1
|
Totter E, von Einsiedel E, Regazzoni L, Schuerle S. Paving the way for bacteria-based drug delivery: biohybrid microrobots emerging from microrobotics and synthetic biology. Adv Drug Deliv Rev 2025; 221:115577. [PMID: 40250568 DOI: 10.1016/j.addr.2025.115577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
Advances in microrobotics and synthetic biology are paving the way for innovative solutions to long-standing challenges in drug delivery. Both fields have independently worked on engineering bacteria as a therapeutic system, focusing on enhancing propulsion, cargo delivery, detection, and biocompatibility. Bacteria, with their inherent adaptability and functional versatility, serve as an ideal foundation for these efforts, enabling them to navigate complex biological environments such as the human body. This review explores the convergence of microrobotics and synthetic biology, which has catalysed the development of biohybrid bacterial microrobots that integrate the strengths of both disciplines. By incorporating external control modalities - such as light, ultrasound, and magnetic fields - these hybrid systems address the limitations of purely microrobotic or biological approaches, offering new opportunities to enhance precision and efficacy in targeted therapies. However, realising the full potential of biohybrid bacterial microrobots requires overcoming critical challenges, such as ensuring compatibility between biological and synthetic components, scaling manufacturing processes, and defining regulatory pathways tailored to living therapeutics. Addressing these hurdles through joint, interdisciplinary research efforts, can unlock the transformative possibilities of these systems in modern medicine.
Collapse
Affiliation(s)
- Elena Totter
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland
| | - Emilie von Einsiedel
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland
| | - Lisa Regazzoni
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland
| | - Simone Schuerle
- ETH Zurich, Institute of Translational Medicine, Gloriastrasse 37/39, 8092 Zurich, Switzerland.
| |
Collapse
|
2
|
Sareen G, Mohan M, Mannan A, Dua K, Singh TG. A new era of cancer immunotherapy: vaccines and miRNAs. Cancer Immunol Immunother 2025; 74:163. [PMID: 40167762 PMCID: PMC11961864 DOI: 10.1007/s00262-025-04011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/03/2025] [Indexed: 04/02/2025]
Abstract
Cancer immunotherapy has transformed the treatment landscape, introducing new strategies to fight various types of cancer. This review examines the important role of vaccines in cancer therapy, focusing on recent advancements such as dendritic cell vaccines, mRNA vaccines, and viral vector-based approaches. The relationship between cancer and the immune system highlights the importance of vaccines as therapeutic tools. The discussion covers tumor cell and dendritic cell vaccines, protein/peptide vaccines, and nucleic acid vaccines (including DNA, RNA, or viral vector-based), with a focus on their effectiveness and underlying mechanisms. Combination therapies that pair vaccines with immune checkpoint inhibitors, TIL therapy, and TCR/CAR-T cell therapy show promising potential, boosting antitumor responses. Additionally, the review explores the regulatory functions of microRNAs (miRNAs) in cancer development and suppression, featuring miR-21, miR-155, the let-7 family, and the miR-200 family, among others. These miRNAs influence various pathways, such as PI3K/AKT, NF-κB, and EMT regulation, providing insights into biomarker-driven therapeutic strategies. Overall, this work offers a thorough overview of vaccines in oncology and the integrative role of miRNAs, setting the stage for the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Gitika Sareen
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
3
|
Liatsos GD, Mariolis I, Hadziyannis E, Bamias A, Vassilopoulos D. Review of BCG immunotherapy for bladder cancer. Clin Microbiol Rev 2025; 38:e0019423. [PMID: 39932308 PMCID: PMC11905372 DOI: 10.1128/cmr.00194-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
SUMMARYFor several decades, intravesical Bacillus Calmette-Guérin (iBCG) immunotherapy has been the gold standard adjuvant treatment for high-risk and selected intermediate-risk patients with non-muscle-invasive bladder cancer (NMIBC). In this review, the mechanisms of iBCG immune-mediated anti-cancer activity and resistance are presented. Furthermore, a literature review of short-term and systemic iBCG-related side effects was performed. A high incidence (75.5%) of iBCG-related short-term, self-limiting adverse events was observed, while more severe iBCG-related local/systemic complications (iBCG-rL/SCs) that required medical treatment or hospitalization occurred at a lower rate (2.35%). Disseminated was the most common form of iBCG-rSCs, while two-thirds of the cases were classified as infectious. The implementation of molecular-based techniques resulted in significantly higher diagnostic rates. Anti-tuberculous treatment (ATT) is the mainstay of treatment, while in patients with any iBCG-rL/SC form involving the vasculature, ATT should be combined with surgery. Local and osteoarticular forms have the lowest mortality, but their management necessitates severe and debilitating surgical procedures. The overall iBCG-attributed mortality in patients with iBCG-rL/SC was 7.4%, with disseminated, vascular, and lung involvements exhibiting the highest rates. Given the global shortage of BCG for the last two decades, as well as the paucity of effective options for iBCG-refractory or relapsing NMIBC patients, new therapeutic strategies are being tested with promising early results.
Collapse
Affiliation(s)
- George D. Liatsos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Ilias Mariolis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Emilia Hadziyannis
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, National and Kapodistrian University of Athens, School of Medicine, Attikon University General Hospital, Athens, Greece
| | - Dimitrios Vassilopoulos
- 2nd Department of Medicine and Laboratory, National and Kapodistrian University of Athens, School of Medicine, General Hospital of Athens "Hippokration", Athens, Greece
| |
Collapse
|
4
|
Sharma S, Moudgil A, Grewal J, Khatri P, Sharma V, Premkumar M, Bal A, Banerjee D, Patil AN. Development and validation of BCG vaccine-induced novel granulomatous liver injury preclinical animal model. Animal Model Exp Med 2025. [PMID: 39968771 DOI: 10.1002/ame2.12559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Developing a granulomatous liver injury preclinical model may pave the way to understanding hepatic-TB (tuberculosis) and autoimmune granulomatous liver diseases. Antitubercular (ATT) and other drugs' metabolism in the presence of a specific type of liver injury is not well understood. The present study aimed to establish a preclinical model of granulomatous hepatitis by using the BCG (Bacillus Calmette-Guérin) vaccine, further studying it in the presence of ATT dosing, and analyze the pharmacokinetics of isoniazid, rifampicin, and their respective primary metabolites. METHODS We used 56 rats in seven equal groups. Group I functioned as a normal control (NC) receiving normal saline only. Groups II-IV received intravenous injections of low-, medium-, and high-dose BCG vaccine daily for 21 days. Groups V, VI, and VII received isoniazid (H) alone, rifampicin (R) alone, and isoniazid + rifampicin(HR) for a subsequent 15 days in addition to high dose BCG for the first 21 days, respectively. Liver function tests (LFT) were monitored on days 0, 21, 28, and 36. Rats were sacrificed later for oxidative stress and histopathological examination. RESULTS The study observed BCG dose-specific LFT derangements in groups II-IV compared to group I on day 21 (p < 0.05). Isoniazid, rifampicin, and combination intervention groups demonstrated normalization of the BCG-led LFT changes. Histology and oxidative stress parameters confirmed model development and biochemical changes. Isoniazid area under the curve (AUC) showed a reduction of 16.9% in BCG + HR group in comparison to the BCG + H group (p = 0.01). Des-acetyl-rifampicin AUC and maximum-concentration value demonstrated a significant rise in BCG + HR group in comparison to the BCG + R group (p = 0.001). CONCLUSION A novel preclinical model of granulomatous liver injury was developed using the BCG vaccine strain and validated with ATT response.
Collapse
Affiliation(s)
- Swati Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Abhishek Moudgil
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jyoti Grewal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Pankaj Khatri
- Department of Clinical Medicine and Medical Oncology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Vishal Sharma
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amanjit Bal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Amol N Patil
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
5
|
Ikhapoh I, Atairu U, Reich AJ, Mantia CM, Wei XX, Sekar R, Clinton TN, Mossanen M. Examining Patient Characteristics in Bladder Cancer Clinical Trials Involving Immunotherapy. J Clin Med 2025; 14:879. [PMID: 39941550 PMCID: PMC11818695 DOI: 10.3390/jcm14030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Comprehending the patient composition of bladder cancer (BC) clinical trials is crucial for effectively designing clinical trials and contextualizing the generated science. In this study, we reviewed publicly available data and explored the demographic information of BC studies administering immune checkpoint inhibitors (ICIs). Methods: Trial eligibility was irrespective of government or private sponsorship, and trial activation dates were limited to between 2013 and 2023. The main inclusion criteria were use of ICIs and trials reporting endpoints that include progression-free survival (PFS), overall survival (OS), disease-free survival (DFS), and event-free survival (EFS). The key exclusion terms were review articles and meta-analysis. Results: We identified a total of 109 clinical trials with an aggregate total of 8936 enrolled patients. Ninety-six percent identified as Caucasian or White European, and 23% identified as female. Further analyses revealed that 65% of the patients were aged 65 years or older. One-third of the trials listed similar comorbidities, such as cardiovascular disease and diabetes, that were exhibited by approximately 30 percent of the patients. Conclusions: Our data suggest that recruitment strategies should be mindful of comorbidities that may interfere with ICI treatments. Additionally, our results are consistent with findings from other reviews that indicate that certain patient groups may be under-represented in BC trials.
Collapse
Affiliation(s)
- Izuagie Ikhapoh
- Department of Medical Science, Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Microbiology and Immunology, Creighton School of Medicine, Omaha, NE 68178, USA
| | - Usomine Atairu
- Corcoran School of the Arts and Design, The George Washington University, Washington, DC 20006, USA
| | - Amanda Jane Reich
- Center for Surgery and Public Health, Brigham and Women’s Hospital, Boston, MA 02120, USA
| | - Charlene M. Mantia
- Department of Medical Science, Harvard Medical School, Boston, MA 02115, USA
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Xiao X. Wei
- Department of Medical Science, Harvard Medical School, Boston, MA 02115, USA
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Rishi Sekar
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Timothy N. Clinton
- Department of Urology, Brigham and Women Hospital, Jamaica Plain, MA 02130, USA
| | - Matthew Mossanen
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Urology, Brigham and Women Hospital, Jamaica Plain, MA 02130, USA
| |
Collapse
|
6
|
Chamseddine I, Kambara M, Bhatt P, Pilon-Thomas S, Rejniak KA. Optimizing the Efficacy of Vaccine-Induced Immunotherapy in Melanomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631283. [PMID: 39829889 PMCID: PMC11741369 DOI: 10.1101/2025.01.06.631283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Cancer therapeutic vaccines are used to strengthen a patient's own immune system by amplifying existing immune responses. Intralesional administration of the bacteria-based emm55 vaccine together with the PD1 checkpoint inhibitor produced a strong anti-tumor effect against the B16 melanoma murine model. However, it is not trivial to design an optimal order and frequency of injections for combination therapies. Here, we developed a coupled ordinary differential equations model calibrated to experimental data and used the mesh adaptive direct search method to optimize the treatment protocols of the emm55 vaccine and anti-PD1 combined therapy. This method determined that early consecutive vaccine injections combined with distributed anti-PD1 injections of decreasing separation time yielded the best tumor size reduction. The optimized protocols led to a twofold decrease in tumor area for the vaccine-alone treatment, and a fourfold decrease for the combined therapy. Our results reveal the tumor subpopulation dynamics in the optimal treatment condition, defining the path for efficacious treatment design. Similar computational frameworks can be applied to other tumors and other combination therapies to generate experimentally testable hypotheses in a fairly unrestricted and inexpensive setting.
Collapse
Affiliation(s)
- Ibrahim Chamseddine
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Manoj Kambara
- High-School Internship Program at Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Priya Bhatt
- High-School Internship Program at Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Katarzyna A Rejniak
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
7
|
Chowdhury D, Das A, Mishra M, Khutere T, Bodakhe SH. Physiological markers for immunotherapeutics: a review. J Chemother 2024:1-24. [PMID: 39711144 DOI: 10.1080/1120009x.2024.2443701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Immunotherapy has been advanced through multiple approaches, including immunogenic cytokines, monoclonal antibodies, therapeutic vaccinations, adoptive cell transfer, stem cell transplantation, and oncolytic viruses. This review analyses various strategies in genomics, transcriptomics, single-cell techniques, computational analysis, big data, and imaging technologies for the identification of tumour microbiota and microenvironments. Immunotherapy is becoming acknowledged as a feasible cancer treatment method, facilitating innovative cancer medicines and personalized medicine techniques.
Collapse
Affiliation(s)
- Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Mrityunjay Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Trinkal Khutere
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
8
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Jaromin M, Konecki T, Kutwin P. Revolutionizing Treatment: Breakthrough Approaches for BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer. Cancers (Basel) 2024; 16:1366. [PMID: 38611044 PMCID: PMC11010925 DOI: 10.3390/cancers16071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Bladder cancer is the 10th most popular cancer in the world, and non-muscle-invasive bladder cancer (NMIBC) is diagnosed in ~80% of all cases. Treatments for NMIBC include transurethral resection of the bladder tumor (TURBT) and intravesical instillations of Bacillus Calmette-Guérin (BCG). Treatment of BCG-unresponsive tumors is scarce and usually leads to Radical Cystectomy. In this paper, we review recent advancements in conservative treatment of BCG-unresponsive tumors. The main focus of the paper is FDA-approved medications: Pembrolizumab and Nadofaragene Firadenovec (Adstiladrin). Other, less researched therapeutic possibilities are also included, namely: N-803 immunotherapy, TAR-200 and TAR-210 intravesical delivery systems and combined Cabazitaxel, Gemcitabine and Cisplatin chemotherapy. Conservative treatment and delaying radical cystectomy would greatly benefit patients' quality of life; it is undoubtedly the future of BCG-unresponsive NMIBC.
Collapse
Affiliation(s)
| | | | - Piotr Kutwin
- 1st Department of Urology, Medical University of Lodz, 93-513 Lodz, Poland; (M.J.); (T.K.)
| |
Collapse
|
10
|
Khargi R, Connors C, Ricapito A, Yaghoubian AJ, Gallante BE, Khusid JA, Atallah WM, Gupta M. Adjuvant intraluminal therapies for upper tract urothelial carcinoma. Transl Androl Urol 2023; 12:1439-1448. [PMID: 37814698 PMCID: PMC10560344 DOI: 10.21037/tau-23-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/31/2023] [Indexed: 10/11/2023] Open
Abstract
Upper urinary tract urothelial carcinomas (UTUCs) are often identified and first treated endoscopically. After proper risk stratification, adjuvant treatment may be recommended. Consequently, as adjuvant therapy becomes more common place in the oncological armamentarium, we seek to better characterize its existing and future therapeutic landscape. In this article, we present an overview of the most up-to-date information about intracavitary instillations as an adjuvant therapy in the context of UTUC. We reviewed the current literature on the epidemiology, disease characteristics, treatment, and outcomes of UTUC with a particularly focus on intraluminal adjuvant therapy for UTUC. This review provides a comprehensive overview of the most recent available data regarding adjuvant therapies used for UTUC. Intraluminal therapy plays an increasingly important role in the management of UTUC. Mitomycin C is the most common adjuvant treatment for UTUC with bacillus Calmette-Guerin (BCG) being utilized to a lesser extent. UGN-101 is a novel topical gel-based therapy that has shown promising results and thus recently garnered Food and Drug Administration (FDA) approval for UTUC. Other treatments such as BCG-IFN, gemcitabine, docetaxel, and drug-eluting stents (DES) may play a future role in UTUC treatment given further research. It is important to caveat that current studies on topical adjuvant treatments demonstrate varying degrees of effectiveness. This is largely due to limited research on UTUC, consisting of small sample sizes, and mostly retrospective experiences. Accordingly, further clinical trials are needed to evaluate the true benefit of these treatments.
Collapse
Affiliation(s)
- Raymond Khargi
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Connors
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ricapito
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Urology and Renal Transplantation, University of Foggia, Foggia, Italy
| | - Alan J. Yaghoubian
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Blair E. Gallante
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnathan A. Khusid
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William M. Atallah
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mantu Gupta
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
12
|
Roe JM, Seely K, Bussard CJ, Eischen Martin E, Mouw EG, Bayles KW, Hollingsworth MA, Brooks AE, Dailey KM. Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria. Pharmaceutics 2023; 15:2004. [PMID: 37514190 PMCID: PMC10384176 DOI: 10.3390/pharmaceutics15072004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley's Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to "hijack" typical host-pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed "domestication", of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria-host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as "prophylactic", may even be able to prevent or "derail" tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria-host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria.
Collapse
Affiliation(s)
- Jason M Roe
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kevin Seely
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Caleb J Bussard
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
| | | | - Elizabeth G Mouw
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michael A Hollingsworth
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Amanda E Brooks
- College of Osteopathic Medicine, Rocky Vista University, Ivins, UT 84738, USA
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO 80130, USA
- Office of Research & Scholarly Activity, Rocky Vista University, Ivins, UT 84738, USA
| | - Kaitlin M Dailey
- Eppley Institute for Cancer Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Ma C, Zeng S, Dai L, Han H, Song R, Xu J, Ai X, Xu C. The natural course of bacillus Calmette-Guérin induced bladder lesions: A long-term follow-up study and systematic review. Asian J Urol 2023; 10:356-363. [PMID: 37538149 PMCID: PMC10394293 DOI: 10.1016/j.ajur.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/18/2022] [Accepted: 12/20/2022] [Indexed: 08/05/2023] Open
Abstract
Objective Bacillus Calmette-Guérin (BCG) instillation is the standard adjuvant treatment for intermediate- and high-risk non-muscle-invasive bladder cancer after transurethral resection. Nevertheless, its toxicity often causes bladder complications. On follow-up cystoscopy, post-BCG bladder lesions can be pathologically benign, urothelial carcinoma recurrence, or other types of bladder malignancy. Only a small number of case reports have been published on post-BCG bladder lesions. Their clinical features, natural course, and management remain unknown. Methods We retrospectively studied cystoscopic videos and medical records of BCG-treated bladder cancer patients at our center. During a long-term follow-up, we took biopsies on tumor-like lesions and described their changes. In addition, we summarized previous studies on post-BCG bladder lesions by systematic literature searching and review. Results We described a series of three cases with post-BCG bladder lesions mimicking tumor recurrence from a total of 38 cases with follow-up data for more than 5 years. Those lesions could last, grow, or disappear spontaneously, and remain pathological benign for years. In systematic review, we identified and analyzed a total of 15 cases with post-BCG bladder lesions with detailed clinical information. Eleven of the 15 were benign and have a good prognosis with nephrogenic adenoma being the most common pathological type. Conclusion Based on previous studies and our experience, benign lesions after BCG instillation cannot distinguish with cancer recurrence by cystoscopy alone, even under narrow band imaging mode. Nonetheless, given most of them have a good prognosis, random biopsy or transurethral resection might be spared in the patients with long-term negative biopsy and urine cytology.
Collapse
Affiliation(s)
- Chong Ma
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lihe Dai
- Department of Urology, The 943 Hospital of Joint Logistics Support Force of Chinese PLA, Gansu, China
| | - Huan Han
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ruixiang Song
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinshan Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xing Ai
- Department of Urology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Liao D, Su X, Wang J, Yu J, Luo H, Tian W, Ye Z, He J. Pushing the envelope: Immune mechanism and application landscape of macrophage-activating lipopeptide-2. Front Immunol 2023; 14:1113715. [PMID: 36761746 PMCID: PMC9902699 DOI: 10.3389/fimmu.2023.1113715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
Mycoplasma fermentans can cause respiratory diseases, arthritis, genitourinary tract infections, and chronic fatigue syndrome and have been linked to the development of the human immunodeficiency virus. Because mycoplasma lacks a cell wall, its outer membrane lipoproteins are one of the main factors that induce inflammation in the organism and contribute to disease development. Macrophage-activating lipopeptide-2 (MALP-2) modulates the inflammatory response of monocytes/macrophages in a bidirectional fashion, indirectly enhances the cytotoxicity of NK cells, promotes oxidative bursts in neutrophils, upregulates surface markers on lymphocytes, enhances antigen presentation on dendritic cells and induces immune inflammatory responses in sebocytes and mesenchymal cells. MALP-2 is a promising vaccine adjuvant for this application. It also promotes vascular healing and regeneration, accelerates wound and bone healing, suppresses tumors and metastasis, and reduces lung infections and inflammation. MALP-2 has a simple structure, is easy to synthesize, and has promising prospects for clinical application. Therefore, this paper reviews the mechanisms of MALP-2 activation in immune cells, focusing on the application of MALP-2 in animals/humans to provide a basis for the study of pathogenesis in Mycoplasma fermentans and the translation of MALP-2 into clinical applications.
Collapse
Affiliation(s)
- Daoyong Liao
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Tian
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China,*Correspondence: Jun He,
| |
Collapse
|
16
|
Woodcock VK, Chen J, Purshouse K, Butcher C, Collins L, Haddon C, Verrall G, Elhussein L, Roberts C, Tarlton A, Rei M, Napolitani G, Salio M, Middleton MR, Cerundolo V, Crew J, Protheroe AS. PemBla: A Phase 1 study of intravesical pembrolizumab in recurrent non‐muscle‐invasive bladder cancer. BJUI COMPASS 2023; 4:322-330. [PMID: 37025470 PMCID: PMC10071078 DOI: 10.1002/bco2.220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives This study aimed to investigate the anti-PD-1 inhibitor pembrolizumab as a potential agent for use in non-muscle-invasive bladder cancer (NMIBC) by conducting a Phase 1 safety run-in study to assess the safety and tolerability of intravesical pembrolizumab after transurethral resection of the bladder tumour (TURBT). Patients and methods Eligible patients had recurrent NMIBC for which adjuvant treatment post TURBT was a reasonable treatment option, Eastern Cooperative Oncology Group Performance Status (ECOG PS) 0-1 and adequate end-organ function. Pembrolizumab was administered by intravesical instillation once weekly for a total of six doses. Intra-patient dose escalation was performed in three paired patient cohorts with doses starting at 50 mg and increasing through 100 mg to a maximum of 200 mg. Adverse events (AEs) were assessed using Common Terminology Criteria for Adverse Events (CTCAE) v4.03 with dose limiting toxicity (DLT) defined as a clinically significant, drug-related, Grade 4 haematological or Grade 3 or higher non-haematological toxicity occurring within 7 days of administration of the first treatment at a given dose for that patient. Results Six patients were treated with no DLTs seen during dose escalation. Drug-related AEs were of low grade and included dysuria and fatigue. All patients completed six doses of treatment as planned. Pharmacokinetic and pharmacodynamic assays did not detect any pembrolizumab in the serum following repeated intravesical administration, and no changes in peripheral immune cell populations were observed. Conclusions Administration of intravesical pembrolizumab was well tolerated and did not raise any safety concerns in patients with NMIBC following TURBT. There was no evidence of systemic absorption or systemic immune effects following intravesical administration. Further studies are required to assess whether intravesical administration has anti-tumour activity.
Collapse
Affiliation(s)
- Victoria K. Woodcock
- Department of Oncology Churchill Hospital, University of Oxford Oxford UK
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Ji‐Li Chen
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Karin Purshouse
- Department of Oncology Churchill Hospital, University of Oxford Oxford UK
| | - Chrissie Butcher
- Oncology Clinical Trials Office, Department of Oncology University of Oxford Oxford UK
| | - Linda Collins
- Oncology Clinical Trials Office, Department of Oncology University of Oxford Oxford UK
| | - Caroline Haddon
- Department of Oncology Churchill Hospital, University of Oxford Oxford UK
| | | | - Leena Elhussein
- Centre for Statistics in Medicine University of Oxford Oxford UK
| | - Corran Roberts
- Centre for Statistics in Medicine University of Oxford Oxford UK
| | - Andrea Tarlton
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Margarida Rei
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Giorgio Napolitani
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Mariolina Salio
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Mark R. Middleton
- Department of Oncology Churchill Hospital, University of Oxford Oxford UK
- National Institute for Health Research Oxford Biomedical Research Centre Oxford UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit MRC Weatherall Institute of Molecular Medicine Oxford UK
| | - Jeremy Crew
- Department of Urology Churchill Hospital Oxford UK
| | | |
Collapse
|
17
|
Pinard CJ, Stegelmeier AA, Bridle BW, Mutsaers AJ, Wood RD, Wood GA, Woods JP, Hocker SE. Evaluation of lymphocyte-specific programmed cell death protein 1 receptor expression and cytokines in blood and urine in canine urothelial carcinoma patients. Vet Comp Oncol 2021; 20:427-436. [PMID: 34797014 DOI: 10.1111/vco.12788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Urothelial carcinoma (UC) is the most common urinary tumour in dogs. Despite a range of treatment options, prognosis remains poor in dogs. In people, breakthroughs with checkpoint inhibitors have established new standards of care for muscle-invasive bladder cancer patients and elevated levels of programmed cell death protein 1 (PD-1) suggest immune checkpoint blockade may be a novel target for therapy. The goal of this study was to determine if canine UC patients express elevated levels of lymphocyte-specific PD-1 and/or urinary cytokine biomarkers compared to healthy dogs. Paired blood and urine were evaluated in 10 canine UC patients, five cystitis patients and 10 control dogs for lymphocyte-specific PD-1 expression via flow cytometry and relative cytokine expression. In UC patients, PD-1 expression was significantly elevated on CD8+ lymphocytes in urine samples. UC patients had a higher CD4:CD8 ratio in their urine compared to healthy dogs, however, there was no significant variation in the CD8:Treg ratio between any group. Cystitis patients had significantly elevated levels of CD4+ T cells, CD8+ T cells and Tregs in their blood samples compared to UC patients and healthy dogs. Cytokine analysis demonstrated significant elevations in urinary cytokines (granulocyte-macrophage colony-stimulating factor, interferon-gamma [IFN-γ], interleukin (IL)-2, IL-6 IL-7, IL-8 and IL-15, IP-10, KC-like, IL-18, monocyte chemoattractant protein-1 and tumour necrosis factor-alpha). Several of these cytokines have been previously correlated with both lymphocyte-specific PD-1 expression (IFN-γ, IL-2, IL-7 and IL-15) in muscle-invasive urothelial carcinoma in humans. Our results provide evidence of urinary lymphocyte PD-1 expression and future studies could elucidate whether veterinary UC patients will respond favourably to anti-PD-1 immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Christopher J Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - R Darren Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Geoffrey A Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J Paul Woods
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samuel E Hocker
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
18
|
Fu Y, Sun S, Bi J, Kong C, Yin L. A novel immune-related gene pair prognostic signature for predicting overall survival in bladder cancer. BMC Cancer 2021; 21:810. [PMID: 34266411 PMCID: PMC8281685 DOI: 10.1186/s12885-021-08486-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Bladder cancer (BC) is the ninth most common malignant tumor. We constructed a risk signature using immune-related gene pairs (IRGPs) to predict the prognosis of BC patients. Methods The mRNA transcriptome, simple nucleotide variation and clinical data of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database (TCGA-BLCA). The mRNA transcriptome and clinical data were also extracted from Gene Expression Omnibus (GEO) datasets (GSE31684). A risk signature was built based on the IRGPs. The ability of the signature to predict prognosis was analyzed with survival curves and Cox regression. The relationships between immunological parameters [immune cell infiltration, immune checkpoints, tumor microenvironment (TME) and tumor mutation burden (TMB)] and the risk score were investigated. Finally, gene set enrichment analysis (GSEA) was used to explore molecular mechanisms underlying the risk score. Results The risk signature utilized 30 selected IRGPs. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the GSE31684 dataset to validate the signature. Close relationships were found between the risk score and immunological parameters. Finally, GSEA showed that gene sets related to the extracellular matrix (ECM), stromal cells and epithelial-mesenchymal transition (EMT) were enriched in the high-risk group. In the low-risk group, we found a number of immune-related pathways in the enriched pathways and biofunctions. Conclusions We used a new tool, IRGPs, to build a risk signature to predict the prognosis of BC. By evaluating immune parameters and molecular mechanisms, we gained a better understanding of the mechanisms underlying the risk signature. This signature can also be used as a tool to predict the effect of immunotherapy in patients with BC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08486-0.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
19
|
Fu Y, Sun S, Bi J, Kong C, Yin L. Construction and analysis of a ceRNA network and patterns of immune infiltration in bladder cancer. Transl Androl Urol 2021; 10:1939-1955. [PMID: 34159075 PMCID: PMC8185653 DOI: 10.21037/tau-20-1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Bladder cancer (BC) is the ninth most common malignant tumor, accounting for an estimate of 549,000 new BC cases and 200,000 BC-related deaths worldwide in 2018. The prognosis of BC has not substantially improved despite significant advances in the diagnosis and treatment of the disease. Methods The RNA sequencing (RNA-seq) data and clinical information of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) algorithm was used to assess immune infiltration. The survival analyses were performed using the selected components of a ceRNA network and selected immune cell types by least absolute shrinkage and selection operator (LASSO) Cox regression to calculate the risk score. The accuracy of prognosis prediction was determined by receiver operating characteristic (ROC) curves, survival curves, and nomograms. Finally, the correlation analysis was performed to investigate the relationships between the signature components of the ceRNA network and the immune cell signature. Results Two completed survival analyses included selected components of the ceRNA network (ELN, SREBF1, DSC2, TTLL7, DIP2C, SATB1, hsa-miR-20a-5p, and hsa-miR-29c-3p) and selected immune cell types (M0 macrophages, M2 macrophages, resting mast cells, and neutrophils). ROC curves, survival curves (all P values <0.05), nomograms, and calibration curves indicated that the accuracy of the two survival analyses was acceptable. Moreover, the correlations between TTLL7 and resting mast cells (R=0.24, P<0.001), DSC2 and resting mast cells (R=−0.23, P<0.001), ELN and resting mast cells (R=0.44, P<0.001), and hsa-miR-29c-3p and M0 macrophages (R=−0.29, P<0.001) were significant, indicating that interactions of these factors may play significant roles in the prognosis of BC. Conclusions TTLL7, DSC2, ELN, hsa-miR-29c-3p, resting mast cells, and M0 macrophages may play an important role in the development of BC. However, additional studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Yang Fu
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Bunch BL, Kodumudi KN, Scott E, Morse J, Weber AM, Berglund AE, Pilon-Thomas S, Markowitz J. Anti-tumor efficacy of plasmid encoding emm55 in a murine melanoma model. Cancer Immunol Immunother 2020; 69:2465-2476. [PMID: 32556443 PMCID: PMC7680263 DOI: 10.1007/s00262-020-02634-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 06/04/2020] [Indexed: 12/31/2022]
Abstract
Emm55 is a bacterial gene derived from Streptococcus pyogenes (S. pyogenes) that was cloned into a plasmid DNA vaccine (pAc/emm55). In this study, we investigated the anti-tumor efficacy of pAc/emm55 in a B16 murine melanoma model. Intralesional (IL) injections of pAc/emm55 significantly delayed tumor growth compared to the pAc/Empty group. There was a significant increase in the CD8+ T cells infiltrating into the tumors after pAc/emm55 treatment compared to the control group. In addition, we observed that IL injection of pAc/emm55 increased antigen-specific T cell infiltration into tumors. Depletion of CD4+ or CD8+ T cells abrogated the anti-tumor effect of pAc/emm55. Combination treatment of IL injection of pAc/emm55 with anti-PD-1 antibody significantly delayed tumor growth compared to either monotherapy. pAc/emm55 treatment combined with PD-1 blockade enhanced anti-tumor immune response and improved systemic anti-tumor immunity. Together, these strategies may lead to improvements in the treatment of patients with melanoma.
Collapse
Affiliation(s)
- Brittany L Bunch
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Krithika N Kodumudi
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ellen Scott
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jennifer Morse
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Amy Mackay Weber
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Department of Oncologic Sciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
- Cutaneous Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB-4, Tampa, FL, 33612, USA.
- Center for Immunization and Infection Research in Cancer (CIIRC), H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Department of Oncologic Sciences, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, SRB-3, Tampa, FL, 33606, USA.
| |
Collapse
|
21
|
Fujita N, Hatakeyama S, Okita K, Momota M, Narita T, Tobisawa Y, Yoneyama T, Yamamoto H, Imai A, Ito H, Yoneyama T, Hashimoto Y, Yoshikawa K, Ohyama C. Impact of chronic kidney disease on oncological outcomes in patients with high-risk non-muscle-invasive bladder cancer who underwent adjuvant bacillus Calmette-Guérin therapy. Urol Oncol 2020; 39:191.e9-191.e16. [PMID: 32713622 DOI: 10.1016/j.urolonc.2020.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To investigate the impact of chronic kidney disease (CKD) on oncological outcomes in patients with high-risk non-muscle invasive bladder cancer (NMIBC) who underwent adjuvant induction bacillus Calmette-Guérin (BCG) therapy after transurethral resection of bladder tumor (TURBT). MATERIALS AND METHODS We conducted a multi-institutional retrospective study assessing 209 patients with high-risk NMIBC who underwent TURBT and subsequent adjuvant induction BCG therapy from December 1998 to April 2019. Patients were divided into 2 groups: those with preoperative estimated glomerular filtration rate (eGFR) ≥ 60 ml/min/1.73 m2 (non-CKD group), and those with eGFR < 60 ml/min/1.73 m2 (CKD group). Primary endpoints were intravesical recurrence-free survival (RFS) and muscle-invasive bladder cancer (MIBC)-free survival. Background-adjusted multivariate analyses with the inverse probability of treatment weighting (IPTW) method using the propensity score were performed to evaluate the impact of CKD on intravesical RFS, MIBC-free survival, metastasis-free survival, cancer-specific survival, and overall survival. Moreover, multivariable analyses were performed to assess the impact of CKD on intravesical recurrence and MIBC progression, adjusting for the competing risk of death using the Fine-Gray competing risk regression model. RESULTS Median age and follow-up period after TURBT were 72 years and 45 months, respectively. Of 209 patients, 71 (34%) were diagnosed with CKD before TURBT. Background-adjusted multivariate analyses with the IPTW method indicated that CKD was significantly associated with shorter intravesical RFS, MIBC-free survival, metastasis-free survival, cancer-specific survival, and overall survival. In the Fine-Gray competing risk regression model, CKD showed significantly higher probabilities of intravesical recurrence and MIBC progression, with an adjusted subdistribution hazard ratio of 1.886 (95% confidence interval 1.069-3.330, P = 0.028) and 3.740 (95% confidence interval 1.060-13.20, P = 0.040), respectively. CONCLUSIONS CKD presents a risk factor of poor oncological outcomes in patients with high-risk NMIBC who underwent adjuvant induction BCG therapy after TURBT.
Collapse
Affiliation(s)
- Naoki Fujita
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Kazutaka Okita
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masaki Momota
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takuma Narita
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsushi Imai
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroyuki Ito
- Department of Urology, Aomori Rosai Hospital, Hachinohe, Japan
| | - Takahiro Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hashimoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan; Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
22
|
Quadri NS, Brihn A, Shah JA, Kirsch JD. Bovine Tuberculosis: A Re-emerging Zoonotic Infection. J Agromedicine 2020; 26:334-339. [PMID: 32478614 DOI: 10.1080/1059924x.2020.1771497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Bovine tuberculosis is caused by Mycobacterium bovis (M. bovis), which infects both humans and cattle. In 2018, a dairy farm in Wisconsin was affected by M. bovis, including a farmworker with exposure to the affected herd. Largely eradicated by effective public health strategies in the United States, most cases are now associated with risk factors including occupational hazards, food consumption, and iatrogenic infections. M. bovis continues to cause disease worldwide affecting certain at-risk populations in the United States. Infections more often result in extrapulmonary sequelae and resistance to pyrazinamide is universal. Thus, successful treatment depends on early and correct identification of the mycobacterium species. A One Health approach to control this re-emerging disease is crucial.
Collapse
Affiliation(s)
- Nasreen S Quadri
- Department of Internal Medicine, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| | - Auguste Brihn
- Center for Animal Health and Food Safety, University of Minnesota College of Veterinary Medicine, Saint Paul, Minnesota, USA
| | - Javeed A Shah
- Department of Medicine, University of Washington School of Medicine, Tuberculosis Research and Training Center, Seattle, Washington, USA.,Infectious Disease Section, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Jonathan D Kirsch
- Department of Internal Medicine, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Özcan Y, Çağlar F, Celik S, Demir AB, Erçetin AP, Altun Z, Aktas S. The role of cancer stem cells in immunotherapy for bladder cancer: An in vitro study. Urol Oncol 2020; 38:476-487. [PMID: 32192892 DOI: 10.1016/j.urolonc.2020.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/25/2020] [Accepted: 02/17/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Bladder cancer is characterized by frequent recurrence and progression. CD44+ cancer stem cells (CSCs) might be one of the main reasons for recurrence. Although Bacillus Calmette Guerin (BCG) has become a gold standard immunotherapy, after treatment recurrence frequently occur. Based on this knowledge, the aim of this study was to evaluate the changes in cytokine and chemokine expressions in bladder cancer and CSCs cultures in vitro with BCG only and in combination with IL2 and lymphocyte (MNCs) applications. MATERIAL AND METHODS In this study, 3 cell lines of human bladder cancer cells with different characteristics (T24, 5637, and JMSU-1) and CD44+ bladder CSCs isolated by magnetic bead isolation (Miltenyl Magtech) were used. Bladder cancer cell lines and bladder CSCs in complete medium were cultured under humidified conditions of 37°C temperature in 5% CO2. BCG only and its combination with IL2 and MNCs were applied to bladder cancer cell lines and bladder CSCs for 24, 48, and 72 hours. Annexin V-PI was used to detect the percentages of apoptotic and necrotic cells in treatment groups and control groups. After treatments, total RNAs were isolated and converted to cDNA for each group and controls. Quantitative fold changes in terms of gene expression were measured by RT2-PCR array and fold changes for expression levels of genes were compared among groups. Eighty-four genes were analyzed in standard array of chemokines and cytokines (Biorad). RESULTS BCG treatment with 7.32 µg/ml dose alone and in combination with IL2 (1000 IU/ml) and MNCs (1000 cells/ml) were found to be most effective on bladder cancer cells. When BCG and its combinations were applied to CSCs of the 3 cell lines, BCG treatment showed cytotoxic effect on CSCs as well as cancer cells. CSCs of 3 cell lines over expressed CXCL5, CCL8, CNTF, and CSF2 compared with cancer cells. Cancer cells over expressed IL6, TNSFF11, FASLG, and CXCL9 compared with CSCs. In all 3 cell lines, BCG application increased expression of CXCL5 and LTB and also decreased CCL20 and IL6. When BCG was combined with IL2 and MNCs, CXCL10, CXCL5, and IFNG were increased and CXCL12, IL6, and TNSF11 were decreased. BCG treatment of CSCs caused increases in ADIPOQ, CXCL10, and XCL1 and a decrease in CCL8. When IL2 and MNCs were combined with BCG, the expression of many cytokines and chemokines decreased. CONCLUSION BCG treatment changes the expression of many cytokines and chemokines in bladder cancer. The expression differs in 3 different cell lines and their CSCs. Immune modulation of each case differs from each other. The effectivity of BCG-based immunotherapy in bladder cancer on CSCs might decrease in combination with IL2. Our results indicate that recurrence after BCG treatment for bladder cancer may not occur mainly based on the CSCs hypothesis considering bladder cancer occurs at different loci of surface epithelium.
Collapse
Affiliation(s)
- Yegane Özcan
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Fulya Çağlar
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Serdar Celik
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey; Department of Urology, Izmir Bozyaka Research and Training Hospital, Health Science University, Izmir, Turkey.
| | - Ayşe Banu Demir
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey; Department of Medical Biology, Faculty of Medicine, Izmir University of Economics, Izmir, Turkey
| | - Ayşe Pınar Erçetin
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Zekiye Altun
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Safiye Aktas
- Department of Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
24
|
Abstract
BCG immunotherapy is the gold-standard treatment for non-muscle-invasive bladder cancer at high risk of recurrence or progression. Preclinical and clinical studies have revealed that a robust inflammatory response to BCG involves several steps: attachment of BCG; internalization of BCG into resident immune cells, normal cells, and tumour urothelial cells; BCG-mediated induction of innate immunity, which is orchestrated by a cellular and cytokine milieu; and BCG-mediated initiation of tumour-specific immunity. As an added layer of complexity, variation between clinical BCG strains might influence development of tumour immunity. However, more than 40 years after the first use of BCG for bladder cancer, many questions regarding its mechanism of action remain unanswered. Clearly, a better understanding of the mechanisms underlying BCG-mediated tumour immunity could lead to improved efficacy, increased tolerance of treatment, and identification of novel immune-based therapies. Indeed, enthusiasm for bladder cancer immunotherapy, and the possibility of combining BCG with other therapies, is increasing owing to the availability of targeted immunotherapies, including checkpoint inhibitors. Understanding of the mechanism of action of BCG immunotherapy has advanced greatly, but many questions remain, and further basic and clinical research efforts are needed to develop new treatment strategies for patients with bladder cancer.
Collapse
|
25
|
Rohailla S, Kitchlu A, Wheatcroft M, Razak F. Mycotic aneurysm formation after bacillus Calmette-Guérin instillation for recurrent bladder cancer. CMAJ 2019; 190:E467-E471. [PMID: 29661816 DOI: 10.1503/cmaj.171214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Sagar Rohailla
- Postgraduate Medical Education, Department of Medicine (Rohailla), University of Toronto; Division of Nephrology, Department of Medicine (Kitchlu); Division of Vacsular Surgery, Department of Surgery (Wheatcroft); and Division of General Internal Medicine, Department of Medicine (Razak), St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Abhijat Kitchlu
- Postgraduate Medical Education, Department of Medicine (Rohailla), University of Toronto; Division of Nephrology, Department of Medicine (Kitchlu); Division of Vacsular Surgery, Department of Surgery (Wheatcroft); and Division of General Internal Medicine, Department of Medicine (Razak), St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Mark Wheatcroft
- Postgraduate Medical Education, Department of Medicine (Rohailla), University of Toronto; Division of Nephrology, Department of Medicine (Kitchlu); Division of Vacsular Surgery, Department of Surgery (Wheatcroft); and Division of General Internal Medicine, Department of Medicine (Razak), St. Michael's Hospital, University of Toronto, Toronto, Ont
| | - Fahad Razak
- Postgraduate Medical Education, Department of Medicine (Rohailla), University of Toronto; Division of Nephrology, Department of Medicine (Kitchlu); Division of Vacsular Surgery, Department of Surgery (Wheatcroft); and Division of General Internal Medicine, Department of Medicine (Razak), St. Michael's Hospital, University of Toronto, Toronto, Ont.
| |
Collapse
|
26
|
Öksüz E, Buğday MS. Can intravesical application of paracetamol benefit the chemotherapy treatment of bladder cancer? Med Hypotheses 2019; 131:109322. [PMID: 31443756 DOI: 10.1016/j.mehy.2019.109322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/17/2019] [Accepted: 07/20/2019] [Indexed: 10/26/2022]
Abstract
Bladder cancer is one of the most common urogenital tumors. Its prevalence is increasing worldwide, especially men. The cyclooxygenase-2 (COX-2) enzyme has been shown to increase in bladder cancer and has a direct relationship with tumor progression. Non-steroidal anti-inflammatory drugs (NSAIDs) reduce the growth of the tumor by inhibiting the COX-2 enzyme. NSAIDs have other effects unrelated to COX that provide anticancer properties. Also, similar to NSAIDs, anticancer effects of paracetamol have been shown in many studies. Therefore we hypothesize intravesical paracetamol application will have beneficial effects in the treatment of non-muscle invasive bladder cancer (NMBIC).
Collapse
Affiliation(s)
- Ersoy Öksüz
- Department of Medical Pharmacology, Malatya Training and Research Hospital, Malatya, Turkey.
| | | |
Collapse
|
27
|
Benitez MLR, Bender CB, Oliveira TL, Schachtschneider KM, Collares T, Seixas FK. Mycobacterium bovis BCG in metastatic melanoma therapy. Appl Microbiol Biotechnol 2019; 103:7903-7916. [PMID: 31402426 DOI: 10.1007/s00253-019-10057-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Melanoma is the most aggressive form of skin cancer, with a high mortality rate and with 96,480 new cases expected in 2019 in the USS. BRAFV600E, the most common driver mutation, is found in around 50% of melanomas, contributing to tumor growth, angiogenesis, and metastatic progression. Dacarbazine (DTIC), an alkylate agent, was the first chemotherapeutic agent approved by the US Food and Drug Administration (FDA) used as a standard treatment. Since then, immunotherapies have been approved for metastatic melanoma (MM) including ipilimumab and pembrolizumab checkpoint inhibitors that help decrease the risk of progression. Moreover, Mycobacterium bovis Bacillus Calmette-Guerin (BCG) serves as an adjuvant therapy that induces the recruitment of natural killer NK, CD4+, and CD8+ T cells and contributes to antitumor immunity. BCG can be administered in combination with chemotherapeutic and immunotherapeutic agents and can be genetically manipulated to produce recombinant BCG (rBCG) strains that express heterologous proteins or overexpress immunogenic proteins, increasing the immune response and improving patient survival. In this review, we highlight several studies utilizing rBCG immunotherapy for MM in combination with other therapeutic agents.
Collapse
Affiliation(s)
- Martha Lucia Ruiz Benitez
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonnemann Bender
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thaís Larré Oliveira
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
28
|
Leko V, McDuffie LA, Zheng Z, Gartner JJ, Prickett TD, Apolo AB, Agarwal PK, Rosenberg SA, Lu YC. Identification of Neoantigen-Reactive Tumor-Infiltrating Lymphocytes in Primary Bladder Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3458-3467. [PMID: 31036766 PMCID: PMC6548619 DOI: 10.4049/jimmunol.1801022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
Immune checkpoint inhibitors are effective in treating a variety of malignancies, including metastatic bladder cancer. A generally accepted hypothesis suggests that immune checkpoint inhibitors induce tumor regressions by reactivating a population of endogenous tumor-infiltrating lymphocytes (TILs) that recognize cancer neoantigens. Although previous studies have identified neoantigen-reactive TILs from several types of cancer, no study to date has shown whether neoantigen-reactive TILs can be found in bladder tumors. To address this, we generated TIL cultures from patients with primary bladder cancer and tested their ability to recognize tumor-specific mutations. We found that CD4+ TILs from one patient recognized mutated C-terminal binding protein 1 in an MHC class II-restricted manner. This finding suggests that neoantigen-reactive TILs reside in bladder cancer, which may help explain the effectiveness of immune checkpoint blockade in this disease and also provides a rationale for the future use of adoptive T cell therapy targeting neoantigens in bladder cancer.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20982
| | - Lucas A McDuffie
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zhili Zheng
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jared J Gartner
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Todd D Prickett
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Piyush K Agarwal
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yong-Chen Lu
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
29
|
Larsen ES, Nordholm AC, Lillebaek T, Holden IK, Johansen IS. The epidemiology of bacille Calmette-Guérin infections after bladder instillation from 2002 through 2017: a nationwide retrospective cohort study. BJU Int 2019; 124:910-916. [PMID: 31054198 DOI: 10.1111/bju.14793] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To describe incidence and clinical characteristics of bacille Calmette-Guérin (BCG) infections after BCG bladder instillation amongst patients with non-muscle-invasive bladder cancer in Denmark. PATIENTS AND METHODS We conducted a nationwide register-based cohort study in Denmark between 2002 through 2017. Patients with BCG infection were identified by cross-linking data from the Danish National Hospital Registry on patients treated with BCG instillations and patients diagnosed with tuberculosis according to the International Classification of Diseases 10, and data obtained from International Reference Laboratory of Mycobacteriology. Hospital records were reviewed for clinical information. RESULTS During the study period, 6753 patients (5281 men; mean [SD] age 71.1 (0.1) years) received BCG instillations, of which 66 patients (1%) developed BCG infections. There were no differences in age or Charlson Comorbidity Index between the patients in the study population stratified by BCG infection. The median (interquartile range) time from first BCG instillation until symptoms of BCG infection was 169.5 (38-585) days. Extrapulmonary localisation of BCG infections (37 patients, 56.1%) was significantly more frequent than pulmonary BCG infections (20 patients, 30.3%; P < 0.001). The most common extrapulmonary localisation was the genitourinary tract (29 patients, 78.4%). CONCLUSION BCG infections after bladder instillation are rare, mainly affect male patients, and are most frequently extrapulmonary. BCG infections should be suspected despite a long time span between occurrence of symptoms and prior bladder instillation.
Collapse
Affiliation(s)
- Emilie S Larsen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital/Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Anne C Nordholm
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark.,International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Troels Lillebaek
- International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, Denmark
| | - Inge K Holden
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Isik S Johansen
- Department of Infectious Diseases, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Bacillus Calmette-Guérin Induces PD-L1 Expression on Antigen-Presenting Cells via Autocrine and Paracrine Interleukin-STAT3 Circuits. Sci Rep 2019; 9:3655. [PMID: 30842561 PMCID: PMC6403281 DOI: 10.1038/s41598-019-40145-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is the only licensed vaccine for tuberculosis (TB), and is also used as an immunotherapy for bladder cancer and other malignancies due to its immunostimulatory properties. Mycobacteria spp., however, are well known for their numerous immune evasion mechanisms that limit the true potential of their therapeutic use. One such major mechanism is the induction of programmed death ligand-1 (PD-L1), which mitigates adaptive immune responses. Here, we sought to unravel the molecular pathways behind PD-L1 up-regulation on antigen-presenting cells (APCs) by BCG. We found that infection of APCs with BCG induced PD-L1 up-regulation, but that this did not depend on direct infection, suggesting a soluble mediator for this effect. BCG induced potent quantities of IL-6 and IL-10, and the downstream transcription factor STAT3 was hyper-phosphorylated. Intracellular analyses revealed that levels of PD-L1 molecules were associated with the STAT3 phosphorylation state, suggesting a causal link. Neutralisation of the IL-6 or IL-10 cytokine receptors dampened STAT3 phosphorylation and BCG-mediated up-regulation of PD-L1 on APCs. Pharmacological inhibition of STAT3 achieved the same effect, confirming an autocrine-paracrine cytokine loop as a mechanism for BCG-mediated up-regulation of PD-L1. Finally, an in vivo immunisation model showed that BCG vaccination under PD-L1 blockade could enhance antigen-specific memory CD4 T-cell responses. These novel findings could lead to refinement of BCG as both a vaccine for infectious disease and as a cancer immunotherapy.
Collapse
|
31
|
Ibarra C, Karlsson M, Codeluppi S, Varas-Godoy M, Zhang S, Louhivuori L, Mangsbo S, Hosseini A, Soltani N, Kaba R, Kalle Lundgren T, Hosseini A, Tanaka N, Oya M, Wiklund P, Miyakawa A, Uhlén P. BCG-induced cytokine release in bladder cancer cells is regulated by Ca 2+ signaling. Mol Oncol 2018; 13:202-211. [PMID: 30358081 PMCID: PMC6360358 DOI: 10.1002/1878-0261.12397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is widely used in the clinic to effectively treat superficial urinary bladder cancer. However, a significant proportion of patients who fail to respond to BCG risk cystectomy or death. Though more than 3 million cancer treatments with BCG occur annually, surprisingly little is known about the initial signaling cascades activated by BCG. Here, we report that BCG induces a rapid intracellular Ca2+ (calcium ion) signal in bladder cancer cells that is essential for activating the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and for synthesizing and secreting proinflammatory cytokines, including interleukin 8 (IL-8). A similar Ca2+ response was observed when cells were exposed to the supernatant of BCG. Studying cellular molecular mechanisms involved in the BCG signaling event, we found pivotal roles for phospholipase C and the Toll-like receptor 4. Further assessment revealed that this signaling pathway induces synthesis of IL-8, whereas exocytosis appeared to be controlled by global Ca2+ signaling. These results shed new light on the molecular mechanisms underlying BCG treatment of bladder cancer, which can help in improving therapeutic efficacy and reducing adverse side effects.
Collapse
Affiliation(s)
- Cristián Ibarra
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marie Karlsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simone Codeluppi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Varas-Godoy
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Centro de Investigacion Biomedica, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Songbai Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sara Mangsbo
- Department of Pharmaceutical Biosciences, Science for Life Laboratory, Uppsala University, Sweden
| | - Arad Hosseini
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Navid Soltani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rahim Kaba
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - T Kalle Lundgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Abolfazl Hosseini
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Nobuyuki Tanaka
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Peter Wiklund
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ayako Miyakawa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Keio University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother 2018; 14:255-268. [PMID: 29087782 PMCID: PMC5806656 DOI: 10.1080/21645515.2017.1388481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma remains one of the most common central nervous system tumors with an extremely poor prognosis. Recently, rapid progress in immunotherapy has provided new options for the treatment of glioblastoma. Vaccination, the primary method of immunotherapy, stimulates the body's tumor-specific immune response by the injection of foreign antigens. Peptide vaccines involve the injection of tumor-specific antigens, such as EGFRvIII or heat-shock proteins. Cell-based vaccines, which primarily include dendritic cell vaccines and tumor cell vaccines, involve injections of ex vivo-modified cells. Despite the encouraging results of phase I/II clinical trials, no successful phase III clinical trials involving glioblastoma immunotherapy, including glioblastoma vaccinations, have been reported to date. In this review, the authors summarize the published outcomes of glioblastoma vaccine therapy, explore its future prospects based on ongoing clinical trials, and discuss combined therapy as a future direction for glioblastoma treatment.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Buss JH, Begnini KR, Bender CB, Pohlmann AR, Guterres SS, Collares T, Seixas FK. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer. Front Pharmacol 2018; 8:977. [PMID: 29379438 PMCID: PMC5770893 DOI: 10.3389/fphar.2017.00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette–Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karine Rech Begnini
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonemann Bender
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Adriana R Pohlmann
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
34
|
Williams SB, Kamat AM, Mmeje C, Ye Y, Huang M, Chang DW, Dinney CP, Wu X. Genetic variants in the inflammation pathway as predictors of recurrence and progression in non-muscle invasive bladder cancer treated with Bacillus Calmette-Guérin. Oncotarget 2017; 8:88782-88791. [PMID: 29179475 PMCID: PMC5687645 DOI: 10.18632/oncotarget.21222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/02/2017] [Indexed: 01/17/2023] Open
Abstract
Inflammation plays a critical role in the etiology of several cancers and may affect their clinical outcome. Our objective was to assess the association of genetic variants within the inflammation pathway with recurrence and progression among non-muscle invasive bladder cancer (NMIBC) patients with or without Bacillus Calmette–Guérin (BCG) treatment. We genotyped 372 single nucleotide polymorphisms (SNPs) in 27 selected genes within the inflammation pathway in 349 patients diagnosed with NMIBC, followed by internal validation in 322 additional patients. We used Cox proportional hazards regression analyses to identify SNPs as predictors for recurrence and progression. In the discovery phase, we identified 20 variants that were significantly associated with recurrence outcomes and 15 SNPs significantly associated with progression in patients treated with BCG but not in the transurethral resection (TUR)-only group. In BCG treated patients, rs7089861 was the only SNP significantly associated with risk of progression in both the discovery phase (Hazard Ratio [HR]=3.15, 95% Confidence Interval [CI]: 1.38-7.22, P<0.01) and validation phase (HR=3.84, 95% CI: 1.64-9.0, P=0.002; meta-analysis HR=3.47, 95% CI: 1.92-6.28, P<0.001). Two variants, rs1800686 and rs2071081, had probable association with HRs of the same trend in the discovery and validation groups (meta-analysis P=0.002). These findings supported the notion that genetic variation of inflammation pathway may impact clinical outcome of NMIBC patients treated with BCG immunotherapy. Further validation of these results in order to improve risk stratification to identify patients most likely to benefit from BCG treatment versus upfront radical cystectomy and future development of potential targeted therapies are warranted.
Collapse
Affiliation(s)
- Stephen B Williams
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Division of Urology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Ashish M Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chinedu Mmeje
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanquing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David W Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin P Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Poli G, Cochetti G, Boni A, Egidi MG, Brancorsini S, Mearini E. Characterization of inflammasome-related genes in urine sediments of patients receiving intravesical BCG therapy. Urol Oncol 2017; 35:674.e19-674.e24. [PMID: 28888400 DOI: 10.1016/j.urolonc.2017.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/26/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nowadays, the intravesical Bacillus Calmette-Guérin (BCG) instillation is the method of choice for the postsurgical treatment of high-grade nonmuscle-invasive bladder cancer , to reduce both recurrence rate and risk of progression. BCG is hypothesized to correct the immune system disequilibrium occurring during carcinogenesis, through an immunostimulation with detrimental effects for tumoral cells. Inflammation plays a crucial role in tumor progression. The deregulation of inflammasomes upon carcinogenesis underlines its importance both in physiologic and pathologic human conditions. Nucleotide oligomerization domain-like receptors (NLRs) are key components of this molecular platform and the increase in expression of some members of nucleotide oligomerization domain-like receptors family (NLRP3, NLRP4, NLRP9, and NLR family apoptosis inhibitory protein [NAIP]) in urothelial carcinoma was already demonstrated in our previous work. The first aim of the present work was to estimate whether these inflammasome-related genes show alterations during BCG instillations. The expression levels of NLRP3, NLRP4, NLRP9, and NAIP were assessed in the urine sediments from patients, which underwent surgery for superficial high-grade bladder cancer and further subjected to serial BCG instillations. The eventual association between NLR expression and recurrence was also evaluated. The expression of CK20 mRNA as confirmed marker of bladder cancer was also assayed. METHODS Urine were sampled from patients harboring high-grade superficial bladder cancer and treated postsurgically with weekly BCG instillations for 6 weeks (induction cycle, I). Urine sediments were processed and resulting RNA was reverse transcribed and used for amplification by real-time PCR. RESULTS After surgery, CK20 levels decreased significantly whereas NLRP4 and NLRP9 genes showed an increase. NLRP3 and NAIP remained substantially unmodified. CK20 mRNA decreased at the end of the induction cycle. NLRP3 did not show relevant modifications. The expression levels of NLRP4 and NLRP9 decreased significantly after 2 BCG administrations and remained substantially downregulated during the whole induction cycle. CK20 was higher in recurrence cases before BCG administration compared to the recurrence-free group, while no significant difference after BCG therapy was recorded. NLRP4 and NLRP9 were higher in patients with recurrence before BCG administration. CONCLUSIONS The study underlines the importance of NLRP4 and NLRP9 in urothelial carcinoma and if these preliminary data will be confirmed in larger cohort studies, the assessment of NLRP4 and NLRP9 expression levels could help to predict the BCG failure, playing a relevant role in decision making for early radical surgery.
Collapse
Affiliation(s)
- Giulia Poli
- Department of Experimental Medicine, Section of Terni, University of Perugia, Perugia, Italy
| | - Giovanni Cochetti
- Department of Surgical and Biomedical Sciences, Institute of Urological, Andrological Surgery and Minimally Invasive Techniques, University of Perugia, Perugia, Italy
| | - Andrea Boni
- Department of Surgical and Biomedical Sciences, Institute of Urological, Andrological Surgery and Minimally Invasive Techniques, University of Perugia, Perugia, Italy
| | - Maria Giulia Egidi
- Department of Surgical and Biomedical Sciences, Institute of Urological, Andrological Surgery and Minimally Invasive Techniques, University of Perugia, Perugia, Italy.
| | - Stefano Brancorsini
- Department of Experimental Medicine, Section of Terni, University of Perugia, Perugia, Italy
| | - Ettore Mearini
- Department of Surgical and Biomedical Sciences, Institute of Urological, Andrological Surgery and Minimally Invasive Techniques, University of Perugia, Perugia, Italy
| |
Collapse
|
36
|
Lardone RD, Chan AA, Lee AF, Foshag LJ, Faries MB, Sieling PA, Lee DJ. Mycobacterium bovis Bacillus Calmette-Guérin Alters Melanoma Microenvironment Favoring Antitumor T Cell Responses and Improving M2 Macrophage Function. Front Immunol 2017; 8:965. [PMID: 28848560 PMCID: PMC5554507 DOI: 10.3389/fimmu.2017.00965] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/28/2017] [Indexed: 01/07/2023] Open
Abstract
Intralesional Mycobacterium bovis bacillus Calmette-Guérin (BCG) has long been a relatively inexpensive therapy for inoperable cutaneous metastatic melanoma (CMM), although intralesional BCG skin mechanisms remain understudied. We analyzed intralesional BCG-treated CMM lesions combined with in vitro studies to further investigate BCG-altered pathways. Since macrophages play a pivotal role against both cancer and mycobacterial infections, we hypothesized BCG regulates macrophages to promote antitumor immunity. Tumor-associated macrophages (M2) infiltrate melanomas and impair antitumor immunity. BCG-treated, in vitro-polarized M2 (M2-BCG) showed transcriptional changes involving inflammation, immune cell recruitment, cross talk, and activation pathways. Mechanistic network analysis indicated M2-BCG potential to improve interferon gamma (IFN-γ) responses. Accordingly, frequency of IFN-γ-producing CD4+ T cells responding to M2-BCG vs. mock-treated M2 increased (p < 0.05). Moreover, conditioned media from M2-BCG vs. M2 elevated the frequency of granzyme B-producing CD8+ tumor-infiltrating lymphocytes (TILs) facing autologous melanoma cell lines (p < 0.01). Furthermore, transcriptome analysis of intralesional BCG-injected CMM relative to uninjected lesions showed immune function prevalence, with the most enriched pathways representing T cell activation mechanisms. In vitro-infected MM-derived cell lines stimulated higher frequency of IFN-γ-producing TIL from the same melanoma (p < 0.05). Our data suggest BCG favors antitumor responses in CMM through direct/indirect effects on tumor microenvironment cell types including macrophages, T cells, and tumor itself.
Collapse
Affiliation(s)
- Ricardo D Lardone
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Alfred A Chan
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Agnes F Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Leland J Foshag
- Division of Surgical Oncology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Mark B Faries
- Melanoma Research Program, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Peter A Sieling
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States
| | - Delphine J Lee
- Dirks/Dougherty Laboratory for Cancer Research, Department of Translational Immunology, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, United States.,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| |
Collapse
|
37
|
Whang YM, Jin SB, Park SI, Chang IH. MEK inhibition enhances efficacy of bacillus Calmette-Guérin on bladder cancer cells by reducing release of Toll-like receptor 2-activated antimicrobial peptides. Oncotarget 2017; 8:53168-53179. [PMID: 28881802 PMCID: PMC5581101 DOI: 10.18632/oncotarget.18230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/12/2017] [Indexed: 12/27/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) is one of the standard treatment options for non-muscle-invasive bladder cancer. The details of the biological defense mechanisms against BCG remain unclear. Here, we investigated whether BCG-induced release of antimicrobial peptides (AMPs; e.g., human β-defensin-2, -3, and cathelicidin) is involved with mitogen-activated protein kinase (MAPK) pathways, and investigated the enhanced anticancer effect of BCG through the down-regulation of Toll-like receptors (TLRs) and MAPK pathways in bladder cancer cells. BCG-infected bladder cancer cells produced AMPs as a defense mechanism against BCG, which were reduced by MEK inhibitors by blocking phosphorylation of extracellular signal-regulated kinase (ERK1/2 or MEK) and c-Jun. MEK inhibitors enhanced inhibition of bladder cancer cell growth by decreased binding of c-Jun, p65 and Pol II to the activated protein-1 promoter. Knockdown of TLR2 and TLR4 reduced ERK phosphorylation. Knockdown of TLR 2 decreased release of AMPs, which was similar to the efficacy of MEK inhibitor on BCG-infected cells. BCG-infected bladder cancer cells were more prone to induction of AMP release following TLR2 activation via ERK and c-Jun pathway mediators. In conclusion, our data suggest that the BCG-induced release of AMPs in bladder cancer cells is a promising molecular target for enhancing the immunotherapeutic efficacy of BCG in bladder cancer patients.
Collapse
Affiliation(s)
- Young Mi Whang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Su Bin Jin
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| | - Serk In Park
- Department of Biochemistry and Molecular Biology and BK21 Plus Program, Korea University College of Medicine, Seoul, Korea.,Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
38
|
Severino PF, Silva M, Carrascal M, Malagolini N, Chiricolo M, Venturi G, Astolfi A, Catera M, Videira PA, Dall'Olio F. Expression of sialyl-Tn sugar antigen in bladder cancer cells affects response to Bacillus Calmette Guérin (BCG) and to oxidative damage. Oncotarget 2017; 8:54506-54517. [PMID: 28903359 PMCID: PMC5589598 DOI: 10.18632/oncotarget.17138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 03/30/2017] [Indexed: 11/25/2022] Open
Abstract
The sialyl-Tn (sTn) antigen is an O-linked carbohydrate chain aberrantly expressed in bladder cancer (BC), whose biosynthesis is mainly controlled by the sialyltransferase ST6GALNAC1. Treatment with Bacillus Calmette-Guérin (BCG) is the most effective adjuvant immunotherapy for superficial BC but one third of the patients fail to respond. A poorly understood correlation between the expression of sTn and BC patient's response to BCG was previously observed. By analyzing tumor tissues, we showed that patients with high ST6GALNAC1 and IL-6 mRNA expression were BCG responders. To investigate the role of sTn in BC cell biology and BCG response, we established the cell lines MCRsTn and MCRNc by retroviral transduction of the BC cell line MCR with the ST6GALNAC1 cDNA or with an empty vector, respectively. Compared with MCRNc, BCG-stimulated MCRsTn secreted higher levels of IL-6 and IL-8 and their secretome induced a stronger IL-6, IL-1β, and TNFα secretion by macrophages, suggesting the induction of a stronger inflammatory response. Transcriptomic analysis of MCRNc and MCRsTn revealed that ST6GALNAC1/sTn expression modulates hundreds of genes towards a putative more malignant phenotype and down-regulates several genes maintaining genomic stability. Consistently, MCRsTn cells displayed higher H2O2 sensitivity. In MCRsTn,, BCG challenge induced an increased expression of several regulatory non coding RNA genes. These results indicate that the expression of ST6GALNAC1/sTn improves the response to BCG therapy by inducing a stronger macrophage response and alters gene expression towards malignancy and genomic instability, increasing the sensitivity of BC cells to the oxidizing agents released by BCG.
Collapse
Affiliation(s)
- Paulo F Severino
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Mariana Silva
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Mylene Carrascal
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Nadia Malagolini
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Mariella Chiricolo
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Giulia Venturi
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Annalisa Astolfi
- Centro Interdipartimentale Ricerche sul Cancro "Giorgio Prodi", Università di Bologna, Bologna, Italy
| | - Mariangela Catera
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| | - Paula A Videira
- Centro de Estudos de Doenças Crónicas, CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.,UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Fabio Dall'Olio
- Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Sede di Patologia Generale, Università di Bologna, Bologna, Italy
| |
Collapse
|
39
|
Han JY, Lim YJ, Choi JA, Lee JH, Jo SH, Oh SM, Song CH. The Role of Prostate Apoptosis Response-4 (Par-4) in Mycobacterium tuberculosis Infected Macrophages. Sci Rep 2016; 6:32079. [PMID: 27552917 PMCID: PMC4995434 DOI: 10.1038/srep32079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 01/30/2023] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a tumor suppressor protein that forms a complex with glucose-regulated protein 78 (GRP78) to induce apoptosis. Previously, we reported that ER stress-induced apoptosis is a critical host defense mechanism against Mycobacterium tuberculosis (Mtb). We sought to understand the role of Par-4 during ER stress-induced apoptosis in response to mycobacterial infection. Par-4 and GRP78 protein levels increased in response Mtb (strain: H37Ra) infection. Furthermore, Par-4 and GRP78 translocate to the surface of Mtb H37Ra-infected macrophages and induce apoptosis via caspase activation. NF-κB activation, Mtb-mediated ER stress, and Par-4 production were significantly diminished in macrophages with inhibited ROS production. To test Par-4 function during mycobacterial infection, we analyzed intracellular survival of Mtb H37Ra in macrophages with Par-4 overexpression or knockdown. Mtb H37Ra growth was significantly reduced in Par-4 overexpressing macrophages and increased in knockdown macrophages. We also observed increased Par-4, GRP78, and caspases activation in Bacillus Calmette-Guérin (BCG)-infected prostate cancer cells. Our data demonstrate that Par-4 is associated with ER stress-induced apoptosis resulting in reduced intracellular survival of mycobacteria. BCG treatment increases Par-4-dependent caspase activation in prostate cancer cells. These results suggest ER stress-induced Par-4 acts as an important defense mechanism against mycobacterial infection and regulates cancer.
Collapse
Affiliation(s)
- Ji-Ye Han
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Yun-Ji Lim
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Ji-Ae Choi
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Jung-Hwan Lee
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Sung-Hee Jo
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Sung-Man Oh
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Republic of Korea.,Department of Microbiology, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon 35015, Republic of Korea
| |
Collapse
|
40
|
|
41
|
Liu SY, Liu IC, Lin TY. Truncated Escherichia coli thioredoxin induces proliferation of human blood mononuclear cells and production of reactive oxygen species as well as proinflammatory cytokines. Cell Biochem Funct 2016; 34:226-32. [PMID: 27029462 DOI: 10.1002/cbf.3180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 11/07/2022]
Abstract
UNLABELLED Thioredoxin (Trx) is a redox protein characterized by a Trx fold. A naturally occurring truncated human Trx, Trx 80, which lacks the C-terminal strand-helix of the Trx fold, stimulates proliferation of peripheral blood mononuclear cells (PBMCs). It has not been clear how Trx80 gains this function. This study investigates whether a peptide with substantial sequence difference from Trx80, but retaining an abridged Trx fold can elicit PBMC proliferation. We genetically truncated a carboxy-terminal β-α motif of Escherichia coli Trx to produce a peptide, Trx83, which shares low sequence identity with human Trx80. Addition of reduced-form Trx83 to resting human PBMCs promoted cell proliferation, while oxidized-form Trx83 lacked the function. By contrast, oxidized-form Trx80 exhibited a high activity in promoting PBMC proliferation, indicating the importance of sequence context of an abridged thioredoxin in influencing PBMC proliferation. Trx83 increases cellular reactive oxygen species and proinflammatory cytokines TNF-α and IL-1β, suggesting that Trx83 modulates inflammatory pathways. This notion is supported by the observation that cystine or cysteine abolishes the Trx83 induced PBMC proliferation. The PBMC stimulatory activity of Trx83 may have potential for pharmacological developments. SIGNIFICANCE OF THE STUDY Elicitation of primary proliferative responses of PBMCs by a protein is generally difficult. We show that Escherichia coli Trx83 with a truncated Trx fold induces PBMC proliferation, but only in the disulfide-reduced form. In contrast, oxidized-form human Trx80 is a potent stimulator. These results demonstrate that the sequence context of an abridged Trx fold is influential in inducing PBMC proliferation. The stimulatory effect of Trx83 is associated with an increase of inflammatory response. The possibility of eliciting PBMC proliferation and switching this activity on/off by redox control provides a perspective for developing Trx83 as a PBMC stimulatory agent. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Si-Yen Liu
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin Chu, Taiwan
| | - I-Chung Liu
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin Chu, Taiwan
| | - Tiao-Yin Lin
- Department of Biological Science and Technology, National Chiao-Tung University, Hsin Chu, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin Chu, Taiwan
| |
Collapse
|
42
|
Iida K, Naiki T, Kawai N, Etani T, Ando R, Ikegami Y, Okamura T, Kubota H, Okada A, Kohri K, Yasui T. Bacillus Calmette-Guerin therapy after the second transurethral resection significantly decreases recurrence in patients with new onset high-grade T1 bladder cancer. BMC Urol 2016; 16:8. [PMID: 26920373 PMCID: PMC4769574 DOI: 10.1186/s12894-016-0126-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/23/2016] [Indexed: 11/21/2022] Open
Abstract
Background The purpose of this study was to assess the efficacy of Bacillus Calmette-Guerin (BCG) therapy after a second transurethral resection (TUR) in new onset high-grade T1 bladder cancer. Methods From January 2008 to September 2013, 207 patients with new onset high-grade T1 bladder cancer after an initial TUR were treated at our university and at affiliated hospitals. Residual cancer rate, intravesical recurrence-free survival (RFS), and risk factors for intravesical recurrence were analyzed. Results Among a total of 207 patients, 42 patients were treated with BCG therapy following a second TUR (group 1), 23 were treated with second TUR alone (group 2), 72 were treated with BCG alone (group 3), and 70 were treated without a second TUR or BCG. The median patients’ age was 72.0 years, and the median follow-up period was 33.5 months. The second TUR revealed that 34 patients (52 %) had residual cancer. Between groups 1 and 2 and groups 1 and 3, the differences in RFS were statistically significant (p = 0.002 and 0.045, respectively). In addition, BCG therapy was the most significant factor to predict RFS after the second TUR. Among the 31 patients whose pathology of the second TUR was pT0, only 1 of 12 patients (8 %) in group 1 and 11 of 19 patients (58 %) in group 2 had a recurrence. Conclusions BCG instillation following a second TUR decreases intravesical recurrence, even if the pathology of the second TUR is pT0.
Collapse
Affiliation(s)
- Keitaro Iida
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Taku Naiki
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan. .,Department of Urology, Daido Hospital, Aichi, Japan.
| | - Noriyasu Kawai
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Toshiki Etani
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Ryosuke Ando
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Yosuke Ikegami
- Department of Urology, Nagoya City East Medical Center, Aichi, Japan.
| | | | - Hiroki Kubota
- Department of Urology, Kainan Hospital, Aichi, Japan.
| | - Atsushi Okada
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Kenjiro Kohri
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| | - Takahiro Yasui
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, 467-8601, Nagoya, Japan.
| |
Collapse
|
43
|
Smith SG, Zaharoff DA. Future directions in bladder cancer immunotherapy: towards adaptive immunity. Immunotherapy 2016; 8:351-65. [PMID: 26860539 DOI: 10.2217/imt.15.122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The clinical management of bladder cancer has not changed significantly in several decades. In particular, intravesical bacillus Calmette-Guérin (BCG) immunotherapy has been a mainstay for high-risk nonmuscle invasive bladder cancer since the late 1970s/early 1980s. This is despite the fact that bladder cancer has the highest recurrence rates of any cancer and BCG immunotherapy has not been shown to induce a tumor-specific immune response. We and others have hypothesized that immunotherapies capable of inducing tumor-specific adaptive immunity are needed to impact bladder cancer morbidity and mortality. This article summarizes the preclinical and clinical development of bladder cancer immunotherapies with an emphasis on the last 5 years. Expected progress in the near future is also discussed.
Collapse
Affiliation(s)
- Sean G Smith
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - David A Zaharoff
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
44
|
Nesi G, Nobili S, Cai T, Caini S, Santi R. Chronic inflammation in urothelial bladder cancer. Virchows Arch 2015; 467:623-633. [PMID: 26263854 DOI: 10.1007/s00428-015-1820-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/25/2023]
Abstract
The association between inflammation and cancer has been pointed out in epidemiological and clinical studies, revealing how chronic inflammation may contribute to carcinogenesis in various malignancies. However, the molecular events leading to malignant transformation in a chronically inflamed environment are not fully understood. In urothelial carcinoma of the urinary bladder, inflammation plays a dual role. On the one hand, chronic inflammation is a well-established risk factor for the development of bladder cancer (BC), as seen in Schistosoma haematobium infection. On the other, intravesical therapy by bacillus Calmette-Guérin (BCG), which induces inflammation, offers protection against cancer recurrence. The large variety of pro-inflammatory mediators expressed by BC and immune cells binds to specific receptors which control signalling pathways. These activate transcription of a plethora of downstream factors. This review summarizes recent data regarding inflammation and urothelial carcinoma, with special emphasis on the role the inflammatory response plays in BC recurrence risk and progression.
Collapse
Affiliation(s)
- Gabriella Nesi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy.
| | - Stefania Nobili
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Largo Medaglie d'Oro 9, 50011, Trento, Italy
| | - Saverio Caini
- Unit of Molecular and Nutritional Epidemiology, Institute for Cancer Research and Prevention (ISPO), Via delle Oblate 2, 50139, Florence, Italy
| | - Raffaella Santi
- Division of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
45
|
Ho PL, Williams SB, Kamat AM. Immune therapies in non-muscle invasive bladder cancer. Curr Treat Options Oncol 2015; 16:5. [PMID: 25757877 DOI: 10.1007/s11864-014-0315-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OPINION STATEMENT Non-muscle invasive bladder cancer (NMIBC) continues to be a challenging disease to manage. Treatment involves transurethral resection and, often, intravesical therapy. Appropriate patient selection, accurate staging, and morphological characterization are vital in risk-stratifying patients to those who would most benefit from receiving intravesical therapy. Bacillus of Calmette and Guérin (BCG) continues to be the first-line agent of choice for patients with intermediate- and high-risk NMIBC. Treatment should begin with the standard induction course of 6 weekly treatments. The inclusion of subsequent maintenance courses of BCG is imperative to optimal therapeutic response. While patients with intermediate-risk disease should receive 1 year of maintenance therapy, high-risk patients benefit from up to 3 years of maintenance therapy. BCG use should not be used in low-risk patients with de novo Ta, low-grade, solitary, <3-cm tumors. Conversely, patients with muscle-invasive disease should forgo intravesical immunotherapy and proceed directly to radical cystectomy. Cystectomy also should be considered in patients with multiple T1 tumors, T1 tumors located in difficult to resect locations, residual T1 on re-resection, and T1 with concomitant CIS. Although promising new immunotherapeutic agents, such as Urocidin, protein-based vaccines, and immune check point inhibitors are undergoing preclinical and clinical investigation, immunotherapy in bladder cancer remains largely reliant on intravesical BCG with surgical consolidation as the standard salvage treatment for patients with BCG failure.
Collapse
Affiliation(s)
- Philip L Ho
- The University of Texas at M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
46
|
Zheng YQ, Naguib YW, Dong Y, Shi YC, Bou S, Cui Z. Applications of bacillus Calmette–Guerin and recombinant bacillus Calmette–Guerin in vaccine development and tumor immunotherapy. Expert Rev Vaccines 2015. [DOI: 10.1586/14760584.2015.1068124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan-qiang Zheng
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Youssef W Naguib
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yixuan Dong
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yan-chun Shi
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Shorgan Bou
- 3National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, China
| | - Zhengrong Cui
- 1Inner Mongolia Key Laboratory of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
- 2Pharmaceutics Division, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
47
|
Kandeel W, Abdelal A, Elmohamady BN, Sebaey A, Elshaaer W, Elbarky E, Abdelwahab O. A comparative study between full-dose and half-dose intravesical immune bacille Calmette-Guérin injection in the management of superficial bladder cancer. Arab J Urol 2015; 13:233-7. [PMID: 26609439 PMCID: PMC4656796 DOI: 10.1016/j.aju.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 07/13/2015] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVES To determine whether a half-dose of bacille Calmette-Guérin (BCG) can reduce toxicity without affecting its efficacy in the management of non-muscle-invasive bladder cancer. PATIENTS AND METHODS From January 2012 to January 2014, 80 patients with superficial bladder cancer and in the intermediate-risk group were simply randomised to receive two different doses of BCG, i.e., a full dose of 90 mg (group A) or a half-dose of 45 mg (group B). There were no significant differences in clinical and pathological characteristics between the groups. At completion of the study, 40 patients could be evaluated in each group. RESULTS All patients were evaluated for a follow-up of 12 months after treatment. There was no significant difference in recurrence rate (15 patients, 38%, in group A and 16, 40%, in group B) in the two groups, and no difference in progression rate of the disease, at eight patients (20%) in each group. There were significant differences between groups A and B in toxicity (grade 1 adverse events, 70% vs. 60%; grade 2, 18% vs. 7.5%, respectively). Grade 3 adverse events were only reported in group A (2.5%). CONCLUSION The half dose of intravesical BCG instillation can reduce the toxicity and side-effects that are associated with the treatment of superficial bladder cancer, without affecting the efficacy of therapy.
Collapse
Affiliation(s)
- Wael Kandeel
- Urology Department, Benha Faculty of Medicine, Benha University, Egypt
| | - Ashraf Abdelal
- Urology Department, Benha Faculty of Medicine, Benha University, Egypt
| | | | - Ahmed Sebaey
- Urology Department, Benha Faculty of Medicine, Benha University, Egypt
| | - Waleed Elshaaer
- Urology Department, Benha Faculty of Medicine, Benha University, Egypt
| | - Ehab Elbarky
- Urology Department, Benha Faculty of Medicine, Benha University, Egypt
| | - Osama Abdelwahab
- Urology Department, Benha Faculty of Medicine, Benha University, Egypt
| |
Collapse
|
48
|
Lerut E, Van Poppel H, Joniau S, Gruselle O, Coche T, Therasse P. Rates of MAGE-A3 and PRAME expressing tumors in FFPE tissue specimens from bladder cancer patients: potential targets for antigen-specific cancer immunotherapeutics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:9522-9532. [PMID: 26464715 PMCID: PMC4583947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/24/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Antigen-specific active immunotherapy is an investigational therapeutic approach of potential interest for bladder cancer regardless of disease stage. Clinical development of antigen-specific immunotherapeutics against bladder cancer must be preceded by assessment of the expression of relevant genes in bladder tumors. The objectives of this study (NCT01706185) were to assess the rate of expression of the MAGE-A3 and PRAME genes in bladder tumors and to investigate the feasibility of using formalin-fixed paraffin-embedded (FFPE) tumor tissues for testing. MATERIALS AND METHODS Archived FFPE bladder tumor specimens (any stage) were tested for mRNA expression of MAGE-A3 and PRAME using antigen-specific quantitative reverse transcription polymerase chain reaction assays. Data on patients and tumor characteristics were obtained from hospital records to investigate these characteristics' possible association with the antigen expression. RESULTS Over 92% of the 156 tumors examined gave valid antigen test results. Of the tumors with a valid test, 46.5% were MAGE-A3-positive, 32.2% were PRAME-positive and 59.7% positive for at least one of them. Exploratory analyses of possible associations between antigen expression and patient or tumor characteristics did not identify clear associations between antigen expression and any of the variables investigated. CONCLUSIONS Assessment of tumor antigen mRNA expression by using FFPE bladder tissues was feasible. The rates of MAGE-A3-positive and PRAME-positive tumors indicate that both antigens may be interesting targets for immunotherapeutics against bladder cancer.
Collapse
Affiliation(s)
- Evelyne Lerut
- Department of Pathology, University Hospitals LeuvenLeuven, Belgium
| | | | - Steven Joniau
- Department of Urology, University Hospitals LeuvenLeuven, Belgium
| | | | | | | |
Collapse
|
49
|
SUN ERLIN, FAN XIAODONG, WANG LINING, LEI MINGDE, ZHOU XIAODONG, LIU CHUNYU, LU BINGXIN, NIAN XUEWU, SUN YAN, HAN RUIFA. Recombinant h IFN-α2b-BCG inhibits tumor growth in a mouse model of bladder cancer. Oncol Rep 2015; 34:183-94. [DOI: 10.3892/or.2015.3985] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
|
50
|
Liu X, Dowell AC, Patel P, Viney RP, Foster MC, Porfiri E, James ND, Bryan RT. Cytokines as effectors and predictors of responses in the treatment of bladder cancer by bacillus Calmette-Guérin. Future Oncol 2015; 10:1443-56. [PMID: 25052754 DOI: 10.2217/fon.14.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The most effective intravesical treatment of non-muscle-invasive bladder cancer is instillation of live Mycobacterium bovis bacillus Calmette-Guérin (BCG). BCG stimulates the release of cytokines, contributing directly or indirectly to its effectiveness. However, the function of specific cytokines is not well understood. We have undertaken a nonsystematic review of primary evidence regarding cytokine detection, activation and response in BCG patients. Cytokines IL-2, IL-8 and TNF-α appear to be essential for effective BCG therapy and nonrecurrence, while IL-10 may have an inhibitory effect on BCG responses. IL-2, IL-8, TRAIL and TNF-α are potentially predictive of response to BCG. Alterations in genes encoding cytokines may also affect responses. There are significant data showing the association of certain cytokines with successful BCG treatment, and which may be useful predictive markers. Isolating those cytokines mediating efficacy may hold the key to ameliorating BCG's side effects and improving efficacy and patient compliance.
Collapse
Affiliation(s)
- Xiaoxuan Liu
- The Medical School, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|