1
|
Rezaei A, Pourfarzam S, Jamali T, Mohammadi NG, Andalib A, Hassan ZM, Ayubi F, Ghazanfari T. Exploring chemokines and soluble adhesion molecules in mustard lung pathogenesis. Int Immunopharmacol 2025; 149:114241. [PMID: 39923581 DOI: 10.1016/j.intimp.2025.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Sulfur mustard (SM), functioning as an alkylating agent, plays a significant role in developing respiratory system pathologies. This study aimed to evaluate serum concentrations of chemokines and soluble adhesion molecules in serious mustard lung (ML) patients 25-30 years after exposure to SM, exploring their roles in ML pathogenesis and disease severity. The study included 275 individuals exposed to SM and 64 unexposed individuals as controls. Serum samples were collected and clinical evaluations categorized disease severity and pulmonary pathogenesis. Serum levels of MCP-1/CCL2, RANTES/CCL5, CX3CL1, CXCL12s, P-selectin, sL-selectin, sE-selectin, sICAM-1 levels were measured using ELISA kits, and mRNA expression of CXCR4 in whole blood was determined via real-time PCR. Data analysis included comparisons between groups. SM-exposed individuals exhibited significantly higher MCP-1/CCL2 and RANTES/CCL5 levels, with decreased CX3CL1 levels compared to controls. CXCL12, selectins, sICAM-1 levels, and the expression level of CXCR4 showed no significant differences. Changes in some of the mentioned factors were observed, along with changes in the severity of the disease, suggesting potential roles in ML progression. The findings suggest a complex interplay of immune responses in ML pathogenesis, with elevated MCP-1/CCL2 and RANTES/CCL5 potentially contributing to inflammation, while decreased CX3CL1 levels and unchanged CXCL12 and CXCR4 may impair immune responses and tissue repair mechanisms. The unique chemokine and adhesion molecule profile observed in SM-exposed subgroups suggests ML as a differentiated pulmonary disease requiring further investigation into its pathogenesis and relationship with inflammatory disorders.
Collapse
Affiliation(s)
- Abbas Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Tahereh Jamali
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Niki Ghambari Mohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Alireza Andalib
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Fatemeh Ayubi
- Immunoregulation Research Center, Shahed University, Tehran, Iran
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran; Department of Immunology, Shahed University, Tehran, Iran.
| |
Collapse
|
2
|
Zhai J, Voraphani N, Imboden M, Keidel D, Liu C, Stern DA, Venker C, Petersen H, Bosco A, Sherrill DL, Morgan WJ, Tesfaigzi Y, Probst-Hensch NM, Martinez FD, Halonen M, Guerra S. Circulating biomarkers of airflow limitation across the life span. J Allergy Clin Immunol 2024; 153:1692-1703. [PMID: 38253260 PMCID: PMC11162345 DOI: 10.1016/j.jaci.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024]
Abstract
BACKGROUND Airflow limitation is a hallmark of chronic obstructive pulmonary disease, which can develop through different lung function trajectories across the life span. There is a need for longitudinal studies aimed at identifying circulating biomarkers of airflow limitation across different stages of life. OBJECTIVES This study sought to identify a signature of serum proteins associated with airflow limitation and evaluate their relation to lung function longitudinally in adults and children. METHODS This study used data from 3 adult cohorts (TESAOD [Tucson Epidemiological Study of Airway Obstructive Disease], SAPALDIA [Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults], LSC [Lovelace Smoker Cohort]) and 1 birth cohort (TCRS [Tucson Children's Respiratory Study]) (N = 1940). In TESAOD, among 46 circulating proteins, we identified those associated with FEV1/forced vital capacity (FVC) percent (%) predicted levels and generated a score based on the sum of their z-scores. Cross-sectional analyses were used to test the score for association with concomitant lung function. Longitudinal analyses were used to test the score for association with subsequent lung function growth in childhood and decline in adult life. RESULTS After false discovery rate adjustment, serum levels of 5 proteins (HP, carcinoembryonic antigen, ICAM1, CRP, TIMP1) were associated with percent predicted levels of FEV1/FVC and FEV1 in TESAOD. In cross-sectional multivariate analyses the 5-biomarker score was associated with FEV1 % predicted in all adult cohorts (meta-analyzed FEV1 decrease for 1-SD score increase: -2.9%; 95% CI: -3.9%, -1.9%; P = 2.4 × 10-16). In multivariate longitudinal analyses, the biomarker score at 6 years of age was inversely associated with FEV1 and FEV1/FVC levels attained by young adult life (P = .02 and .005, respectively). In adults, persistently high levels of the biomarker score were associated with subsequent accelerated decline of FEV1 and FEV1/FVC (P = .01 and .001). CONCLUSIONS A signature of 5 circulating biomarkers of airflow limitation was associated with both impaired lung function growth in childhood and accelerated lung function decline in adult life, indicating that these proteins may be involved in multiple lung function trajectories leading to chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Jing Zhai
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Nipasiri Voraphani
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Dirk Keidel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Congjian Liu
- Brigham and Women's Hospital, Harvard Medical School, Boston, Mass
| | - Debra A Stern
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Claire Venker
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Hans Petersen
- Lovelace Respiratory Research Institute, Albuquerque, NM
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Duane L Sherrill
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Wayne J Morgan
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Yohannes Tesfaigzi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Mass; Lovelace Respiratory Research Institute, Albuquerque, NM
| | - Nicole M Probst-Hensch
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Marilyn Halonen
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz
| | - Stefano Guerra
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Ariz.
| |
Collapse
|
3
|
Sengupta S, Abhinav N, Singh S, Dutta J, Mabalirajan U, Kaliyamurthy K, Mukherjee PK, Jaisankar P, Bandyopadhyay A. Standardised Sonneratia apetala Buch.-Ham. fruit extract inhibits human neutrophil elastase and attenuates elastase-induced lung injury in mice. Front Pharmacol 2022; 13:1011216. [PMID: 36569308 PMCID: PMC9768866 DOI: 10.3389/fphar.2022.1011216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) along with asthma is a major and increasing global health problem. Smoking contributes to about 80%-90% of total COPD cases in the world. COPD leads to the narrowing of small airways and destruction of lung tissue leading to emphysema primarily caused by neutrophil elastase. Neutrophil elastase plays an important role in disease progression in COPD patients and has emerged as an important target for drug discovery. Sonneratia apetala Buch.-Ham. is a mangrove plant belonging to family Sonneratiaceae. It is widely found in the Sundarban regions of India. While the fruits of this plant have antibacterial, antifungal, antioxidant and astringent activities, fruit and leaf extracts have been shown to reduce the symptoms of asthma and cough. The aim of this study is to find whether hydro alcoholic fruit extracts of S. apetala inhibit neutrophil elastase and thus prevent the progression of neutrophil elastase-driven lung emphysema. The hydroalcoholic extract, ethanol: water (90:10), of the S. apetala Buch.-Ham. fresh fruits (SAM) were used for neutrophil elastase enzyme kinetic assay and IC50 of the extract was determined. The novel HPLC method has been developed and the extract was standardized with gallic acid and ellagic acid as standards. The extract was further subjected to LC-MS2 profiling to identify key phytochemicals. The standardized SAM extract contains 53 μg/mg of gallic acid and 95 μg/mg of ellagic acid, based on the HPLC calibration curve. SAM also reversed the elastase-induced morphological change of human epithelial cells and prevented the release of ICAM-1 in vitro and an MTT assay was conducted to assess the viability. Further, 10 mg/kg SAM had reduced alveolar collapse induced by neutrophil elastase in the mice model. Thus, in this study, we reported for the first time that S. apetala fruit extract has the potential to inhibit human neutrophil elastase in vitro and in vivo.
Collapse
Affiliation(s)
- Sayantan Sengupta
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nipun Abhinav
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Sabita Singh
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joytri Dutta
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ulaganathan Mabalirajan
- Molecular Pathobiology of Respiratory Diseases Laboratory, Cell Biology and Physiology Department, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Karthigeyan Kaliyamurthy
- Central National Herbarium, Botanical Survey of India, A.J.C.B. Indian Botanic Garden, Howrah, India
| | | | - Parasuraman Jaisankar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, Kolkata, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| | - Arun Bandyopadhyay
- Cardiovascular Disease and Respiratory Disorders Laboratory, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Parasuraman Jaisankar, ; Arun Bandyopadhyay,
| |
Collapse
|
4
|
Coudert JD, Slater N, Sooda A, Beer K, Lim EM, Boyder C, Zhang R, Mastaglia FL, Learmonth YC, Fairchild TJ, Yeap BB, Needham M. Immunoregulatory effects of testosterone supplementation combined with exercise training in men with Inclusion Body Myositis: a double-blind, placebo-controlled, cross-over trial. Clin Transl Immunology 2022; 11:e1416. [PMID: 36188123 PMCID: PMC9495304 DOI: 10.1002/cti2.1416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022] Open
Abstract
Objectives Sporadic Inclusion Body Myositis (IBM) is an inflammatory muscle disease affecting individuals over the age of 45, leading to progressive muscle wasting, disability and loss of independence. Histologically, IBM is characterised by immune changes including myofibres expressing major histocompatibility complex molecules and invaded by CD8+ T cells and macrophages, and by degenerative changes including protein aggregates organised in inclusion bodies, rimmed vacuoles and mitochondrial abnormalities. There is currently no cure, and regular exercise is currently the only recognised treatment effective at limiting muscle weakening, atrophy and loss of function. Testosterone exerts anti-inflammatory effects, inhibiting effector T-cell differentiation and pro-inflammatory cytokine production. Methods We conducted a double-blind, placebo-controlled, cross-over trial in men with IBM, to assess whether a personalised progressive exercise training combined with application of testosterone, reduced the inflammatory immune response associated with this disease over and above exercise alone. To assess intervention efficacy, we immunophenotyped blood immune cells by flow cytometry, and measured serum cytokines and chemokines by Luminex immunoassay. Results Testosterone supplementation resulted in modest yet significant count reduction in the classical monocyte subset as well as eosinophils. Testosterone-independent immunoregulatory effects attributed to exercise included altered proportions of some monocyte, T- and B-cell subsets, and reduced IL-12, IL-17, TNF-α, MIP-1β and sICAM-1 in spite of interindividual variability. Conclusion Overall, our findings indicate anti-inflammatory effects of exercise training in IBM patients, whilst concomitant testosterone supplementation provides some additional changes. Further studies combining testosterone and exercise would be worthwhile in larger cohorts and longer testosterone administration periods.
Collapse
Affiliation(s)
- Jerome D Coudert
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia
| | - Nataliya Slater
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Anuradha Sooda
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia
| | - Kelly Beer
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Ee Mun Lim
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Conchita Boyder
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Rui Zhang
- Department of Clinical Biochemistry, Pharmacology and Toxicology, PathWest Laboratory Medicine QEII Medical Centre Nedlands WA Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science Nedlands WA Australia
| | - Yvonne C Learmonth
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Timothy J Fairchild
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Discipline of Exercise Science Murdoch University Murdoch WA Australia
| | - Bu B Yeap
- Medical School University of Western Australia Perth WA Australia.,Department of Endocrinology and Diabetes Fiona Stanley Hospital Perth WA Australia
| | - Merrilee Needham
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch WA Australia.,Perron Institute for Neurological and Translational Science Nedlands WA Australia.,School of Medicine University of Notre Dame Fremantle WA Australia.,Department of Neurology Fiona Stanley Hospital Perth WA Australia
| |
Collapse
|
5
|
Targeting intercellular adhesion molecule-1 (ICAM-1) to reduce rhinovirus-induced acute exacerbations in chronic respiratory diseases. Inflammopharmacology 2022; 30:725-735. [PMID: 35316427 PMCID: PMC8938636 DOI: 10.1007/s10787-022-00968-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023]
Abstract
The chronic respiratory non-communicable diseases, asthma and chronic obstructive pulmonary disease (COPD) are among the leading causes of global mortality and morbidity. Individuals suffering from these diseases are particularly susceptible to respiratory infections caused by bacterial and/or viral pathogens, which frequently result in exacerbation of symptoms, lung function decline, frequent hospital emergency visits and increased socioeconomic burden. Human rhinoviruses (HRV) remain the major viral pathogen group implicated in exacerbations of both asthma and COPD. The rhinoviral entry into the host lung epithelium is facilitated primarily by the adhesion site (“receptor”) intercellular adhesion molecule-1 (ICAM-1), coincidentally expressed on the respiratory epithelium in these conditions. Multiple observations of increased airway ICAM-1 protein in asthmatics, smokers and smoking-related COPD have been recorded in the literature. However, the lack of robust therapies for COPD in particular has triggered a renewed interest in assessing receptor antagonism-based anti-viral strategies for treatment of intercurrent viral infections in those with pre-existing chronic lung diseases. Given the crucial role ICAM-1 plays in facilitating HRV adhesion and, thus, transmissibility to the host respiratory system, as well as the up-regulation of ICAM-1 by smoking, we summarize the role of HRV in smoking-induced COPD and especially highlight the role of ICAM-1 in epithelial viral adhesion and chronic lung disease progression. Further, the review also sheds light specifically on evolving precision therapeutic strategies in blocking ICAM-1 for preventing viral adhesion and exacerbations of COPD.
Collapse
|
6
|
Pospelova M, Krasnikova V, Fionik O, Alekseeva T, Samochernykh K, Ivanova N, Trofimov N, Vavilova T, Vasilieva E, Topuzova M, Chaykovskaya A, Makhanova A, Mikhalicheva A, Bukkieva T, Restor K, Combs S, Shevtsov M. Potential Molecular Biomarkers of Central Nervous System Damage in Breast Cancer Survivors. J Clin Med 2022; 11:jcm11051215. [PMID: 35268306 PMCID: PMC8911416 DOI: 10.3390/jcm11051215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Damage of the central nervous system (CNS), manifested by cognitive impairment, occurs in 80% of women with breast cancer (BC) as a complication of surgical treatment and radiochemotherapy. In this study, the levels of ICAM-1, PECAM-1, NSE, and anti-NR-2 antibodies which are associated with the damage of the CNS and the endothelium were measured in the blood by ELISA as potential biomarkers that might reflect pathogenetic mechanisms in these patients. A total of 102 patients enrolled in this single-center trial were divided into four groups: (1) 26 patients after breast cancer treatment, (2) 21 patients with chronic brain ischemia (CBI) and asymptomatic carotid stenosis (ICA stenosis) (CBI + ICA stenosis), (3) 35 patients with CBI but without asymptomatic carotid stenosis, and (4) 20 healthy female volunteers (control group). Intergroup analysis demonstrated that in the group of patients following BC treatment there was a significant increase of ICAM-1 (mean difference: −368.56, 95% CI −450.30 to −286.69, p < 0.001) and PECAM-1 (mean difference: −47.75, 95% CI −68.73 to −26.77, p < 0.001) molecules, as compared to the group of healthy volunteers. Additionally, a decrease of anti-NR-2 antibodies (mean difference: 0.89, 95% CI 0.41 to 1.48, p < 0.001) was detected. The intergroup comparison revealed comparable levels of ICAM-1 (mean difference: −33.58, 95% CI −58.10 to 125.26, p = 0.76), PECAM-1 (mean difference: −5.03, 95% CI −29.93 to 19.87, p = 0.95), as well as anti-NR-2 antibodies (mean difference: −0.05, 95% CI −0.26 to 0.16, p = 0.93) in patients after BC treatment and in patients with CBI + ICA stenosis. The NSE level in the group CBI + ICA stenosis was significantly higher than in women following BC treatment (mean difference: −43.64, 95% CI 3.31 to −83.99, p = 0.03). Comparable levels of ICAM-1 were also detected in patients after BC treatment and in the group of CBI (mean difference: −21.28, 95% CI −111.03 to 68.48, p = 0.92). The level of PECAM-1 molecules in patients after BC treatment was also comparable to group of CBI (mean difference: −13.68, 95% CI −35.51 to 8.15, p = 0.35). In conclusion, among other mechanisms, endothelial dysfunction might play a role in the damage of the CNS in breast cancer survivors.
Collapse
Affiliation(s)
- Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Olga Fionik
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Tatyana Alekseeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Konstantin Samochernykh
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Nataliya Ivanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Nikita Trofimov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Tatyana Vavilova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Maria Topuzova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Alexandra Chaykovskaya
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Anna Mikhalicheva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Tatyana Bukkieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
| | - Kenneth Restor
- Nursing Programme, University of St. Francis, Joliet, IL 60435, USA;
| | - Stephanie Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technishe Universität München (TUM), 81675 Munich, Germany;
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (M.P.); (V.K.); (O.F.); (T.A.); (K.S.); (N.I.); (N.T.); (T.V.); (E.V.); (M.T.); (A.C.); (A.M.); (A.M.); (T.B.)
- Department of Radiation Oncology, Klinikum rechts der Isar, Technishe Universität München (TUM), 81675 Munich, Germany;
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
- Correspondence: ; Tel.: +49-173-1488882
| |
Collapse
|
7
|
Singh M, Thakur M, Mishra M, Yadav M, Vibhuti R, Menon AM, Nagda G, Dwivedi VP, Dakal TC, Yadav V. Gene regulation of intracellular adhesion molecule-1 (ICAM-1): A molecule with multiple functions. Immunol Lett 2021; 240:123-136. [PMID: 34715236 DOI: 10.1016/j.imlet.2021.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023]
Abstract
Intracellular adhesion molecule 1 (ICAM-1) is one of the most extensively studied inducible cell adhesion molecules which is responsible for several immune functions like T cell activation, extravasation, inflammation, etc. The molecule is constitutively expressed over the cell surface and is regulated up / down in response to inflammatory mediators like cellular stress, proinflammatory cytokines, viral infection. These stimuli modulate the expression of ICAM-1 primarily through regulating the ICAM-1 gene transcription. On account of the presence of various binding sites for NF-κB, AP-1, SP-1, and many other transcription factors, the architecture of the ICAM-1 promoter become complex. Transcription factors in union with other transcription factors, coactivators, and suppressors promote their assembly in a stereospecific manner on ICAM-1 promoter which mediates ICAM-1 regulation in response to different stimuli. Along with transcriptional regulation, epigenetic modifications also play a pivotal role in controlling ICAM-1 expression on different cell types. In this review, we summarize the regulation of ICAM-1 expression both at the transcriptional as well as post-transcriptional level with an emphasis on transcription factors and signaling pathways involved.
Collapse
Affiliation(s)
- Mona Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi-110067 India
| | - Mony Thakur
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Manish Mishra
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Manisha Yadav
- Division of Cell Biology and Immunology, Council of Scientific and Industrial Research- Institute of Microbial Technology, Chandigarh-160036 India
| | - Rajkamal Vibhuti
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| | - Athira M Menon
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Girima Nagda
- Department of Zoology, Mohanlal Sukhadia University, Udaipur, Rajasthan-313001 India
| | - Ved Prakash Dwivedi
- International Centre for Genetic Engineering and Biotechnology, ICGEB Campus, Aruna Asaf Ali Marg, New Delhi-110067 India
| | - Tikam Chand Dakal
- Genome and computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001 India
| | - Vinod Yadav
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana-123031 India
| |
Collapse
|
8
|
Pezzuto A, Lionetto L, Ricci A, Simmaco M, Borro M. Inter-individual variation in CYP2A6 activity and chronic obstructive pulmonary disease in smokers: Perspectives for an early predictive marker. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165990. [PMID: 33091566 DOI: 10.1016/j.bbadis.2020.165990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Aldo Pezzuto
- Cardiovascular Respiratory Science Department, Sant'Andrea Hospital, Rome, Italy
| | - Luana Lionetto
- Laboratory of Clinical Biochemistry, Sant'Andrea Hospital, Rome, Italy
| | - Alberto Ricci
- Clinical and Molecular Medicine Department, Sapienza University, Rome, Italy
| | - Maurizio Simmaco
- Laboratory of Clinical Biochemistry, Sant'Andrea Hospital, Rome, Italy; Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy
| | - Marina Borro
- Laboratory of Clinical Biochemistry, Sant'Andrea Hospital, Rome, Italy; Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Rome, Italy.
| |
Collapse
|
9
|
Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Mechanisms of Virus-Induced Airway Immunity Dysfunction in the Pathogenesis of COPD Disease, Progression, and Exacerbation. Front Immunol 2020; 11:1205. [PMID: 32655557 PMCID: PMC7325903 DOI: 10.3389/fimmu.2020.01205] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the integrated form of chronic obstructive bronchitis and pulmonary emphysema, characterized by persistent small airway inflammation and progressive irreversible airflow limitation. COPD is characterized by acute pulmonary exacerbations and associated accelerated lung function decline, hospitalization, readmission and an increased risk of mortality, leading to huge social-economic burdens. Recent evidence suggests ~50% of COPD acute exacerbations are connected with a range of respiratory viral infections. Nevertheless, respiratory viral infections have been linked to the severity and frequency of exacerbations and virus-induced secondary bacterial infections often result in a synergistic decline of lung function and longer hospitalization. Here, we review current advances in understanding the cellular and molecular mechanisms underlying the pathogenesis of COPD and the increased susceptibility to virus-induced exacerbations and associated immune dysfunction in patients with COPD. The multiple immune regulators and inflammatory signaling pathways known to be involved in host-virus responses are discussed. As respiratory viruses primarily target airway epithelial cells, virus-induced inflammatory responses in airway epithelium are of particular focus. Targeting virus-induced inflammatory pathways in airway epithelial cells such as Toll like receptors (TLRs), interferons, inflammasomes, or direct blockade of virus entry and replication may represent attractive future therapeutic targets with improved efficacy. Elucidation of the cellular and molecular mechanisms of virus infections in COPD pathogenesis will undoubtedly facilitate the development of these potential novel therapies that may attenuate the relentless progression of this heterogeneous and complex disease and reduce morbidity and mortality.
Collapse
Affiliation(s)
- Hong Guo-Parke
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Dermot Linden
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Sinéad Weldon
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| | - Joseph C Kidney
- Department of Respiratory Medicine Mater Hospital Belfast, Belfast, United Kingdom
| | - Clifford C Taggart
- Airway Innate Immunity Research Group, Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Sciences, Queens University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Bui TM, Wiesolek HL, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol 2020; 108:787-799. [PMID: 32182390 DOI: 10.1002/jlb.2mr0220-549r] [Citation(s) in RCA: 541] [Impact Index Per Article: 108.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023] Open
Abstract
ICAM-1 is a cell surface glycoprotein and an adhesion receptor that is best known for regulating leukocyte recruitment from circulation to sites of inflammation. However, in addition to vascular endothelial cells, ICAM-1 expression is also robustly induced on epithelial and immune cells in response to inflammatory stimulation. Importantly, ICAM-1 serves as a biosensor to transduce outside-in-signaling via association of its cytoplasmic domain with the actin cytoskeleton following ligand engagement of the extracellular domain. Thus, ICAM-1 has emerged as a master regulator of many essential cellular functions both at the onset and at the resolution of pathologic conditions. Because the role of ICAM-1 in driving inflammatory responses is well recognized, this review will mainly focus on newly emerging roles of ICAM-1 in epithelial injury-resolution responses, as well as immune cell effector function in inflammation and tumorigenesis. ICAM-1 has been of clinical and therapeutic interest for some time now; however, several attempts at inhibiting its function to improve injury resolution have failed. Perhaps, better understanding of its beneficial roles in resolution of inflammation or its emerging function in tumorigenesis will spark new interest in revisiting the clinical value of ICAM-1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Tsai CF, Chen JH, Wu CT, Chang PC, Wang SL, Yeh WL. Induction of osteoclast-like cell formation by leptin-induced soluble intercellular adhesion molecule secreted from cancer cells. Ther Adv Med Oncol 2019; 11:1758835919846806. [PMID: 31205504 PMCID: PMC6535721 DOI: 10.1177/1758835919846806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Leptin is considered a tumorigenic adipokine, suggested to promote tumorigenesis and progression in many cancers. On the other hand, intercellular adhesion molecule-1 (ICAM-1) shows altered expression in a variety of benign and malignant diseases. Histologically, ICAM-1 expression is reported as proportional to cancer stage and considered as a potential diagnosis biomarker. The altered expressions of ICAM-1 and its soluble form in malignant diseases have gained interests in recent years. Material and methods: The expression of ICAM-1 and its regulatory signaling were examined by Western blot or flow cytometry. The effect of soluble ICAM-1 on osteoclast formation was investigated by tartrate-resistance acid phosphatase staining of RAW cells and tumor-induced osteolysis in vivo. Results: In our study, we found that leptin enhanced soluble ICAM-1 production but not surface ICAM-1 expression in lung and breast cancer cells, and this effect was regulated through leptin receptor (ObR), while silencing ObR abrogated leptin-induced soluble ICAM-1 expression. In addition, we revealed that leptin administration provoked the JAK1/2, STAT3, FAK, ERK, and GSK3αβ signaling cascade, leading to the elevation of ICAM-1 expression. Moreover, soluble ICAM-1 secreted by leptin-stimulated cancer cells synergize with the receptor activator of nuclear factor kappa-B ligand (RANKL) in inducing osteoclast formation. Soluble ICAM also enhanced tumor-induced osteolysis in vivo. Conclusion: These findings suggest that soluble ICAM-1 produced under leptin treatment enhances osteoclast formation and is involved in tumor-induced osteolysis. Leptin plays an important role in physiology in health and diseases. Leptin affects immune responses that may induce inflammation and carcinogenesis. Leptin is also considered as a tumorigenic adipokine suggested to promote tumorigenesis and progression in many cancers. On the other hand, intercellular adhesion molecule-1 (ICAM-1) shows altered expression in a variety of benign and malignant diseases. Histologically, ICAM-1 expression is reported to be proportional to cancer stage and considered as a potential diagnosis biomarker. It has been reported that soluble ICAM-1 allows tumor cells to escape from immune recognition and stimulates angiogenesis and tumor growth. The altered expressions of ICAM-1 and its soluble form in malignant diseases have gained interests in recent years. In our study, we found that leptin enhanced soluble ICAM-1 production but not surface ICAM-1 expression in lung and breast cancer cells, and this effect was regulated through leptin receptor (ObR), while silencing ObR abrogated leptin-induced soluble ICAM-1 expression. In addition, we revealed that leptin administration provoked the JAK1/2, STAT3, FAK, ERK, and GSK3αβ signaling cascade, leading to the elevation of ICAM-1 expression. Moreover, soluble ICAM-1 secreted by leptin-stimulated cancer cells synergize with receptor activator of nuclear factor-kappa B ligand in inducing osteoclast formation. Soluble ICAM also enhanced tumor-induced osteolysis in vivo. These findings suggest that soluble ICAM-1 produced under leptin treatment is possibly involved in lung and breast cancer bone metastasis.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, Taichung, China
| | - Jia-Hong Chen
- Department of General Surgery, Buddhist Tzu Chi Medical Foundation, Taichung, China
| | - Chen-Teng Wu
- Department of Surgery, China Medical University Hospital, Taichung, China
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, China
| | - Shu-Lin Wang
- Institute of New Drug Development, China Medical University, Taichung, China
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402 China
| |
Collapse
|
12
|
Kc R, Shukla SD, Gautam SS, Hansbro PM, O'Toole RF. The role of environmental exposure to non-cigarette smoke in lung disease. Clin Transl Med 2018; 7:39. [PMID: 30515602 PMCID: PMC6279673 DOI: 10.1186/s40169-018-0217-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/23/2018] [Indexed: 02/03/2023] Open
Abstract
Chronic exposure to household indoor smoke and outdoor air pollution is a major contributor to global morbidity and mortality. The majority of these deaths occur in low and middle-income countries. Children, women, the elderly and people with underlying chronic conditions are most affected. In addition to reduced lung function, children exposed to biomass smoke have an increased risk of developing lower respiratory tract infections and asthma-related symptoms. In adults, chronic exposure to biomass smoke, ambient air pollution, and opportunistic exposure to fumes and dust are associated with an increased risk of developing chronic bronchitis, chronic obstructive pulmonary disease (COPD), lung cancer and respiratory infections, including tuberculosis. Here, we review the evidence of prevalence of COPD in people exposed to non-cigarette smoke. We highlight mechanisms that are likely involved in biomass-smoke exposure-related COPD and other lung diseases. Finally, we summarize the potential preventive and therapeutic strategies for management of COPD induced by non-cigarette smoke exposure.
Collapse
Affiliation(s)
- Rajendra Kc
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Sanjay S Gautam
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ronan F O'Toole
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
13
|
Peck MJ, Sanders EB, Scherer G, Lüdicke F, Weitkunat R. Review of biomarkers to assess the effects of switching from cigarettes to modified risk tobacco products. Biomarkers 2018; 23:213-244. [PMID: 29297706 DOI: 10.1080/1354750x.2017.1419284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Context: One approach to reducing the harm caused by cigarette smoking, at both individual and population level, is to develop, assess and commercialize modified risk alternatives that adult smokers can switch to. Studies to demonstrate the exposure and risk reduction potential of such products generally involve the measuring of biomarkers, of both exposure and effect, sampled in various biological matrices.Objective: In this review, we detail the pros and cons for using several biomarkers as indicators of effects of changing from conventional cigarettes to modified risk products.Materials and methods: English language publications between 2008 and 2017 were retrieved from PubMed using the same search criteria for each of the 25 assessed biomarkers. Nine exclusion criteria were applied to exclude non-relevant publications.Results: A total of 8876 articles were retrieved (of which 7476 were excluded according to the exclusion criteria). The literature indicates that not all assessed biomarkers return to baseline levels following smoking cessation during the study periods but that nine had potential for use in medium to long-term studies.Discussion and conclusion: In clinical studies, it is important to choose biomarkers that show the biological effect of cessation within the duration of the study.
Collapse
Affiliation(s)
| | | | | | - Frank Lüdicke
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| | - Rolf Weitkunat
- Research & Development, Philip Morris International, Neuchâtel, Switzerland
| |
Collapse
|
14
|
Shukla SD, Mahmood MQ, Weston S, Latham R, Muller HK, Sohal SS, Walters EH. The main rhinovirus respiratory tract adhesion site (ICAM-1) is upregulated in smokers and patients with chronic airflow limitation (CAL). Respir Res 2017; 18:6. [PMID: 28056984 PMCID: PMC5217320 DOI: 10.1186/s12931-016-0483-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ICAM-1 is a major receptor for ~60% of human rhinoviruses, and non-typeable Haemophilus influenzae, two major pathogens in COPD. Increased cell-surface expression of ICAM-1 in response to tobacco smoke exposure has been suggested. We have investigated epithelial ICAM-1 expression in both the large and small airways, and lung parenchyma in smoking-related chronic airflow limitation (CAL) patients. METHODS We evaluated epithelial ICAM-1 expression in resected lung tissue: 8 smokers with normal spirometry (NLFS); 29 CAL patients (10 small-airway disease; 9 COPD-smokers; 10 COPD ex-smokers); Controls (NC): 15 normal airway/lung tissues. Immunostaining with anti-ICAM-1 monoclonal antibody was quantified with computerized image analysis. The percent and type of cells expressing ICAM-1 in large and small airway epithelium and parenchyma were enumerated, plus percentage of epithelial goblet and submucosal glands positive for ICAM- 1. RESULTS A major increase in ICAM-1 expression in epithelial cells was found in both large (p < 0.006) and small airways (p < 0.004) of CAL subjects compared to NC, with NLFS being intermediate. In the CAL group, both basal and luminal areas stained heavily for ICAM-1, so did goblet cells and sub-mucosal glands, however in either NC or NLFS subjects, only epithelial cell luminal surfaces stained. ICAM-1 expression on alveolar pneumocytes (mainly type II) was slightly increased in CAL and NLFS (p < 0.01). Pack-years of smoking correlated with ICAM-1 expression (r = 0.49; p < 0.03). CONCLUSION Airway ICAM-1 expression is markedly upregulated in CAL group, which could be crucial in rhinoviral and NTHi infections. The parenchymal ICAM-1 is affected by smoking, with no further enhancement in CAL subjects.
Collapse
Affiliation(s)
- Shakti Dhar Shukla
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Malik Quasir Mahmood
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Steven Weston
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Roger Latham
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Hans Konrad Muller
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia
| | - Sukhwinder Singh Sohal
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia.,School of Health Sciences, University of Tasmania, Launceston, Tasmania, 7248, Australia
| | - Eugene Haydn Walters
- NHMRC Centre of Research Excellence for Chronic Respiratory Disease, School of Medicine, University of Tasmania, MS1, 17 Liverpool Street, Private Bag 23, Hobart, Tasmania, 7000, Australia.
| |
Collapse
|
15
|
Kechagia M, Papassotiriou I, Gourgoulianis KI. Endocan and the respiratory system: a review. Int J Chron Obstruct Pulmon Dis 2016; 11:3179-3187. [PMID: 28003744 PMCID: PMC5161333 DOI: 10.2147/copd.s118692] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system.
Collapse
Affiliation(s)
- Maria Kechagia
- Respiratory Medicine Department, University of Thessaly Medical School, Larissa
- Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece
| | - Ioannis Papassotiriou
- Department of Clinical Biochemistry, Aghia Sophia Children’s Hospital, Athens, Greece
| | | |
Collapse
|
16
|
Chang PY, Tsao SM, Chang JH, Chien MH, Hung WY, Huang YW, Yang SF. Plasma levels of soluble intercellular adhesion molecule-1 as a biomarker for disease severity of patients with community-acquired pneumonia. Clin Chim Acta 2016; 463:174-180. [PMID: 27983998 DOI: 10.1016/j.cca.2016.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is characterized as an acute inflammation of the lung associated with the activation of macrophages and neutrophils. Intercellular adhesion molecule-1 (ICAM-1) is an essential adhesion molecule involved in immune cell recruitment in lung inflammation. We investigated whether ICAM-1 is a useful biomarker for assessing the disease severity of hospitalized adult patients with CAP. METHODS Plasma soluble ICAM-1 (sICAM-1) levels were measured in 78 patients with CAP and 69 healthy controls by using a commercial enzyme-linked immunosorbent assay. The pneumonia severity index scores were used to determine CAP severity in patients upon initial hospitalization. RESULTS The sICAM-1 and C-reactive protein (CRP) levels decreased significantly in patients with CAP after antibiotic treatment. The plasma concentration of sICAM-1 alone, but not CRP, was correlated with CAP severity according to the pneumonia severity index scores (r=0.431, p<0.001). The sICAM-1 levels in patients with CAP with high mortality risk were significantly higher than those in patients with CAP with medium or low mortality risk. Moreover, the sICAM-1 level showed a significant correlation with the length of hospital stay (r=0.488, p<0.001). Mechanistic investigations found that bacterial lipopolysaccharide induced upregulation of ICAM-1 expression through the c-Jun N-terminal kinase pathway in RAW264.7 macrophages. CONCLUSIONS Plasma sICAM-1 levels may play a role in the diagnosis and clinical assessment of CAP severity.
Collapse
Affiliation(s)
- Pin-Yu Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Senior Citizen Services, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Shih-Ming Tsao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Chest, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yi-Wen Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Pulmonary and Critical Care Unit, Changhua Hospital, Department of Health, Changhua, Taiwan.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
17
|
The association of plasma biomarkers with computed tomography-assessed emphysema phenotypes. Respir Res 2014; 15:127. [PMID: 25306249 PMCID: PMC4198701 DOI: 10.1186/s12931-014-0127-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/03/2014] [Indexed: 01/17/2023] Open
Abstract
Rationale Chronic obstructive pulmonary disease (COPD) is a phenotypically heterogeneous disease. In COPD, the presence of emphysema is associated with increased mortality and risk of lung cancer. High resolution computed tomography (HRCT) scans are useful in quantifying emphysema but are associated with radiation exposure and high incidence of false positive findings (i.e., nodules). Using a comprehensive biomarker panel, we sought to determine if there was a peripheral blood biomarker signature of emphysema. Methods 114 plasma biomarkers were measured using a custom assay in 588 individuals enrolled in the COPDGene study. Quantitative emphysema measurements included percent low lung attenuation (%LAA) ≤ −950 HU, ≤ − 910 HU and mean lung attenuation at the 15th percentile on lung attenuation curve (LP15A). Multiple regression analysis was performed to determine plasma biomarkers associated with emphysema independent of covariates age, gender, smoking status, body mass index and FEV1. The findings were subsequently validated using baseline blood samples from a separate cohort of 388 subjects enrolled in the Treatment of Emphysema with a Selective Retinoid Agonist (TESRA) study. Results Regression analysis identified multiple biomarkers associated with CT-assessed emphysema in COPDGene, including advanced glycosylation end-products receptor (AGER or RAGE, p < 0.001), intercellular adhesion molecule 1 (ICAM, p < 0.001), and chemokine ligand 20 (CCL20, p < 0.001). Validation in the TESRA cohort revealed significant associations with RAGE, ICAM1, and CCL20 with radiologic emphysema (p < 0.001 after meta-analysis). Other biomarkers that were associated with emphysema include CDH1, CDH 13 and SERPINA7, but were not available for validation in the TESRA study. Receiver operating characteristics analysis demonstrated a benefit of adding a biomarker panel to clinical covariates for detecting emphysema, especially in those without severe airflow limitation (AUC 0.85). Conclusions Our findings, suggest that a panel of blood biomarkers including sRAGE, ICAM1 and CCL20 may serve as a useful surrogate measure of emphysema, and when combined with clinical covariates, may be useful clinically in predicting the presence of emphysema compared to just using covariates alone, especially in those with less severe COPD. Ultimately biomarkers may shed light on disease pathogenesis, providing targets for new treatments. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0127-9) contains supplementary material, which is available to authorized users.
Collapse
|