1
|
Cheng W, Pan H, Chen J, He M, Wang Z, Xiang Y. Enzyme-Free and Triple Sensitivity Amplification for Electrochemical Detection of Exosomal microRNA. Anal Chem 2025; 97:5244-5250. [PMID: 40017114 DOI: 10.1021/acs.analchem.4c06879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Exosomal miRNAs, particularly miRNA-21, are promising cancer biomarkers. Current enzyme-dependent detection methods face challenges, such as environmental limitations and high costs. In contrast, enzyme-independent sensors are highly desirable for on-site, miniaturized, and cost-effective miRNA detection. To address these limitations, we developed a nonenzymatic electrochemical sensor featuring a triple-signal amplification system for ultrasensitive detection of miRNA-21. This sensor utilizes cascade toehold-mediated strand displacement reactions to activate molecular machines triggered by target miRNA, generating biotinylated-and-thiol-modified double-stranded DNA for stable immobilization on a gold electrode. Preprepared biotinylated tetrahedron DNA (TDNA)-mediated hybridization chain reaction probes are then linked to the electrode via streptavidin-biotin binding. This amplification process allows for significant DNA duplex immobilization, with electroactive [Ru(NH3)6]3+ (RuHex) adsorbed onto them, producing a robust electrochemical signal. This approach enables accurate detection of miRNA-21 at concentrations as low as 0.43 fM, with a linear range from 1 fM to 1 nM. Clinical testing demonstrates its potential for cancer diagnostics.
Collapse
Affiliation(s)
- Wenting Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Han Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Miao He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Zhongyun Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
2
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
3
|
Bustin SA. Improving the quality of quantitative polymerase chain reaction experiments: 15 years of MIQE. Mol Aspects Med 2024; 96:101249. [PMID: 38290180 DOI: 10.1016/j.mam.2024.101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
The quantitative polymerase chain reaction (qPCR) is fundamental to molecular biology. It is not just a laboratory technique, qPCR is a bridge between research and clinical practice. Its theoretical foundations guide the design of experiments, while its practical implications extend to diagnostics, treatment, and research advancements in the life sciences, human and veterinary medicine, agriculture, and forensics. However, the accuracy, reliability and reproducibility of qPCR data face challenges arising from various factors associated with experimental design, execution, data analysis and inadequate reporting details. Addressing these concerns, the Minimum Information for the Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines have emerged as a cohesive framework offering a standardised set of recommendations that describe the essential information required for assessing qPCR experiments. By emphasising the importance of methodological rigour, the MIQE guidelines have made a major contribution to improving the trustworthiness, consistency, and transparency of many published qPCR results. However, major challenges related to awareness, resources, and publication pressures continue to affect their consistent application.
Collapse
Affiliation(s)
- Stephen A Bustin
- Medical Technology Research Centre, Anglia Ruskin University, Chelmsford, Essex, CM1 1SQ, UK.
| |
Collapse
|
4
|
Zhang Y, Wu Y, Luo S, Yang C, Zhong G, Huang G, Zhang X, Li B, Liu C, Li L, Yan X, Zheng L, Situ B. DNA Nanowire Guided-Catalyzed Hairpin Assembly Nanoprobe for In Situ Profiling of Circulating Extracellular Vesicle-Associated MicroRNAs. ACS Sens 2022; 7:1075-1085. [PMID: 35312297 DOI: 10.1021/acssensors.1c02717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extracellular vesicle-associated miRNAs (EV-miRNAs) are emerging as a new type of noninvasive biomarker for disease diagnosis. Their relatively low abundance, however, makes accurate detection challenging. Here, we designed a DNA nanowire guided-catalyzed hairpin assembly (NgCHA) nanoprobe for profiling EV-miRNAs. NgCHA showed high penetrability to EVs, which allowed rapid delivery of the probes into EVs. In the presence of targeted miRNAs within EVs, a fluorescent signal could be generated and amplified by confining the catalytic hairpin assembly system within the nanowires, thus greatly enhancing the analytical sensitivity. We showed that EV-miRNAs from various cell lines could be accurately quantified by NgCHA in situ. By using a four-EV-miRNA panel, this platform can identify patients with breast cancer at an early stage with 95.2% sensitivity and 86.7% specificity. Its applications for risk assessment as well as cancer type prediction were also successfully demonstrated. This platform is sensitive, low-cost, and simple compared with current methods. It may thus serve as a promising tool for the noninvasive diagnosis and monitoring of cancers and other diseases through EV-miRNA profiling.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yuan Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
| | - Shihua Luo
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Yang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Guangzhi Zhong
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou 510515, China
| | - Guoni Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, People’s Hospital of Shenzhen Baoan District, Shenzhen 518100, China
| | - Xiaohe Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Yan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
6
|
Romano E, Netti PA, Torino E. Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals (Basel) 2020; 13:ph13100319. [PMID: 33086616 PMCID: PMC7603361 DOI: 10.3390/ph13100319] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are phospholipid-based particles endogenously produced by both normal and tumor cells. Initially identified as a pathway for shuttling cellular waste, for a long time they were thought to act as “garbage bags”, and only in the past few years have they emerged as a promising drug delivery system. In this review, we provide an overview of the knowledge about exosome architecture and biogenesis and the recent progress in isolation methods. Furthermore, we describe the mechanisms involved in both extra- and intracellular communication with a focus on glioma brain tumors. Glioma is considered a rare disease and is the most prominent aggressive brain malignancy. How exosomes target glial tumoral cells in vivo remains largely unknown. However, they are able to influence numerous physio-pathological aspects. Here, we discuss the role they play in this heterogeneous and complex microenvironment and their potential applications.
Collapse
Affiliation(s)
- Eugenia Romano
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-328-955-8158
| |
Collapse
|
7
|
Desjarlais M, Wirth M, Rivera JC, Lahaie I, Dabouz R, Omri S, Ruknudin P, Borras C, Chemtob S. MicroRNA-96 Promotes Vascular Repair in Oxygen-Induced Retinopathy-A Novel Uncovered Vasoprotective Function. Front Pharmacol 2020; 11:13. [PMID: 32116694 PMCID: PMC7008172 DOI: 10.3389/fphar.2020.00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Aims Vascular degeneration is a hallmark in the pathogenesis of oxygen-induced retinopathy (OIR). Dysregulation of microRNAs (miRNAs), key regulators of genes expressions, has been implicated in the regulation of ocular angiogenesis. However, miRNAs specific functions in impaired vascular development during OIR are poorly understood. Herein, we identified miR-96 as one of the most highly expressed miRNAs in the retina and choroid during vascular development and investigated the potential role of miR-96 on microvascular degeneration in a rat OIR model. Methods and Results Next generation sequencing (NGS) and qRT-PCR analysis showed that miR-96 maintain high levels of expression during ocular vascular development. Nevertheless, miR-96 was significantly downregulated in the retina and choroid of OIR rats (80% O2 from P5 to P10) during the phase of microvascular degeneration. Similarly, human retinal microvascular endothelial cells (HRMEC) subjected to hyperoxia (80% O2) showed a significant downregulation of miR-96 evaluated by qPCR. Interestingly, HRMEC supplemented with miR-96 regulated positively the expression of several key angiogenic factors including VEGF and ANG-2. To explore the angiogenic activity of miR-96 on HRMEC, we performed a gain/loss of function study. In a similar way to hyperoxia exposure, we observed a robust angiogenic impairment (tubulogenesis and migration) on HRMEC transfected with an antagomiR-96. Conversely, overexpression of miR-96 stimulated the angiogenic activity of HRMEC and protected against hyperoxia-induced endothelial dysfunction. Finally, we evaluated the potential vasoprotective function of miR-96 in OIR animals. Rat pups intravitreally supplemented with miR-96 mimic (1 mg/kg) displayed a significant preservation of retinal/choroidal microvessels at P10 compared to controls. This result was consistent with the maintenance of physiologic levels of VEGF and ANG-2 in the OIR retina. Conclusion This study demonstrates that miR-96 regulates the expression of angiogenic factors (VEGF/ANG-2) associated to the maintenance of retinal and choroidal microvasculature during physiological and pathological conditions. Intravitreal supplementation of miR-96 mimic could constitute a novel therapeutic strategy to improve vascular repair in OIR and other ischemic retinopathies.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Maëlle Wirth
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Pakiza Ruknudin
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Celine Borras
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
8
|
Panagopoulou MS, Wark AW, Birch DJS, Gregory CD. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles 2020; 9:1710020. [PMID: 32002172 PMCID: PMC6968689 DOI: 10.1080/20013078.2019.1710020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 12/22/2022] Open
Abstract
Extracellular vesicles (EVs) have numerous potential applications in the field of healthcare and diagnostics, and research into their biological functions is rapidly increasing. Mainly because of their small size and heterogeneity, there are significant challenges associated with their analysis and despite overt evidence of the potential of EVs in clinical diagnostic practice, guidelines for analytical procedures have not yet been properly established. Here, we present an overview of the main methods for studying the properties of EVs based on the principles of fluorescence. Setting aside the isolation, purification and physicochemical characterization strategies which answer questions about the size, surface charge and stability of EVs (reviewed elsewhere), we focus on available optical tools that enable the direct analysis of phenotype and mechanisms of interaction with tissues. In brief, the topics on which we elaborate range from the most popular approaches such as nanoparticle tracking analysis and flow cytometry, to less commonly used techniques such as fluorescence depolarization and microarrays as well as emerging areas such as fast fluorescence lifetime imaging microscopy (FLIM). We highlight that understanding the strengths and limitations of each method is essential for choosing the most appropriate combination of analytical tools. Finally, future directions of this rapidly developing area of medical diagnostics are discussed.
Collapse
Affiliation(s)
- Maria S. Panagopoulou
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh, UK
| | - Alastair W. Wark
- Centre for Molecular Nanometrology, Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - David J S Birch
- Photophysics Group, Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
| | - Christopher D. Gregory
- University of Edinburgh Centre for Inflammation Research, The Queen’s Medical Research Institute, Edinburgh, UK
| |
Collapse
|
9
|
Advances in the study of exosomal lncRNAs in tumors and the selection of research methods. Biomed Pharmacother 2019; 123:109716. [PMID: 31896067 DOI: 10.1016/j.biopha.2019.109716] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023] Open
Abstract
Exosomes are endosome-derived extracellular vesicles that are released upon the fusion of multivesicular bodies with the plasma membrane. These vesicles contain proteins, lipids, and nucleic acids and are found in various human body fluids. Exosomes can transfer bioactive molecules to nearby or distant recipient cells, thereby affecting their function. Recently, exosomes have gained importance as a medium of communication between tumor cells. An increasing number of studies have found that non-coding RNAs in tumor cell-derived exosomes can regulate tumor microenvironments, inhibit immune cell function, promote the growth and invasion of tumor cells, and impart resistance to chemicals in tumor cells. In this review, we focus on the effects of exosomal long non-coding RNAs (lncRNAs) on tumors. As exosomes and their parent cells have similar biological characteristics and coated lncRNAs can exist stably in vivo without being degraded by RNases, exosomal lncRNAs have emerged as novel non-invasive tumor biomarkers for use in the early diagnosis and evaluation of prognosis of tumors. Advancements in the field have led to the development of a variety of techniques in exosomal non-coding RNA research. Currently, most methods include the separation and purification of exosomes, followed by RNA extraction, reverse transcription, and subsequent analyses; thus, these processes are very tedious and vulnerable to contamination and could lead to inaccurate and inconsistent results. Thus, there has been an increase in the development of detection methods for exosomal RNAs. Here, we discuss the existing research methods, their advantages and disadvantages, and a few new techniques.
Collapse
|
10
|
Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia. Cell Mol Neurobiol 2019; 39:729-750. [PMID: 31089834 PMCID: PMC11462851 DOI: 10.1007/s10571-019-00684-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) only recently have been recognized as promising molecules for both fundamental and clinical neuroscience. We provide a literature review of miRNA biomarker studies in three most prominent psychiatric disorders (depression, bipolar disorder and schizophrenia) with the particular focus on depression due to its social and healthcare importance. Our search resulted in 191 unique miRNAs across 35 human studies measuring miRNA levels in blood, serum or plasma. 30 miRNAs replicated in more than one study. Most miRNAs targeted neuroplasticity and neurodevelopment pathways. Various limitations do not allow us to make firm conclusions on clinical potential of studied miRNAs. Based on our results we discuss the rationale for future research investigations of exosomal mechanisms to overcome methodological caveats both in studying etiology and pathogenesis, and providing an objective back-up for clinical decisions.
Collapse
Affiliation(s)
- S K Gruzdev
- Institute of Medicine, RUDN University, Miklukho-Maklaya Str. 6, Moscow, Russia, 117198.
| | - A A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - T A Druzhkova
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - A B Guekht
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
- Russian National Research Medical University, Ostrovitianov Str. 1, Moscow, Russia, 117997
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| |
Collapse
|
11
|
Bui TM, Mascarenhas LA, Sumagin R. Extracellular vesicles regulate immune responses and cellular function in intestinal inflammation and repair. Tissue Barriers 2018; 6:e1431038. [PMID: 29424657 PMCID: PMC6179129 DOI: 10.1080/21688370.2018.1431038] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/19/2022] Open
Abstract
Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging, and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and recruited immune cells.
Collapse
Affiliation(s)
- Triet M. Bui
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Lorraine A. Mascarenhas
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Ronen Sumagin
- Northwestern University, Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| |
Collapse
|
12
|
Kappel A, Keller A. miRNA assays in the clinical laboratory: workflow, detection technologies and automation aspects. Clin Chem Lab Med 2017; 55:636-647. [PMID: 27987355 DOI: 10.1515/cclm-2016-0467] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 12/27/2022]
Abstract
microRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression in eukaryotes. Their differential abundance is indicative or even causative for a variety of pathological processes including cancer or cardiovascular disorders. Due to their important biological function, miRNAs represent a promising class of novel biomarkers that may be used to diagnose life-threatening diseases, and to monitor disease progression. Further, they may guide treatment selection or dosage of drugs. miRNAs from blood or derived fractions are particularly interesting candidates for routine laboratory applications, as they can be measured in most clinical laboratories already today. This assures a good accessibility of respective tests. Albeit their great potential, miRNA-based diagnostic tests have not made their way yet into the clinical routine, and hence no standardized workflows have been established to measure miRNAs for patients' benefit. In this review we summarize the detection technologies and workflow options that exist to measure miRNAs, and we describe the advantages and disadvantages of each of these options. Moreover, we also provide a perspective on data analysis aspects that are vital for translation of raw data into actionable diagnostic test results.
Collapse
Affiliation(s)
- Andreas Kappel
- Siemens Healthcare GmbH, Guenther-Scharowsky-Str.1, Erlangen
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbruecken
| |
Collapse
|
13
|
Ragni E, Banfi F, Barilani M, Cherubini A, Parazzi V, Larghi P, Dolo V, Bollati V, Lazzari L. Extracellular Vesicle-Shuttled mRNA in Mesenchymal Stem Cell Communication. Stem Cells 2017; 35:1093-1105. [PMID: 28164431 DOI: 10.1002/stem.2557] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are multipotent cells able to differentiate into several cell types, hence providing cell reservoirs for therapeutic applications. The absence of detectable MSC homing at injury sites suggests that paracrine functions could, at least in part, be mediated by extracellular vesicles (EVs); EVs are newly identified players that are studied mainly as predictive or diagnostic biomarkers. Together with their clinical interests, EVs have recently come to the fore for their role in cell-to-cell communication. In this context, we investigated gene-based communication mechanisms in EVs generated by bone marrow and umbilical cord blood MSC (BMMSC and CBMSC, respectively). Both MSC types released vesicles with similar physical properties, although CBMSC were able to secrete EVs with faster kinetics. A pattern of preferentially incorporated EV transcripts was detected with respect to random internalization from the cytosol, after a validated normalization procedure was established. In the paradigm where EVs act as bioeffectors educating target cells, we demonstrated that kidney tubular cells lacking IL-10 expression and exposed to BMMSC-EVs and CBMSC-EVs acquired the IL-10 mRNA, which was efficiently translated into the corresponding protein. These findings suggest that horizontal mRNA transfer through EVs is a new mechanism in the MSC restoring ability observed in vivo that is here further demonstrated in an in vitro rescue model after acute cisplatin injury of tubular cells. Stem Cells 2017;35:1093-1105.
Collapse
Affiliation(s)
- Enrico Ragni
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Banfi
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Barilani
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Alessandro Cherubini
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Parazzi
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola Larghi
- Autoimmunity Program, Istituto Nazionale di Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy.,Epidemiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Lorenza Lazzari
- Cell Factory, Unit of Cell Therapy and Cryobiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
Lin J, Wang Y, Zou YQ, Chen X, Huang B, Liu J, Xu YM, Li J, Zhang J, Yang WM, Min QH, Sun F, Li SQ, Gao QF, Wang XZ. Differential miRNA expression in pleural effusions derived from extracellular vesicles of patients with lung cancer, pulmonary tuberculosis, or pneumonia. Tumour Biol 2016; 37:15835–15845. [PMID: 27743380 DOI: 10.1007/s13277-016-5410-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in various physiological and pathological processes. MiRNAs also exhibit high stability and are present at high concentrations in human bodily fluids. Consequently, miRNAs may represent attractive and novel diagnostic biomarkers for certain clinical conditions. Recently, the capacity for extracellular vesicles, including microvesicles and exosomes, to carry miRNAs that participate in cell-to-cell communication has been described. In the present study, the miRNA expression patterns for three kinds of pleural effusions that were obtained from patients with pneumonia (group A), pulmonary tuberculosis (group B), and lung cancer (group C) were detected with high-throughput sequencing. When the expression levels of these miRNAs were compared among the three groups, three differentially expressed miRNAs were detected between groups A and B, while 27 differentially expressed miRNAs were detected between groups A and C. Notably, miR-378i was significantly elevated only in group B, while miR-205-5p and miR-200b were markedly increased only in group C (p < 0.01). Further studies are needed to confirm whether these differentially expressed miRNAs may serve as prospective diagnostic markers for pulmonary diseases.
Collapse
Affiliation(s)
- Jin Lin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Ye-Qing Zou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Xin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Bo Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Jing Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Yan-Mei Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Jing Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jing Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Wei-Ming Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Qing-Hua Min
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Fan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Shu-Qi Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Qiu-Fang Gao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China.
| |
Collapse
|
15
|
Specific miRNA Disease Biomarkers in Blood, Serum and Plasma: Challenges and Prospects. Mol Diagn Ther 2016; 20:509-518. [DOI: 10.1007/s40291-016-0221-4] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Nardi FDS, Michelon TF, Neumann J, Manvailer LFS, Wagner B, Horn PA, Bicalho MDG, Rebmann V. High levels of circulating extracellular vesicles with altered expression and function during pregnancy. Immunobiology 2016; 221:753-60. [PMID: 27005781 DOI: 10.1016/j.imbio.2016.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/11/2016] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs) are widely considered important modulators of cell-cell communication and may interact with target cells locally and on a systemic level. Several studies had shown that circulating EVs' levels are increased during pregnancy. However, EVs characteristics, composition and biological functions in pregnancy still need to be clarified. This study aims to determine if circulating EVs during pregnancy are modified regarding levels, markers and cytokine profile as well as their reactivity towards peripheral blood cells. 26 pregnant women (PW) being in the second gestational trimester and 59 non-pregnant women (NPW) were investigated. EVs enrichment was performed by ExoQuick™ or ultracentrifugation; nanoparticle tracking analysis, SDS-PAGE followed by Western Blotting and densitometry, and IFN-γ, IL-10 and TGF-β1 ELISA for EVs characterization; imaging flow cytometry to analyze EVs' uptake by peripheral blood cells and flow cytometry were performed to analyze EVs function regarding induction of caspase-3 activity. Circulating EVs' levels were increased during pregnancy [26.9×10(6)EVs/ml (range: 6.4-46.3); p=0.003] vs NPW [18.9×10(6)EVs/ml (range: 2.5-61.3)]. Importantly, the immunosuppressive TGF-β1 and IL-10 cytokine cargo were increased in EVs of PW even after normalization to 1 million EVs [TGF-β1: 0.25pg/10(6)EVs (range: 0.0-2.0); p<0.0001] and [IL-10: 0.21pg/10(6)EVs (range: 0.0-16.8); p=0.006] vs NPW. Although EVs derived from non-pregnant and pregnant women were taken up by NK cells, the latter exclusively enhanced the caspase-3 activity in CD56(dim) NK cells (8.2±0.9; p=0.02). The qualitative and quantitative pregnancy-related alterations of circulating EVs provide first hints for an immune modulating role of circulating EVs during pregnancy.
Collapse
Affiliation(s)
- Fabiola da Silva Nardi
- Genetics Department, Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná, 19031 Curitiba, Brazil; Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany; CAPES Foundation, Ministry of Education of Brazil, Brasília-DF 70, 040-020, Brazil.
| | | | - Jorge Neumann
- Reproductive Immunology Centre, 90470-280 Porto Alegre, Brazil.
| | - Luis Felipe Santos Manvailer
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany; CAPES Foundation, Ministry of Education of Brazil, Brasília-DF 70, 040-020, Brazil.
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany.
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany.
| | - Maria da Graça Bicalho
- Genetics Department, Laboratory of Immunogenetics and Histocompatibility (LIGH), Federal University of Paraná, 19031 Curitiba, Brazil.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|