
Affiliation(s)
- Philipp Spitzer
- Laboratory for Molecular Neurobiology, Department of Psychiatry and Psychotherapy, University of Duisburg-Essen, LVR-Klinikum Essen, Virchowstraße 174, 45147 Essen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc Natl Acad Sci U S A 2009; 107:1201-6. [PMID: 20080708 DOI: 10.1073/pnas.0909015107] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
After their generation and specification in periventricular regions, neuronal precursors maintain an immature and migratory state until their arrival in the respective target structures. Only here are terminal differentiation and synaptic integration induced. Although the molecular control of neuronal specification has started to be elucidated, little is known about the factors that control the latest maturation steps. We aimed at identifying factors that induce terminal differentiation during postnatal and adult neurogenesis, thereby focusing on the generation of periglomerular interneurons in the olfactory bulb. We isolated neuronal precursors and mature neurons from the periglomerular neuron lineage and analyzed their gene expression by microarray. We found that expression of the bHLH transcription factor NeuroD1 strikingly coincides with terminal differentiation. Using brain electroporation, we show that overexpression of NeuroD1 in the periventricular region in vivo leads to the rapid appearance of cells with morphological and molecular characteristics of mature neurons in the subventricular zone and rostral migratory stream. Conversely, shRNA-induced knockdown of NeuroD1 inhibits terminal neuronal differentiation. Thus, expression of a single transcription factor is sufficient to induce neuronal differentiation of neural progenitors in regions that normally do not show addition of new neurons. These results suggest a considerable potential of NeuroD1 for use in cell-therapeutic approaches in the nervous system.
Collapse
|
50
|
Mirochnic S, Wolf S, Staufenbiel M, Kempermann G. Age effects on the regulation of adult hippocampal neurogenesis by physical activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 2009; 19:1008-18. [PMID: 19219917 DOI: 10.1002/hipo.20560] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An active lifestyle is to some degree protective against Alzheimer's disease (AD), but the biological basis for this benefit is still far from clear. We hypothesize that physical and cognitive activity increase a reserve for plasticity by increasing adult neurogenesis in the hippocampal dentate gyrus (DG). We thus assessed how age affects the response to activity in the murine APP23 model of AD compared with wild type (WT) controls and studied the effects of physical exercise (RUN) and environmental enrichment (ENR) in comparison with standard housing (CTR) at two different ages (6 months and 18 months) and in both genotypes. At 18 months, both activity paradigms reduced the hippocampal human Abeta1-42/Abeta1-40 ratio when compared with CTR, despite a stable plaque load in the hippocampus. At this age, both RUN and ENR increased the number of newborn granule cells in the DG of APP23 mice when compared with CTR, whereas the levels of regulation were equivalent to those in WT mice under the same housing conditions. At 6 months, however, neurogenesis in ENR but not RUN mice responded like the WT. Quantifying the number of cells at the doublecortin-positive stage in relation to the number of cells on postmitotic stages we found that ENR overproportionally increased the number of the DCX-positive "late" progenitor cells, indicative of an increased potential to recruit even more new neurons. In summary, the biological substrates for activity-dependent regulation of adult hippocampal neurogenesis were preserved in the APP23 mice. We thus propose that in this model, ENR even more than RUN might contribute to a "neurogenic reserve" despite a stable plaque load and that age affects the outcome of an interaction based on "activity."
Collapse
Affiliation(s)
- Sebastian Mirochnic
- Genomics of Regeneration in CNS, Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | | | | | | |
Collapse
|