1
|
Faraj N, Hoogaars WMH, Duinkerken BHP, Wolters AHG, Kats K, Dekkers MC, Zaldumbide A, Giepmans BNG. Pancreatic exocrine damage induces beta cell stress in zebrafish larvae. Diabetologia 2025:10.1007/s00125-025-06432-4. [PMID: 40295334 DOI: 10.1007/s00125-025-06432-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/04/2025] [Indexed: 04/30/2025]
Abstract
AIMS/HYPOTHESIS Excessive endoplasmic reticulum (ER) stress in beta cells can impair proliferation and contribute to autoimmune responses such as the destruction of beta cells in type 1 diabetes. Exocrine-beta cell interactions affect beta cell growth and function. Notably, exocrine abnormalities are frequently observed alongside overloaded beta cells in different types of diabetes, suggesting that exocrine stress may induce beta cell ER stress and loss. While a cause-consequence relationship between exocrine stress and beta cell function cannot be addressed in humans, it can be studied in a zebrafish model. Larvae develop a pancreas with a human-like morphology by 120 h post-fertilisation, providing a valuable dynamic model for studying pancreatic interactions. Our aim was to target exocrine cells specifically and address beta cell status using transgenic zebrafish models and reporters. METHODS To explore the impact of exocrine damage on beta cell fitness, we generated a novel zebrafish model allowing exocrine pancreas ablation, using a nifurpirinol-nitroreductase system. We subsequently assessed the in vivo effects on beta cells by live-monitoring dynamic cellular events, such as ER stress, apoptosis and changes in beta cell number and volume. RESULTS Exocrine damage in zebrafish decreased pancreas volume by approximately 50% and changed its morphology. The resulting exocrine damage induced ER stress in 60-90% of beta cells and resulted in a ~50% reduction in their number. CONCLUSIONS/INTERPRETATION The zebrafish model provides a robust platform for investigating the interplay between exocrine cells and beta cells, thereby enhancing further insights into the mechanisms driving pancreatic diseases such as type 1 diabetes.
Collapse
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Willem M H Hoogaars
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - B H Peter Duinkerken
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kim Kats
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mette C Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
2
|
Guo C, Wu Y, Wang Q, Li X, Deng T, Xia X, Li L, Li H, Lin C, Zhu C, Liu F. Super-resolution imaging lysosome vesicles and establishing a gallbladder-visualizable zebrafish model via a fluorescence probe. Talanta 2024; 279:126656. [PMID: 39098243 DOI: 10.1016/j.talanta.2024.126656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Advanced probes for imaging viscous lipids microenvironment in vitro and in vivo are desirable for the study of membranous organelles and lipids traffic. Herein, a reaction-based dihydroquinoline probe (DCQ) was prepared via linking a diethylamino coumarin fluorophore with a N-methylquinoline moiety. DCQ is stable in low viscous aqueous mediums and exhibits green fluorescence, which undergoes fast autoxidation in high viscous mediums to form a fluorescent product with deep-red to near-infrared (NIR) emission, rendering the ability for dual-color imaging. Living cell imaging indicated that DCQ can effectively stain lysosomal membranes with deep-red fluorescence. Super-resolution imaging of lysosome vesicles has been achieved by DCQ and stimulated emission depletion (STED) microscopy. In addition, DCQ realizes multiple organs imaging in zebrafish, whose dual-color emission can perfectly discriminate zebrafish's yolk sac, digestive tract and gallbladder. Most importantly, DCQ has been successfully used to establish a gallbladder-visualizable zebrafish model for the evaluation of drug stress.
Collapse
Affiliation(s)
- Chengxi Guo
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yufang Wu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiling Wang
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoqi Li
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tao Deng
- School of Medicine, Foshan University, Foshan, 528000, China
| | - Xiaotong Xia
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Huan Li
- Lingnan Medical Research Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510407, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Fang Liu
- School of Pharmaceutical Sciences, Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Jin Y, Kozan D, Young ED, Hensley MR, Shen MC, Wen J, Moll T, Anderson JL, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver steatosis. J Lipid Res 2024; 65:100637. [PMID: 39218217 PMCID: PMC11913794 DOI: 10.1016/j.jlr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. Unlike murine models, to which various standardized high lipid diets such as a high-cholesterol diet (HCD) are available, there has yet to be a uniformly adopted zebrafish HCD protocol. In this study, we have developed an improved HCD protocol and thoroughly tested its impact on zebrafish lipid deposition and lipoprotein regulation in a dose- and time-dependent manner. The diet stability, reproducibility, and fish palatability were also validated. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LPs) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae for 8 days produced hepatic steatosis that became more stable and sever after 1 day of fasting and was associated with an opaque liver phenotype (dark under transmitted light). Unlike larvae, adult fish fed HCD for 14 days followed by a 3-day fast did not develop a stable fatty liver phenotype, though the fish had higher ApoB-LP levels in plasma and an upregulated lipogenesis gene fasn in adipose tissue. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Eric D Young
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Division of Gastrointestinal and Liver Pathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Monica R Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
4
|
Weng Y, Huang Y, Qian M, Jin Y. Epoxiconazole disturbed metabolic balance and gut microbiota homeostasis in juvenile zebrafish. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105993. [PMID: 39084794 DOI: 10.1016/j.pestbp.2024.105993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Epoxiconazole (EPX) is a broad-spectrum fungicide extensively used in agricultural pest control. Emerging evidence suggests that EPX can adversely affect different endpoints in non-target organisms. Here, the toxicity of EPX was assessed using earlier developmental stage of zebrafish as a model to investigate its effects on metabolism and intestinal microbiota after 21 days of exposure. Our findings indicated that EPX exposure resulted in physiological alterations in juvenile zebrafish, including increase in triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and glycose (Glu). Nile red staining demonstrated enhanced lipid accumulation in juvenile, accompanied by a marked upregulation in the expression of genes associated with TG synthesis. Moreover, EPX led to alterations in amino acids and carnitines levels in 21 dpf (days post fertilization) zebrafish. We also observed that EPX disrupted intestinal barrier function in juvenile zebrafish, manifested by decreasing mucus secretion and changing in genes related to tight junctions. Moreover, for a more comprehensive analysis of the intestinal microbiota in 21 dpf zebrafish, the intestine tissues were dissected under a microscope for 16S rRNA sequencing analysis. The results revealed that EPX altered the structure and abundance of intestinal microflora in zebrafish, including decreased alpha diversity indices and shifted in bacteria at phylum and genus levels. Notably, the correlation analysis demonstrated strong associations between alterations in various pathogenic bacterial genera and levels of amino acids and carnitines. Overall, these findings confirm that the fungicide EPX promotes metabolic disorders and alterations in the intestinal micro-environment in 21 dpf zebrafish, shedding light on the toxicologic effects of chemicals to aquatic organisms during the development stage.
Collapse
Affiliation(s)
- You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yilin Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
5
|
Moll TO, Farber SA. Fish Playpens: Method for Raising Individual Juvenile Zebrafish on a Recirculating System for Studies Requiring Repeated Measures. Zebrafish 2024; 21:294-296. [PMID: 38153390 PMCID: PMC11876806 DOI: 10.1089/zeb.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Even though many experimental approaches benefit from tracking individual juvenile animals, there is yet to be a commercial zebrafish rack system designed to accomplish this task. Thus, we invented playpens, an acrylic, and screen container, to raise 12 individual zebrafish juveniles per standard 10 L tank on an existing recirculating fish system. During a week-long experiment, fish raised in playpens grow to the same size as conventionally raised juveniles.
Collapse
Affiliation(s)
- Tabea O.C. Moll
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Moll T, Farber SA. Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look. Arterioscler Thromb Vasc Biol 2024; 44:1053-1064. [PMID: 38482694 PMCID: PMC11042983 DOI: 10.1161/atvbaha.123.318287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Zebrafish have become a powerful model of mammalian lipoprotein metabolism and lipid cell biology. Most key proteins involved in lipid metabolism, including cholesteryl ester transfer protein, are conserved in zebrafish. Consequently, zebrafish exhibit a human-like lipoprotein profile. Zebrafish with mutations in genes linked to human metabolic diseases often mimic the human phenotype. Zebrafish larvae develop rapidly and externally around the maternally deposited yolk. Recent work revealed that any disturbance of lipoprotein formation leads to the accumulation of cytoplasmic lipid droplets and an opaque yolk, providing a visible phenotype to investigate disturbances of the lipoprotein pathway, already leading to discoveries in MTTP (microsomal triglyceride transfer protein) and ApoB (apolipoprotein B). By 5 days of development, the digestive system is functional, making it possible to study fluorescently labeled lipid uptake in the transparent larvae. These and other approaches enabled the first in vivo description of the STAB (stabilin) receptors, showing lipoprotein uptake in endothelial cells. Various zebrafish models have been developed to mimic human diseases by mutating genes known to influence lipoproteins (eg, ldlra, apoC2). This review aims to discuss the most recent research in the zebrafish ApoB-containing lipoprotein and lipid metabolism field. We also summarize new insights into lipid processing within the yolk cell and how changes in lipid flux alter yolk opacity. This curious new finding, coupled with the development of several techniques, can be deployed to identify new players in lipoprotein research directly relevant to human disease.
Collapse
|
7
|
Cassidy RM, Flores EM, Trinh Nguyen AK, Cheruvu SS, Uribe RA, Krachler AM, Odem MA. Systematic analysis of proximal midgut- and anorectal-originating contractions in larval zebrafish using event feature detection and supervised machine learning algorithms. Neurogastroenterol Motil 2023; 35:e14675. [PMID: 37743702 PMCID: PMC10841157 DOI: 10.1111/nmo.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Zebrafish larvae are translucent, allowing in vivo analysis of gut development and physiology, including gut motility. While recent progress has been made in measuring gut motility in larvae, challenges remain which can influence results, such as how data are interpreted, opportunities for technical user error, and inconsistencies in methods. METHODS To overcome these challenges, we noninvasively introduced Nile Red fluorescent dye to fill the intraluminal gut space in zebrafish larvae and collected serial confocal microscopic images of gut fluorescence. We automated the detection of fluorescent-contrasted contraction events against the median-subtracted signal and compared it to manually annotated gut contraction events across anatomically defined gut regions. Supervised machine learning (multiple logistic regression) was then used to discriminate between true contraction events and noise. To demonstrate, we analyzed motility in larvae under control and reserpine-treated conditions. We also used automated event detection analysis to compare unfed and fed larvae. KEY RESULTS Automated analysis retained event features for proximal midgut-originating retrograde and anterograde contractions and anorectal-originating retrograde contractions. While manual annotation showed reserpine disrupted gut motility, machine learning only achieved equivalent contraction discrimination in controls and failed to accurately identify contractions after reserpine due to insufficient intraluminal fluorescence. Automated analysis also showed feeding had no effect on the frequency of anorectal-originating contractions. CONCLUSIONS & INFERENCES Automated event detection analysis rapidly and accurately annotated contraction events, including the previously neglected phenomenon of anorectal contractions. However, challenges remain to discriminate contraction events based on intraluminal fluorescence under treatment conditions that disrupt functional motility.
Collapse
Affiliation(s)
- Ryan M. Cassidy
- Brown Foundation Institute of Molecular Medicine, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Erika M. Flores
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Anh K. Trinh Nguyen
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Sai S. Cheruvu
- Department of Integrative Biology and Pharmacology,
McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Rosa A. Uribe
- Department of Biosciences, Rice University, Houston, TX
77005, USA
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| | - Max A. Odem
- Department of Microbiology and Molecular Genetics, McGovern
Medical School at UTHealth, Houston, TX 77030, USA
| |
Collapse
|
8
|
Moll TO, Farber SA. Fish Playpens - Method for raising individual juvenile zebrafish on a recirculating system for studies requiring repeated measures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567840. [PMID: 38045334 PMCID: PMC10690224 DOI: 10.1101/2023.11.20.567840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Even though many experimental approaches benefit from tracking individual larval animals, there is yet to be a commercial zebrafish rack system designed to accomplish this task. Thus, we invented playpens, an acrylic and screen container, to raise 12 individual zebrafish juveniles per standard 10 L tank on an existing recirculating fish system. During a week-long experiment, fish raised in playpens grow to the same size as conventionally raised juveniles.
Collapse
Affiliation(s)
- Tabea O.C. Moll
- Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Steven A. Farber
- Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
9
|
Jin Y, Kozan D, Anderson JL, Hensley M, Shen MC, Wen J, Moll T, Kozan H, Rawls JF, Farber SA. A high-cholesterol zebrafish diet promotes hypercholesterolemia and fasting-associated liver triglycerides accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565134. [PMID: 37961364 PMCID: PMC10635069 DOI: 10.1101/2023.11.01.565134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Zebrafish are an ideal model organism to study lipid metabolism and to elucidate the molecular underpinnings of human lipid-associated disorders. In this study, we provide an improved protocol to assay the impact of a high-cholesterol diet (HCD) on zebrafish lipid deposition and lipoprotein regulation. Fish fed HCD developed hypercholesterolemia as indicated by significantly elevated ApoB-containing lipoproteins (ApoB-LP) and increased plasma levels of cholesterol and cholesterol esters. Feeding of the HCD to larvae (8 days followed by a 1 day fast) and adult female fish (2 weeks, followed by 3 days of fasting) was also associated with a fatty liver phenotype that presented as severe hepatic steatosis. The HCD feeding paradigm doubled the levels of liver triacylglycerol (TG), which was striking because our HCD was only supplemented with cholesterol. The accumulated liver TG was unlikely due to increased de novo lipogenesis or inhibited β-oxidation since no differentially expressed genes in these pathways were found between the livers of fish fed the HCD versus control diets. However, fasted HCD fish had significantly increased lipogenesis gene fasn in adipose tissue and higher free fatty acids (FFA) in plasma. This suggested that elevated dietary cholesterol resulted in lipid accumulation in adipocytes, which supplied more FFA during fasting, promoting hepatic steatosis. In conclusion, our HCD zebrafish protocol represents an effective and reliable approach for studying the temporal characteristics of the physiological and biochemical responses to high levels of dietary cholesterol and provides insights into the mechanisms that may underlie fatty liver disease.
Collapse
Affiliation(s)
- Yang Jin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Darby Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Jennifer L Anderson
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Monica Hensley
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Meng-Chieh Shen
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Jia Wen
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Tabea Moll
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Hannah Kozan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, Durham, NC, United States
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
10
|
Kozan DW, Derrick JT, Ludington WB, Farber SA. From worms to humans: Understanding intestinal lipid metabolism via model organisms. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159290. [PMID: 36738984 PMCID: PMC9974936 DOI: 10.1016/j.bbalip.2023.159290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/05/2023]
Abstract
The intestine is responsible for efficient absorption and packaging of dietary lipids before they enter the circulatory system. This review provides a comprehensive overview of how intestinal enterocytes from diverse model organisms absorb dietary lipid and subsequently secrete the largest class of lipoproteins (chylomicrons) to meet the unique needs of each animal. We discuss the putative relationship between diet and metabolic disease progression, specifically Type 2 Diabetes Mellitus. Understanding the molecular response of intestinal cells to dietary lipid has the potential to undercover novel therapies to combat metabolic syndrome.
Collapse
Affiliation(s)
- Darby W Kozan
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Joshua T Derrick
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - William B Ludington
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States
| | - Steven A Farber
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States; Department of Embryology, Carnegie Institute for Science, Baltimore, MD, United States.
| |
Collapse
|
11
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
12
|
Balamurugan K, Medishetti R, Rao P, K RV, Chatti K, Parsa KV. Protocol to evaluate hyperlipidemia in zebrafish larvae. STAR Protoc 2022; 3:101819. [DOI: 10.1016/j.xpro.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Responsive fluorescence enhancement for in vivo Cu(II) monitoring in zebrafish larvae. Biosens Bioelectron 2021; 200:113885. [PMID: 34954569 DOI: 10.1016/j.bios.2021.113885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022]
Abstract
Several neurodegenerative diseases are ascribed to disorders caused by the secretion of Cu ions. However, a majority of the current techniques for copper ion detection are restricted to in vivo monitoring and nonspecific interactions. Their methods are limited to the systematic analysis of Cu ions in living organisms. Thus, a synthetic molecular fluorophore, 5-amino 2,3-dihydroquinolinimine (NDQI), has been developed and successfully utilized in in vivo monitoring of the distribution of Cu(II) in zebrafish larvae. The reversible formation of the NDQI-Cu complex allows its use with high metal concentrations and in oxidative stress conditions. The NDQI-directed strategy developed here can quantitatively differentiate cells with different Cu(II) concentrations. Remarkably, dynamic distribution of Cu(II) in the intestine and liver can be observed.
Collapse
|
14
|
Zhou Y, Guo W, Lei L, Sun Y, Li R, Guo Y, Yang L, Shi X, Han J, Zhou B. Bis(2-ethylhexyl)-tetrabromophthalate induces zebrafish obesity by altering the brain-gut axis and intestinal microbial composition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118127. [PMID: 34523534 DOI: 10.1016/j.envpol.2021.118127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/15/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Multiple environmental stressors, including chemicals termed obesogens, contribute to the susceptibility of organisms to obesity. Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH), a novel brominated flame retardant, is an environmental contaminant that may disrupt lipid metabolism. However, the risk of TBPH leading to obesity remains unknown. Herein, adult female zebrafish fed a normal-fat diet (NFD) or high-fat diet (HFD) were exposed to 0, 0.02 and 2.0 μM TBPH for 6 weeks. The results showed that chronic TBPH exposure lead to significant weight gain, adipocyte hypertrophy, and subcutaneous fat accumulation, which could be enhanced by HFD feeding. HFD individuals also showed significant visceral fat accumulation. Transcription of the main adipokines regulating lipid metabolism associated with the brain-gut axis were significantly affected by TBPH, especially leptin (brain) and adiponectin (intestine). Additionally, peroxisome proliferator-activated nuclear receptor gamma (PPAR-γ) was significantly upregulated in intestine. TBPH increased the abundance of Firmicutes and Bacteroidetes in the gut microbiota in both NFD and HFD groups, resulting in obesity. Interestingly, population diversity analysis indicated that TBPH alone had a comparable impact on gut microbiota composition to that of HDF controls. Thus, TBPH increased the susceptibility of female zebrafish to obesity by disrupting brain-gut axis regulation and gut microbial composition, leading to enhanced fat accumulation under HFD conditions.
Collapse
Affiliation(s)
- Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiwen Li
- Ecological Environment Monitoring and Scientific Research Center, Changjiang River Basin Ecological Environment Administration, Ministry of Ecology and Environment, Wuhan, 430014, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiongjie Shi
- College of Life Sciences, The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
15
|
Patatin primary structural properties and effects on lipid metabolism. Food Chem 2020; 344:128661. [PMID: 33272761 DOI: 10.1016/j.foodchem.2020.128661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/17/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022]
Abstract
Patatin, the major protein found in potatoes, was purified and shows several isoforms. The essential amino acid content of patatin was ashighas 76%, indicating that it is a valuable protein source. Patatin was an O-linked glycoprotein that contained fucose monosaccharides, as well as mannose, rhamnose, glucose, galactose, xylose, and arabinose. Patatin had a fucosylated glycan structural feature, which strongly bound AAL (Aleuria aurantia Leukoagglutinin), a known fucose binding lectin. Moreover, thelipid metabolism regulatory effects of patatin on the fat catabolism, fat absorption, and inhibition of lipase activity were measured after high-fat feeding of zebrafish larvae. Results revealed that 37.0 μg/mL patatin promoted 23% lipid decomposition metabolism. Meanwhile patatin could inhibite lipase activity and fat absorption, whose effects accounted for half that of a positive control drug. Our findings suggest that patatin, a fucosylated glycoprotein, could potentially be used as a naturalactiveconstituent with anti-obesity effects.
Collapse
|
16
|
Gong X, Jiang S, Tian H, Xiang D, Zhang J. Polyphenols in the Fermentation Liquid of Dendrobium candidum Relieve Intestinal Inflammation in Zebrafish Through the Intestinal Microbiome-Mediated Immune Response. Front Immunol 2020; 11:1542. [PMID: 32765533 PMCID: PMC7379839 DOI: 10.3389/fimmu.2020.01542] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/11/2020] [Indexed: 01/04/2023] Open
Abstract
Previous studies of Dendrobium candidum (D. candidum), which is mainly distributed in tropical areas, have mainly focused on its functional polysaccharide; the effects of D. candidum polyphenols, the chemical composition of which may be improved by fermentation, have received limited attention, especially in in vivo models, which inevitably involve interactions with intestinal microorganisms. To address this challenge, metagenomic and metabolomic techniques, were applied, and immune factors and mucosal barrier-related proteins were determined to reveal the effects of fermented D. candidum polyphenols (FDC) on intestinal inflammation induced by oxazolone in zebrafish. The results showed that fermentation significantly changed the chemical composition of D. candidum and that FDC significantly improved the intestinal immune index. After the 21st day of FDC intervention, the abundance of Lactobacillus, Faecalibacterium, and Rummeliibacillus increased, but the abundance of the genera Shewanella, Geodermatophilus, Peptostreptococcaceae, and Mycobacterium decreased. At the same time, FDC significantly increased intestinal short-chain fatty acids (SCFAs). In addition, network analysis based on multi-omics indicated that FDC intake leads to changes in intestinal microbiota and intestinal metabolites, resulting in enhanced host immune function. These results indicate that FDC can improve intestinal health by regulating the intestinal microbiota and its metabolites to treat intestinal inflammation and regulate the host immune system. The present research improved our understanding of the utilization of D. candidum polyphenols and provided new evidence for the impacts of fermented D. candidum on host health.
Collapse
Affiliation(s)
- Xiaoyue Gong
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Shuaiming Jiang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Haiyan Tian
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Dong Xiang
- College of Food Science and Engineering, Hainan University, Haikou, China.,Key Laboratory of Food Nutrition and Functional Food in Hainan Province, Hainan University, Haikou, China
| | - Jiachao Zhang
- College of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
17
|
Kikuchi K, Noh H, Numayama-Tsuruta K, Ishikawa T. Mechanical roles of anterograde and retrograde intestinal peristalses after feeding in a larval fish ( Danio rerio). Am J Physiol Gastrointest Liver Physiol 2020; 318:G1013-G1021. [PMID: 32281395 DOI: 10.1152/ajpgi.00165.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transport in gut is important, not only for digestion, metabolism, and nutrient uptake, but also for microbiotic circumstance in the digestive tract; however, the effects of mixing and pumping in the intestine have not been fully clarified. Therefore, in this study, we quantitatively explored intestinal mixing and pumping, represented using a dispersion coefficient and pressure rise in zebrafish larvae, which is a model organism for vertebrate digestive studies, over time by measuring transport phenomena after feeding. Here we provide the first quantitative evidence of the roles of anterograde and retrograde intestinal peristalses in the larval fish of Danio rerio after feeding in terms of digestive pumping and mixing functions by an in vivo imaging of intestinal propagation waves in the larval intestine. Peristaltic velocities in the anterior and posterior intestines change considerably after feeding for 5 h, while the intervals and amplitudes remain almost constant. The intestinal transport is successively visualized after feeding to elimination. Moreover, the particle tracking velocimetry in the chyme leads our quantitative understanding of outstanding mixing and pumping functions in the anterior and posterior intestines by adopting physical parameters of diffusivity and pressure rise, respectively. From scaling analysis, we found that the anterior intestine maintains mixing for 5 h from feeding, whereas the posterior intestine activates gradually pumping up. These results suggest that time change of pumping and mixing functions of intestinal peristalsis could considerably influence the nutrient uptake and microbiotic circumstance in the larval fish intestine.NEW & NOTEWORTHY Transport in gut is important, not only for digestion, metabolism, and nutrient uptake, but also for microbiotic circumstance; however, hydrodynamic effects in the intestine have not been fully clarified. We provide the first quantitative evidence of the mechanical roles of anterograde and retrograde intestinal peristalses in the larval fish of Danio rerio by adopting physical parameters of diffusivity and pressure rise. The intestine transitionally regulates mixing and pumping functions by peristaltic propagations after feeding.
Collapse
Affiliation(s)
- Kenji Kikuchi
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Hyeongtak Noh
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Takuji Ishikawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Walsh MT, Celestin OM, Thierer JH, Rajan S, Farber SA, Hussain MM. Model systems for studying the assembly, trafficking, and secretion of apoB lipoproteins using fluorescent fusion proteins. J Lipid Res 2020; 61:316-327. [PMID: 31888978 PMCID: PMC7053841 DOI: 10.1194/jlr.ra119000259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/24/2019] [Indexed: 11/20/2022] Open
Abstract
apoB exists as apoB100 and apoB48, which are mainly found in hepatic VLDLs and intestinal chylomicrons, respectively. Elevated plasma levels of apoB-containing lipoproteins (Blps) contribute to coronary artery disease, diabetes, and other cardiometabolic conditions. Studying the mechanisms that drive the assembly, intracellular trafficking, secretion, and function of Blps remains challenging. Our understanding of the intracellular and intraorganism trafficking of Blps can be greatly enhanced, however, with the availability of fusion proteins that can help visualize Blp transport within cells and between tissues. We designed three plasmids expressing human apoB fluorescent fusion proteins: apoB48-GFP, apoB100-GFP, and apoB48-mCherry. In Cos-7 cells, transiently expressed fluorescent apoB proteins colocalized with calnexin and were only secreted if cells were cotransfected with microsomal triglyceride transfer protein. The secreted apoB-fusion proteins retained the fluorescent protein and were secreted as lipoproteins with flotation densities similar to plasma HDL and LDL. In a rat hepatoma McA-RH7777 cell line, the human apoB100 fusion protein was secreted as VLDL- and LDL-sized particles, and the apoB48 fusion proteins were secreted as LDL- and HDL-sized particles. To monitor lipoprotein trafficking in vivo, the apoB48-mCherry construct was transiently expressed in zebrafish larvae and was detected throughout the liver. These experiments show that the addition of fluorescent proteins to the C terminus of apoB does not disrupt their assembly, localization, secretion, or endocytosis. The availability of fluorescently labeled apoB proteins will facilitate the exploration of the assembly, degradation, and transport of Blps and help to identify novel compounds that interfere with these processes via high-throughput screening.
Collapse
Affiliation(s)
- Meghan T. Walsh
- Department of Cell Biology,State University of New York Downstate Medical Center, Brooklyn, New York
| | - Oni M. Celestin
- Department of Embryology,Carnegie Institution for Science, Baltimore, MD
| | - James H. Thierer
- Department of Embryology,Carnegie Institution for Science, Baltimore, MD
| | - Sujith Rajan
- Department of Foundations of Medicine,New York University Long Island School of Medicine, Mineola, NY
- Diabetes and Obesity Research Center,New York University Winthrop Hospital, Mineola, NY
| | - Steven A. Farber
- Department of Embryology,Carnegie Institution for Science, Baltimore, MD
| | - M. Mahmood Hussain
- Department of Cell Biology,State University of New York Downstate Medical Center, Brooklyn, New York
- Department of Foundations of Medicine,New York University Long Island School of Medicine, Mineola, NY
- Diabetes and Obesity Research Center,New York University Winthrop Hospital, Mineola, NY
- Department of Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
19
|
Flores EM, Nguyen AT, Odem MA, Eisenhoffer GT, Krachler AM. The zebrafish as a model for gastrointestinal tract-microbe interactions. Cell Microbiol 2020; 22:e13152. [PMID: 31872937 DOI: 10.1111/cmi.13152] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/07/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has become a widely used vertebrate model for bacterial, fungal, viral, and protozoan infections. Due to its genetic tractability, large clutch sizes, ease of manipulation, and optical transparency during early life stages, it is a particularly useful model to address questions about the cellular microbiology of host-microbe interactions. Although its use as a model for systemic infections, as well as infections localised to the hindbrain and swimbladder having been thoroughly reviewed, studies focusing on host-microbe interactions in the zebrafish gastrointestinal tract have been neglected. Here, we summarise recent findings regarding the developmental and immune biology of the gastrointestinal tract, drawing parallels to mammalian systems. We discuss the use of adult and larval zebrafish as models for gastrointestinal infections, and more generally, for studies of host-microbe interactions in the gut.
Collapse
Affiliation(s)
- Erika M Flores
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Anh T Nguyen
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - George T Eisenhoffer
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne Marie Krachler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
20
|
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C, Muriana A, Peterson RT, Van Cruchten S, Zon LI. Use of Zebrafish in Drug Discovery Toxicology. Chem Res Toxicol 2019; 33:95-118. [PMID: 31625720 DOI: 10.1021/acs.chemrestox.9b00335] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Unpredicted human safety events in clinical trials for new drugs are costly in terms of human health and money. The drug discovery industry attempts to minimize those events with diligent preclinical safety testing. Current standard practices are good at preventing toxic compounds from being tested in the clinic; however, false negative preclinical toxicity results are still a reality. Continual improvement must be pursued in the preclinical realm. Higher-quality therapies can be brought forward with more information about potential toxicities and associated mechanisms. The zebrafish model is a bridge between in vitro assays and mammalian in vivo studies. This model is powerful in its breadth of application and tractability for research. In the past two decades, our understanding of disease biology and drug toxicity has grown significantly owing to thousands of studies on this tiny vertebrate. This Review summarizes challenges and strengths of the model, discusses the 3Rs value that it can deliver, highlights translatable and untranslatable biology, and brings together reports from recent studies with zebrafish focusing on new drug discovery toxicology.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety , AbbVie , North Chicago , Illinois 60064 , United States
| | - Isaac Adatto
- Stem Cell and Regenerative Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Jennifer L Freeman
- School of Health Sciences , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Joshua T Gamse
- Drug Safety Evaluation , Bristol-Myers Squibb , New Brunswick , New Jersey 08901 , United States
| | | | - Christian Lawrence
- Aquatic Resources Program , Boston Children's Hospital , Boston , Massachusetts 02115 , United States
| | | | - Randall T Peterson
- Pharmacology and Toxicology, College of Pharmacy , University of Utah , Salt Lake City , Utah 84112 , United States
| | | | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department , Harvard University , Boston , Massachusetts 02138 , United States
| |
Collapse
|
21
|
Lee MH, Wu X, Zhu Y. RNA-binding protein PUM2 regulates mesenchymal stem cell fate via repression of JAK2 and RUNX2 mRNAs. J Cell Physiol 2019; 235:3874-3885. [PMID: 31595981 DOI: 10.1002/jcp.29281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
The differentiation of mesenchymal stem cells (MSCs) into unwanted lineages can generate potential problems in clinical trials. Thus, understanding the molecular mechanisms, involved in this process, would help prevent unexpected complications. Regulation of gene expression, at the posttranscriptional level, is a new approach in cell therapies. PUMILIO is a conserved posttranscriptional regulator. However, the underlying mechanisms of PUMILIO, in vertebrate stem cells, remain elusive. Here, we show that depletion of PUMILIO2 (PUM2) blocks MSC adipogenesis and enhances osteogenesis. We also demonstrate that PUM2 works as a negative regulator on the 3'-untranslated regions of JAK2 and RUNX2 via direct binding. CRISPR/Cas9-mediated gene silencing of Pum2 inhibited lipid accumulation and induced excessive bone formation in zebrafish larvae. Our findings reveal novel roles of PUM2 in MSCs and provide potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Myon-Hee Lee
- Department of Internal Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, North Carolina
| | - Xinjun Wu
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
22
|
Otis JP, Shen MC, Caldwell BA, Reyes Gaido OE, Farber SA. Dietary cholesterol and apolipoprotein A-I are trafficked in endosomes and lysosomes in the live zebrafish intestine. Am J Physiol Gastrointest Liver Physiol 2019; 316:G350-G365. [PMID: 30629468 PMCID: PMC6415739 DOI: 10.1152/ajpgi.00080.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Difficulty in imaging the vertebrate intestine in vivo has hindered our ability to model nutrient and protein trafficking from both the lumenal and basolateral aspects of enterocytes. Our goal was to use live confocal imaging to increase understanding of intestinal trafficking of dietary cholesterol and apolipoprotein A-I (APOA-I), the main structural component of high-density lipoproteins. We developed a novel assay to visualize live dietary cholesterol trafficking in the zebrafish intestine by feeding TopFluor-cholesterol (TF-cholesterol), a fluorescent cholesterol analog, in a lipid-rich, chicken egg yolk feed. Quantitative microscopy of transgenic zebrafish expressing fluorescently tagged protein markers of early, recycling, and late endosomes/lysosomes provided the first evidence, to our knowledge, of cholesterol transport in the intestinal endosomal-lysosomal trafficking system. To study APOA-I dynamics, transgenic zebrafish expressing an APOA-I fluorescent fusion protein (APOA-I-mCherry) from tissue-specific promoters were created. These zebrafish demonstrated that APOA-I-mCherry derived from the intestine accumulated in the liver and vice versa. Additionally, intracellular APOA-I-mCherry localized to endosomes and lysosomes in the intestine and liver. Moreover, live imaging demonstrated that APOA-I-mCherry colocalized with dietary TF-cholesterol in enterocytes, and this colocalization increased with feeding time. This study provides a new set of tools for the study of cellular lipid biology and elucidates a key role for endosomal-lysosomal trafficking of intestinal cholesterol and APOA-I. NEW & NOTEWORTHY A fluorescent cholesterol analog was fed to live, translucent larval zebrafish to visualize intracellular cholesterol and apolipoprotein A-I (APOA-I) trafficking. With this model intestinal endosomal-lysosomal cholesterol trafficking was observed for the first time. A new APOA-I fusion protein (APOA-I-mCherry) expressed from tissue-specific promoters was secreted into the circulation and revealed that liver-derived APOA-I-mCherry accumulates in the intestine and vice versa. Intestinal, intracellular APOA-I-mCherry was observed in endosomes and lysosomes and colocalized with dietary cholesterol.
Collapse
Affiliation(s)
- Jessica P. Otis
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Meng-Chieh Shen
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Blake A. Caldwell
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland
| | - Oscar E. Reyes Gaido
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland,2Department of Biology, Johns Hopkins University, Baltimore, Maryland
| | - Steven A. Farber
- 1Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland,2Department of Biology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
23
|
Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans 2019; 47:305-315. [PMID: 30700500 DOI: 10.1042/bst20180335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
Zebrafish (Danio rerio) are becoming an increasingly powerful model organism to study the role of metabolism in disease. Since its inception, the zebrafish model has relied on unique attributes such as the transparency of embryos, high fecundity and conservation with higher vertebrates, to perform phenotype-driven chemical and genetic screens. In this review, we describe how zebrafish have been used to reveal novel mechanisms by which metabolism regulates embryonic development, obesity, fatty liver disease and cancer. In addition, we will highlight how new approaches in advanced microscopy, transcriptomics and metabolomics using zebrafish as a model system have yielded fundamental insights into the mechanistic underpinnings of disease.
Collapse
|
24
|
Li X, Xue Y, Pang L, Len B, Lin Z, Huang J, ShangGuan Z, Pan Y. Agaricus bisporus-derived β-glucan prevents obesity through PPAR γ downregulation and autophagy induction in zebrafish fed by chicken egg yolk. Int J Biol Macromol 2018; 125:820-828. [PMID: 30557642 DOI: 10.1016/j.ijbiomac.2018.12.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 01/06/2023]
Abstract
β-(1,4)-d-Glucan with (1,2) and (1,6)-linked branches (short for β-glucan), extracted from Agaricus bisporus (Lange) Sing, had significant anti-obesity and lowering-fat effect. FITC-β-glucan was absorbed by adipocytes of zebrafish larvae when stained by Nile Red. β-Glucan decreased the adiposity mass, reduced the expression of ppar g, mtp, L-fabp, ifabp in ISH, which was coincident as the results of RT-PCT. β-Glucan lowered the level of C/EBP α, c SREBP1, LXR α, PPAR γ by WB analysis, which were accompanied by an increase level in LC3 II/LC3 I and a decline level in p62 in dose-dependent manner. This study explored the effect and mechanisms of Agaricus bisporus derived-β-glucan to regulate lipid metabolism and prevent lipid deposits, and provided the experimental data for its use in diet food and food addictive.
Collapse
Affiliation(s)
- Xiumin Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China.
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Liang Pang
- The College of Physical Education, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Bo Len
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Zhichao Lin
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Jiafu Huang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China
| | - Zhaoshui ShangGuan
- Central Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian 363000, China.
| |
Collapse
|
25
|
Sæle Ø, Rød KEL, Quinlivan VH, Li S, Farber SA. A novel system to quantify intestinal lipid digestion and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:948-957. [PMID: 29778665 PMCID: PMC6054555 DOI: 10.1016/j.bbalip.2018.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 02/05/2023]
Abstract
The zebrafish larva is a powerful tool for the study of dietary triglyceride (TG) digestion and how fatty acids (FA) derived from dietary lipids are absorbed, metabolized and distributed to the body. While fluorescent FA analogues have enabled visualization of FA metabolism, methods for specifically assaying TG digestion are badly needed. Here we present a novel High Performance Liquid Chromatography (HPLC) method that quantitatively differentiates TG and phospholipid (PL) molecules with one or two fluorescent FA analogues. We show how this tool may be used to discriminate between undigested and digested TG or phosphatidylcholine (PC), and also the products of TG or PC that have been digested, absorbed and re-synthesized into new lipid molecules. Using this approach, we explored the dietary requirement of zebrafish larvae for phospholipids. Here we demonstrate that dietary TG is digested and absorbed in the intestinal epithelium, but without dietary PC, TG accumulates and is not transported out of the enterocytes. Consequently, intestinal ER stress increases and the ingested lipid is not available support the energy and metabolic needs of other tissues. In TG diets with PC, TG is readily transported from the intestine and subsequently metabolized.
Collapse
Affiliation(s)
- Øystein Sæle
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway.
| | - Kari Elin L Rød
- Institute of Marine Research, Strandgaten 229, 5004 Bergen, Norway
| | - Vanessa H Quinlivan
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Shengrong Li
- Avanti Polar Lipids, Inc., 700 Industrial Park Drive, Alabaster, AL 35007-9105, USA
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA; The Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA.
| |
Collapse
|
26
|
Wang W, Zhang X, Wang Z, Qin J, Wang W, Tian H, Ru S. Bisphenol S induces obesogenic effects through deregulating lipid metabolism in zebrafish (Danio rerio) larvae. CHEMOSPHERE 2018; 199:286-296. [PMID: 29448196 DOI: 10.1016/j.chemosphere.2018.01.163] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
It has been suggested that dramatic increase in obesity may be caused by growing exposure to environmental chemicals. In vitro data has suggested bisphenol S (BPS), a compound widely used in polycarbonate plastic production, can induce lipid accumulation in preadipocytes. However, the mechanisms responsible for BPS-induced obesity in vivo remain unclear. In this study, we used translucent zebrafish (Danio rerio) larvae as a model to investigate the effect of environmentally relevant BPS exposure (1, 10, and 100 μg/L from 2 h to 15 d post fertilization) on lipid accumulation, triacylglycerol (TAG) and lipoproteins content, and mRNA expression of genes involved in the regulation of lipid synthesis, transport, degradation, and storage. We also analyzed activities of two enzymes critical to TAG metabolism: lipoprotein lipase and diglyceride acyltransferase. Overfed, obese larvae were used as positive control. The results indicated that BPS-treated and overfed larvae had much higher TAG levels and visceral fat accumulation compared with control. BPS exhibited obesogenic effects by interfering with lipid metabolism as evidenced by (a) upregulation of the mRNA expression of fasn, acc1, and agpat4 genes encoding enzymes involved in the de novo synthesis of TAG in the liver, (b) downregulation of apolipoprotein expression, which should reduce TAG transport from the liver, and (c) increase in rxrα expression, which should promote visceral fat accumulation. Our study is the first to demonstrate that the obesogenic effects of BPS in zebrafish are related to the disruption of TAG metabolism.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zihao Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Wei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
27
|
Kopp R, Martínez IO, Legradi J, Legler J. Exposure to endocrine disrupting chemicals perturbs lipid metabolism and circadian rhythms. J Environ Sci (China) 2017; 62:133-137. [PMID: 29289284 DOI: 10.1016/j.jes.2017.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/15/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
A growing body of evidence indicates that exposure to environmental chemicals can contribute to the etiology of obesity by inappropriately stimulating adipogenesis as well as perturbing lipid metabolism and energy balance. One potential mechanism by which chemical exposure can influence lipid metabolism is through disturbance of circadian rhythms, endogenously-driven cycles of roughly 24hr in length that coordinate biochemical, physiological, and behavioral processes in all organisms. Here we show for the first time that exposure to endocrine disrupting compounds (EDCs), including the pesticide tributyltin, two commercial flame retardants, and a UV-filter chemical found in sunscreens, can perturb both circadian clocks and lipid metabolism in vertebrates. Exposure of developing zebrafish to EDCs affects core clock activity and leads to a remarkable increase in lipid accumulation that is reminiscent of the effects observed for longdaysin, a known disruptor of circadian rhythms. Our data reveal a novel obesogenic mechanism of action for environmental chemicals, an observation which warrants further research. Because circadian clocks regulate a wide variety of physiological processes, identification of environmental chemicals capable of perturbing these systems may provide important insights into the development of environmentally-induced metabolic disease.
Collapse
Affiliation(s)
- Renate Kopp
- Institute for Environmental Studies (IVM), VU University Amsterdam, 1081, HV, The Netherlands.
| | - Irene Ozáez Martínez
- Biology and Environmental Toxicology Group, Faculty of Sciences, National Distance Education University, 28015 Madrid, Spain
| | - Jessica Legradi
- Institute for Environmental Studies (IVM), VU University Amsterdam, 1081, HV, The Netherlands
| | - Juliette Legler
- Institute for Environmental Studies (IVM), VU University Amsterdam, 1081, HV, The Netherlands; Institute for Environment, Health and Societies, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, United Kingdom.
| |
Collapse
|
28
|
Otis JP, Shen MC, Quinlivan V, Anderson JL, Farber SA. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech 2017; 10:283-295. [PMID: 28130355 PMCID: PMC5374320 DOI: 10.1242/dmm.027300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Caveolae and their structural protein caveolin 1 (CAV1) have roles in cellular lipid processing and systemic lipid metabolism. Global deletion of CAV1 in mice results in insulin resistance and increases in atherogenic plasma lipids and cholesterol, but protects from diet-induced obesity and atherosclerosis. Despite the fundamental role of the intestinal epithelia in the regulation of dietary lipid processing and metabolism, the contributions of CAV1 to lipid metabolism in this tissue have never been directly investigated. In this study the cellular dynamics of intestinal Cav1 were visualized in zebrafish and the metabolic contributions of CAV1 were determined with mice lacking CAV1 in intestinal epithelial cells (CAV1IEC-KO). Live imaging of Cav1-GFP and fluorescently labeled caveolae cargos shows localization to the basolateral and lateral enterocyte plasma membrane (PM), suggesting Cav1 mediates transport between enterocytes and the submucosa. CAV1IEC-KO mice are protected from the elevation in circulating fasted low-density lipoprotein (LDL) cholesterol associated with a high-fat diet (HFD), but have increased postprandial LDL cholesterol, total free fatty acids (FFAs), palmitoleic acid, and palmitic acid. The increase in circulating FAs in HFD CAV1IEC-KO mice is mirrored by decreased hepatic FAs, suggesting a non-cell-autonomous role for intestinal epithelial cell CAV1 in promoting hepatic FA storage. In conclusion, CAV1 regulates circulating LDL cholesterol and several FA species via the basolateral PM of enterocytes. These results point to intestinal epithelial cell CAV1 as a potential therapeutic target to lower circulating FFAs and LDL cholesterol, as high levels are associated with development of type II diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Meng-Chieh Shen
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Vanessa Quinlivan
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
- Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
29
|
Otis JP, Farber SA. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J Vis Exp 2016. [PMID: 27842350 DOI: 10.3791/54735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Zebrafish are emerging as a model of dietary lipid processing and metabolic disease. This protocol describes how to feed larval zebrafish a lipid-rich meal, which consists of an emulsion of chicken egg yolk liposomes created by sonicating egg yolk in embryo media. Detailed instructions are provided to screen larvae for egg yolk consumption so that larvae that fail to feed will not confound experimental results. The chicken egg yolk liposomes can be spiked with fluorescent lipid analogs, including fatty acids and cholesterol, enabling both systemic and subcellular visualization of dietary lipid processing. Several methods are described to mount larvae that are conducive to short- and long-term live imaging with both upright and inverted objectives at high and low magnification. Additionally presented is an assay to quantify larval food intake by extracting the lipids of larvae fed fluorescent lipid analogs, spotting the lipids on a thin layer chromatography plate, and quantifying the fluorescence. Finally, critical aspects of the procedures, important controls, options for modifying the protocols to address specific experimental questions, and potential limitations are discussed. These techniques can be applied not only to focused, hypothesis driven inquiries, but also to a variety of screens and live imaging techniques to study dietary lipid metabolism and the control of food intake.
Collapse
Affiliation(s)
- Jessica P Otis
- Department of Embryology, Carnegie Institution for Science
| | - Steven A Farber
- Department of Embryology, Carnegie Institution for Science; Department of Biology, Johns Hopkins University;
| |
Collapse
|
30
|
Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, Cerchione DM, Ceasrine AM, Avraham-Davidi I, Tempelhof H, Yaniv K, Farber SA. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech 2015; 8:295-309. [PMID: 25633982 PMCID: PMC4348566 DOI: 10.1242/dmm.018754] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/22/2015] [Indexed: 12/31/2022] Open
Abstract
Improved understanding of lipoproteins, particles that transport lipids throughout the circulation, is vital to developing new treatments for the dyslipidemias associated with metabolic syndrome. Apolipoproteins are a key component of lipoproteins. Apolipoproteins are proteins that structure lipoproteins and regulate lipid metabolism through control of cellular lipid exchange. Constraints of cell culture and mouse models mean that there is a need for a complementary model that can replicate the complex in vivo milieu that regulates apolipoprotein and lipoprotein biology. Here, we further establish the utility of the genetically tractable and optically clear larval zebrafish as a model of apolipoprotein biology. Gene ancestry analyses were implemented to determine the closest human orthologs of the zebrafish apolipoprotein A-I (apoA-I), apoB, apoE and apoA-IV genes and therefore ensure that they have been correctly named. Their expression patterns throughout development were also analyzed, by whole-mount mRNA in situ hybridization (ISH). The ISH results emphasized the importance of apolipoproteins in transporting yolk and dietary lipids: mRNA expression of all apolipoproteins was observed in the yolk syncytial layer, and intestinal and liver expression was observed from 4-6 days post-fertilization (dpf). Furthermore, real-time PCR confirmed that transcription of three of the four zebrafish apoA-IV genes was increased 4 hours after the onset of a 1-hour high-fat feed. Therefore, we tested the hypothesis that zebrafish ApoA-IV performs a conserved role to that in rat in the regulation of food intake by transiently overexpressing ApoA-IVb.1 in transgenic larvae and quantifying ingestion of co-fed fluorescently labeled fatty acid during a high-fat meal as an indicator of food intake. Indeed, ApoA-IVb.1 overexpression decreased food intake by approximately one-third. This study comprehensively describes the expression and function of eleven zebrafish apolipoproteins and serves as a springboard for future investigations to elucidate their roles in development and disease in the larval zebrafish model.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erin M Zeituni
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - James H Thierer
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Alexandria C Brown
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Erica D Boehm
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Derek M Cerchione
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Alexis M Ceasrine
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Inbal Avraham-Davidi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Hanoch Tempelhof
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Karina Yaniv
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot 7610001, Israel
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
31
|
CHEN KAN, WANG CHANGQIAN, FAN YUQI, XIE YUSHUI, YIN ZHAOFANG, XU ZUOJUN, ZHANG HUILI, CAO JIATIAN, HAN ZHIHUA, WANG YUE, SONG DONGQIANG. Optimizing methods for the study of intravascular lipid metabolism in zebrafish. Mol Med Rep 2014; 11:1871-6. [DOI: 10.3892/mmr.2014.2895] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 09/18/2014] [Indexed: 11/06/2022] Open
|
32
|
Automated in vivo platform for the discovery of functional food treatments of hypercholesterolemia. PLoS One 2013; 8:e52409. [PMID: 23349685 PMCID: PMC3549914 DOI: 10.1371/journal.pone.0052409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 11/16/2012] [Indexed: 11/19/2022] Open
Abstract
The zebrafish is becoming an increasingly popular model system for both automated drug discovery and investigating hypercholesterolemia. Here we combine these aspects and for the first time develop an automated high-content confocal assay for treatments of hypercholesterolemia. We also create two algorithms for automated analysis of cardiodynamic data acquired by high-speed confocal microscopy. The first algorithm computes cardiac parameters solely from the frequency-domain representation of cardiodynamic data while the second uses both frequency- and time-domain data. The combined approach resulted in smaller differences relative to manual measurements. The methods are implemented to test the ability of a methanolic extract of the hawthorn plant (Crataegus laevigata) to treat hypercholesterolemia and its peripheral cardiovascular effects. Results demonstrate the utility of these methods and suggest the extract has both antihypercholesterolemic and postitively inotropic properties.
Collapse
|
33
|
Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 2012; 12:277-88. [PMID: 22980325 PMCID: PMC3517662 DOI: 10.1016/j.chom.2012.08.003] [Citation(s) in RCA: 595] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/01/2012] [Accepted: 08/02/2012] [Indexed: 12/16/2022]
Abstract
Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance.
Collapse
Affiliation(s)
- Ivana Semova
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juliana D. Carten
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - Jesse Stombaugh
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Lantz C. Mackey
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Steven A. Farber
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA
| | - John F. Rawls
- Department of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Littleton RM, Miller M, Hove JR. Whole plant based treatment of hypercholesterolemia with Crataegus laevigata in a zebrafish model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:105. [PMID: 22824306 PMCID: PMC3479075 DOI: 10.1186/1472-6882-12-105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 06/22/2012] [Indexed: 01/19/2023]
Abstract
Background Consumers are increasingly turning to plant-based complementary and alternative medicines to treat hypercholesterolemia. Many of these treatments are untested and their efficacy is unknown. This multitude of potential remedies necessitates a model system amenable to testing large numbers of organisms that maintains similarity to humans in both mode of drug administration and overall physiology. Here we develop the larval zebrafish (4–30 days post fertilization) as a vertebrate model of dietary plant-based treatment of hypercholesterolemia and test the effects of Crataegus laevigata in this model. Methods Larval zebrafish were fed high cholesterol diets infused with fluorescent sterols and phytomedicines. Plants were ground with mortar and pestle into a fine powder before addition to food. Fluorescent sterols were utilized to optically quantify relative difference in intravascular cholesterol levels between groups of fish. We utilized the Zeiss 7-Live Duo high-speed confocal platform in order to both quantify intravascular sterol fluorescence and to capture video of the heart beat for determination of cardiac output. Results In this investigation we developed and utilized a larval zebrafish model to investigate dietary plant-based intervention of the pathophysiology of hypercholesterolemia. We found BODIPY-cholesterol effectively labels diet-introduced intravascular cholesterol levels (P < 0.05, Student’s t-test). We also established that zebrafish cardiac output declines as cholesterol dose increases (difference between 0.1% and 8% (w/w) high cholesterol diet-treated cardiac output significant at P < 0.05, 1-way ANOVA). Using this model, we found hawthorn leaves and flowers significantly reduce intravascular cholesterol levels (P < 0.05, 1-way ANOVA) and interact with cholesterol to impact cardiac output in hypercholesterolemic fish (2-way ANOVA, P < 0.05 for interaction effect). Conclusions The results of this study demonstrate that the larval zebrafish has the potential to become a powerful model to test plant based dietary intervention of hypercholesterolemia. Using this model we have shown that hawthorn leaves and flowers have the potential to affect cardiac output as well as intravascular cholesterol levels. Further, our observation that hawthorn leaves and flowers interact with cholesterol to impact cardiac output indicates that the physiological effects of hawthorn may depend on diet.
Collapse
|
35
|
Characterisation and expression of secretory phospholipase A2 group IB during ontogeny of Atlantic cod ( Gadus morhua). Br J Nutr 2010; 105:228-37. [PMID: 20836903 DOI: 10.1017/s0007114510003466] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The pancreatic enzyme secretory phospholipase A2 group IB (sPLA2 IB) hydrolyses phospholipids at the sn-2 position, resulting in a NEFA and a lyso-phospholipid, which are then absorbed by the enterocytes. The sPLA2 IB is a member of a family of nineteen enzymes sharing the same catalytic ability, of which nine are cytosolic and ten are secretory. Presently, there are no pharmacological tools to separate between the different secretory enzymes when measuring the enzymatic activity. Thus, it is important to support activity data with more precise techniques when isolation of intestinal content is not possible for analysis, as in the case of small teleost larvae, where the whole animal is sometimes analysed. In the present study, we characterise the sPLA2 IB gene in Atlantic cod (Gadus morhua) and describe its ontogeny at the genetic and protein level and compare this to the total sPLA2 activity level. A positive correlation was found between the expression of sPLA2 IB mRNA and protein. Both remained stable and low during the larval stage followed by an increase from day 62 posthatch, coinciding with the development of the pyloric ceaca. Meanwhile, total sPLA2 enzyme activity in cod was stable and relatively high during the early stages when larvae were fed live prey, followed by a decrease in activity when the fish were weaned to a formulated diet. Thus, the expression of sPLA2 IB mRNA and protein did not correlate with total sPLA2 activity.
Collapse
|