1
|
Appiah C, Chen S, Pori AI, Retyunskiy V, Tzeng C, Zhao Y. Study of alloferon, a novel immunomodulatory antimicrobial peptide (AMP), and its analogues. Front Pharmacol 2024; 15:1359261. [PMID: 38434708 PMCID: PMC10904621 DOI: 10.3389/fphar.2024.1359261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Antimicrobial peptides (AMPs) are widely distributed throughout the biosphere and represent a class of conserved peptide molecules with intrinsic antimicrobial properties. Their broad-spectrum antimicrobial activity and low risk to induce resistance have led to increased interest in AMPs as potential alternatives to traditional antibiotics. Among the AMPs, alloferon has been addressed due to its immunomodulatory properties that augment both innate and adaptive immune responses against various pathogens. Alloferon and its analogues have demonstrated pharmaceutical potential through their ability to enhance Natural Killer (NK) cell cytotoxicity and stimulate interferon (IFN) synthesis in both mouse and human models. Additionally, they have shown promise in augmenting antiviral and antitumor activities in mice. In this article, we provide a comprehensive review of the biological effects of alloferon and its analogues, incorporating our own research findings as well. These insights may contribute to a deeper understanding of the therapeutic potential of these novel AMPs.
Collapse
Affiliation(s)
- Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Shitian Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Afia Ibnat Pori
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | | | - Chimeng Tzeng
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| |
Collapse
|
2
|
Lanave G, Martella V, Tempesta M, Catella C, Murelli RP, Morrison LA, Lucente MS, Buonavoglia C, Camero M. Antiviral activity of Α-hydroxytropolones on caprine alphaherpesvirus 1 in vitro. Res Vet Sci 2020; 129:99-102. [PMID: 31954321 DOI: 10.1016/j.rvsc.2020.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
The emergence of human alphaherpesvirus strains (i.e. HHV-1 and -2) resistant to commonly used antiviral drugs has prompted the research for alternative, biologically active anti-herpetic agents. Natural-product and synthetic α-hydroxytropolones (αHTs) have been identified as lead therapeutic agents for a number of infections, including HHV-1 and -2, and several veterinary herpesviruses, i.e. bovine alphaherpesvirus 1 (BoHV-1), equine alphaherpesvirus 1 (EHV-1) and feline alphaherpesvirus 1 (FHV-1). In the present study we evaluated the activity in vitro of two natural and two synthetic α-hydroxytropolones (αHTs) against Caprine alphaherpesvirus 1 (CpHV-1) which is regarded as a useful homologous animal model for the study of HSV-2 infection, chiefly for the assessment of antiviral drugs in in vivo studies. AlphaHTs were able to decrease significantly CpHV-1 viral titres up to 4.25 log10 TCID50/50 μl and suppressed extensively CpHV-1 nucleic acids up to 8.71 log10 viral DNA copy number/10 μl. This study demonstrated the efficacy of αHTs against CpHV-1 in vitro, adding to their activity observed against the human and animal alphaherpesviruses in vitro. The activity of αHTs against CpHV-1 appeared similar but not identical to the patterns of activity observed against other alphaherpesviruses, suggesting virus-related variability in terms of response to specific αHT molecules. These findings open several perspectives in terms of future studies using the CpHV-1 homologous animal model, for the development of therapeutic tools against herpesviruses.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, USA; The Graduate Center of the City University of New York, New York, NY, USA
| | - Lynda A Morrison
- Departments of Molecular Microbiology and Immunology and of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| |
Collapse
|
3
|
Mortari APG, Amaral BP, Oliveira PSD, Dotto EK, Flores MM, Cargnelutti JF, Weiblen R, Flores EF. Ganciclovir attenuates the respiratory disease induced by Equid alphaherpesvirus 1 in rabbits. PESQUISA VETERINARIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Equid alphaherpesvirus 1 (EHV-1) is an important pathogen of horses, associated with respiratory, neurological disease and abortions. As vaccination is not always effective, anti-herpetic therapy may represent an alternative to prevent the losses caused by the infection. We herein investigated the activity of ganciclovir (GCV), an anti-herpetic human drug, in rabbits experimentally infected with EHV-1. Thirty-days-old New Zealand rabbits were allocated in three groups (6 animals each) and submitted to different treatments: G1 (non-infected controls), G2 (inoculated with EHV-1) - 107 TCID50 intranasally - IN) and G3 (inoculated IN with EHV-1 and treated with GCV - 5mg/kg/day for 7 days) and monitored thereafter. All animals of G2 developed systemic signs (moderate to severe apathy, anorexia), ocular discharge and respiratory signs (serous to mucopurulent nasal discharge), including mild to severe respiratory distress. Viremia was detected in all rabbits of G2 for up to 11 days (mean duration = 6.5 days). One animal died after severe respiratory distress and neurological signs (bruxism, opistotonus). In addition, these animals gained less weight than the control (G1) and GCV-treated rabbits (G3) from days 4 to 14pi (p<0.05). The clinical score of rabbits of G2 was statistically higher than the other groups from days 3 to 6pi (p<0.05), demonstrating a more severe disease. In contrast, G3 rabbits did not present systemic signs, presented only a mild and transient nasal secretion and gained more weight than G2 animals (p<0.05). In addition, viremia was detected in only 3 rabbits and was transient (average of 2.3 days). Thus, administration of GCV to rabbits inoculated IN with EHV-1 resulted in an important attenuation of the clinical disease as demonstrated by full prevention of systemic signs, maintenance of weight gain and by drastic reduction in viremia and in the magnitude of respiratory signs. These results are promising towards further testing of GCV as a potential drug for anti-herpetic therapy in horses.
Collapse
Affiliation(s)
- Ana Paula G. Mortari
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | - Bruna P. Amaral
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | - Pablo S.B. De Oliveira
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | - Evelyn K. Dotto
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | - Mariana M. Flores
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | | | - Rudi Weiblen
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| | - Eduardo F. Flores
- Universidade Federal de Santa Maria, Brazil; Universidade Federal de Santa Maria, Brazil
| |
Collapse
|
4
|
Camero M, Buonavoglia D, Lucente MS, Losurdo M, Crescenzo G, Trerotoli P, Casalino E, Martella V, Elia G, Tempesta M. Enhancement of the antiviral activity against caprine herpesvirus type 1 of Acyclovir in association with Mizoribine. Res Vet Sci 2017; 111:120-123. [PMID: 28235707 DOI: 10.1016/j.rvsc.2017.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/18/2017] [Accepted: 02/15/2017] [Indexed: 11/30/2022]
Abstract
Caprine herpesvirus 1 (CpHV-1) infection in goats is responsible for genital lesions resembling the lesions induced by herpesvirus 2 in humans (HHV-2). The immunosuppressive drug Mizoribine (MIZ) is able to increase the antiviral activity of Acyclovir (ACV) against herpesvirus infections, raising interesting perspectives on new combined therapeutic strategies. In this study the anti-CpHV-1 activity in vitro of ACV alone or in combination with MIZ was evaluated. ACV (100μg/ml) displayed an antiviral effect on CpHV-1 replication. This inhibitory effect was higher when ACV (100μg/ml) was used in association with MIZ (20μg/ml). Other combinations of ACV and MIZ in various concentrations were not as effective as ACV 100μg/ml/MIZ 20μg/ml. These findings suggest that the association of ACV and MIZ is potentially useful for treatment of genital infection by herpesviruses.
Collapse
Affiliation(s)
- Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | | | | | - Michele Losurdo
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Giuseppe Crescenzo
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Paolo Trerotoli
- Department of Biomedical Science and Human Oncology, University of Bari, Medical School, Bari, Italy
| | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| |
Collapse
|
5
|
|
6
|
Abstract
Viruses are major pathogenic agents causing a variety of serious diseases in humans, other animals, and plants. Drugs that combat viral infections are called antiviral drugs. There are no effective antiviral drugs for many viral infections. However, there are several drugs for influenza, a couple of drugs for herpesviruses, and some new antiviral drugs for treatment of HIV and hepatitis C infections. The arsenal of antivirals is complex. As of March 2014, it consists of approximately 50 drugs approved by the FDA, approximately half of which are directed against HIV. Antiviral drug creation strategies are focused on two different approaches: targeting the viruses themselves or targeting host cell factors. Direct virus-targeting antiviral drugs include attachment inhibitors, entry inhibitors, uncoating inhibitors, protease inhibitors, polymerase inhibitors, nucleoside and nucleotide reverse transcriptase inhibitors, nonnucleoside reverse-transcriptase inhibitors, and integrase inhibitors. Protease inhibitors (darunavir, atazanavir, and ritonavir), viral DNA polymerase inhibitors (acyclovir, valacyclovir, valganciclovir, and tenofovir), and an integrase inhibitor (raltegravir) are included in the list of Top 200 Drugs by sales for the 2010s.
Collapse
|
7
|
Singh S, Singh H, Tuknait A, Chaudhary K, Singh B, Kumaran S, Raghava GPS. PEPstrMOD: structure prediction of peptides containing natural, non-natural and modified residues. Biol Direct 2015; 10:73. [PMID: 26690490 PMCID: PMC4687368 DOI: 10.1186/s13062-015-0103-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Background In the past, many methods have been developed for peptide tertiary structure prediction but they are limited to peptides having natural amino acids. This study describes a method PEPstrMOD, which is an updated version of PEPstr, developed specifically for predicting the structure of peptides containing natural and non-natural/modified residues. Results PEPstrMOD integrates Forcefield_NCAA and Forcefield_PTM force field libraries to handle 147 non-natural residues and 32 types of post-translational modifications respectively by performing molecular dynamics using AMBER. AMBER was also used to handle other modifications like peptide cyclization, use of D-amino acids and capping of terminal residues. In addition, GROMACS was used to implement 210 non-natural side-chains in peptides using SwissSideChain force field library. We evaluated the performance of PEPstrMOD on three datasets generated from Protein Data Bank; i) ModPep dataset contains 501 non-natural peptides, ii) ModPep16, a subset of ModPep, and iii) CyclicPep contains 34 cyclic peptides. We achieved backbone Root Mean Square Deviation between the actual and predicted structure of peptides in the range of 3.81–4.05 Å. Conclusions In summary, the method PEPstrMOD has been developed that predicts the structure of modified peptide from the sequence/structure given as input. We validated the PEPstrMOD application using a dataset of peptides having non-natural/modified residues. PEPstrMOD offers unique advantages that allow the users to predict the structures of peptides having i) natural residues, ii) non-naturally modified residues, iii) terminal modifications, iv) post-translational modifications, v) D-amino acids, and also allows extended simulation of predicted peptides. This will help the researchers to have prior structural information of modified peptides to further design the peptides for desired therapeutic property. PEPstrMOD is freely available at http://osddlinux.osdd.net/raghava/pepstrmod/. Reviewers This article was reviewed by Prof Michael Gromiha, Dr. Bojan Zagrovic and Dr. Zoltan Gaspari. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0103-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandeep Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| | - Harinder Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| | - Abhishek Tuknait
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| | - Kumardeep Chaudhary
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| | - Balvinder Singh
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| | - S Kumaran
- CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| | - Gajendra P S Raghava
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Sec 39-A, Chandigarh, 160036, India.
| |
Collapse
|
8
|
Vissani MA, Thiry E, Dal Pozzo F, Barrandeguy M. Antiviral agents against equid alphaherpesviruses: Current status and perspectives. Vet J 2015; 207:38-44. [PMID: 26654843 DOI: 10.1016/j.tvjl.2015.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/07/2015] [Accepted: 06/09/2015] [Indexed: 11/19/2022]
Abstract
Equid herpesvirus infections cause respiratory, neurological and reproductive syndromes. Despite preventive and control measures and the availability of vaccines and immunostimulants, herpesvirus infections still constitute a major threat to equine health and for the equine industry worldwide. Antiviral drugs, particularly nucleoside analogues and foscarnet, are successfully used for the treatment of human alphaherpesvirus infections. In equine medicine, the use of antiviral medications in alphaherpesvirus infections would decrease the excretion of virus and diminish the risk of contagion and the convalescent time in affected horses, and would also improve the clinical outcome of equine herpesvirus myeloencephalopathy. The combined use of antiviral compounds, along with vaccines, immune modulators, and effective preventive and control measures, might be beneficial in diminishing the negative impact of alphaherpesvirus infections in horses. The purpose of this review is to analyse the available information regarding the use of antiviral agents against alphaherpesviruses, with particular emphasis on equine alphaherpesvirus infections.
Collapse
Affiliation(s)
- María A Vissani
- Instituto de Virología, CICVyA, INTA, Las Cabañas y Los Reseros s/n, Castelar 1712, Argentina.
| | - Etienne Thiry
- Veterinary Virology and Animal Viral Diseases and UREAR, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, B-4000 Liege, Belgium
| | - Fabiana Dal Pozzo
- Veterinary Virology and Animal Viral Diseases and UREAR, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liege, B-4000 Liege, Belgium
| | - María Barrandeguy
- Instituto de Virología, CICVyA, INTA, Las Cabañas y Los Reseros s/n, Castelar 1712, Argentina; Carrera de Veterinaria, Universidad del Salvador, Champagnat 1599, Ruta Panamericana km 54.5 (B1630AHU), Pilar, Buenos Aires, Argentina
| |
Collapse
|
9
|
Tiwari P, Kumar A, Prakash R. Electrochemical detection of azidothymidine on modified probes based on chitosan stabilised silver nanoparticles hybrid material. RSC Adv 2015. [DOI: 10.1039/c5ra15908c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Silver nanoparticle stabilized by chitosan is synthesized for modification of sensing probe for AZT estimation in human plasma.
Collapse
Affiliation(s)
- Preeti Tiwari
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Ashish Kumar
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Rajiv Prakash
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|
10
|
Abstract
There is a pressing need to develop new antiviral treatments; of the 60 drugs currently available, half are aimed at HIV-1 and the remainder target only a further six viruses. This demand has led to the emergence of possible peptide therapies, with 15 currently in clinical trials. Advancements in understanding the antiviral potential of naturally occurring host defence peptides highlights the potential of a whole new class of molecules to be considered as antiviral therapeutics. Cationic host defence peptides, such as defensins and cathelicidins, are important components of innate immunity with antimicrobial and immunomodulatory capabilities. In recent years they have also been shown to be natural, broad-spectrum antivirals against both enveloped and non-enveloped viruses, including HIV-1, influenza virus, respiratory syncytial virus and herpes simplex virus. Here we review the antiviral properties of several families of these host peptides and their potential to inform the design of novel therapeutics.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Silke M. Currie
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| | - Donald J. Davidson
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ Scotland, UK
| |
Collapse
|
11
|
Kuczer M, Błaszak M, Czarniewska E, Rosiński G, Kowalik-Jankowska T. Mono- and Polynuclear Copper(II) Complexes of Alloferons 1 with Point Mutations (H6A) and (H12A): Stability Structure and Cytotoxicity. Inorg Chem 2013; 52:5951-61. [DOI: 10.1021/ic400160d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Marta Błaszak
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Elzbieta Czarniewska
- Department of Animal Physiology and Development,
Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development,
Institute of Experimental Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | |
Collapse
|
12
|
Kuczer M, Majewska A, Zahorska R. New alloferon analogues: synthesis and antiviral properties. Chem Biol Drug Des 2012; 81:302-9. [PMID: 22883213 DOI: 10.1111/cbdd.12020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have extended our study on structure/activity relationship studies of insect peptide alloferon (H-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH) by evaluating the antiviral effects of new alloferon analogues. We synthesized 18 alloferon analogues: 12 peptides with sequences shortened from N- or C-terminus and 6 N-terminally modified analogues H-X(1)-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH, where X(1) = Phe (13), Tyr (14), Trp (15), Phg (16), Phe(p-Cl) (17), and Phe(p-OMe) (18). We found that most of the evaluated peptides inhibit the replication of Human Herpesviruses or Coxsackievirus B2 in Vero, HEp-2 and LLC-MK(2) cells. Our results indicate that the compound [3-13]-alloferon (1) exhibits the strongest antiviral activity (IC(50) = 38 μM) among the analyzed compound. Moreover, no cytotoxic activity against the investigated cell lines was observed for all studied peptides at concentration 165 μM or higher.
Collapse
|
13
|
Mironiuk-Puchalska E, Koszytkowska-Stawińska M, Sas W, De Clercq E, Naesens L. Synthesis of novel aza-analogues of tiazofurin with 2-[5,5-bis(hydroxymethyl)pyrrolidin-2-yl] framework as sugar mimic. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:72-84. [PMID: 22257212 DOI: 10.1080/15257770.2011.643848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The novel aza-analogues of tiazofurin (TZF) with 2-[5,5-bis(hydroxymethyl)pyrrolidin-2-yl] moiety, as sugar mimic, were synthesized from O,O-cyclohexylidene derivative of 4,4-bis(hydroxymethyl)-4-nitrobutanal in multi-gram scale. The synthetic route consisted of three stages: (i) the synthesis of corresponding derivative of 5,5-bis(hydroxymethyl)pyrrolidine-2-carbonitrile, (ii) the construction of ethyl thiazole-2-carboxylate part by the conversion of the pyrrolidine-2-carbonitrile into the N-trifluoroacetyl derivative followed by cyclocondensation with L-cysteine ethyl ester and then by dehydrogenation, and (iii) the final transformation of the ethyl thiazole-4-carboxylate into the aza-analogues of TZF. The TZF aza-analogues were evaluated for their antiviral activities in cell-culture-based assays.
Collapse
|
14
|
Development of O–H insertion for the attachment of phosphonates to nucleosides; synthesis of α-carboxy phosphononucleosides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.077] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Koszytkowska-Stawińska M, Mironiuk-Puchalska E, Rowicki T. Synthesis of 1,2,3-triazolo-nucleosides via the post-triazole N-alkylation. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.10.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
16
|
Dayde B, Benzaria S, Pierra C, Gosselin G, Surleraux D, Volle JN, Pirat JL, Virieux D. Synthesis of a new family of acyclic nucleoside phosphonates, analogues of TPases transition states. Org Biomol Chem 2012; 10:3448-54. [DOI: 10.1039/c2ob25131k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Debarge S, Balzarini J, Maguire AR. Design and synthesis of α-carboxy phosphononucleosides. J Org Chem 2010; 76:105-26. [PMID: 21121618 DOI: 10.1021/jo101738e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodium catalyzed O-H insertion reactions employing α-diazophosphonate 20 with appropriately protected thymidine, uridine, cytosine, adenosine and guanosine derivatives leads to novel 5'-phosphononucleoside derivatives. Deprotection led to a novel series of phosphono derivatives bearing a carboxylic acid moiety adjacent to the phosphonate group with potential antiviral and/or anticancer activity. The phosphononucleosides bearing an α-carboxylic acid group are envisaged as potential diphosphate mimics. Conversion to mono- and diphosphorylated phosphononucleosides has been effected for evaluation as nucleoside triphosphate mimics. Most of the novel phosphononucleosides proved to be inactive against a variety of DNA and RNA viruses. Only the phosphono AZT derivatives 56-59 showed weak activity against HIV-1 and HIV-2.
Collapse
Affiliation(s)
- Sebastien Debarge
- Department of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Ireland
| | | | | |
Collapse
|
18
|
La Regina G, Coluccia A, Silvestri R. Looking for an active conformation of the future HIV type-1 non-nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2010; 20:213-37. [PMID: 20710063 DOI: 10.3851/imp1607] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
HIV type-1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key drugs of highly active antiretroviral therapy (HAART) in the clinical management of AIDS/HIV infection. NNRTI-based HAART regimes effectively suppress viral reproduction, are not cytotoxic and show favourable pharmacokinetic properties. First-generation NNRTIs suffer the rapid selection of viral variants, hampering the binding of inhibitors into the reverse transcriptase (RT) non-nucleoside binding site (NNBS). Efforts to improve these first inhibitors led to the discovery of second-generation NNRTIs that proved to be effective against the drug-resistant mutant HIV-1 strains. The success of such agents launched a new season of NNRTI design and synthesis. This paper reviews the characteristics of second-generation NNRTIs, including etravirine, rilpivirine, RDEA-806, UK-453061, BIRL 355 BS, IDX 899, MK-4965 and HBY 097. In particular, the binding modes of these inhibitors into the NNBS of the HIV-1 RT and the most clinically relevant mutant RTs are analysed and discussed.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Department of Chimica e Tecnologie del Farmaco, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | | | | |
Collapse
|
19
|
Janeba Z, Holý A, Pohl R, Snoeck R, Andrei G, De Clercq E, Balzarini J. Synthesis and biological evaluation of acyclic nucleotide analogues with a furo[2,3-d]pyrimidin-2(3H)-one base. CAN J CHEM 2010. [DOI: 10.1139/v10-054] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a part of a broader structure–activity relationship (SAR) study of bicyclic nucleoside analogues (BCNAs) [anti-varicella-zoster virus (anti-VZV) and anti-human cytomegalovirus (anti-HCMV) agents], a novel series of 2-(phosphonomethoxy)ethyl (PME) substituted furo[2,3-d]pyrimidin-2(3H)-ones was synthesized. The target acyclic nucleotide analogues were prepared by Sonogashira coupling of protected 5-iodo-1-[2-(phosphonomethoxy)ethyl]uracil with various 1-alkynes, followed by in situ Cu(I)-promoted intramolecular cyclization and standard removal of the isopropyl ester groups. None of the prepared PME analogues were active at subtoxic concentrations against VZV thymidine kinase competent (TK+), VZV thymidine kinase deficient (TK–), HCMV, or any other viruses tested.
Collapse
Affiliation(s)
- Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Robert Snoeck
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Graciela Andrei
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Erik De Clercq
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| | - Jan Balzarini
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, CZ-166 10 Prague 6, Czech Republic
- Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven B-3000, Belgium
| |
Collapse
|
20
|
Leisvuori A, Aiba Y, Lönnberg T, Poijärvi-Virta P, Blatt L, Beigelman L, Lönnberg H. Chemical and enzymatic stability of amino acid derived phosphoramidates of antiviral nucleoside 5'-monophosphates bearing a biodegradable protecting group. Org Biomol Chem 2010; 8:2131-41. [PMID: 20401390 DOI: 10.1039/b924321f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribavirin and 2'-O-methylcytidine 5'-phosphoramidates derived from L-alanine methyl ester bearing either an O-phenyl or a biodegradable O-[3-(acetyloxy)-2,2-bis(ethoxycarbonyl)propyl] or O-[3-(acetyloxymethoxy)-2,2-bis(ethoxycarbonyl)propyl] protecting group were prepared. The kinetics of the deprotection of these pro-drugs by porcine liver esterase and by a whole cell extract of human prostate carcinoma was studied by HPLC-ESI-MS/MS. The 3-(acetyloxymethoxy)-2,2-bis(ethoxycarbonyl)propyl and 3-(acetyloxy)-2,2-bis(ethoxycarbonyl)propyl groups were readily removed releasing the l-alanine methyl ester phosphoramidate nucleotide, the deprotection of the 3-(acetyloxymethoxy) derivative being approximately 20 times faster. The chemical stability of the 2'-O-methylcytidine pro-drugs was additionally determined over a pH range from 7.5 to 10.
Collapse
Affiliation(s)
- Anna Leisvuori
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
McKenna CE, Kashemirov BA, Peterson LW, Goodman MF. Modifications to the dNTP triphosphate moiety: from mechanistic probes for DNA polymerases to antiviral and anti-cancer drug design. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1223-30. [PMID: 20079885 DOI: 10.1016/j.bbapap.2010.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 11/26/2022]
Abstract
Abnormal replication of DNA is associated with many important human diseases, most notably viral infections and neoplasms. Existing approaches to chemotherapeutics for diseases associated with dysfunctional DNA replication classically involve nucleoside analogues that inhibit polymerase activity due to modification in the nucleobase and/or ribose moieties. These compounds must undergo multiple phosphorylation steps in vivo, converting them into triphosphosphates, in order to inhibit their targeted DNA polymerase. Nucleotide monophosphonates enable bypassing the initial phosphorylation step at the cost of decreased bioavailability. Relatively little attention has been paid to higher nucleotides (corresponding to the natural di- and triphosphate DNA polymerase substrates) as drug platforms due to their expected poor deliverability. However, a better understanding of DNA polymerase mechanism and fidelity dependence on the triphosphate moiety is beginning to emerge, aided by systematic incorporation into this group of substituted methylenebisphosphonate probes. Meanwhile, other bridging, as well as non-bridging, modifications have revealed intriguing possibilities for new drug design. We briefly survey some of this recent work, and argue that the potential of nucleotide-based drugs, and intriguing preliminary progress in this area, warrant acceptance of the challenges that they present with respect to bioavailability and metabolic stability.
Collapse
Affiliation(s)
- Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
22
|
Pecková K, Navrátil T, Yosypchuk B, Moreira J, Leandro K, Barek J. Voltammetric Determination of Azidothymidine Using Silver Solid Amalgam Electrodes. ELECTROANAL 2009. [DOI: 10.1002/elan.200904660] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Piscitelli F, Coluccia A, Brancale A, La Regina G, Sansone A, Giordano C, Balzarini J, Maga G, Zanoli S, Samuele A, Cirilli R, La Torre F, Lavecchia A, Novellino E, Silvestri R. Indolylarylsulfones bearing natural and unnatural amino acids. Discovery of potent inhibitors of HIV-1 non-nucleoside wild type and resistant mutant strains reverse transcriptase and coxsackie B4 virus. J Med Chem 2009; 52:1922-34. [PMID: 19281225 DOI: 10.1021/jm801470b] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New potent indolylarylsulfone (IAS) HIV-1 NNRTIs were obtained by coupling natural and unnatural amino acids to the 2-carboxamide and introducing different electron-withdrawing substituents at position 4 and 5 of the indole nucleus. The new IASs inhibited the HIV-1 replication in human T-lymphocyte (CEM) cells at low/subnanomolar concentration and were weakly cytostatic. Against the mutant L100I, K103N, and Y181C RT HIV-1 strains in CEM cells, sulfones 3, 4, 19, 27, and 31 were comparable to EFV. The new IASs were inhibitors to Coxsackie B4 virus at low micromolar (2-9 microM) concentrations. Superimposition of PLANTS docked conformations of IASs 19 and 9 revealed different hydrophobic interactions of the 3,5-dimethylphenyl group, for which a staking interaction with Tyr181 aromatic side chain was observed. The binding mode of 19 was not affected by the L100I mutation and was consistent with the interactions reported for the WT strain.
Collapse
Affiliation(s)
- Francesco Piscitelli
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Universita di Roma, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|