1
|
Zhang Y, Klein K, Ratcliff A, Galappaththi SL, Hathaway N, Twells N, Patel M, Temesy S, Bailey J, Mahal L, Creuzenet C, Arts E. Transmitted/founder (T/F) HIV-1 derived from sexual contact exhibits greater transmission fitness in human cervical tissue than T/F HIV-1 from blood-to-blood contact: Unique glycan profiles on T/F envelopes associated with transmission phenotypes. PLoS Pathog 2025; 21:e1013177. [PMID: 40408432 DOI: 10.1371/journal.ppat.1013177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 05/01/2025] [Indexed: 05/25/2025] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) risk groups include, but are not limited to, heterosexual individuals (HET), men-who-have-sex-with-men (MSM), and people who inject drugs (PWID). Although genetically diverse HIV-1 populations are transferred from donor to recipient, systemic infection is often established by a single clone, the transmitted/founder (T/F) virus. This phenomenon is especially prevalent in sexual transmission, but less stringent in blood-to-blood contact transmission. Specific traits that permit successful transmission have not been well characterized. Thus, HIV-1 containing the chimeric T/F envelope (Env) from different transmission routes was assessed for ex vivo transmission fitness by performing mixed competition assays (also referred to as mixed competitions) on human cervical tissues. We found that chimeric T/F viruses isolated from the PWID exhibit limited replication capacity in cervical tissues when compared to those from MSM and HET, diminishing their chances of transmission to T helper type 1 (Th1) and Th17 cells. This reduced transmission fitness of T/F HIV-1 from PWID was not observed when infecting Th1 and Th17 cells directly, bypassing cervical tissues. Phenotypic assays showed that the chimeric T/F viruses from PWID differed from other groups by having an enhanced ability to utilize diverse CCR5 conformations, while Env expression level, CD4/CCR5 utilization, and entry speed did not differ. Different glycosylation profiles were detected on T/F compared to chronic Env with increased complex, fucosylated N- and O-glycans found more frequently on the T/F Env. Furthermore, the increased presence of these fucosylated glycans correlated with replication fitness in cervical tissues. In contrast, bisecting branched N-glycan found more frequently on chronic Env was associated with decreased entry efficiency and more stringent usage of CCR5. These findings suggest that glycosylation patterns/levels and/or Env structure greatly impact the differences in transmission fitness of T/F HIV-1.
Collapse
Affiliation(s)
- Yiying Zhang
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Katja Klein
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Annette Ratcliff
- Department of Molecular Biology and Microbiology and Division of Infectious Diseases, Case Western Reserve University, Cleveland, United States of America
| | | | - Nicholas Hathaway
- Department of Pathology and Laboratory Medicine, Brown University, Providence, United States of America
| | - Nicholas Twells
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Mukti Patel
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Stephen Temesy
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Jeffrey Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, United States of America
| | - Lara Mahal
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Carole Creuzenet
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | - Eric Arts
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
- Department of Molecular Biology and Microbiology and Division of Infectious Diseases, Case Western Reserve University, Cleveland, United States of America
| |
Collapse
|
2
|
Govender S, David M, Naicker T. Is the Complement System Dysregulated in Preeclampsia Comorbid with HIV Infection? Int J Mol Sci 2024; 25:6232. [PMID: 38892429 PMCID: PMC11172754 DOI: 10.3390/ijms25116232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
South Africa is the epicentre of the global HIV pandemic, with 13.9% of its population infected. Preeclampsia (PE), a hypertensive disorder of pregnancy, is often comorbid with HIV infection, leading to multi-organ dysfunction and convulsions. The exact pathophysiology of preeclampsia is triggered by an altered maternal immune response or defective development of maternal tolerance to the semi-allogenic foetus via the complement system. The complement system plays a vital role in the innate immune system, generating inflammation, mediating the clearance of microbes and injured tissue materials, and a mediator of adaptive immunity. Moreover, the complement system has a dual effect, of protecting the host against HIV infection and enhancing HIV infectivity. An upregulation of regulatory proteins has been implicated as an adaptive phenomenon in response to elevated complement-mediated cell lysis in HIV infection, further aggravated by preeclamptic complement activation. In light of the high prevalence of HIV infection and preeclampsia in South Africa, this review discusses the association of complement proteins and their role in the synergy of HIV infection and preeclampsia in South Africa. It aims to identify women at elevated risk, leading to early diagnosis and better management with targeted drug therapy, thereby improving the understanding of immunological dysregulation.
Collapse
Affiliation(s)
| | | | - Thajasvarie Naicker
- Optics and Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (S.G.); (M.D.)
| |
Collapse
|
3
|
Akhter A, Moliva JI, Azad AK, Olmo-Fontánez A, Garcia-Vilanova A, Scordo JM, Gavrilin MA, Diaz PT, Endsley JJ, Weintraub ST, Schlesinger LS, Wewers MD, Torrelles JB. HIV infection impairs the host response to Mycobacterium tuberculosis infection by altering surfactant protein D function in the human lung alveolar mucosa. Mucosal Immunol 2024; 17:461-475. [PMID: 38184074 PMCID: PMC11253242 DOI: 10.1016/j.mucimm.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024]
Abstract
Tuberculosis is the leading cause of death for people living with HIV (PLWH). We hypothesized that altered functions of innate immune components in the human alveolar lining fluid of PLWH (HIV-ALF) drive susceptibility to Mycobacterium tuberculosis (M.tb) infection. Our results indicate a significant increase in oxidation of innate proteins and chemokine levels and significantly lower levels and function of complement components and Th1/Th2/Th17 cytokines in HIV-ALF versus control-ALF (non-HIV-infected people). We further found a deficiency of surfactant protein D (SP-D) and reduced binding of SP-D to M.tb that had been exposed to HIV-ALF. Primary human macrophages infected with M.tb exposed to HIV-ALF were significantly less capable of controlling the infection, which was reversed by SP-D replenishment in HIV-ALF. Thus, based on the limited number of participants in this study, our data suggest that PLWH without antiretroviral therapy (ART) have declining host innate defense function in their lung mucosa, thereby favoring M.tb and potentially other pulmonary infections.
Collapse
Affiliation(s)
- Anwari Akhter
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Juan I Moliva
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Abul K Azad
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Angélica Olmo-Fontánez
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA; Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, TX, USA
| | | | - Julia M Scordo
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mikhail A Gavrilin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Phillip T Diaz
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Janice J Endsley
- Departments of Microbiology & Immunology and Pathology, University of Texas Medical Branch Health, Galveston, TX, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Larry S Schlesinger
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mark D Wewers
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA; International Center for the Advancement of Research and Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
4
|
Govender S, Naicker T. The Contribution of Complement Protein C1q in COVID-19 and HIV Infection Comorbid with Preeclampsia: A Review. Int Arch Allergy Immunol 2022; 183:1114-1126. [PMID: 35661665 PMCID: PMC9393774 DOI: 10.1159/000524976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Dysregulation in component 1q (C1q) levels is associated with weak placental development in preeclampsia (PE). Human immunodeficiency virus infection (HIV-1) triggers the C1q complex, resulting in opsonization of healthy host cells, contributing to their removal, and augmented progression of HIV disease. In coronavirus disease 2019 (COVID-19)-infected patients, the deposition of C1q activates the complement. Considering the paucity of data, this review highlights a significant gap in the potential of C1q in the immunocompromised state of preeclamptic HIV-infected women and COVID-19 infection. In PE, C1q is downregulated; while in antiretroviral treatment-treated HIV/COVID-19 infected patients, C1q is upregulated. It is plausible that C1q is augmented in the triad and may exacerbate severity of disease. This thereby provides a foundation for future intended research which involves the investigation of single nucleotide polymorphism expression of the C1q gene, specifically in these diseases.
Collapse
Affiliation(s)
- Sumeshree Govender
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thajasvarie Naicker
- Optics & Imaging Centre, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
5
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
6
|
HIV Associated Preeclampsia: A Multifactorial Appraisal. Int J Mol Sci 2021; 22:ijms22179157. [PMID: 34502066 PMCID: PMC8431090 DOI: 10.3390/ijms22179157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: This review explores angiogenesis, vascular dysfunction, the complement system, RAAS, apoptosis and NETosis as potential pathways that are dysregulated during preeclampsia, HIV infection and ART usage. Results: HIV-1 accessory and matrix proteins are protagonists for the elevation of oxidative stress, apoptosis, angiogenesis, and elevation of adhesion markers. Despite the immunodeficiency during HIV-1 infection, HIV-1 exploits our cellular defence arsenal by escaping cell-mediated lysis, yet HIV-1 infectivity is enhanced via C5a release of TNF-α and IL-6. This review demonstrates that PE is an oxidatively stressed microenvironment associated with increased apoptosis and NETosis, but with a decline in angiogenesis. Immune reconstitution in the duality of HIV-1 and PE by protease inhibitors, HAART and nucleoside reverse transcriptase, affect similar cellular pathways that eventuate in loss of endothelial cell integrity and, hence, its dysfunction. Conclusions: HIV-1 infection, preeclampsia and ARTs differentially affect endothelial cell function. In the synergy of both conditions, endothelial dysfunction predominates. This knowledge will help us to understand the effect of HIV infection and ART on immune reconstitution in preeclampsia.
Collapse
|
7
|
Reversible Lectin Binding to Glycan-Functionalized Graphene. Int J Mol Sci 2021; 22:ijms22136661. [PMID: 34206350 PMCID: PMC8267698 DOI: 10.3390/ijms22136661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands—chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate–lectin binding.
Collapse
|
8
|
McIntosh AT, Wei R, Ahn J, Aouizerat BE, Kassaye SG, Augenbraun MH, Price JC, French AL, Gange SJ, Anastos KM, Goldman R. A genomic variant of ALPK2 is associated with increased liver fibrosis risk in HIV/HCV coinfected women. PLoS One 2021; 16:e0247277. [PMID: 33705408 PMCID: PMC7951908 DOI: 10.1371/journal.pone.0247277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/03/2021] [Indexed: 01/21/2023] Open
Abstract
HIV coinfection is associated with more rapid liver fibrosis progression in hepatitis C (HCV) infection. Recently, much work has been done to improve outcomes of liver disease and to identify targets for pharmacological intervention in coinfected patients. In this study, we analyzed clinical data of 1,858 participants from the Women's Interagency HIV Study (WIHS) to characterize risk factors associated with changes in the APRI and FIB-4 surrogate measurements for advanced fibrosis. We assessed 887 non-synonymous single nucleotide variants (nsSNV) in a subset of 661 coinfected participants for genetic associations with changes in liver fibrosis risk. The variants utilized produced amino acid substitutions that either altered an N-linked glycosylation (NxS/T) sequon or mapped to a gene related to glycosylation processes. Seven variants were associated with an increased likelihood of liver fibrosis. The most common variant, ALPK2 rs3809973, was associated with liver fibrosis in HIV/HCV coinfected patients; individuals homozygous for the rare C allele displayed elevated APRI (0.61, 95% CI, 0.334 to 0.875) and FIB-4 (0.74, 95% CI, 0.336 to 1.144) relative to those coinfected women without the variant. Although warranting replication, ALPK2 rs3809973 may show utility to detect individuals at increased risk for liver disease progression.
Collapse
Affiliation(s)
- Alec T. McIntosh
- Department of Oncology, Georgetown University, Washington, DC, United States of America
| | - Renhuizi Wei
- Department of Oncology, Georgetown University, Washington, DC, United States of America
| | - Jaeil Ahn
- Department of Biostatistics, Bioinformatics & Biomathematics, Georgetown University Medical Center, Washington, DC, United States of America
| | - Brad E. Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, New York, United States of America
| | - Seble G. Kassaye
- Department of Infectious Diseases, Georgetown University Medical Center, Washington, DC, United States of America
| | - Michael H. Augenbraun
- Division of Infectious Diseases, Department of Medicine, State University of New York, Downstate Medical Center, Brooklyn, New York, United States of America
| | - Jennifer C. Price
- Division of Liver Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Audrey L. French
- Division of Infectious Disease, Department of Internal Medicine, Stroger Hospital of Cook County, Chicago, Illinois, United States of America
| | - Stephen J. Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kathryn M. Anastos
- Departments of Medicine and Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Radoslav Goldman
- Department of Oncology, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University Medical Center, Washington, DC, United States of America
- Clinical Translational Glycoscience Research Center, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
9
|
Kaposi's Sarcoma-Associated Herpesvirus and Host Interaction by the Complement System. Pathogens 2020; 9:pathogens9040260. [PMID: 32260199 PMCID: PMC7237997 DOI: 10.3390/pathogens9040260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) modulates the immune response to allow the virus to establish persistent infection in the host and facilitate the development of KSHV-associated cancer. The complement system has a central role in the defense against pathogens. Hence, KSHV has adopted an evasion strategy for complement attack using the viral protein encoded by KSHV open reading frame 4. However, despite this defense mechanism, the complement system appears to become activated in KSHV-infected cells as well as in the region surrounding Kaposi’s sarcoma tumors. Given that the complement system can affect cell fate as well as the inflammatory microenvironment, complement activation is likely associated with KSHV pathogenesis. A better understanding of the interplay between KSHV and the complement system may, therefore, translate into the development of novel therapeutic interventions for KSHV-associated tumors. In this review, the mechanisms and functions of complement activation in KSHV-infected cells are discussed.
Collapse
|
10
|
Pillay Y, Moodley J, Naicker T. The role of the complement system in HIV infection and preeclampsia. Inflamm Res 2019; 68:459-469. [PMID: 31028431 DOI: 10.1007/s00011-019-01240-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The complement system is a key component of the innate immune system that plays a vital role in host defense, maintains homeostasis and acts as a mediator of the adaptive immune response. The complement system could possibly play a role in the pathogenesis of HIV infection and preeclampsia (PE), both of which represent major causes of maternal death in South Africa. RECENT FINDINGS The relationship between PE and HIV infection is unclear as PE represents an exaggerated immune response, while HIV infection is associated with a decline in immune activity. Although the complement system works to clear and neutralize HIV, it could also enhance the infectivity of HIV by various other mechanisms. It has been suggested that the dysregulation of the complement system is associated with the development of PE. CONCLUSION There is currently a paucity of information on the combined effect of the complement system in HIV-associated PE. This review highlights the role of the complement system in the duality of HIV infection and PE and provides new insights into this relationship whilst also elucidating potential therapeutic targets.
Collapse
Affiliation(s)
- Yazira Pillay
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa.
| | - Jagidesa Moodley
- Women's Health and HIV Research Group, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Thajasvarie Naicker
- Optics and Imaging Centre, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
11
|
de Morais VMS, de Lima ELS, Cahú GGDOM, Lopes TRR, Gonçales JP, Muniz MTC, Coêlho MRCD. MBL2 gene polymorphisms in HHV-8 infection in people living with HIV/AIDS. Retrovirology 2018; 15:75. [PMID: 30482213 PMCID: PMC6260567 DOI: 10.1186/s12977-018-0456-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Background Host genetic factors such as MBL2 gene polymorphisms cause defects in the polymerization of MBL protein and result in a functional deficiency and/or in low serum levels that can influence susceptibility to various viral infections. The aim of this study was to estimate the frequency of alleles, genotypes and haplotypes related to -550, -221 and exon 1 polymorphisms of the MBL2 gene and investigate their association with HHV-8 in people living with HIV/AIDS (PLWHA), as well as the impacts on CD4 cell count and HIV viral load in HIV/HHV-8 coinfected and HIV monoinfected patients. Results A cross sectional study in PLWHA, with and without HHV-8 infection, exploring associations between different factors, was performed in the outpatient infectious and parasitic diseases clinic at a referral hospital. Genomic DNA extractions from leukocytes were performed using a commercial Wizard®Genomic DNA Purification kit (Promega, Madison, WI). The promoter region (-550 and -221) was genotyped with the TaqMan system (Applied TaqMan Biosystems® genotyping Assays), and the structural region (exon1) was genotyped with Express Sybr Greener Supermix kit (Invitrogen, USA). In total, 124 HIV/HHV-8 coinfected and 213 HIV monoinfected patients were analysed. Median TCD4 counts were significantly lower in HIV/HHV-8 coinfected patients, whereas the mean of the first and last viral load of HIV did not present significant difference. There was no difference in frequency between the LL, YY and AA genotypes between the HIV/HHV-8 coinfected or HIV monoinfected patients. However, in a multivariate analysis, coinfected patients with the intermediate expression haplotype of the MBL2 gene had an odds ratio of 3.1-fold (CI = 1.2–7.6) of their last CD4 cell count being below 350 cells/mm3. Among the coinfected individuals, four developed KS and presented the intermediate expression MBL haplotype, with three being HYA/LXA and one being LYA/LYO. Conclusions Host genetic factors, such as -550, -221 and exon 1 polymorphisms, can be related to the may modify coinfections and/or to the development clinical manifestations caused by HHV-8, especially in HIV/HHV-8 coinfected patients who present the intermediate expression haplotypes of MBL.
Collapse
Affiliation(s)
- Viviane Martha Santos de Morais
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Elker Lene Santos de Lima
- Laboratory of Molecular Biology, Center of Pediatric Oncohematology, Oswaldo Cruz University Hospital, University of Pernambuco, Recife, PE, Brazil
| | - Georgea Gertrudes de Oliveira Mendes Cahú
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Thaisa Regina Rocha Lopes
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Juliana Prado Gonçales
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil
| | - Maria Tereza Cartaxo Muniz
- Laboratory of Molecular Biology, Center of Pediatric Oncohematology, Oswaldo Cruz University Hospital, University of Pernambuco, Recife, PE, Brazil
| | - Maria Rosângela Cunha Duarte Coêlho
- Virology Division, Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE, 50670-901, Brazil. .,Departament of Physiology and Pharmacology, Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
12
|
Bispecific chimeric antigen receptors targeting the CD4 binding site and high-mannose Glycans of gp120 optimized for anti-human immunodeficiency virus potency and breadth with minimal immunogenicity. Cytotherapy 2018; 20:407-419. [PMID: 29306566 DOI: 10.1016/j.jcyt.2017.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Chimeric antigen receptors (CARs) offer great potential toward a functional cure of human immunodeficiency virus (HIV) infection. To achieve the necessary long-term virus suppression, we believe that CARs must be designed for optimal potency and anti-HIV specificity, and also for minimal probability of virus escape and CAR immunogenicity. CARs containing antibody-based motifs are problematic in the latter regard due to epitope mutation and anti-idiotypic immune responses against the variable regions. METHODS We designed bispecific CARs, each containing a segment of human CD4 linked to the carbohydrate recognition domain of a human C-type lectin. These CARs target two independent regions on HIV-1 gp120 that presumably must be conserved on clinically significant virus variants (i.e., the primary receptor binding site and the dense oligomannose patch). Functionality and specificity of these bispecific CARs were analyzed in assays of CAR-T cell activation and spreading HIV-1 suppression. RESULTS T cells expressing a CD4-dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DCSIGN) CAR displayed robust stimulation upon encounter with Env-expressing targets, but negligible activity against intercellular adhesion molecule (ICAM)-2 and ICAM-3, the natural dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin ligands. Moreover, the presence of the lectin moiety prevented the CD4 from acting as an entry receptor on CCR5-expressing cells, including CD8+ T cells. However, in HIV suppression assays, the CD4-DCSIGN CAR and the related CD4-liver/lymph node-specific intercellular adhesion molecule-3-grabbing non-integrin CAR displayed only minimally increased potency compared with the CD4 CAR against some HIV-1 isolates and reduced potency against others. By contrast, the CD4-langerin and CD4-mannose binding lectin (MBL) CARs uniformly displayed enhanced potency compared with the CD4 CAR against all the genetically diverse HIV-1 isolates examined. Further experimental data, coupled with known biological features, suggest particular advantages of the CD4-MBL CAR. DISCUSSION These studies highlight features of bispecific CD4-lectin CARs that achieve potency enhancement by targeting two distinct highly conserved Env determinants while lacking immunogenicity-prone antibody-based motifs.
Collapse
|
13
|
S. Coulibaly F, N. Thomas D, C. Youan BB. Anti-HIV lectins and current delivery strategies. AIMS MOLECULAR SCIENCE 2018. [DOI: 10.3934/molsci.2018.1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
14
|
Role of mannose-binding lectin deficiency in HIV-1 and schistosoma infections in a rural adult population in Zimbabwe. PLoS One 2015; 10:e0122659. [PMID: 25830474 PMCID: PMC4382150 DOI: 10.1371/journal.pone.0122659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Polymorphism in the MBL2 gene lead to MBL deficiency, which has been shown to increase susceptibility to various bacterial, viral and parasitic infections. We assessed role of MBL deficiency in HIV-1 and schistosoma infections in Zimbabwean adults enrolled in the Mupfure Schistosomiasis and HIV Cohort (MUSH Cohort). METHODS HIV-1, S. haematobium and S. mansoni infections were determined at baseline. Plasma MBL concentration was measured by ELISA and MBL2 genotypes determined by PCR. We calculated and compared the proportions of plasma MBL deficiency, MBL2 structural variant alleles B (codon 54A>G), C (codon 57A>G), and D (codon 52T>C) as well as MBL2 promoter variants -550(H/L), -221(X/Y) and +4(P/Q) between HIV-1 and schistosoma co-infection and control groups using Chi Square test. RESULTS We assessed 379 adults, 80% females, median age (IQR) 30 (17-41) years. HIV-1, S. haematobium and S. mansoni prevalence were 26%, 43% and 18% respectively in the MUSH baseline survey. Median (IQR) plasma MBL concentration was 800μg/L (192-1936μg/L). Prevalence of plasma MBL deficiency was 18% with high frequency of the C (codon 57G>A) mutant allele (20%). There was no significant difference in median plasma MBL levels between HIV negative (912μg/L) and HIV positive (688μg/L), p = 0.066. However plasma MBL levels at the assay detection limit of 20μg/L were more frequent among the HIV-1 infected (p = 0.007). S. haematobium and S. mansoni infected participants had significantly higher MBL levels than uninfected. All MBL2 variants were not associated with HIV-1 infection but promoter variants LY and LL were significantly associated with S. haematobium infection. CONCLUSION Our data indicate high prevalence of MBL deficiency, no evidence of association between MBL deficiency and HIV-1 infection. However, lower plasma MBL levels were protective against both S. haematobium and S. mansoni infections and MBL2 promoter and variants LY and LL increased susceptibility to S. haematobium infection.
Collapse
|
15
|
Teodorof C, Divakar S, Soontornniyomkij B, Achim CL, Kaul M, Singh KK. Intracellular mannose binding lectin mediates subcellular trafficking of HIV-1 gp120 in neurons. Neurobiol Dis 2014; 69:54-64. [PMID: 24825317 DOI: 10.1016/j.nbd.2014.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/26/2014] [Accepted: 05/02/2014] [Indexed: 01/19/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) enters the brain early during infection and leads to severe neuronal damage and central nervous system impairment. HIV-1 envelope glycoprotein 120 (gp120), a neurotoxin, undergoes intracellular trafficking and transport across neurons; however mechanisms of gp120 trafficking in neurons are unclear. Our results show that mannose binding lectin (MBL) that binds to the N-linked mannose residues on gp120, participates in intravesicular packaging of gp120 in neuronal subcellular organelles and also in subcellular trafficking of these vesicles in neuronal cells. Perinuclear MBL:gp120 vesicular complexes were observed and MBL facilitated the subcellular trafficking of gp120 via the endoplasmic reticulum (ER) and Golgi vesicles. The functional carbohydrate recognition domain of MBL was required for perinuclear organization, distribution and subcellular trafficking of MBL:gp120 vesicular complexes. Nocodazole, an agent that depolymerizes the microtubule network, abolished the trafficking of MBL:gp120 vesicles, suggesting that these vesicular complexes were transported along the microtubule network. Live cell imaging confirmed the association of the MBL:gp120 complexes with dynamic subcellular vesicles that underwent trafficking in neuronal soma and along the neurites. Thus, our findings suggest that intracellular MBL mediates subcellular trafficking and transport of viral glycoproteins in a microtubule-dependent mechanism in the neurons.
Collapse
Affiliation(s)
- C Teodorof
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - S Divakar
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - B Soontornniyomkij
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - C L Achim
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - M Kaul
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA, USA
| | - K K Singh
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Mannose-binding lectin and the risk of HIV transmission and disease progression in children: a systematic review. Pediatr Infect Dis J 2012; 31:1272-8. [PMID: 22810018 DOI: 10.1097/inf.0b013e3182678bc4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mannose-binding lectin (MBL) can activate the complement system by binding to carbohydrates, such as those presented on the HIV virion surface. It is unclear whether genetically determined MBL deficiency is related to vertical HIV transmission and disease progression in HIV-infected children. METHODS A literature search of Medline, Embase and Cochrane Central Register identified all relevant studies on MBL and HIV infection in children. We extracted information on the characteristics of the study group, method of MBL analysis, outcome definitions, follow-up and the risk estimates. The validity of each study was assessed. RESULTS Nine studies were retrieved. Most were of good validity, but risk adjustment for confounders was missing in 6 studies. Age, treatment and outcome definitions differed between the study groups. In most of the studies, MBL deficiency was associated with an increased frequency of vertical HIV transmission and an increased speed of disease progression. In the 2 most valid studies, carriers of variant genes had an increased odds ratio for transmission and an increased relative hazard for disease progression and central nervous system impairment, especially in children <2 years of age. CONCLUSIONS MBL deficiency is associated with an increased risk of vertical HIV transmission. How this risk relates to other factors that influence transmission is unclear. The association between HIV disease progression and MBL deficiency is most pronounced in children <2 years of age, probably due to immaturity of their adaptive immunity.
Collapse
|