1
|
Liu L, Bai H, Jiao G, Wang X, Zhang Z, Song X, Ma T, Li T, Gao L. CF101 alleviates OA progression and inhibits the inflammatory process via the AMP/ATP/AMPK/mTOR axis. Bone 2022; 155:116264. [PMID: 34826631 DOI: 10.1016/j.bone.2021.116264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
CF101 (IB-MECA) is an adenosine A3 receptor agonist that has anti-inflammatory and pain-relieving properties. Adenosine A3 receptor activation can delay the process of Osteoarthritis(OA) and prevent the occurrence of OA. However, the mechanism of CF101 on OA is still unknown. This study aimed to investigate the effect of CF101 on rats induced by anterior cruciate ligament-transection (ACLT) and rat chondrocytes induced by IL-1ß. ACLT-induced OA rats were administered CF101, and autophagy levels were measured to determine whether CF101 had an autophagy-mediated protective effect on articular cartilage. Furthermore, the mechanism by which CF101 protected articular cartilage in IL-1ß-induced chondrocytes mimicking OA was investigated. In rats treated with ACLT, CF101 was able to delay the progression of OA, as well as reduce inflammation and type II collagen degradation factors. In addition, in vitro experiments revealed that CF101 reduced type II collagen degradation factors in OA chondrocytes. In rats treated with ACLT and OA chondrocytes, CF101 enhanced autophagy and increased the ratio of AMP/ATP and AMPK protein levels while decreasing mTOR expression. Treatment of OA chondrocytes with 3-MA prior to treatment with CF101 resulted in inhibition of autophagy factor levels, as well as increased levels of inflammatory factors and type II collagen degradation compared to the CF101 group. These findings demonstrated that CF101 could protect articular cartilage against OA by enhancing the ratio of ATP/AMP and altering the AMPK/mTOR pathway to enhance autophagy and reduce inflammation. In addition, inhibition of autophagy resulted in a reduced CF101 effect.
Collapse
Affiliation(s)
- Lin Liu
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Hui Bai
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Guangming Jiao
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - XinYu Wang
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Zhiheng Zhang
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Xiaopeng Song
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Tianwen Ma
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Ting Li
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China
| | - Li Gao
- Northeast Agricultural University, Heilongjiang, Haerbin 150030, China; Laboratory of Heilongjiang Animal Disease Pathogenesis and Comparative Medicine, Heilongjiang, Haerbin 150030, China.
| |
Collapse
|
2
|
Bone-Seeking Matrix Metalloproteinase Inhibitors for the Treatment of Skeletal Malignancy. Pharmaceuticals (Basel) 2020; 13:ph13060113. [PMID: 32492898 PMCID: PMC7344628 DOI: 10.3390/ph13060113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of enzymes involved at different stages of cancer progression and metastasis. We previously identified a novel class of bisphosphonic inhibitors, selective for MMPs crucial for bone remodeling, such as MMP-2. Due to the increasing relevance of specific MMPs at various stages of tumor malignancy, we focused on improving potency towards certain isoforms. Here, we tackled MMP-9 because of its confirmed role in tumor invasion, metastasis, angiogenesis, and immuno-response, making it an ideal target for cancer therapy. Using a computational analysis, we designed and characterized potent MMP-2/MMP-9 inhibitors. This is a promising approach to develop and clinically translate inhibitors that could be used in combination with standard care therapy for the treatment of skeletal malignancies.
Collapse
|
3
|
Malemud CJ. Inhibition of MMPs and ADAM/ADAMTS. Biochem Pharmacol 2019; 165:33-40. [PMID: 30826330 DOI: 10.1016/j.bcp.2019.02.033] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinases (MMPs), A Disintegrin and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) are zinc-dependent endopeptidases that play a critical role in the destruction of extracellular matrix proteins and, the shedding of membrane-bound receptor molecules in various forms of arthritis and other diseases. Under normal conditions, MMP, ADAM and ADAMTS gene expression aids in the maintenance of homeostasis. However, in inflamed synovial joints characteristic of rheumatoid arthritis and osteoarthritis. MMP, ADAM and ADAMTS production is greatly increased under the influence of pro-inflammatory cytokines. Analyses based on medicinal chemistry strategies designed to directly inhibit the activity of MMPs have been largely unsuccessful when these MMP inhibitors were employed in animal models of rheumatoid arthritis and osteoarthritis. This is despite the fact that these MMP inhibitors were largely able to suppress pro-inflammatory cytokine-induced MMP production in vitro. A focus on ADAM and ADAMTS inhibitors has also been pursued. Thus, recent progress has identified the "sheddase" activity of ADAMs as a viable target and the development of GW280264X is an experimental ADAM17 inhibitor. Of note, a monoclonal antibody, GLPG1972, developed as an ADAMTS-5 inhibitor, entered a Phase I OA clinical trial. However, the failure of many of these previously developed inhibitors to move beyond the preclinical testing phase has required that novel strategies be developed that are designed to suppress both MMP, ADAM and ADAMTS production and activity.
Collapse
Affiliation(s)
- Charles J Malemud
- Division of Rheumatic Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, United States.
| |
Collapse
|
4
|
Malemud CJ. MicroRNAs and Osteoarthritis. Cells 2018; 7:cells7080092. [PMID: 30071609 PMCID: PMC6115911 DOI: 10.3390/cells7080092] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022] Open
Abstract
An imbalance in gene expressional events skewing chondrocyte anabolic and catabolic pathways toward the latter causes an aberrant turnover and loss of extracellular matrix proteins in osteoarthritic (OA) articular cartilage. Thus, catabolism results in the elevated loss of extracellular matrix proteins. There is also evidence of an increase in the frequency of chondrocyte apoptosis that compromises the capacity of articular cartilage to undergo repair. Although much of the fundamental OA studies over the past 20 years identified and characterized many genes relevant to pro-inflammatory cytokines, apoptosis, and matrix metalloproteinases (MMPs)/a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS), more recent studies focused on epigenetic mechanisms and the associated role of microRNAs (miRs) in regulating gene expression in OA cartilage. Thus, several miRs were identified as regulators of chondrocyte signaling pathways, apoptosis, and proteinase gene expression. For example, the reduced expression of miR-146a was found to be coupled to reduced type II collagen (COL2) in OA cartilage, whereas MMP-13 levels were increased, suggesting an association between MMP-13 gene expression and COL2A1 gene expression. Results of these studies imply that microRNAs could become useful in the search for diagnostic biomarkers, as well as providing novel therapeutic targets for intervention in OA.
Collapse
Affiliation(s)
- Charles J Malemud
- Department of Medicine, Division of Rheumatic Diseases, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Cleveland, OH 44106-5076, USA.
| |
Collapse
|
5
|
Matrix Metalloproteinases and Synovial Joint Pathology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:305-325. [PMID: 28662824 DOI: 10.1016/bs.pmbts.2017.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent enzymes. These enzymes play a critical role in the destruction of articular cartilage in rheumatoid arthritis (RA), osteoarthritis (OA), psoriatic arthritis (PsA), and the spondyloarthropathies. MMP gene expression is upregulated in these synovial joint pathologies in response to elevated levels of proinflammatory cytokines and soluble mediators such as tumor necrosis factor-α, interleukin-1 (IL-1), IL-6, IL-17, and interferon-γ. These molecules are capable of activating the mitogen-activated protein kinase and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways by binding the cytokine to their respective receptors on immune cells, macrophages, chondrocytes, synoviocytes, and osteocytes leading to increased synthesis of MMPs. Biologic drugs and/or small-molecule inhibitors designed to block cytokine to cytokine receptor interactions or to selectively inhibit JAKs have clinical efficacy in RA, PsA, and ankylosing spondylitis which correlated with a reduction in MMPs. Although there are currently no OA-selective drugs, it is likely that such a drug would have to reduce MMP gene expression to have clinical efficacy.
Collapse
|
6
|
Negative Regulators of JAK/STAT Signaling in Rheumatoid Arthritis and Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030484. [PMID: 28245561 PMCID: PMC5372500 DOI: 10.3390/ijms18030484] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022] Open
Abstract
Elevated levels of pro-inflammatory cytokines are generally thought to be responsible for driving the progression of synovial joint inflammation in rheumatoid arthritis (RA) and osteoarthritis (OA). These cytokines activate several signal transduction pathways, including the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Stress-Activated/Mitogen-Activated Protein Kinase (SAPK/MAPK) and phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathways which regulate numerous cellular responses. However, cytokine gene expression, matrix metalloproteinase gene expression and aberrant immune cell and synoviocyte survival via reduced apoptosis are most critical in the context of inflammation characteristic of RA and OA. Negative regulation of JAK/STAT signaling is controlled by Suppressor of Cytokine Signaling (SOCS) proteins. SOCS is produced at lower levels in RA and OA. In addition, gaining further insight into the role played in RA and OA pathology by the inhibitors of the apoptosis protein family, cellular inhibitor of apoptosis protein-1, -2 (c-IAP1, c-IAP2), X (cross)-linked inhibitor of apoptosis protein (XIAP), protein inhibitor of activated STAT (PIAS), and survivin (human) as well as SOCS appears to be a worthy endeavor going forward.
Collapse
|
7
|
Abstract
Interleukin-6 (IL-6) is one of several pro-inflammatory cytokines present at elevated levels in the synovial fluid of individuals with confirmed clinical diagnosis of rheumatoid arthritis (RA) and osteoarthritis (OA). The mechanism of action of IL-6 was shown to involve its capacity to interact with a membrane-bound IL-6 receptor (mIL-6Rα), also known as the "classical" IL-6 pathway, or through its interaction with a soluble IL-6 receptor (sIL-6R) termed the "trans-signaling" pathway. Activation of downstream signaling is transduced via these IL-6 receptors and principally involves the Janus Kinase/Signal Transduction and Activators of Transcription (JAK/STAT) signaling pathway that is further regulated by glycoprotein-130 (gp130) interacting with the IL-6/mIL-6R complex. Phosphorylation of STAT proteins via JAK activation facilitates STAT proteins to act as transcription factors in inflammation. However, the biological function(s) of the sIL-6R in human chondrocytes requires further elucidation, although we previously showed that exogenous sIL-6R significantly suppressed the synthesis of neutrophil gelatinase-associated lipocalin (NGAL) in the immortalized line of human chondrocytes, C28/I2. NGAL was shown to regulate the activity of matrix metalloproteinase-9 (MMP-9), whose activity is crucial in OA for the destruction of articular cartilage. The "shedding" of sIL-6R from the plasma membrane is carried out by a family of enzymes known as A Distintegrin and Metalloproteinase (ADAM), which are also elevated in OA. In this paper, we have systematically reviewed the role played by IL-6 in OA. We have proposed that sIL-6R may be an important target for future drug development in OA by ameliorating cartilage extracellular protein degradation.
Collapse
Affiliation(s)
- Graham Akeson
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Charles J. Malemud
- Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Foley Medical Building, 2061 Cornell Road, Room 207, Cleveland, OH 44106-5076, USA
- Correspondence: ; Tel.: +1-(216)-844-7846 or +1-(216)-536-1945; Fax: +1-(216)-844-2288
| |
Collapse
|
8
|
Chang H, Docheva D, Knothe UR, Knothe Tate ML. Arthritic periosteal tissue from joint replacement surgery: a novel, autologous source of stem cells. Stem Cells Transl Med 2014; 3:308-17. [PMID: 24477075 PMCID: PMC3952924 DOI: 10.5966/sctm.2013-0056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 11/14/2013] [Indexed: 12/17/2022] Open
Abstract
The overarching aim of this study is to assess the feasibility of using periosteal tissue from the femoral neck of arthritic hip joints, usually discarded in the normal course of hip replacement surgery, as an autologous source of stem cells. In addition, the study aims to characterize intrinsic differences between periosteum-derived cell (PDC) populations, isolated via either enzymatic digestion or a migration assay, including their proliferative capacity, surface marker expression, and multipotency, relative to commercially available human bone marrow-derived stromal cells (BMSCs) cultured under identical conditions. Commercial BMSCs and PDCs were characterized in vitro, using a growth assay, flow cytometry, as well as assay of Oil Red O, alizarin red, and Safranin O/Fast Green staining after respective culture in adipo-, osteo-, and chondrogenic media. Based on these outcome measures, PDCs exhibited proliferation rate, morphology, surface receptor expression, and multipotency similar to those of BMSCs. No significant correlation was observed between outcome measures and donor age or diagnosis (osteoarthritis [OA] and rheumatoid arthritis [RA], respectively), a profound finding given recent rheumatological studies indicating that OA and RA share not only common biomarkers and molecular mechanisms but also common pathophysiology, ultimately resulting in the need for joint replacement. Furthermore, PDCs isolated via enzymatic digestion and migration assay showed subtle differences in surface marker expression but otherwise no significant differences in proliferation or multipotency; the observed differences in surface marker expression may indicate potential effects of isolation method on the population of cells isolated and/or the behavior of the respective isolated cell populations. This study demonstrates, for the first time to our knowledge, the feasibility of using arthritic tissue resected during hip replacement as a source of autologous stem cells. In sum, periosteum tissue that is resected with the femoral neck in replacing the hip represents an unprecedented and, to date, unstudied source of stem cells from OA and RA patients. Follow-up studies will determine the degree to which this new, autologous source of stem cells can be banked for future use.
Collapse
|
9
|
Meszaros E, Malemud CJ. Prospects for treating osteoarthritis: enzyme-protein interactions regulating matrix metalloproteinase activity. Ther Adv Chronic Dis 2013; 3:219-29. [PMID: 23342237 DOI: 10.1177/2040622312454157] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Primary osteoarthritis (OA) is a musculoskeletal disorder of unknown etiology. OA is characterized by an imbalance between anabolism and catabolism in, and altered homeostasis of articular cartilage. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motif are upregulated in OA joints. Extracellular matrix (ECM) proteins are critical for resistance to compressive forces and for maintaining the tensile properties of the tissue. Tissue inhibitor of metalloproteinases (TIMPs) is the endogenous inhibitor of MMPs, but in OA, TIMPs do not effectively neutralize MMP activity. Upregulation of MMP gene expression occurs in OA in a milieu of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumor necrosis factor α. Presently, the medical therapy of OA includes mainly nonsteroidal anti-inflammatory drugs and corticosteroids which dampen pain and inflammation but appear to have little effect on restoring joint function. Experimental interventions to restore the imbalance between anabolism and catabolism include small molecule inhibitors of MMP subtypes or inhibitors of the interaction between IL-1 and its receptor. Although these agents have some positive effects on reducing MMP subtype activity they have little efficacy at the clinical level. MMP-9 is one MMP subtype implicated in the degradation of articular cartilage ECM proteins. MMP-9 was found in OA synovial fluid as a complex with neutrophil gelatinase-associated lipocalin (NGAL) which protected MMP-9 from autodegradation. Suppressing NGAL synthesis or promoting NGAL degradation may result in reducing the activity of MMP-9. We also propose initiating a search for enzyme-protein interactions to dampen other MMP subtype activity which could suppress ECM protein breakdown.
Collapse
Affiliation(s)
- Evan Meszaros
- Division of Rheumatic Diseases, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | |
Collapse
|
10
|
|
11
|
Williams EL, Edwards CJ, Cooper C, Oreffo ROC. Impact of inflammation on the osteoarthritic niche: implications for regenerative medicine. Regen Med 2012; 7:551-70. [DOI: 10.2217/rme.12.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis worldwide and is the sixth leading cause of disability. It costs the UK economy approximately 1% of gross national product per annum. With an aging population, the cost of chronic conditions such as OA continues to rise. Historically, treatments for OA have been limited to painkillers, physiotherapy and joint injections. When these fail, patients are referred for joint replacement surgery. With the advent of tissue engineering strategies aimed at generating new bone and cartilage for repair of osteochondral defects, there has been considerable interest in exploiting these techniques to devise new treatments for OA. To date, little consideration has been given to the OA niche and attendant inflammatory milieu for any regenerative skeletal strategy. This review highlights the importance of understanding the osteoarthritic niche in order to modify existing tissue engineering and regenerative medicine strategies for the future treatment of OA.
Collapse
Affiliation(s)
- Emma L Williams
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, University of Southampton Medical School, Southampton, UK
| | - Christopher J Edwards
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, University of Southampton Medical School, Southampton, UK
- Rheumatology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cyrus Cooper
- Rheumatology Department, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- MRC Lifecourse Epidemiology Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Richard OC Oreffo
- Bone & Joint Research Group, Centre for Human Development, Stem Cells & Regeneration, Human Development & Health, University of Southampton Medical School, Southampton, UK
| |
Collapse
|
12
|
The discovery of novel experimental therapies for inflammatory arthritis. Mediators Inflamm 2010; 2009:698769. [PMID: 20339519 PMCID: PMC2842969 DOI: 10.1155/2009/698769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/21/2009] [Indexed: 12/16/2022] Open
Abstract
Conventional and biologic disease-modifying antirheumatic drugs have revolutionized the medical therapy of inflammatory arthritis. However, it remains unclear as to what can be done to treat immune-mediated chronic inflammation after patients become refractory to these therapies or develop serious side-effects and/or infections forcing drug withdrawal. Because of these concerns it is imperative that novel targets be continuously identified and experimental strategies designed to test potential arthritis interventions in vitro, but more importantly, in well-validated animal models of inflammatory arthritis. Over the past few years, sphingosine-1-phosphate, interleukin-7 receptor, spleen tyrosine kinase, extracellular signal-regulated kinase, mitogen-activated protein kinase 5/p38 kinase regulated/activated protein kinase, micro-RNAs, tumor necrosis factor-related apoptosis inducing ligand and the polyubiquitin-proteasome pathway were identified as promising novel targets for potential antiarthritis drug development. Indeed several experimental compounds alter the biological activity of these targets and have shown clinical efficacy in animal models of arthritis. A few of them have even entered the first phase of human clinical trials.
Collapse
|
13
|
|
14
|
Bar-Yehuda S, Rath-Wolfson L, Del Valle L, Ochaion A, Cohen S, Patoka R, Zozulya G, Barer F, Atar E, Piña-Oviedo S, Perez-Liz G, Castel D, Fishman P. Induction of an antiinflammatory effect and prevention of cartilage damage in rat knee osteoarthritis by CF101 treatment. ACTA ACUST UNITED AC 2009; 60:3061-71. [DOI: 10.1002/art.24817] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|