1
|
Sodani M, Misra CS, Kulkarni S, Rath D. CRISPR/Cas12a-mediated gene silencing across diverse functional genes demonstrates single gene-specific spacer efficacy in Mycobacterium smegmatis. J Biol Eng 2025; 19:21. [PMID: 40022115 PMCID: PMC11871654 DOI: 10.1186/s13036-025-00490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Tuberculosis, a persistent global health threat, necessitates a comprehensive understanding of the genes and pathways crucial for the survival and virulence of the causative pathogen, Mycobacterium tuberculosis. Working with M. tuberculosis (M.tb) presents significant challenges; therefore, the use of M. smegmatis as a surrogate system for conducting genetic studies of M.tb has proven to be highly valuable. Development of novel genetic tools to probe cellular processes accelerates the progress in the field of drug development and also helps in understanding the basic physiology of the bacterium. RESULTS This study reports the successful implementation and evaluation of the CRISPR-Cas12a system for gene repression in Mycobacterium smegmatis, a surrogate for M. tuberculosis. We engineered a Cas12a-based CRISPR interference (CRISPRi) system and assessed its functionality. Targeting 45 genes with a single sgRNA per gene, we achieved efficient gene repression, leading to marked phenotypic changes. Each knockdown strain was evaluated individually for growth phenotypes, and a comparison of the results with the reported essential gene library probed with dCas9 demonstrated congruous results across diverse gene categories. The study shows that CRISPR/Cas12a system can be effectively utilised with a single gene specific target for efficient silencing of the gene and highlights the importance of subsequent growth assays required to evaluate the vulnerability of targeted gene silencing. CONCLUSION Our findings reveal the robustness and versatility of the dCas12a-CRISPRi system in M. smegmatis, providing a valuable tool for functional genomics research. This work showcases the potential of the dCas12a-CRISPRi system in investigating essential genes, enabling a deeper understanding of the biology and potential therapeutic targets in mycobacterium species.
Collapse
Affiliation(s)
- Megha Sodani
- Radiation Medicine Centre, Medical Group, Bhabha Atomic Research Centre, Mumbai- 400085, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai- 400094, Maharashtra, India
| | - Chitra S Misra
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai- 400085, Mumbai, Maharashtra, India
| | - Savita Kulkarni
- Radiation Medicine Centre, Medical Group, Bhabha Atomic Research Centre, Mumbai- 400085, Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai- 400094, Maharashtra, India.
| | - Devashish Rath
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai- 400085, Mumbai, Maharashtra, India.
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai- 400094, Maharashtra, India.
| |
Collapse
|
2
|
Adefisayo OO, Curtis ER, Smith CM. Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment. Infect Immun 2023; 91:e0043022. [PMID: 37249448 PMCID: PMC10269127 DOI: 10.1128/iai.00430-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is one of the oldest and most successful pathogens in the world. Diverse selective pressures encountered within host cells have directed the evolution of unique phenotypic traits, resulting in the remarkable evolutionary success of this largely obligate pathogen. Despite centuries of study, the genetic repertoire utilized by Mtb to drive virulence and host immune evasion remains to be fully understood. Various genetic approaches have been and continue to be developed to tackle the challenges of functional gene annotation and validation in an intractable organism such as Mtb. In vitro and ex vivo systems remain the primary approaches to generate and confirm hypotheses that drive a general understanding of mycobacteria biology. However, it remains of great importance to characterize genetic requirements for successful infection within a host system as in vitro and ex vivo studies fail to fully replicate the complex microenvironment experienced by Mtb. In this review, we evaluate the employment of the mycobacterial genetic toolkit to probe the host-pathogen interface by surveying the current state of mycobacterial genetic studies within host systems, with a major focus on the murine model. Specifically, we discuss the different ways that these tools have been utilized to examine various aspects of infection, including bacterial survival/virulence, bacterial evasion of host immunity, and development of novel antibacterial/vaccine strategies.
Collapse
Affiliation(s)
| | - Erin R. Curtis
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Clare M. Smith
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Nadolinskaia NI, Zamakhaev MV, Shumkov MS, Armianinova DK, Karpov DS, Goncharenko AV. CRISPR Interference of Adenylate Cyclases from Mycobacterium tuberculosis. APPL BIOCHEM MICRO+ 2021; 57:421-425. [PMID: 34334794 PMCID: PMC8315726 DOI: 10.1134/s0003683821040128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022]
Abstract
This work describes a modification of the pRH2521 vector of the pRH2502/pRH2521 system for CRISPR-dCas9-mediated RNA interference. The modification enabled an increase in the cloning efficiency of guide RNA spacers. The ability of the modified pRH2502/pRH2521 system to suppress the transcription of certain genes was evaluated with the use of genes of Mycobacterium tuberculosis adenylate cyclases. The results revealed the limitations of the pRH2502/pRH2521 system for CRISPR interference associated with the probability of the detection of a protospacer adjacent motif (PAM) in the gene promoter region.
Collapse
Affiliation(s)
- N I Nadolinskaia
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - M V Zamakhaev
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - M S Shumkov
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - D K Armianinova
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| | - D S Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A V Goncharenko
- Bach Institute of Biochemistry, Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
4
|
Fleck N, Grundner C. A Cas12a-based CRISPR interference system for multigene regulation in mycobacteria. J Biol Chem 2021; 297:100990. [PMID: 34298016 PMCID: PMC8363830 DOI: 10.1016/j.jbc.2021.100990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Mycobacteria are responsible for a heavy global disease burden, but their relative genetic intractability has long frustrated research efforts. The introduction of clustered regularly interspaced short palindromic repeats (CRISPR) interference (CRISPRi) has made gene repression in mycobacteria much more efficient, but limitations of the prototypical Cas9-based platform, for example, in multigene regulation, remain. Here, we introduce an alternative CRISPRi platform for mycobacteria that is based on the minimal type V Cas12a enzyme in combination with synthetic CRISPR arrays. This system is simple, tunable, reversible, can efficiently regulate essential genes and multiple genes simultaneously, and works as efficiently in infected macrophages as it does in vitro. Together, Cas12a-based CRISPRi provides a facile tool to probe higher-order genetic interactions in mycobacteria including Mycobacterium tuberculosis (Mtb), which will enable the development of synthetically lethal drug targets and the study of genes conditionally essential during infection.
Collapse
Affiliation(s)
- Neil Fleck
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington, Seattle, Washington, USA; Department of Global Health, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
5
|
Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis. Nat Microbiol 2020; 6:44-50. [PMID: 33199862 PMCID: PMC8331221 DOI: 10.1038/s41564-020-00810-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Transposon-based strategies provide a powerful and unbiased way to study bacterial stress response1–8, but these approaches cannot fully capture the complexities of network-based behavior. Here, we present a network-based genetic screening approach: the Transcriptional Regulator Induced Phenotype (TRIP) screen, which we used to identify previously uncharacterized network adaptations of Mycobacterium tuberculosis (Mtb) to the first-line anti-TB drug isoniazid (INH). We found regulators that alter INH susceptibility when induced, several of which could not be identified by standard gene disruption approaches. We then focused on a specific regulator, mce3R, which potentiated INH activity when induced. We compared mce3R-regulated genes with baseline INH transcriptional responses and implicated the gene ctpD (Rv1469) as a putative INH effector. Evaluating a ctpD disruption mutant demonstrated a previously unknown role for this gene in INH susceptibility. Integrating TRIP screening with network information can uncover sophisticated molecular response programs.
Collapse
|
6
|
Construction of a novel CRISPRi-based tool for silencing of multiple genes in Mycobacterium tuberculosis. Plasmid 2020; 110:102515. [DOI: 10.1016/j.plasmid.2020.102515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022]
|
7
|
Riggs-Shute SD, Falkinham JO, Yang Z. Construction and Use of Transposon MycoTetOP 2 for Isolation of Conditional Mycobacteria Mutants. Front Microbiol 2020; 10:3091. [PMID: 32038540 PMCID: PMC6985430 DOI: 10.3389/fmicb.2019.03091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 11/13/2022] Open
Abstract
Mycobacteria are unique in many aspects of their biology. The development of genetic tools to identify genes critical for their growth by forward genetic analysis holds great promises to advance our understanding of their cellular, physiological and biochemical processes. Here we report the development of a novel transposon, MycoTetOP 2, to aid the identification of such genes by direct transposon mutagenesis. This mariner-based transposon contains nested anhydrotetracycline (ATc)-inducible promoters to drive transcription outward from both of its ends. In addition, it includes the Escherichia coli R6Kγ origin to facilitate the identification of insertion sites. MycoTetOP 2 was placed in a shuttle plasmid with a temperature-sensitive DNA replication origin in mycobacteria. This allows propagation of mycobacteria harboring the plasmid at a permissive temperature. The resulting population of cells can then be subjected to a temperature shift to select for transposon mutants. This transposon and its delivery system, once constructed, were tested in the fast-growing model Mycobacterium smegmatis and 13 mutants with ATc-dependent growth were isolated. The identification of the insertion sites in these mutants led to nine unique genetic loci with genes critical for essential processes in both M. smegmatis and Mycobacterium tuberculosis. These results demonstrate that MycoTetOP 2 and its delivery vector provide valuable tools for the studies of mycobacteria by forward genetics.
Collapse
Affiliation(s)
- Sarah D. Riggs-Shute
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
- Department of Biology, Tidewater Community College, Portsmouth, VA, United States
| | - Joseph O. Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Zhaomin Yang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Boldrin F, Anoosheh S, Serafini A, Cioetto Mazzabò L, Palù G, Provvedi R, Manganelli R. Improving the stability of the TetR/Pip-OFF mycobacterial repressible promoter system. Sci Rep 2019; 9:5783. [PMID: 30962489 PMCID: PMC6453970 DOI: 10.1038/s41598-019-42319-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022] Open
Abstract
Tightly regulated gene expression systems are powerful tools to study essential genes and characterize potential drug targets. In a past work we reported the construction of a very stringent and versatile repressible promoter system for Mycobacterium tuberculosis based on two different repressors (TetR/Pip-OFF system). This system, causing the repression of the target gene in response to anhydrotetracycline (ATc), has been successfully used in several laboratories to characterize essential genes in different mycobacterial species both in vitro and in vivo. One of the limits of this system was its instability, leading to the selection of mutants in which the expression of the target gene was no longer repressible. In this paper we demonstrated that the instability was mainly due either to the loss of the integrative plasmid carrying the genes encoding the two repressors, or to the selection of a frameshift mutation in the gene encoding the repressors Pip. To solve these problems, we (i) constructed a new integrative vector in which the gene encoding the integrase was deleted to increase its stability, and (ii) developed a new integrative vector carrying the gene encoding Pip to introduce a second copy of this gene in the chromosome. The use of these new tools was shown to reduce drastically the selection of escape mutants.
Collapse
Affiliation(s)
- Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Saber Anoosheh
- Department of Molecular Medicine, University of Padova, Padova, Italy.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town UCT, Cape Town, South Africa
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy.,Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | | | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | |
Collapse
|
9
|
Abstract
Transcription factors (TFs) play a central role in regulating gene expression in all bacteria. Yet until recently, studies of TF binding were limited to a small number of factors at a few genomic locations. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) provides the ability to map binding sites globally for TFs, and the scalability of the technology enables the ability to map binding sites for every DNA binding protein in a prokaryotic organism. We have developed a protocol for ChIP-Seq tailored for use with mycobacteria and an analysis pipeline for processing the resulting data. The protocol and pipeline have been used to map over 100 TFs from Mycobacterium tuberculosis, as well as numerous TFs from related mycobacteria and other bacteria. The resulting data provide evidence that the long-accepted spatial relationship between TF binding site, promoter motif, and the corresponding regulated gene may be too simple a paradigm, failing to adequately capture the variety of TF binding sites found in prokaryotes. In this article we describe the protocol and analysis pipeline, the validation of these methods, and the results of applying these methods to M. tuberculosis.
Collapse
|
10
|
Ravishankar S, Ambady A, Ramu H, Mudugal NV, Tunduguru R, Anbarasu A, Sharma UK, Sambandamurthy VK, Ramaiah S. An IPTG Inducible Conditional Expression System for Mycobacteria. PLoS One 2015; 10:e0134562. [PMID: 26247874 PMCID: PMC4527713 DOI: 10.1371/journal.pone.0134562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/12/2015] [Indexed: 12/21/2022] Open
Abstract
Conditional expression strains serve as a valuable tool to study the essentiality and to establish the vulnerability of a target under investigation in a drug discovery program. While essentiality implies an absolute requirement of a target function, vulnerability provides valuable information on the extent to which a target function needs to be depleted to achieve bacterial growth inhibition followed by cell death. The critical feature of an ideal conditional expression system is its ability to tightly regulate gene expression to achieve the full spectrum spanning from a high level of expression in order to support growth and near zero level of expression to mimic conditions of gene knockout. A number of bacterial conditional expression systems have been reported for use in mycobacteria. The utility of an isopropylthiogalactoside (IPTG) inducible system in mycobacteria has been reported for protein overexpression and anti-sense gene expression from a replicating multi-copy plasmid. Herein, we report the development of a versatile set of non-replicating IPTG inducible vectors for mycobacteria which can be used for generation of conditional expression strains through homologous recombination. The role of a single lac operator versus a double lac operator to regulate gene expression was evaluated by monitoring the expression levels of β-galactosidase in Mycobacterium smegmatis. These studies indicated a significant level of leaky expression from the vector with a single lac operator but none from the vector with double lac operator. The significance of the double lac operator vector for target validation was established by monitoring the growth kinetics of an inhA, a rpoB and a ftsZ conditional expression strain grown in the presence of different concentrations of IPTG. The utility of this inducible system in identifying target specific inhibitors was established by screening a focussed library of small molecules using an inhA and a rpoB conditional expression strain.
Collapse
Affiliation(s)
- Sudha Ravishankar
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, Karnataka, India
- * E-mail:
| | - Anisha Ambady
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, Karnataka, India
| | - Haripriya Ramu
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, Karnataka, India
| | - Naina Vinay Mudugal
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, Karnataka, India
| | | | - Anand Anbarasu
- School of Biosciences & Technology, VIT University, Vellore, Tamil Nadu, India
| | - Umender K. Sharma
- AstraZeneca India Pvt Ltd, Bellary Road, Hebbal, Bengaluru, Karnataka, India
| | | | - Sudha Ramaiah
- School of Biosciences & Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
11
|
Evans JC, Mizrahi V. The application of tetracyclineregulated gene expression systems in the validation of novel drug targets in Mycobacterium tuberculosis. Front Microbiol 2015; 6:812. [PMID: 26300875 PMCID: PMC4523840 DOI: 10.3389/fmicb.2015.00812] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/23/2015] [Indexed: 12/12/2022] Open
Abstract
Although efforts to identify novel therapies for the treatment of tuberculosis have led to the identification of several promising drug candidates, the identification of high-quality hits from conventional whole-cell screens remains disappointingly low. The elucidation of the genome sequence of Mycobacterium tuberculosis (Mtb) facilitated a shift to target-based approaches to drug design but these efforts have proven largely unsuccessful. More recently, regulated gene expression systems that enable dose-dependent modulation of gene expression have been applied in target validation to evaluate the requirement of individual genes for the growth of Mtb both in vitro and in vivo. Notably, these systems can also provide a measure of the extent to which putative targets must be depleted in order to manifest a growth inhibitory phenotype. Additionally, the successful implementation of Mtb strains engineered to under-express specific molecular targets in whole-cell screens has enabled the simultaneous identification of cell-permeant inhibitors with defined mechanisms of action. Here, we review the application of tetracycline-regulated gene expression systems in the validation of novel drug targets in Mtb, highlighting both the strengths and limitations associated with this approach to target validation.
Collapse
Affiliation(s)
- Joanna C. Evans
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research UnitCape Town, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| | - Valerie Mizrahi
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town Molecular Mycobacteriology Research UnitCape Town, South Africa
- DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine and Division of Medical Microbiology, Faculty of Health Sciences, University of Cape TownCape Town, South Africa
| |
Collapse
|
12
|
Ravishankar S, Ambady A, Awasthy D, Mudugal NV, Menasinakai S, Jatheendranath S, Guptha S, Sharma S, Balakrishnan G, Nandishaiah R, Ramachandran V, Eyermann CJ, Reck F, Rudrapatna S, Sambandamurthy VK, Sharma UK. Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target. Tuberculosis (Edinb) 2015; 95:589-98. [PMID: 26073894 DOI: 10.1016/j.tube.2015.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/30/2015] [Accepted: 05/13/2015] [Indexed: 12/21/2022]
Abstract
DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms. The Mycobacterium tuberculosis genome harbors a single topA gene with no obvious redundancy in its function suggesting an essential role. The topA gene could be inactivated only in the presence of a complementing copy of the gene in M. tuberculosis. Furthermore, down-regulation of topA in a genetically engineered strain of M. tuberculosis resulted in loss of bacterial viability which correlated with a concomitant depletion of intracellular Topo I levels. The topA knockdown strain of M. tuberculosis failed to establish infection in a murine model of TB and was cleared from lungs in two months post infection. Phenotypic screening of a Topo I overexpression strain led to the identification of an inhibitor, thereby providing chemical validation of this target. Thus, our work confirms the attractiveness of Topo I as an anti-mycobacterial target.
Collapse
Affiliation(s)
- Sudha Ravishankar
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India.
| | - Anisha Ambady
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | - Disha Awasthy
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | | | | | - Supreeth Guptha
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | - Sreevalli Sharma
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | - Radha Nandishaiah
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | - Charles J Eyermann
- AstraZeneca Infection, Innovative Medicines, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Folkert Reck
- AstraZeneca Infection, Innovative Medicines, 35 Gatehouse Drive, Waltham, MA 02451, United States
| | - Suresh Rudrapatna
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| | | | - Umender K Sharma
- AstraZeneca India Pvt. Ltd., Bellary Road, Hebbal, Bangalore 560024, India
| |
Collapse
|
13
|
Gene silencing by CRISPR interference in mycobacteria. Nat Commun 2015; 6:6267. [PMID: 25711368 DOI: 10.1038/ncomms7267] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022] Open
Abstract
Recombination-based tools for introducing targeted genomic mutations in Mycobacterium tuberculosis are not efficient due to higher rate of illegitimate recombination compared with homologous DNA exchange. Moreover, involvement of multiple steps and specialized reagents make these tools cost ineffective. Here we introduce a novel clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) approach that efficiently represses expression of target genes in mycobacteria. CRISPRi system involves co-expression of the catalytically dead form of RNA-guided DNA endonuclease from the type II CRISPR system known as dCas9 and the small guide RNA specific to a target sequence, resulting in the DNA recognition complex that interferes with the transcription of corresponding DNA sequence. We show that co-expression of the codon-optimized dCas9 of S. pyogenes with sequence-specific guide RNA results in complete repression of individual or multiple targets in mycobacteria. CRISPRi thus offers a simple, rapid and cost-effective tool for selective control of gene expression in mycobacteria.
Collapse
|
14
|
Banerjee R, Rudra P, Saha A, Mukhopadhyay J. Recombinant reporter assay using transcriptional machinery of Mycobacterium tuberculosis. J Bacteriol 2015; 197:646-53. [PMID: 25448818 PMCID: PMC4285983 DOI: 10.1128/jb.02445-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/22/2014] [Indexed: 12/19/2022] Open
Abstract
Development of an in vivo gene reporter assay to assess interactions among the components of the transcription machinery in Mycobacterium tuberculosis remains a challenge to scientists due to the tediousness of generation of mutant strains of the extremely slow-growing bacterium. We have developed a recombinant mCherry reporter assay that enables us to monitor the interactions of Mycobacterium tuberculosis transcriptional regulators with its promoters in vivo in Escherichia coli. The assay involves a three-plasmid expression system in E. coli wherein two plasmids are responsible for M. tuberculosis RNA polymerase (RNAP) production and the third plasmid harbors the mCherry reporter gene expression cassette under the control of either a σ factor or a transcriptional regulator-dependent promoter. We observed that the endogenous E. coli RNAP and σ factor do not interfere with the assay. By using the reporter assay, we found that the functional interaction of M. tuberculosis cyclic AMP receptor protein (CRP) occurs with its own RNA polymerase, not with the E. coli polymerase. Performing the recombinant reporter assay in E. coli is much faster than if performed in M. tuberculosis and avoids the hazard of handling the pathogenic bacterium. The approach could be expanded to develop reporter assays for other pathogenic and slow-growing bacterial systems.
Collapse
Affiliation(s)
| | - Paulami Rudra
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Abinit Saha
- Department of Biochemistry, Bose Institute, Kolkata, India
| | | |
Collapse
|
15
|
Mutational analysis of the mycobacteriophage BPs promoter PR reveals context-dependent sequences for mycobacterial gene expression. J Bacteriol 2014; 196:3589-97. [PMID: 25092027 DOI: 10.1128/jb.01801-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PR promoter of mycobacteriophage BPs directs early lytic gene expression and is under the control of the BPs repressor, gp33. Reporter gene fusions showed that PR has modest activity in an extrachromosomal context but has activity that is barely detectable in an integrated context, even in the absence of its repressor. Mutational dissection of PR showed that it uses a canonical -10 hexamer recognized by SigA, and mutants with mutations to the sequence 5'-TATAMT had the greatest activities. It does not contain a 5'-TGN-extended -10 sequence, although mutants with mutations creating an extended -10 sequence had substantially increased promoter activity. Mutations in the -35 hexamer also influenced promoter activity but were strongly context dependent, and similar substitutions in the -35 hexamer differentially affected promoter activity, depending on the -10 and extended -10 motifs. This warrants caution in the construction of synthetic promoters or the bioinformatic prediction of promoter activity. Combinations of mutations throughout PR generated a calibrated series of promoters for expression of stably integrated recombinant genes in both Mycobacterium smegmatis and M. tuberculosis, with maximal promoter activity being more than 2-fold that of the strong hsp60 promoter.
Collapse
|
16
|
The MprB extracytoplasmic domain negatively regulates activation of the Mycobacterium tuberculosis MprAB two-component system. J Bacteriol 2013; 196:391-406. [PMID: 24187094 DOI: 10.1128/jb.01064-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world's population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB.
Collapse
|
17
|
Perturbation of cytochrome c maturation reveals adaptability of the respiratory chain in Mycobacterium tuberculosis. mBio 2013; 4:e00475-13. [PMID: 24045640 PMCID: PMC3781833 DOI: 10.1128/mbio.00475-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mycobacterium tuberculosis depends on aerobic respiration for growth and utilizes an aa3-type cytochrome c oxidase for terminal electron transfer. Cytochrome c maturation in bacteria requires covalent attachment of heme to apocytochrome c, which occurs outside the cytoplasmic membrane. We demonstrate that in M. tuberculosis the thioredoxin-like protein Rv3673c, which we named CcsX, is required for heme insertion in cytochrome c. Inactivation of CcsX resulted in loss of c-type heme absorbance, impaired growth and virulence of M. tuberculosis, and induced cytochrome bd oxidase. This suggests that the bioenergetically less efficient bd oxidase can compensate for deficient cytochrome c oxidase activity, highlighting the flexibility of the M. tuberculosis respiratory chain. A spontaneous mutation in the active site of vitamin K epoxide reductase (VKOR) suppressed phenotypes of the CcsX mutant and abrogated the activity of the disulfide bond-dependent alkaline phosphatase, which shows that VKOR is the major disulfide bond catalyzing protein in the periplasm of M. tuberculosis. IMPORTANCE Mycobacterium tuberculosis requires oxygen for growth; however, the biogenesis of respiratory chain components in mycobacteria has not been explored. Here, we identified a periplasmic thioredoxin, CcsX, necessary for heme insertion into cytochrome c. We investigated the consequences of disrupting cytochrome c maturation (CCM) for growth and survival of M. tuberculosis in vitro and for its pathogenesis. Appearance of a second-site suppressor mutation in the periplasmic disulfide bond catalyzing protein VKOR indicates the strong selective pressure for a functional cytochrome c oxidase. The observation that M. tuberculosis is able to partially compensate for defective CCM by upregulation of the cytochrome bd oxidase exposes a functional role of this alternative terminal oxidase under normal aerobic conditions and during pathogenesis. This suggests that targeting both oxidases simultaneously might be required to effectively disrupt respiration in M. tuberculosis.
Collapse
|
18
|
The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 2013; 499:178-83. [PMID: 23823726 DOI: 10.1038/nature12337] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/23/2013] [Indexed: 12/26/2022]
Abstract
We have taken the first steps towards a complete reconstruction of the Mycobacterium tuberculosis regulatory network based on ChIP-Seq and combined this reconstruction with system-wide profiling of messenger RNAs, proteins, metabolites and lipids during hypoxia and re-aeration. Adaptations to hypoxia are thought to have a prominent role in M. tuberculosis pathogenesis. Using ChIP-Seq combined with expression data from the induction of the same factors, we have reconstructed a draft regulatory network based on 50 transcription factors. This network model revealed a direct interconnection between the hypoxic response, lipid catabolism, lipid anabolism and the production of cell wall lipids. As a validation of this model, in response to oxygen availability we observe substantial alterations in lipid content and changes in gene expression and metabolites in corresponding metabolic pathways. The regulatory network reveals transcription factors underlying these changes, allows us to computationally predict expression changes, and indicates that Rv0081 is a regulatory hub.
Collapse
|
19
|
Leblanc C, Prudhomme T, Tabouret G, Ray A, Burbaud S, Cabantous S, Mourey L, Guilhot C, Chalut C. 4'-Phosphopantetheinyl transferase PptT, a new drug target required for Mycobacterium tuberculosis growth and persistence in vivo. PLoS Pathog 2012; 8:e1003097. [PMID: 23308068 PMCID: PMC3534377 DOI: 10.1371/journal.ppat.1003097] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/08/2012] [Indexed: 11/18/2022] Open
Abstract
The cell envelope of Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, contains lipids with unusual structures. These lipids play a key role in both virulence and resistance to the various hostile environments encountered by the bacteria during infection. They are synthesized by complex enzymatic systems, including type-I polyketide synthases and type-I and -II fatty acid synthases, which require a post-translational modification to become active. This modification consists of the covalent attachment of the 4′-phosphopantetheine moiety of Coenzyme A catalyzed by phosphopantetheinyl transferases (PPTases). PptT, one of the two PPTases produced by mycobacteria, is involved in post-translational modification of various type-I polyketide synthases required for the formation of both mycolic acids and lipid virulence factors in mycobacteria. Here we identify PptT as a new target for anti-tuberculosis drugs; we address all the critical issues of target validation to demonstrate that PptT can be used to search for new drugs. We confirm that PptT is essential for the growth of M. bovis BCG in vitro and show that it is required for persistence of M. bovis BCG in both infected macrophages and immunodeficient mice. We generated a conditional expression mutant of M. tuberculosis, in which the expression of the pptT gene is tightly regulated by tetracycline derivatives. We used this construct to demonstrate that PptT is required for the replication and survival of the tubercle bacillus during the acute and chronic phases of infection in mice. Finally, we developed a robust and miniaturized assay based on scintillation proximity assay technology to search for inhibitors of PPTases, and especially of PptT, by high-throughput screening. Our various findings indicate that PptT meets the key criteria for being a therapeutic target for the treatment of mycobacterial infections. Mycobacterium tuberculosis, the causative agent of human tuberculosis, is responsible for more than 8 million new cases and 1.5 million deaths every year. Despite the existence of effective treatments, the emergence of resistance makes the need for new anti-tuberculosis drugs urgent. The cell envelope of the tubercle bacillus undoubtedly plays a key role in pathogenicity. The envelope has very high lipid content and contains lipids with unusual structures. Some of these lipids are synthesized by complex enzymatic systems that can only become functional after post-translational modification by a 4′-phosphopantetheinyl transferase named PptT. We report that PptT is essential for the viability of M. tuberculosis in vitro and of M. tuberculosis and its close relative M. bovis BCG in both macrophages and the mouse model. Our findings demonstrate that PptT plays a key role in multiplication and persistence of the tubercle bacillus and is therefore an attractive target for drug discovery. We also developed an in vitro assay that promises to be a powerful tool for high-throughput screening of PptT inhibitors.
Collapse
Affiliation(s)
- Cécile Leblanc
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Thomas Prudhomme
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Guillaume Tabouret
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Aurélie Ray
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Sophie Burbaud
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie (CRCT), UMR 1037 INSERM-CNRS-UPS Institut Claudius Regaud, Toulouse, France
| | - Lionel Mourey
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
| | - Christophe Guilhot
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- * E-mail: (CC); (CG)
| | - Christian Chalut
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France
- Université de Toulouse, UPS, IPBS, Toulouse, France
- * E-mail: (CC); (CG)
| |
Collapse
|
20
|
Bandhu A, Ganguly T, Jana B, Chakravarty A, Biswas A, Sau S. Biochemical characterization of L1 repressor mutants with altered operator DNA binding activity. BACTERIOPHAGE 2012; 2:79-88. [PMID: 23050218 PMCID: PMC3442829 DOI: 10.4161/bact.21157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A mycobacteriophage-specific repressor with the enhanced operator DNA binding activity at 32°C and no activity at 42°C has not been generated yet though it has potential in developing a temperature-controlled expression vector for mycobacterial system. To create such an invaluable repressor, here we have characterized four substitution mutants of mycobacteriophage L1 repressor by various probes. The W69C repressor mutant displayed no operator DNA binding activity, whereas, P131L repressor mutant exhibited very little DNA binding at 32°C. In contrast, both E36K and E39Q repressor mutants showed significantly higher DNA binding activity at 32°C, particularly, under in vivo conditions. Various mutations also had different effects on the structure, stability and the dimerization ability of L1 repressor. While the W69C mutant possessed a distorted tertiary structure, the P131L mutant dimerized poorly in solution at 32°C. Interestingly, both these mutants lost their two-domain structure and aggregated rapidly at 42°C. Of the native and mutant L1 repressor proteins, W69C and E36K mutants appeared to be the least stable at 32°C. Studies together suggest that the mutants, particularly P131L and E39Q mutants, could be used for creating a high affinity temperature-sensitive repressor in the future.
Collapse
Affiliation(s)
- Amitava Bandhu
- Department of Biochemistry; Bose Institute; P1/12-CIT Scheme VII M; Kolkata, India
| | | | | | | | | | | |
Collapse
|
21
|
Sharma U. Current possibilities and unresolved issues of drug target validation inMycobacterium tuberculosis. Expert Opin Drug Discov 2011; 6:1171-86. [DOI: 10.1517/17460441.2011.626763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Marriner GA, Nayyar A, Uh E, Wong SY, Mukherjee T, Via LE, Carroll M, Edwards RL, Gruber TD, Choi I, Lee J, Arora K, England KD, Boshoff HIM, Barry CE. The Medicinal Chemistry of Tuberculosis Chemotherapy. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
23
|
Williams KJ, Joyce G, Robertson BD. Improved mycobacterial tetracycline inducible vectors. Plasmid 2010; 64:69-73. [PMID: 20434484 PMCID: PMC3495547 DOI: 10.1016/j.plasmid.2010.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/07/2010] [Accepted: 04/19/2010] [Indexed: 11/27/2022]
Abstract
We have previously reported on the development and assessment of the tetracycline inducible vector pMIND (Blokpoel et al., 2005). Here we report the development of improved pMIND vectors that exhibit both reduced basal transcription in the absence of inducer and increased fold induction in the presence of inducer. An amino acid change in the repressor protein, TetR(Z), produced a 6-fold reduction in basal transcription compared to the original pMIND-Lx and a 100-fold induction of LuxAB in the presence of tetracycline. An integration version of the improved vector (pMEND-Lx) was constructed which resulted in a 9-fold reduction in basal transcription compared to pMIND-Lx and a 17-fold induction of LuxAB in the presence of tetracycline. Further improvements were obtained by cloning the pMEND TetRO promoter into an alternative vector backbone. The resulting vector, pKW08-Lx, exhibited a 70-fold reduction in background compared to pMIND-Lx and a 230-fold induction of LuxAB in the presence of tetracycline. An integration version of pKW08-Lx was constructed and the basal transcription for this vector was zero; an 11-fold induction of LuxAB was observed in the presence of tetracycline. The construction of these improved mycobacterial vectors will prove extremely useful for genetic studies.
Collapse
Affiliation(s)
- Kerstin J Williams
- Centre for Molecular Medicine and Infection, Room 3.40, Flowers Building, Division of Infectious Diseases, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom.
| | | | | |
Collapse
|
24
|
Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S. In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice. Nat Med 2007; 13:1515-20. [PMID: 18059281 PMCID: PMC3174471 DOI: 10.1038/nm1683] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 10/11/2007] [Indexed: 12/14/2022]
Abstract
The success of Mycobacterium tuberculosis (Mtb) as a human pathogen relies on its ability to resist eradication by the immune system. The identification of mechanisms that enable Mtb to persist is key for finding ways to limit latent tuberculosis, which affects one-third of the world's population. Here we show that conditional gene silencing can be used to determine whether an Mtb gene required for optimal growth in vitro is also important for virulence and, if so, during which phase of an infection it is required. Application of this approach to the prcBA genes, which encode the core of the mycobacterial proteasome, revealed an unpredicted requirement of the core proteasome for the persistence of Mtb during the chronic phase of infection in mice. Proteasome depletion also attenuated Mtb in interferon-gamma-deficient mice, pointing to a function of the proteasome beyond defense against the adaptive immune response. Genes that are essential for growth in vitro, in vivo or both account for approximately 20% of Mtb's genome. Conditional gene silencing could therefore facilitate the validation of up to 800 potential Mtb drug targets and improve our understanding of host-pathogen dynamics.
Collapse
Affiliation(s)
- Sheetal Gandotra
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
- Program in Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Mercedes Monteleone
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Wolfgang Hillen
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10021, USA
- Program in Immunology and Microbial Pathogenesis, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| |
Collapse
|
25
|
Guo XV, Monteleone M, Klotzsche M, Kamionka A, Hillen W, Braunstein M, Ehrt S, Schnappinger D. Silencing Mycobacterium smegmatis by using tetracycline repressors. J Bacteriol 2007; 189:4614-23. [PMID: 17483222 PMCID: PMC1913471 DOI: 10.1128/jb.00216-07] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many processes that are essential for mycobacterial growth are poorly understood. To facilitate genetic analyses of such processes in mycobacteria, we and others have developed regulated expression systems that are repressed by a tetracycline repressor (TetR) and induced with tetracyclines, permitting the construction of conditional mutants of essential genes. A disadvantage of these systems is that tetracyclines function as transcriptional inducers and have to be removed to initiate gene silencing. Recently, reverse TetR mutants were identified that require tetracyclines as co-repressors. Here, we report that one of these mutants, TetR r1.7, allows efficient repression of lacZ expression in Mycobacterium smegmatis in the presence but not the absence of anhydrotetracycline (atc). TetR and TetR r1.7 also allowed efficient silencing of the essential secA1 gene, as demonstrated by inhibition of the growth of a conditional mutant and dose-dependent depletion of the SecA1 protein after the removal or addition, respectively, of atc. The kinetics of SecA1 depletion were similar with TetR and TetR r1.7. To test whether silencing of secA1 could help identify substrates of the general secretion pathway, we analyzed the main porin of M. smegmatis, MspA. This showed that the amount of cell envelope-associated MspA decreased more than 90-fold after secA1 silencing. We thus demonstrated that TetR r1.7 allows the construction of conditional mycobacterial mutants in which the expression of an essential gene can be efficiently silenced by the addition of atc and that gene silencing permits the identification of candidate substrates of mycobacterial secretion systems.
Collapse
Affiliation(s)
- Xinzheng V Guo
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|