1
|
Christofidou P, Bell CG. The predictive power of profiling the DNA methylome in human health and disease. Epigenomics 2025:1-12. [PMID: 40346834 DOI: 10.1080/17501911.2025.2500907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025] Open
Abstract
Early and accurate diagnosis significantly improves the chances of disease survival. DNA methylation (5mC), the major DNA modification in the human genome, is now recognized as a biomarker of immense clinical potential. This is due to its ability to delineate precisely cell-type, quantitate both internal and external exposures, as well as tracking chronological and biological components of the aging process. Here, we survey the current state of DNA methylation as a biomarker and predictor of traits and disease. This includes Epigenome-wide association study (EWAS) findings that inform Methylation Risk Scores (MRS), EpiScore long-term estimators of plasma protein levels, and machine learning (ML) derived DNA methylation clocks. These all highlight the significant benefits of accessible peripheral blood DNA methylation as a surrogate measure. However, detailed DNA methylation biopsy analysis in real-time is also empowering pathological diagnosis. Furthermore, moving forward, in this multi-omic and biobank scale era, novel insights will be enabled by the amplified power of increasing sample sizes and data integration.
Collapse
Affiliation(s)
- Paraskevi Christofidou
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Christopher G Bell
- William Harvey Research Institute, Barts & The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Müller D, Győrffy B. EpigenPlot: An interactive web platform for DNA methylation-based biomarker and drug target discovery in colorectal cancer. Br J Pharmacol 2025; 182:1452-1465. [PMID: 39871596 DOI: 10.1111/bph.17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/15/2024] [Accepted: 12/03/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND AND PURPOSE Genome-wide methylation studies have significantly advanced our understanding of colorectal adenocarcinoma progression and biomarker discovery. Aberrant DNA methylation plays a crucial role in gene expression regulation during cancer transformation, highlighting the need to identify differentially methylated regions (DMRs) as potential diagnostic and therapeutic markers. However, an integrated resource to explore and validate methylation alterations across colorectal cancer stages has been lacking. We aimed to develop a platform that integrates existing methylation data, systematically identifies DMRs and provides a tool for further investigation. EXPERIMENTAL APPROACH We created a database combining Illumina HumanMethylation450K and EPIC data from normal colon, adenoma and adenocarcinoma tissues, comprising 2346 samples from 19 datasets. Methylation levels were analysed in six gene regions, and comparisons between tissue types were made using Mann-Whitney, Kruskal-Wallis and ROC tests. KEY RESULTS Both adenoma and adenocarcinoma samples exhibited a general decrease in methylation compared to healthy tissue. Differential methylation in genes such as ITGA4, NPY, IGFL1 and LRRC4 was validated. The strongest DMRs were observed in the C1orf70 gene's 5'UTR and TSS200 regions, with AUC values of 0.98 in both of the HM450K and EPIC datasets. We established an interactive web-based platform accessible at https://epigenplot.com/ enabling future analysis of individual gene regions. CONCLUSIONS AND IMPLICATIONS Our study provides an integrated database of DNA methylation profiles across normal, adenoma and adenocarcinoma tissues, offering a valuable resource for biomarker discovery. The integrated web platform can serve as a tool for the development of methylation-based therapies in the future.
Collapse
Affiliation(s)
- Dalma Müller
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
3
|
Marchiori M, Maguolo A, Perfilyev A, Maziarz M, Martinell M, Gomez MF, Ahlqvist E, García-Calzón S, Ling C. Blood-Based Epigenetic Biomarkers Associated With Incident Chronic Kidney Disease in Individuals With Type 2 Diabetes. Diabetes 2025; 74:439-450. [PMID: 39715581 PMCID: PMC11842608 DOI: 10.2337/db24-0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
There is an increasing need for new biomarkers to improve prediction of chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D). We aimed to identify blood-based epigenetic biomarkers associated with incident CKD and develop a methylation risk score (MRS) predicting CKD in individuals with newly diagnosed T2D. DNA methylation was analyzed epigenome wide in blood from 487 individuals with newly diagnosed T2D, of whom 88 developed CKD during an 11.5-year follow-up. Weighted Cox regression was used to associate methylation with incident CKD. Weighted logistic models and cross-validation (k = 5) were performed to test whether the MRS could predict CKD. Methylation at 37 sites was associated with CKD development based on a false discovery rate of <5% and absolute methylation differences of ≥5% between individuals with incident CKD and those free of CKD during follow-up. Notably, 15 genes annotated to these sites, e.g., TGFBI, SHISA3, and SLC43A2 (encoding LAT4), have been linked to CKD or related risk factors, including blood pressure, BMI, and estimated glomerular filtration rate. Using an MRS including 37 sites and cross-validation for prediction of CKD, we generated receiver operating characteristic (ROC) curves with an area under the curve (AUC) of 0.82 for the MRS and AUC of 0.87 for the combination of MRS and clinical factors. Importantly, ROC curves including the MRS had significantly better AUCs versus the one only including clinical factors (AUC = 0.72). The combined epigenetic biomarker had high accuracy in identifying individuals free of future CKD (negative predictive value of 94.6%). We discovered a high-performance epigenetic biomarker for predicting CKD, encouraging its potential role in precision medicine, risk stratification, and targeted prevention in T2D. ARTICLE HIGHLIGHTS There is an increasing need for new biomarkers to improve the prediction and prevention of chronic kidney disease (CKD) in individuals with type 2 diabetes (T2D), a leading cause of morbidity and mortality in this population. We investigated whether new blood-based epigenetic biomarkers predict incident CKD in individuals with newly diagnosed T2D. We discovered a novel blood-based epigenetic biomarker, composed of a combination of a methylation risk score and clinical factors, capable of predicting CKD during an 11.5-year follow-up (area under the curve of 0.87, negative predictive value of 94.6%) in individuals with newly diagnosed T2D. The epigenetic biomarker could provide a valuable tool for early risk stratification and prevention of CKD in individuals with newly diagnosed T2D, supporting its future use for precision medicine.
Collapse
Affiliation(s)
- Marian Marchiori
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Active Living Unit, Department of Sports Science and Clinical Biomechanics, Faculty of Health, University of Southern Denmark, Odense, Denmark
| | - Alice Maguolo
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Marlena Maziarz
- Bioinformatics Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Malmö, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Maria F. Gomez
- Diabetic Complications Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Emma Ahlqvist
- Genetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| | - Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
- Department of Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra and Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
4
|
Chitta P, Barrow TM, Dawangpa A, Christiani DC, Poungvarin N, Sae-Lee C. Blood-based biomarkers derived from tumor-informed DNA methylation analysis for lung adenocarcinoma. Heliyon 2025; 11:e42581. [PMID: 40034277 PMCID: PMC11874551 DOI: 10.1016/j.heliyon.2025.e42581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Objective To identify robust markers of lung adenocarcinoma (LUAD) using DNA methylation profiles from blood samples informed by tissue lung adenocarcinoma. Methods This study analyzed 56 LUAD blood samples from patients attending clinic at Siriraj Hospital, Thailand and 51 samples from healthy participants, using 644 tumor and 59 normal tissue methylome datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases for candidate gene identification. We performed comparative analysis to identify DNA methylation (DNAm) changes present in tumors that are also observable in blood, to be taken forward for validation. Results DNAm profiling of lung tumor datasets identified 59,639 differentially methylated positions (DMPs), of which 17,251 exhibited a negative correlation with gene expression. In blood samples, 46,680 DMPs were identified among LUAD patients, which were enriched in pathways associated with the ribosome, spliceosome, cell cycle, ubiquitin mediated proteolysis and nucleocytoplasmic transport. Comparative analysis revealed a two DMP epigenetic signature of matching changes in both tissue and blood. This signature offered high diagnostic performance in distinguishing LUAD from normal lung tissue (AUC: 0.77-0.91) and in blood samples from LUAD patients (AUC:0.92-0.96). Similarly high performance was observed in two independent tissue validation datasets (AUC:0.90-0.92). Conclusions Our novel two DMP signatures offer robust performance in both lung tissue and blood for the identification of LUAD.
Collapse
Affiliation(s)
- Pitaksin Chitta
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Timothy M. Barrow
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Atchara Dawangpa
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - David C. Christiani
- Harvard T H Chan School of Public Health, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Naravat Poungvarin
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Zhang J, Li C, An Y, Wang B, Liang G. Comparative analysis of SDC2 and SEPT9 methylation tests in the early detection of colorectal cancer: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1460233. [PMID: 39717169 PMCID: PMC11666333 DOI: 10.3389/fmed.2024.1460233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/18/2024] [Indexed: 12/25/2024] Open
Abstract
Purpose This meta-analysis aimed to evaluate the comparative diagnostic efficacy of Syndecan-2(SDC2) and Septin-9(SEPT9) in the early detection of colorectal cancer (CRC). Methods We searched PubMed, Embase, Web of Science, and Cochrane Library databases to identify available publications up to October 2024. A direct head-to-head comparator analysis were performed using the random-effects model. Subgroup analyses and corresponding meta-regressions focusing on sample source, number of patients, region, study design, and methylated detection methods were conducted. Intra-group and inter-group heterogeneity were assessed by Cochrane Q and I2 statistics. Results Eleven articles involving 1,913 CRC patients and 2,851 healthy people were included in the meta-analysis. The sensitivity of SDC2 was similar compared to SEPT9 for CRC patients (0.67 vs. 0.71, p = 0.61), SDC2 has a similar specificity in comparison to SEPT9 for CRC patients (0.90 vs. 0.91, p = 0.86). In subgroup analysis, stool SDC2 was similar compared to stool SEPT9 for CRC patients (sensitivity of 0.81 vs. 0.80, p = 0.92; specificity of 0.93 vs. 0.91, p = 0.73), plasma SDC2 was similar compared to plasma SEPT9 for CRC patients (sensitivity of 0.57 vs. 0.72, p = 0.27; specificity of 0.90 vs. 0.89, p = 0.89). In the subgroup analysis of clinical staging for colorectal cancer (CRC), the results indicate that there is no significant difference in sensitivity between the two markers for both early (0.7 vs. 0.67, p = 0.64) and advanced (0.76 vs. 0.70, p = 0.23) stages of CRC. Conclusion In our head-to-head comparison meta-analysis, it was found that SDC2 and SEPT9 have similar sensitivity and specificity in the diagnosis of colorectal cancer. However, this result may be influenced by high heterogeneity and further confirmation of this finding is needed through large-scale prospective studies.
Collapse
Affiliation(s)
| | | | | | | | - Guowei Liang
- Department of Clinical Laboratory of Aerospace Center Hospital, Beijing, China
| |
Collapse
|
6
|
Long Z, Gao Y, Han Z, Yuan H, Yu Y, Pei B, Jia Y, Ye J, Shi Y, Zhang M, Zhao Y, Wu D, Wang F. Discovery and Validation of Methylation Signatures in Circulating Cell-Free DNA for the Detection of Colorectal Cancer. Biomolecules 2024; 14:996. [PMID: 39199384 PMCID: PMC11353097 DOI: 10.3390/biom14080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
This study was conducted with the primary objective of assessing the performance of cfDNA methylation in the detection of colorectal cancer (CRC). Five tumor tissue, 20 peripheral blood leucocyte, and 169 cfDNA samples were collected for whole-genome bisulfite sequencing (WGBS) analysis. Bioinformatic analysis was conducted to identify differentially methylated regions (DMRs) and their functional characteristics. Quantitative methylation-specific PCR (qMSP) was used to validate the methylation levels of DMRs in the tissues and leucocytes. cfDNA samples from CRC patients and healthy controls were used to evaluate the performance of the DMR analysis. WGBS analysis revealed a decrease in DNA methylation levels in the CpG context in CRC tumor tissues compared with adjacent normal tissues. A total of 132 DMRs in cfDNA were identified as potential markers for diagnosing CRC. In a cohort of 95 CRC patients and 74 healthy controls, a combination of the three DMRs (DAB1, PPP2R5C, and FAM19A5) yielded an AUC of 0.763, achieving 64.21% sensitivity and 78.38% specificity in discriminating CRC patients from healthy controls. This study provides insights into DNA methylation patterns in CRC and identifies a set of DMRs in cfDNA with potential diagnostic value for CRC. These DMRs hold promise as biomarkers for CRC detection, offering promise for non-invasive CRC diagnosis. Further research is warranted to validate these findings in larger cohorts.
Collapse
Affiliation(s)
- Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yu Gao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Zhen Han
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Heli Yuan
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yue Yu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Bing Pei
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yanjie Jia
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Jingyu Ye
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Ying Shi
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Min Zhang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| | - Di Wu
- Department of Colorectal Surgery, Tumor Hospital of Harbin Medical University, Harbin Medical University, Harbin 150081, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin 150028, China; (Z.L.); (Y.G.); (Z.H.); (H.Y.); (Y.Y.); (B.P.); (Y.J.); (J.Y.); (Y.S.); (M.Z.)
| |
Collapse
|
7
|
Yang Z, Chen Q, Dong S, Xu P, Zheng W, Mao Z, Qian C, Zheng X, Dai L, Wang C, Shi H, Li J, Yuan J, Yu W, Xu C. Hypermethylated TAGMe as a universal-cancer-only methylation marker and its application in diagnosis and recurrence monitoring of urothelial carcinoma. J Transl Med 2024; 22:608. [PMID: 38956589 PMCID: PMC11218302 DOI: 10.1186/s12967-024-05420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is the second most common urological malignancy. Despite numerous molecular markers have been evaluated during the past decades, no urothelial markers for diagnosis and recurrence monitoring have shown consistent clinical utility. METHODS The methylation level of tissue samples from public database and clinical collected were analyzed. Patients with UC and benign diseases of the urinary system (BUD) were enrolled to establish TAGMe (TAG of Methylation) assessment in a training cohort (n = 567) using restriction enzyme-based bisulfite-free qPCR. The performance of TAGMe assessment was further verified in the validation cohort (n = 198). Urine samples from 57 UC patients undergoing postoperative surveillance were collected monthly for six months after surgery to assess the TAGMe methylation. RESULTS We identified TAGMe as a potentially novel Universal-Cancer-Only Methylation (UCOM) marker was hypermethylated in multi-type cancers and investigated its application in UC. Restriction enzyme-based bisulfite-free qPCR was used for detection, and the results of which were consistent with gold standard pyrosequencing. Importantly, hypermethylated TAGMe showed excellent sensitivity of 88.9% (95% CI: 81.4-94.1%) and specificity of 90.0% (95% CI: 81.9-95.3%) in efficiently distinguishing UC from BUD patients in urine and also performed well in different clinical scenarios of UC. Moreover, the abnormality of TAGMe as an indicator of recurrence might precede clinical recurrence by three months to one year, which provided an invaluable time window for timely and effective intervention to prevent UC upstaging. CONCLUSION TAGMe assessment based on a novel single target in urine is effective and easy to perform in UC diagnosis and recurrence monitoring, which may reduce the burden of cystoscopy. Trial registration ChiCTR2100052507. Registered on 30 October 2021.
Collapse
Affiliation(s)
- Zhicong Yang
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing Chen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shihua Dong
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai, China
| | - Peng Xu
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai, China
| | - Wanxiang Zheng
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Zhanrui Mao
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengchen Qian
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai, China
| | - Xiangyi Zheng
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai, China
| | - Lihe Dai
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chengyang Wang
- Shanghai Epiprobe Biotechnology Co., Ltd, Shanghai, China
| | - Haoqing Shi
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wenqiang Yu
- Shanghai Public Health Clinical Center and Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute and Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Casula G, Lai S, Loi E, Moi L, Zavattari P, Bonfiglio A. An innovative PCR-free approach for DNA methylation measure: An application for early colorectal cancer detection by means of an organic biosensor. SENSORS AND ACTUATORS B: CHEMICAL 2024; 398:134698. [DOI: 10.1016/j.snb.2023.134698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Hajebi Khaniki S, Shokoohi F, Esmaily H, Kerachian MA. Analyzing aberrant DNA methylation in colorectal cancer uncovered intangible heterogeneity of gene effects in the survival time of patients. Sci Rep 2023; 13:22104. [PMID: 38092774 PMCID: PMC10719305 DOI: 10.1038/s41598-023-47377-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Colorectal cancer (CRC) involves epigenetic alterations. Irregular gene-methylation alteration causes and advances CRC tumor growth. Detecting differentially methylated genes (DMGs) in CRC and patient survival time paves the way to early cancer detection and prognosis. However, CRC data including survival times are heterogeneous. Almost all studies tend to ignore the heterogeneity of DMG effects on survival. To this end, we utilized a sparse estimation method in the finite mixture of accelerated failure time (AFT) regression models to capture such heterogeneity. We analyzed a dataset of CRC and normal colon tissues and identified 3406 DMGs. Analysis of overlapped DMGs with several Gene Expression Omnibus datasets led to 917 hypo- and 654 hyper-methylated DMGs. CRC pathways were revealed via gene ontology enrichment. Hub genes were selected based on Protein-Protein-Interaction network including SEMA7A, GATA4, LHX2, SOST, and CTLA4, regulating the Wnt signaling pathway. The relationship between identified DMGs/hub genes and patient survival time uncovered a two-component mixture of AFT regression model. The genes NMNAT2, ZFP42, NPAS2, MYLK3, NUDT13, KIRREL3, and FKBP6 and hub genes SOST, NFATC1, and TLE4 were associated with survival time in the most aggressive form of the disease that can serve as potential diagnostic targets for early CRC detection.
Collapse
Affiliation(s)
- Saeedeh Hajebi Khaniki
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA
| | - Farhad Shokoohi
- Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV, 89154, USA.
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
10
|
Pitaksalee R, Parmar R, Hodgett R, Emery P, Ponchel F. DNA Hypomethylation in the TNF-Alpha Gene Predicts Rheumatoid Arthritis Classification in Patients with Early Inflammatory Symptoms. Cells 2023; 12:2376. [PMID: 37830590 PMCID: PMC10571942 DOI: 10.3390/cells12192376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Biomarkers for the classification of rheumatoid arthritis (RA), and particularly for anti-citrullinated peptide antibody (ACPA)-negative patients, remain an important hurdle for the early initiation of treatment. Taking advantage of DNA-methylation patterns specific to early RA, quantitative methylation-specific qPCR (qMSP) offers a robust technology for the development of biomarkers. We developed assays and established their value as RA classification biomarkers. METHODS DNA-methylation data were screened to select candidate CpGs to design qMSP assays. Eight assays were developed and tested on two early inflammatory arthritis cohorts. Logistic regression and bootstrapping were used to demonstrate the added value of the qMSP assays. RESULT Differentially methylated CpG data were screened for candidate CpG, thereby meeting the qMSP assay requirements. The top CpG candidate was in the TNF gene, for which we successfully developed a qMSP assay. Significantly lower DNA-methylation levels were observed in RA (p < 4 × 10-9), with a high predictive value (OR < 0.54/AUC < 0.198) in both cohorts (n = 127/n = 157). Regression using both datasets showed improved accuracy = 87.7% and AUC = 0.944 over the model using only clinical variables (accuracy = 85.2%, AUC = 0.917). Similar data were obtained in ACPA-negative patients (n = 167, accuracy = 82.6%, AUC = 0.930) compared to the clinical variable model (accuracy = 79.5%, AUC = 0.892). Bootstrapping using 2000 datasets confirmed that the AUCs for the clinical+TNF-qMSP model had significant added value in both analyses. CONCLUSION The qMSP technology is robust and can successfully be developed with a high specificity of the TNF qMSP assay for RA in patients with early inflammatory arthritis. It should assist classification in ACPA-negative patients, providing a means of reducing time to diagnosis and treatment.
Collapse
Affiliation(s)
- Rujiraporn Pitaksalee
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Rekha Parmar
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Richard Hodgett
- Leeds University Business School, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds LS1 9LF, UK
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
11
|
Yassi M, Chatterjee A, Parry M. Application of deep learning in cancer epigenetics through DNA methylation analysis. Brief Bioinform 2023; 24:bbad411. [PMID: 37985455 PMCID: PMC10661960 DOI: 10.1093/bib/bbad411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
DNA methylation is a fundamental epigenetic modification involved in various biological processes and diseases. Analysis of DNA methylation data at a genome-wide and high-throughput level can provide insights into diseases influenced by epigenetics, such as cancer. Recent technological advances have led to the development of high-throughput approaches, such as genome-scale profiling, that allow for computational analysis of epigenetics. Deep learning (DL) methods are essential in facilitating computational studies in epigenetics for DNA methylation analysis. In this systematic review, we assessed the various applications of DL applied to DNA methylation data or multi-omics data to discover cancer biomarkers, perform classification, imputation and survival analysis. The review first introduces state-of-the-art DL architectures and highlights their usefulness in addressing challenges related to cancer epigenetics. Finally, the review discusses potential limitations and future research directions in this field.
Collapse
Affiliation(s)
- Maryam Yassi
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Honorary Professor, UPES University, Dehradun, India
| | - Matthew Parry
- Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand
- Te Pūnaha Matatini Centre of Research Excellence, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Lima AB, dos Reis MB, Matsushita M, dos Reis MT, de Oliveira MA, Reis RM, Guimarães DP. Combined SEPT9 and BMP3 methylation in plasma for colorectal cancer early detection and screening in a Brazilian population. Cancer Med 2023; 12:15854-15867. [PMID: 37338022 PMCID: PMC10469661 DOI: 10.1002/cam4.6224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) screening can help to reduce its incidence and mortality. Noninvasive strategies, such as plasma analysis of epigenetic alterations, can constitute important biomarkers of CRC detection. OBJECTIVE This study aimed to evaluate the plasma methylation status of SEPT9 and BMP3 promoters as biomarkers for detection of CRC and its precursor lesions in a Brazilian population. METHODS Plasma samples from 262 participants of the CRC screening program of Barretos Cancer Hospital who had a positive fecal occult blood test and underwent colonoscopy and cancer patients were analyzed. Participants were grouped according to the worst lesion detected in the colonoscopy. Cell-free circulating DNA (cfDNA) was bisulfite treated followed by the analysis of SEPT9 and BMP3 methylation status using a droplet digital PCR system (ddPCR). The best methylation cutoff value for group discrimination was calculated by receiver operating characteristic (ROC) curve analysis. RESULTS Among the 262 participants, 38 were diagnosed with CRC, 46 with advanced adenomas 119 with nonadvanced adenomas, three with sessile serrated lesions, and 13 with hyperplastic polyps. In 43 participants, no lesion was detected in the colonoscopy and were used as controls. The CRC group showed the highest cfDNA concentration (10.4 ng/mL). For the SEPT9 gene, a cutoff of 2.5% (AUC = 0.681) that discriminates between CRC and the control group resulted in CRC sensitivity and specificity of 50% and 90%, respectively. Concerning the BMP3 gene, a cutoff of 2.3% (AUC = 0.576) showed 40% and 90% of sensitivity and specificity for CRC detection, respectively. Combining SEPT9, BMP3 status, and age over 60 years resulted in a better performance for detecting CRC (AUC = 0.845) than the individual gene models, yielding 80% and 81% of sensitivity and specificity, respectively. CONCLUSION The present study suggests that a combination of SEPT9 and BMP3 plasma methylation, along with age over 60 years, showed the highest performance in detecting CRC in a Brazilian population. These noninvasive biomarkers can potentially serve as useful tools for CRC screening programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Life and Health Sciences Research Institute (ICVS), Medical SchoolUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaPortugal
| | - Denise Peixoto Guimarães
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Department of EndoscopyBarretos Cancer HospitalBarretosBrazil
| |
Collapse
|
13
|
Lukacova E, Burjanivova T, Podlesniy P, Grendar M, Turyova E, Kasubova I, Laca L, Mikolajcik P, Kudelova E, Vanochova A, Miklusica J, Mersakova S, Lasabova Z. Hypermethylated GRIA4, a potential biomarker for an early non-invasive detection of metastasis of clinically known colorectal cancer. Front Oncol 2023; 13:1205791. [PMID: 37476382 PMCID: PMC10354553 DOI: 10.3389/fonc.2023.1205791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Colorectal cancer (CRC) can develop through several dysregulated molecular pathways, including the serrated pathway, characterized by CpG island methylator (CIMP) phenotype. Although the tumor tissue is a commonly tested material, sample types such as stool or plasma, bring a new, non-invasive approach. Several cancer-related methylated genes have been identified in CRC patients, including gene GRIA4, showing promising diagnostic potential. The aim of our study was to develop a sensitive droplet digital PCR (ddPCR) assay to examine GRIA4 hypermethylation status in CRC patients and evaluate its diagnostic potential in tissue and liquid biopsy samples. Methods In total, 23 patients participated in this study, 7 patients with primary CRC and 16 patients with liver metastasis of clinically known CRC. We obtained tumor and non-tumor tissues (N=17), blood samples pre- and post-surgery (N=22), and blood of five volunteers without a personal cancer history. We have developed and optimized a ddPCR assay for GRIA4 hypermethylation detection, from tissue and plasma samples. Results We detected significantly increased GRIA4 methylation in tumor tissues compared to their adjacent non-tumor tissue, p<0.0001. Receiver operating characteristic (ROC) analysis defined cutoff values to separate primary tumors and metastases from non-tumor colon/rectum, specifically 36.85% for primary tumors and 34.81% for metastases. All primary tumors were above this threshold. When comparing the methylation levels of metastatic vs. non-tumor tissue, a smaller increase was observed in liver metastasis versus colon tissue (3.6× gain; p=0.001), then in liver metastasis versus adjacent liver tissue (17.4× gain; p<0.0001). On average, GRIA4 hypermethylation in primary tumor plasma was 2.8-fold higher (p=0.39), and in metastatic plasma, 16.4-fold higher (p=0.0011) compared to healthy individuals. Hypermethylation in metastatic plasma was on average 5.9 times higher (p=0.051) than in primary tumor plasma. After tumor removal surgery, average hypermethylation decrease in plasma was 1.6× for primary (p=0.037) and 4.5× for metastatic patients (p=0.023). Discussion Based on our data, it can be inferred that GRIA4 serves as a tissue specific biomarker for the colon/rectum tissue, thus is suitable for cancer classification. This biomarker showed the potential to be an attractive target for early non-invasive detection of metastases of clinically known CRC, although additional analysis has to be performed.
Collapse
Affiliation(s)
- Eva Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Tatiana Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Petar Podlesniy
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin JFM CU, Commenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Ivana Kasubova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Vanochova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sandra Mersakova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| |
Collapse
|
14
|
Santos DAR, Gaiteiro C, Santos M, Santos L, Dinis-Ribeiro M, Lima L. MicroRNA Biomarkers as Promising Tools for Early Colorectal Cancer Screening-A Comprehensive Review. Int J Mol Sci 2023; 24:11023. [PMID: 37446201 DOI: 10.3390/ijms241311023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide. Early detection of this neoplasia has proven to improve prognosis, resulting in a 90% increase in survival. However, available CRC screening methods have limitations, requiring the development of new tools. MicroRNA biomarkers have emerged as a powerful screening tool, as they are highly expressed in CRC patients and easily detectable in several biological samples. While microRNAs are extensively studied in blood samples, recent interest has now arisen in other samples, such as stool samples, where they can be combined with existing screening methods. Among the microRNAs described in the literature, microRNA-21-5p and microRNA-92a-3p and their cluster have demonstrated high potential for early CRC screening. Furthermore, the combination of multiple microRNAs has shown improved performance in CRC detection compared to individual microRNAs. This review aims to assess the available data in the literature on microRNAs as promising biomarkers for early CRC screening, explore their advantages and disadvantages, and discuss the optimal study characteristics for analyzing these biomarkers.
Collapse
Affiliation(s)
- Daniela A R Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marlene Santos
- School of Health, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
- Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPO), Portuguese Institute of Oncology, 4200-072 Porto, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| |
Collapse
|
15
|
Jing Z, Zhang H, Wen Y, Cui S, Ren Y, Liu R, Duan S, Zhao W, Fan L. Epigenetic and transcriptomic alterations in the ClC-3-deficient mice consuming a normal diet. Front Cell Dev Biol 2023; 11:1196684. [PMID: 37287451 PMCID: PMC10242048 DOI: 10.3389/fcell.2023.1196684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction: Metabolic disorders are an important health concern that threatens life and burdens society severely. ClC-3 is a member of the chloride voltage-gated channel family, and ClC-3 deletion improved the phenotypes of dysglycemic metabolism and the impairment of insulin sensitivity. However, the effects of a healthy diet on transcriptome and epigenetics in ClC-3-/- mice were not explained in detail. Methods: Here, we performed transcriptome sequencing and Reduced Representation Bisulfite Sequencing for the liver of 3 weeks old WT and ClC-3-/- mice consuming a normal diet to insight into the epigenetic and transcriptomic alterations of ClC-3 deficient mice. Results: In the present study, we found that ClC-3-/- mice that were younger than 8 weeks old had smaller bodies compared to ClC-3+/+ mice with ad libitum self-feeding normal diet, and ClC-3-/- mice that were older than 10 weeks old had a similar body weight. Except for the spleen, lung, and kidney, the average weight of the heart, liver, and brain in ClC-3-/- mice was lower than that in ClC-3+/+ mice. TG, TC, HDL, and LDL in fasting ClC-3-/- mice were not significantly different from those in ClC-3+/+ mice. Fasting blood glucose in ClC-3-/- mice was lower than that in ClC-3+/+ mice; the glucose tolerance test indicated the response to blood glucose increasing for ClC-3-/- mice was torpid, but the efficiency of lowering blood glucose was much higher once started. Transcriptomic sequencing and reduced representation bisulfite sequencing for the liver of unweaned mice indicated that ClC-3 deletion significantly changed transcriptional expression and DNA methylation levels of glucose metabolism-related genes. A total of 92 genes were intersected between DEGs and DMRs-targeted genes, of which Nos3, Pik3r1, Socs1, and Acly were gathered in type II diabetes mellitus, insulin resistance, and metabolic pathways. Moreover, Pik3r1 and Acly expressions were obviously correlated with DNA methylation levels, not Nos3 and Socs1. However, the transcriptional levels of these four genes were not different between ClC-3-/- and ClC-3+/+ mice at the age of 12 weeks. Discussion: ClC-3 influenced the methylated modification to regulate glucose metabolism, of which the gene expressions could be driven to change again by a personalized diet-style intervention.
Collapse
Affiliation(s)
- Zhenghui Jing
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haifeng Zhang
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yunjie Wen
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Shiyu Cui
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuhua Ren
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Rong Liu
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
- Institute of Genetics and Developmental Biology of Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Sirui Duan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wenbao Zhao
- Department of Pathology of Basic Medicine College, Xi’an Jiaotong University, Xi’an, China
| | - Lihong Fan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
Guo P, Zheng H, Li Y, Li Y, Xiao Y, Zheng J, Zhu X, Xu H, He Z, Zhang Q, Chen J, Qiu M, Jiang M, Liu P, Chen H. Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA. Clin Epigenetics 2023; 15:2. [PMID: 36600275 DOI: 10.1186/s13148-022-01420-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Epigenetic variants carried by circulating tumor DNA can be used as biomarkers for early detection of hepatocellular carcinoma (HCC) by noninvasive liquid biopsy. However, traditional methylation analysis method, bisulfite sequencing, with disadvantages of severe DNA damage, is limited in application of low-amount cfDNA analysis. RESULTS Through mild enzyme-mediated conversion, enzymatic methyl sequencing (EM-seq) is ideal for precise determination of cell-free DNA methylation and provides an opportunity for HCC early detection. EM-seq of methylation control DNA showed that enzymatic conversion of unmethylated C to U was more efficient than bisulfite conversion. Moreover, a relatively large proportion of incomplete converted EM-seq reads contains more than 3 unconverted CH site (CH = CC, CT or CA), which can be removed by filtering to improve accuracy of methylation detection by EM-seq. A cohort of 241 HCC, 76 liver disease, and 279 normal plasma samples were analyzed for methylation value on 1595 CpGs using EM-seq and targeted capture. Model training identified 283 CpGs with significant differences in methylation levels between HCC and non-HCC samples. A HCC screening model based on these markers can efficiently distinguish HCC sample from non-HCC samples, with area under the curve of 0.957 (sensitivity = 90%, specificity = 97%) in the test set, performing well in different stages as well as in serum α-fetoprotein/protein induced by vitamin K absence-II negative samples. CONCLUSION Filtering of reads with ≥ 3 CHs derived from incomplete conversion can significantly reduce the noise of EM-seq detection. Based on targeted EM-seq analysis of plasma cell-free DNA, our HCC screening model can efficiently distinguish HCC patients from non-HCC individuals with high sensitivity and specificity.
Collapse
Affiliation(s)
- Ping Guo
- School of Medicine, Huaqiao University, Xiamen, 361021, Fujian, People's Republic of China.,Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Hailing Zheng
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Yihan Li
- Xiamen Hospital of Beijing University of Chinese Medicine, Xiamen, 361001, Fujian, People's Republic of China
| | - Yuntong Li
- Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China
| | - Yue Xiao
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Jin Zheng
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Xingqiang Zhu
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Huan Xu
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Zhi He
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China
| | - Qian Zhang
- Xiamen Hospital of Beijing University of Chinese Medicine, Xiamen, 361001, Fujian, People's Republic of China
| | - Jinchun Chen
- Xiamen Hospital of Beijing University of Chinese Medicine, Xiamen, 361001, Fujian, People's Republic of China
| | - Mingshan Qiu
- Xiamen Hospital of Beijing University of Chinese Medicine, Xiamen, 361001, Fujian, People's Republic of China
| | - Min Jiang
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350003, Fujian, People's Republic of China
| | - Pingguo Liu
- Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian, People's Republic of China.
| | - Hongliang Chen
- Xiamen Vangenes Biotechnology CO., LTD, Xiamen, 361015, Fujian, People's Republic of China. .,School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
17
|
Baghel VS, Shinde S, Sinha V, Dixit V, Tiwari AK, Saxena S, Vishvakarma NK, Shukla D, Bhatt P. Inhibitors targeting epigenetic modifications in cancer. TRANSCRIPTION AND TRANSLATION IN HEALTH AND DISEASE 2023:287-324. [DOI: 10.1016/b978-0-323-99521-4.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
19
|
Wang X, Memon AA, Palmér K, Hedelius A, Sundquist J, Sundquist K. Role of multiple risk factors in mental disorders diagnosed in middle-aged women: A population-based follow-up study. J Psychiatr Res 2022; 156:414-421. [PMID: 36323144 DOI: 10.1016/j.jpsychires.2022.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
The aims of the study were 1). to investigate the association between the potential risk factors including socio-demographic, lifestyle and DNA methylation and mental disorders in middle-aged women from a large population-based follow-up study, and 2). to estimate the risk score by combining the potential risk factors to examine the mental disorder's incidence. A total of 6461 women, aged 50-65 years, were included in the study. After a median follow-up of 17 years, 2026 (31%) women were diagnosed with mental disorders. The association between these factors and the risk of mental disorders was analyzed using Cox regression models. Harrell's concordance index (C-index) was used to quantify models' predictive performance for future mental disorders. Blood-based global DNA methylation was assessed by an enzyme-linked immunosorbent assay. We found that smoking (HR = 1.38, 95% CI: 1.24-1.54), less physical activity (HR = 1.33, 95% CI: 1.10-1.60), being single (HR = 1.16, 95% CI: 1.04-1.29) and unemployment (HR = 1.50, 95% CI: 1.33-1.70) were independently associated with an increased risk of overall mental disorders. Risk score models combining all these observed factors showed an increased risk, but the prediction ability was low, except for the risk of alcohol use disorders (AUD) and drug use disorders (DUD) (C-index = 0.8). Finally, women who developed MDD/anxiety during follow-up had significantly higher global DNA methylation at baseline than women who did not develop MDD/anxiety (p = 0.005). In conclusion, our results indicate that the studied risk factors were associated with mental disorders in a type-specific manner. The predictive model showed that smoking, alcohol consumption, education and physical activity may predict future AUD/DUD. Global DNA methylation may be a potential risk factor for MDD/anxiety incidence.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden.
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Karolina Palmér
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Anna Hedelius
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Malmö, 20502, Sweden; Department of Family Medicine and Community Health, Department of Population Health Science and Policy Icahn School of Medicine at Mount Sinai, New York, USA; Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Japan
| |
Collapse
|
20
|
Carrier A, Desjobert C, Ponger L, Lamant L, Bustos M, Torres-Ferreira J, Henrique R, Jeronimo C, Lanfrancone L, Delmas A, Favre G, Delaunay A, Busato F, Hoon DSB, Tost J, Etievant C, Riond J, Arimondo PB. DNA methylome combined with chromosome cluster-oriented analysis provides an early signature for cutaneous melanoma aggressiveness. eLife 2022; 11:78587. [PMID: 36125262 PMCID: PMC9525058 DOI: 10.7554/elife.78587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Aberrant DNA methylation is a well-known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients’ outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes was commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five Cytosine-phosphate-Guanine (CpGs) identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.
Collapse
Affiliation(s)
- Arnaud Carrier
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Cécile Desjobert
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | | | - Laurence Lamant
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Matias Bustos
- Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
| | - Jorge Torres-Ferreira
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Carmen Jeronimo
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Luisa Lanfrancone
- Department of Experimental Oncology, Instituto Europeo di Oncologia, Milan, Italy
| | - Audrey Delmas
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Antoine Delaunay
- Laboratory for Functional Genomics, Fondation Jean Dausset-CEPH, Paris, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
| | - Chantal Etievant
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Joëlle Riond
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Paola B Arimondo
- Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3523, Paris, France
| |
Collapse
|
21
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
22
|
Markou Α, Londra D, Tserpeli V, Kollias Ι, Tsaroucha E, Vamvakaris I, Potaris K, Pateras I, Kotsakis Α, Georgoulias V, Lianidou Ε. DNA methylation analysis of tumor suppressor genes in liquid biopsy components of early stage NSCLC: a promising tool for early detection. Clin Epigenetics 2022; 14:61. [PMID: 35538556 PMCID: PMC9092693 DOI: 10.1186/s13148-022-01283-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) analysis represents a liquid biopsy approach for real-time monitoring of tumor evolution. DNA methylation is considered to be an early event in the process of cancer development and progression. The aim of the present study was to evaluate whether detection of DNA methylation of selected tumor suppressor genes in CTC and matched ctDNA provides prognostic information in early stage NSCLC. Experimental design The methylation status of five selected gene promoters (APC, RASSFIA1, FOXA1, SLFN11, SHOX2) was examined by highly specific and sensitive real-time methylation specific PCR assays in: (a) a training group of 35 primary tumors and their corresponding adjacent non-cancerous tissues of early stage NSCLC patients, (b) a validation group of 22 primary tumor tissues (FFPEs) and 42 peripheral blood samples of early stage NSCLC patients. gDNA was isolated from FFPEs, CTCs (size-based enriched by Parsortix; Angle and plasma, and (c) a control group of healthy blood donors (n = 12). Results All five gene promoters tested were highly methylated in the training group; methylation of SHOX2 promoter in primary tumors was associated with unfavorable outcome. RASSFIA and APC were found methylated in plasma-cfDNA samples at 14.3% and 11.9%, respectively, whereas in the corresponding CTCs SLFN11 and APC promoters were methylated in 7.1%. The incidence of relapses was higher in patients with a) promoter methylation of APC and SLFN11 in plasma-cfDNA (P = 0.037 and P = 0.042 respectively) and b) at least one detected methylated gene promoter in CTC or plasma-cfDNA (P = 0.015). Conclusions DNA methylation of these five gene promoters was significantly lower in CTCs and plasma-cfDNA than in the primary tumors. Combination of DNA methylation analysis in CTC and plasma-cfDNA was associated with worse DFI of NSCLC patients. Additional studies are required to validate our findings in a large cohort of early stage NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01283-x.
Collapse
Affiliation(s)
- Α Markou
- Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece.
| | - D Londra
- Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - V Tserpeli
- Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ι Kollias
- Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - E Tsaroucha
- 8th Department of Pulmonary Diseases, 'Sotiria' General Hospital for Chest Diseases, Athens, Greece
| | - I Vamvakaris
- 8th Department of Pulmonary Diseases, 'Sotiria' General Hospital for Chest Diseases, Athens, Greece
| | - K Potaris
- 8th Department of Pulmonary Diseases, 'Sotiria' General Hospital for Chest Diseases, Athens, Greece
| | - I Pateras
- Laboratory of Histology-Embryology, Molecular Carcinogenesis Group, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Α Kotsakis
- Department of Medical Oncology, University General Hospital of Larissa, Thessaly, Greece
| | - V Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Ε Lianidou
- Analysis of Circulating Tumor Cells (ACTC) Lab, Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
23
|
Müller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188722. [PMID: 35307512 DOI: 10.1016/j.bbcan.2022.188722] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer. First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression. Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously. A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.
Collapse
Affiliation(s)
- Dalma Müller
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary.
| |
Collapse
|
24
|
Challenges in promoter methylation analysis in the new era of translational oncology: a focus on liquid biopsy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166390. [PMID: 35296416 DOI: 10.1016/j.bbadis.2022.166390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Toward the discovery of novel reliable biomarkers, epigenetic alterations have been repeatedly proposed for the diagnosis and the development of therapeutic strategies against cancer. Indeed, for promoter methylation to actively become a tumor marker for clinical use, it must be combined with a highly informative technology evaluated in an appropriate biospecimen. Methodological standardization related to epigenetic research is, in fact, one of the most challenging tasks. Moreover, tissue-based biopsy is being complemented and, in some cases, replaced by liquid biopsy. This review will highlight the advancements made for both pre-analytical and analytical implementation for the prospective use of methylation biomarkers in clinical settings, with particular emphasis on liquid biopsy.
Collapse
|
25
|
Ionica E, Gaina G, Tica M, Chifiriuc MC, Gradisteanu-Pircalabioru G. Contribution of Epithelial and Gut Microbiome Inflammatory Biomarkers to the Improvement of Colorectal Cancer Patients' Stratification. Front Oncol 2022; 11:811486. [PMID: 35198435 PMCID: PMC8859258 DOI: 10.3389/fonc.2021.811486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
In order to ensure that primary endpoints of clinical studies are attained, the patients' stratification is an important aspect. Selection criteria include age, gender, and also specific biomarkers, such as inflammation scores. These criteria are not sufficient to achieve a straightforward selection, however, in case of multifactorial diseases, with unknown or partially identified mechanisms, occasionally including host factors, and the microbiome. In these cases, the efficacy of interventions is difficult to predict, and as a result, the selection of subjects is often random. Colorectal cancer (CRC) is a highly heterogeneous disease, with variable clinical features, outcomes, and response to therapy; the CRC onset and progress involves multiple sequential steps with accumulation of genetic alterations, namely, mutations, gene amplification, and epigenetic changes. The gut microbes, either eubiotic or dysbiotic, could influence the CRC evolution through a complex and versatile crosstalk with the intestinal and immune cells, permanently changing the tumor microenvironment. There have been significant advances in the development of personalized approaches for CRC screening, treatment, and potential prevention. Advances in molecular techniques bring new criteria for patients' stratification-mutational analysis at the time of diagnosis to guide treatment, for example. Gut microbiome has emerged as the main trigger of gut mucosal homeostasis. This may impact cancer susceptibility through maintenance of the epithelial/mucus barrier and production of protective metabolites, such as short-chain fatty acids (SCFAs) via interactions with the hosts' diet and metabolism. Microbiome dysbiosis leads to the enrichment of cancer-promoting bacterial populations, loss of protective populations or maintaining an inflammatory chronic state, all of which contribute to the development and progression of CRC. Meanwhile, variations in patient responses to anti-cancer immuno- and chemotherapies were also linked to inter-individual differences in intestine microbiomes. The authors aim to highlight the contribution of epithelial and gut microbiome inflammatory biomarkers in the improvement of CRC patients' stratification towards a personalized approach of early diagnosis and treatment.
Collapse
Affiliation(s)
- Elena Ionica
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Miology, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Mihaela Tica
- Bucharest Emergency University Hospital, Bucharest, Romania
| | - Mariana-Carmen Chifiriuc
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Biological Science Division, Romanian Academy of Sciences, Bucharest, Romania
| | | |
Collapse
|
26
|
Kanapeckaitė A, Burokienė N, Mažeikienė A, Cottrell GS, Widera D. Biophysics is reshaping our perception of the epigenome: from DNA-level to high-throughput studies. BIOPHYSICAL REPORTS 2021; 1:100028. [PMID: 36425454 PMCID: PMC9680810 DOI: 10.1016/j.bpr.2021.100028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/24/2021] [Indexed: 06/16/2023]
Abstract
Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.
Collapse
Affiliation(s)
- Austė Kanapeckaitė
- Algorithm379, Laisvės g. 7, LT 12007, Vilnius, Lithuania
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| | - Neringa Burokienė
- Clinics of Internal Diseases, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | - Asta Mažeikienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, M. K. Čiurlionio str. 21/27, LT-03101 Vilnius, Lithuania
| | | | - Darius Widera
- Reading School of Pharmacy, Whiteknights, Reading, UK, RG6 6UB
| |
Collapse
|
27
|
Pu W, Qian F, Liu J, Shao K, Xiao F, Jin Q, Liu Q, Jiang S, Zhang R, Zhang J, Guo S, Zhang J, Ma Y, Ju S, Ding W. Targeted Bisulfite Sequencing Reveals DNA Methylation Changes in Zinc Finger Family Genes Associated With KRAS Mutated Colorectal Cancer. Front Cell Dev Biol 2021; 9:759813. [PMID: 34778269 PMCID: PMC8581662 DOI: 10.3389/fcell.2021.759813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a leading cause of cancer death, and early diagnosis of CRC could significantly reduce its mortality rate. Previous studies suggest that the DNA methylation status of zinc finger genes (ZFGs) could be of potential in CRC early diagnosis. However, the comprehensive evaluation of ZFGs in CRC is still lacking. Methods: We first collected 1,426 public samples on genome-wide DNA methylation, including 1,104 cases of CRC tumors, 54 adenomas, and 268 para-tumors. Next, the most differentially methylated ZFGs were identified and validated in two replication cohorts comprising 218 CRC patients. Finally, we compared the prediction capabilities between the ZFGs and the SEPT9 in all CRC patients and the KRAS + and KRAS- subgroup. Results: Five candidate ZFGs were selected: ESR1, ZNF132, ZNF229, ZNF542, and ZNF677. In particular, ESR1 [area under the curve (AUC) = 0.91] and ZNF132 (AUC = 0.93) showed equivalent or better diagnostic capability for CRC than SEPT9 (AUC = 0.91) in the validation dataset, suggesting that these two ZFGs might be of potential for CRC diagnosis in the future. Furthermore, we performed subgroup analysis and found a significantly higher diagnostic capability in KRAS + (AUC ranged from 0.97 to 1) than that in KRAS- patients (AUC ranged from 0.74 to 0.86) for all these five ZFGs, suggesting that these ZFGs could be ideal diagnostic markers for KRAS mutated CRC patients. Conclusion: The methylation profiles of the candidate ZFGs could be potential biomarkers for the early diagnosis of CRC, especially for patients carrying KRAS mutations.
Collapse
Affiliation(s)
- Weilin Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Fei Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Keke Shao
- Department of Laboratory Medicine, The First People’s Hospital of Yancheng City, Yancheng, China
| | - Feng Xiao
- Department of Pathology, The Third People’s Hospital of Nantong City, Nantong, China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Rui Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Six Industrial Research Institute, Fudan University, Shanghai, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
28
|
Sobanski T, Arantes LMRB, Dos Santos W, Matsushita M, de Oliveira MA, Costa M, de Carvalho AC, Berardinelli GN, Syrjänen K, Reis RM, Guimarães DP. Methylation profile of colon cancer genes in colorectal precursor lesions and tumor tissue: perspectives for screening. Scand J Gastroenterol 2021; 56:920-928. [PMID: 34218733 DOI: 10.1080/00365521.2021.1922744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
AIMS Epigenetic alterations of genes involved in colorectal carcinogenesis are likely to be informative biomarkers for early detection. We assessed the methylation profile of a panel of seven colon cancer-related genes comparing normal colon, colorectal cancer (CRC) precursor lesions and cancer tissues from a Brazilian cohort. METHODS The cohort comprised 114 CRC patients, including 40 matched normal tissue, 47 patients with adenomas, 33 with serrated polyps and 8 with normal colonic biopsy. DNA methylation status of SEPT9, ALX4, NDRG4, BMP3, APC, p16 and MLH1 was determined by pyrosequencing and correlated with clinicopathological features. Sensitivity, specificity, positive predictive value and negative predictive value were calculated for all genes using cancer endpoint. RESULTS The most frequently methylated genes in cancer and in precancer lesions were SEPT9, ALX4, NDRG4, and BMP3, ranging from 55.3 to 95% of the samples. Overall, the frequency of methylation of these four genes in normal colonic tissue was significantly lower as compared to cancer or precursor lesions both in adenoma-carcinoma (p < .001 and p < .050) and serrated (sessile-serrated lesion) (p < .001 and p < .050) pathways. Additionally, sensitivity for the cancer endpoint ranged from 65.6 to 91.8%, and specificity from 17.9 to 62.9% for SEPT9, ALX4, NDRG4, and BMP3 genes. Moreover, the comethylation of ≥4 genes was higher in sessile-serrated lesion (87.5%) and conventional adenomas (78.7%) than in hyperplastic polyps (43.7%) (p = .025) and was significantly associated with proximal cancers (p = .042). CONCLUSIONS Our study suggests the DNA methylation can constitute potential biomarkers in CRC screening of Brazilian population.
Collapse
Affiliation(s)
- Thais Sobanski
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | | | | | - Maraisa Costa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Kari Syrjänen
- SMW Consultants Ltd, Kaarina, Finland.,Department of Clinical Research, Biohit Oyj, Helsinki, Finland
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.,3ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil.,Department of Endoscopy, Barretos Cancer Hospital, Barretos, Brazil
| |
Collapse
|
29
|
Zhang Y, Wu Q, Xu L, Wang H, Liu X, Li S, Hu T, Liu Y, Peng Q, Chen Z, Wu X, Fan JB. Sensitive detection of colorectal cancer in peripheral blood by a novel methylation assay. Clin Epigenetics 2021; 13:90. [PMID: 33892797 PMCID: PMC8066866 DOI: 10.1186/s13148-021-01076-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Early detection of CRC can significantly reduce its mortality rate. Current method of CRC diagnosis relies on the invasive endoscopy. Non-invasive assays including fecal occult blood testing (FOBT) and fecal immunological test (FIT) are compromised by low sensitivity and specificity, especially at early stages. Thus, a non-invasive and accurate approach for CRC screening would be highly desirable. RESULTS A new qPCR-based assay combining the simultaneous detection of the DNA methylation status of ten candidate genes was used to examine plasma samples from 56 normal controls, 6 hyperplastic polys, 9 non-advanced adenomas (NAAs), 22 advanced adenomas (AAs) and 175 CRC patients, using 10 ng of cfDNA. We further built a logistic regression model for CRC diagnosis. We tested ten candidate methylation markers including twist1, vav3-as1, fbn1, c9orf50, sfmbt2, kcnq5, fam72c, itga4, kcnj12 and znf132. All markers showed moderate diagnostic performance with AUCs ranging from 0.726 to 0.815. Moreover, a 4-marker model, comprised of two previously reported markers (c9orf50 and twist1) and two novel ones (kcnj12 and znf132), demonstrated high performance for detecting colorectal cancer in an independent validation set (N = 69) with an overall AUC of 0.911 [95% confidence interval (CI) 0.834-0.988], sensitivity of 0.800 [95% CI 0.667-0.933] and specificity of 0.971 [95% CI 0.914-1.000]. The stage-stratified sensitivity of the model was 0.455 [95% CI 0.227-0.682], 0.667 [95% CI 0.289-1.000], 0.800 [95% CI 0.449-1.000], 0.800 [95% CI 0.449-1.000] and 0.842 [95% CI 0.678-1.000] for advanced adenoma and CRC stage I-IV, respectively. CONCLUSION kcnj12 and znf132 are two novel methylation biomarkers for CRC diagnosis. The 4-marker methylation model provides a new non-invasive choice for CRC screening and interception.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Qian Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China
| | - Linhao Xu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Hong Wang
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Xin Liu
- AnchorDx Inc., 6305 Landing Pkwy, Fremont, CA, 94538, USA
| | - Sihui Li
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Tianliang Hu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Yanying Liu
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China
| | - Quanzhou Peng
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwei Chen
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China. .,AnchorDx Inc., 6305 Landing Pkwy, Fremont, CA, 94538, USA.
| | - Xianrui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, Guangdong, China.
| | - Jian-Bing Fan
- AnchorDx Medical Co., Ltd, Unit 502, 3rd Luoxuan Road, International Bio-Island, Guangzhou, 510300, China. .,Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Liu L, Feng J, Polimeni J, Zhang M, Nguyen H, Das U, Zhang X, Singh H, Yao XJ, Leygue E, Kung SKP, Xie J. Characterization of Cell Free Plasma Methyl-DNA From Xenografted Tumors to Guide the Selection of Diagnostic Markers for Early-Stage Cancers. Front Oncol 2021. [DOI: 10.3389/fonc.2021.615821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Circulating cell-free methyl-DNA (mcfDNA) contains promising cancer markers but its low abundance and possibly diverse origin pose challenges toward the accurate diagnosis of early stage cancers. By whole-genome bisulfite sequencing (WGBS) of cell-free DNA (cfDNA) from about 0.5 mL plasma of mice xenografted with human tumors, we obtained and aligned the reads to the human genome, filtered out the mouse and carrier bacterial sequences, and confirmed the tumor origin of methyl-cfDNA (mctDNA) by methylation-sensitive restriction enzyme digestion prior to species-specific PCR. We estimated that human tumor-specific reads (ctDNA) or mctDNA comprised about 0.29 or 0.01%, respectively of the xenograft mouse cfDNA, and about 0.029 or 0.001% of the cfDNA of human early stage cancer patients. Similar WGBS of early stage (0-II, node- and metastasis-free) breast, lung or colorectal cancer samples identified hundreds of specific DMRs (differentially methylated regions) compared to healthy controls. Their association with tumourigenesis was supported by stage-dependent methylation, tumor suppressor or oncogene clusters, and genes also identified in the xenograft samples. Using 20 three-cancer-common and 17 colorectal cancer-specific DMRs in combination (top 0.0018% of the WGBS methylation clusters) was sufficient to distinguish the stage I colorectal cancers from breast and lung cancers and healthy controls. Our data thus confirmed the tumor origin of mctDNA by sequence specificity, and provide a selection threshold for authentic tumor mctDNA markers toward precise diagnosis of early stage cancers solely by top DMRs in combination.
Collapse
|
31
|
Wang X, Memon AA, Palmér K, Svensson PJ, Sundquist J, Sundquist K. The Association between Blood-Based Global DNA Methylation and Venous Thromboembolism. Semin Thromb Hemost 2020; 47:662-668. [PMID: 33378784 DOI: 10.1055/s-0040-1722271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Alterations in DNA methylation patterns have been associated with many diseases. However, the role of DNA methylation in venous thromboembolism (VTE) is not well established. The aim of this study was to investigate a possible association between global DNA methylation and VTE. The study participants consisted of 168 individuals including 74 patients with primary VTE from the Malmö Thrombophilia Study (MATS) and 94 healthy controls. Among 74 primary VTE patients, 37 suffered VTE recurrence during the follow-up period; 37 nonrecurrent VTE patients were included for comparison. Blood-based global DNA methylation was assessed by an enzyme-linked immunosorbent assay. Global DNA methylation was significantly higher in primary VTE patients compared with the healthy controls (median: 0.17 vs. 0.08%; p < 0.001). After stratification of data from primary VTE patients according to sex, the association between higher global DNA methylation and shorter recurrence-free survival time was of borderline statistical significance in males (β = -0.2; p = 0.052) but not in females (β = 0.02; p = 0.90). Our results show that global DNA methylation is associated with primary VTE and that higher levels of global DNA methylation may be associated with early VTE recurrence in males but not in females. Further investigation on the role of DNA methylation as a diagnostic or preventive biomarker in VTE is warranted.
Collapse
Affiliation(s)
- Xiao Wang
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Ashfaque A Memon
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Karolina Palmér
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Peter J Svensson
- Department of Coagulation Disorders, Lund University Hospital, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Functional Pathology, Center for Community-based Healthcare Research and Education (CoHRE), School of Medicine, Shimane University, Izumo, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Functional Pathology, Center for Community-based Healthcare Research and Education (CoHRE), School of Medicine, Shimane University, Izumo, Japan
| |
Collapse
|
32
|
Jamialahmadi K, Azghandi M, Javadmanesh A, Zardadi M, Shams Davodly E, Kerachian MA. A DNA methylation panel for high performance detection of colorectal cancer. Cancer Genet 2020; 252-253:64-72. [PMID: 33387936 DOI: 10.1016/j.cancergen.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/25/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
One of the most promising ways to diagnose cancer especially colorectal cancer (CRC) is to trace its epigenetic events. In this article, a discovery step for detection of methylated DNA markers (MDMs) was performed using SureSelectXT Methyl-Seq in CRC case and control groups in addition to several methylation profiling datasets (GSE48684, GSE53051, GSE77718, GSE101764, and GSE42752). In silico validation of MDMs in colorectal and other cancers was conducted by Lnc2met. MethyLight assay was run on 40 and 47 case and control formalin-fixed paraffin-embedded tissues, respectively and the performance of selected genes were classified by support vector machine (SVM). As a result, 180 regions were identified among all common genes. In addition to SEPT9 and SFRP2, the best three MDM regions were selected from SLC30A10, AKR1B1 and GALNT14. Based on all assays, the best performance was accomplished by SEPT9/AKR1B1 with 98% sensitivity, 99% specificity, 125 positive likelihood ratio, 0.02 negative likelihood ratio and 5074 diagnostic odds ratio. Our results indicate that the AKR1B1/SEPT9 methylation panel detects CRC with a higher performance than SEPT9 methylation, which is a commercial diagnostic test for CRC. However, the creation of a clinically valuable test derived from this study requires performance evaluation in liquid biopsies.
Collapse
Affiliation(s)
- Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran; Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Javadmanesh
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran; Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Zardadi
- Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shams Davodly
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Mastoraki S, Balgkouranidou I, Tsaroucha E, Klinakis A, Georgoulias V, Lianidou E. KMT2C promoter methylation in plasma-circulating tumor DNA is a prognostic biomarker in non-small cell lung cancer. Mol Oncol 2020; 15:2412-2422. [PMID: 33159839 PMCID: PMC8410531 DOI: 10.1002/1878-0261.12848] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 01/08/2023] Open
Abstract
MLL3 histone methyltransferase, encoded by the KMT2C gene, is a tumor suppressor that has an essential role in cell‐type‐specific gene expression. We evaluated the prognostic significance of KMT2C promoter methylation as a circulating epigenetic biomarker in plasma cell‐free DNA (cfDNA) in non‐small cell lung cancer (NSCLC). We examined the methylation status of KMT2C promoter using a novel highly specific and sensitive real‐time methylation‐specific PCR (MSP) assay in (a) operable NSCLC: 48 fresh‐frozen NSCLC tissues, their corresponding adjacent non‐neoplastic tissues, and 48 matched plasma samples; (b) metastatic NSCLC: 91 plasma samples; and (c) 60 plasma samples from healthy donors (HD). KMT2C promoter methylation in plasma cfDNA was detected in 7/48 (14.6%) patients with operable and in 18/91 (19.8%) patients with advanced NSCLC but in none (0/60, 0%) of the plasma samples from HD. In operable NSCLC, in corresponding adjacent non‐neoplastic tissue samples, KMT2C promoter methylation was detected in 3/48 (6.3%) cases. Moreover, in operable NSCLC, KMT2C promoter methylation in plasma cfDNA was related to reduced disease‐free survival (ΗR = 0.239; P = 0.001) and worse overall survival (OS; HR = 0.342, P = 0.023). In metastatic NSCLC, KMT2C promoter methylation in plasma cfDNA was related to worse progression‐free survival (PFS; HR = 0.431; P = 0.005) and worse OS (HR = 0.306; P < 0.001). Our data strongly suggest that the detection of KMT2C promoter methylation in plasma cfDNA predicts poor prognosis in patients with both operable and metastatic NSCLCs. KMT2C promoter methylation in plasma cfDNA therefore merits further evaluation and validation as a noninvasive circulating epigenetic biomarker.
Collapse
Affiliation(s)
- Sofia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Ioanna Balgkouranidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| | - Emily Tsaroucha
- 8th Department of Pulmonary Diseases, 'Sotiria' General Hospital for Chest Diseases, Athens, Greece
| | | | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Greece
| |
Collapse
|
34
|
Lee DY. Cancer Epigenomics and Beyond: Advancing the Precision Oncology Paradigm. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2020; 3:147-156. [PMID: 35665374 PMCID: PMC9165444 DOI: 10.36401/jipo-20-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/14/2020] [Indexed: 06/15/2023]
Abstract
How cancers are characterized and treated has evolved over the past few decades. Major advances in genomics tools and techniques have revealed interlinked regulatory pathways of cancers with unprecedented detail. Early discoveries led to success with rationally targeted small molecules and more recently with immunomodulatory agents, setting the stage for precision oncology. However, drug resistance to every agent has thus far proven intractable, sending us back to fill the gaps in our rudimentary knowledge of tumor biology. Epigenetics is emerging as a fundamental process in every hallmark of cancer. Large-scale interrogation of the cancer epigenome continues to reveal new mechanisms of astounding complexity. In this review, I present selected experimental and clinical examples that have shaped our understanding of cancer at the molecular level. Translation of our collective erudition into revolutionary diagnostic and treatment strategies will advance the precision oncology paradigm.
Collapse
Affiliation(s)
- Daniel Y. Lee
- InSilico Genomics, Inc., Houston, TX, USA
- Department of Radiology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
35
|
Gan X, Wang T, Chen ZY, Zhang KH. Blood-derived molecular signatures as biomarker panels for the early detection of colorectal cancer. Mol Biol Rep 2020; 47:8159-8168. [DOI: 10.1007/s11033-020-05838-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
|
36
|
Tepus M, Yau TO. Non-Invasive Colorectal Cancer Screening: An Overview. Gastrointest Tumors 2020; 7:62-73. [PMID: 32903904 PMCID: PMC7445682 DOI: 10.1159/000507701] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) follows a protracted stepwise progression, from benign adenomas to malignant adenocarcinomas. If detected early, 90% of deaths are preventable. However, CRC is asymptomatic in its early-stage and arises sporadically within the population. Therefore, CRC screening is a public health priority. SUMMARY Faecal immunochemical test (FIT) is gradually replacing guaiac faecal occult blood test and is now the most commonly used screening tool for CRC screening program globally. However, FIT is still limited by the haemoglobin degradation and the intermittent bleeding patterns, so that one in four CRC cases are still diagnosed in a late stage, leading to poor prognosis. A multi-target stool DNA test (Cologuard, a combination of NDRG4 and BMP3 DNA methylation, KRAS mutations, and haemoglobin) and a plasma SEPT9 DNA methylation test (Epi proColon) are non-invasive tools also approved by the US FDA, but those screening approaches are not cost-effective, and the detection accuracies remain unsatisfactory. In addition to the approved tests, faecal-/blood-based microRNA and CRC-related gut microbiome screening markers are under development, with work ongoing to find the best combination of molecular biomarkers which maximise the screening sensitivity and specificity. KEY MESSAGE Maximising the detection accuracy with a cost-effective approach for non-invasive CRC screening is urgently needed to further reduce the incidence of CRC and associated mortality rates.
Collapse
Affiliation(s)
| | - Tung On Yau
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
37
|
Wang P, Zhao H, Shi R, Liu X, Liu J, Ren F, Zhao Q, Zhang H, Li Y, Liu H, Chen J. [The Role of Plasma CDO1 Methylation in the Early Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:314-320. [PMID: 32317090 PMCID: PMC7260387 DOI: 10.3779/j.issn.1009-3419.2020.102.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
背景与目的 肺癌的发生率和死亡率常居所有恶性肿瘤的首位, DNA甲基化作为表观遗传学之一参与肿瘤的发生发展过程, CDO1作为抑癌基因常在肿瘤发生早期便会发生甲基化改变, 因此本研究旨在探讨CDO1甲基化在肺癌早期诊断中的价值。 方法 收集肿瘤患者和健康人群的外周血液样本, 游离DNA通过亚硫酸盐修饰并结合实时荧光定量PCR检测CDO1在外周血中的甲基化水平。 结果 肺癌患者的外周血的基因甲基化水平明显高于肺部良性疾病患者及健康人群。肺癌患者CDO1的甲基化水平在性别、淋巴结转移和肿瘤原发灶-淋巴结-转移(tumor-node-metastasis, TNM)分期的分层比较中存在显著性差异(P < 0.05)。CDO1对肺癌诊断的灵敏度和特异性分别为52.2%和78.6%。其诊断的整体准确度明显高于应用于临床的肿瘤标志物而且对I期、II期患者的诊断灵敏度表现最好(40.8%, 47.1%)。此外, CDO1可有效增加多项联检中诊断的灵敏性。 结论 检测CDO1的甲基化水平对肺癌的早期诊断具有潜在的巨大优势。
Collapse
Affiliation(s)
- Pan Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Honglin Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xingyu Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qingchun Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
38
|
Rauschert S, Raubenheimer K, Melton PE, Huang RC. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenetics 2020; 12:51. [PMID: 32245523 PMCID: PMC7118917 DOI: 10.1186/s13148-020-00842-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/22/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Machine learning is a sub-field of artificial intelligence, which utilises large data sets to make predictions for future events. Although most algorithms used in machine learning were developed as far back as the 1950s, the advent of big data in combination with dramatically increased computing power has spurred renewed interest in this technology over the last two decades. MAIN BODY Within the medical field, machine learning is promising in the development of assistive clinical tools for detection of e.g. cancers and prediction of disease. Recent advances in deep learning technologies, a sub-discipline of machine learning that requires less user input but more data and processing power, has provided even greater promise in assisting physicians to achieve accurate diagnoses. Within the fields of genetics and its sub-field epigenetics, both prime examples of complex data, machine learning methods are on the rise, as the field of personalised medicine is aiming for treatment of the individual based on their genetic and epigenetic profiles. CONCLUSION We now have an ever-growing number of reported epigenetic alterations in disease, and this offers a chance to increase sensitivity and specificity of future diagnostics and therapies. Currently, there are limited studies using machine learning applied to epigenetics. They pertain to a wide variety of disease states and have used mostly supervised machine learning methods.
Collapse
Affiliation(s)
- S Rauschert
- Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Western Australia.
| | - K Raubenheimer
- School of Medicine, Notre Dame University, Fremantle, Western Australia
| | - P E Melton
- Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, Perth, Western Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, Western Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - R C Huang
- Telethon Kids Institute, University of Western Australia, Nedlands, Perth, Western Australia
| |
Collapse
|
39
|
Constâncio V, Nunes SP, Henrique R, Jerónimo C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020; 9:E624. [PMID: 32150897 PMCID: PMC7140532 DOI: 10.3390/cells9030624] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022] Open
Abstract
Lung, breast, colorectal, and prostate cancers are the most incident worldwide. Optimal population-based cancer screening methods remain an unmet need, since cancer detection at early stages increases the prospects of successful and curative treatment, leading to a lower incidence of recurrences. Moreover, the current parameters for cancer patients' stratification have been associated with divergent outcomes. Therefore, new biomarkers that could aid in cancer detection and prognosis, preferably detected by minimally invasive methods are of major importance. Aberrant DNA methylation is an early event in cancer development and may be detected in circulating cell-free DNA (ccfDNA), constituting a valuable cancer biomarker. Furthermore, DNA methylation is a stable alteration that can be easily and rapidly quantified by methylation-specific PCR methods. Thus, the main goal of this review is to provide an overview of the most important studies that report methylation biomarkers for the detection and prognosis of the four major cancers after a critical analysis of the available literature. DNA methylation-based biomarkers show promise for cancer detection and management, with some studies describing a "PanCancer" detection approach for the simultaneous detection of several cancer types. Nonetheless, DNA methylation biomarkers still lack large-scale validation, precluding implementation in clinical practice.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Master in Oncology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Sandra P. Nunes
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
| | - Rui Henrique
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group—Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (S.P.N.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| |
Collapse
|
40
|
Lu H, Tang Y, Zong K, Wang G, Wang Z, Chen X, Han H, Liu D, Zong Q, Cui L, Yang Y. A Hallmark-Based Six-Gene Expression Signature to Assess Colorectal Cancer and Its Recurrence Risk. Genet Test Mol Biomarkers 2020; 23:557-564. [PMID: 31373854 DOI: 10.1089/gtmb.2018.0332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose: As part of the effort to establish a general profile for solid tumors, the aim of this study was to develop a real-time polymerase chain reaction (RT-PCR)-based assay to assess colorectal cancer (CRC) and its recurrence risk utilizing the limited amounts of tissues available from biopsies through colonoscopy. Materials and Methods: Six candidate genes, reflecting the hallmarks of cancer cells, were identified by analyzing the gene expression profiles of primary invasive tumors in the public database. The expression of these genes in CRC and noncancerous colon tissues was quantified by RT-quantitative PCR. Classifiers were then generated to distinguish the tumors from the normal colon tissues, and to assess the risk of CRC recurrence based on the disease-free survival time, overall survival time, and metastatic status of the patients. Results: The expression profile of a five-gene panel was utilized to build a model that is capable of distinguishing CRC cancer tissues from noncancerous colorectal tissues (p < 0.0001). A classifier based on the expression signature of four genes, three of which were included in the five-gene panel, was then developed for assessing the tumor recurrence risk. This classifier could correctly identify those with a poor likelihood of survival (high risk of recurrence) >80% of time. There was a significant difference in disease-free survival time between patients in the low recurrence group and those in the high-risk group. Conclusion: The expression signatures of the six genes that reflect the genetic hallmarks of cancer cells could serve as a biomarker for identifying CRC and assessing the risk of recurrence with high sensitivity and specificity.
Collapse
Affiliation(s)
- Huiqi Lu
- 1Center for Translational Medicine, Second Military Medical University, Changzheng Hospital, Shanghai, P.R. China
| | - Ying Tang
- 2Naval Medical Research Institute, Shanghai, P.R. China
| | | | - Guanghui Wang
- 4Department of Colorectal Surgery, Shanghai Jiaotong University School of Medicine, Xinhua Hospital, Shanghai, P.R. China
| | - Zhewei Wang
- 1Center for Translational Medicine, Second Military Medical University, Changzheng Hospital, Shanghai, P.R. China
| | - Xi Chen
- 1Center for Translational Medicine, Second Military Medical University, Changzheng Hospital, Shanghai, P.R. China
| | - Huanxing Han
- 1Center for Translational Medicine, Second Military Medical University, Changzheng Hospital, Shanghai, P.R. China
| | | | - Qin Zong
- 3Novastats, Germantown, Maryland
| | - Long Cui
- 4Department of Colorectal Surgery, Shanghai Jiaotong University School of Medicine, Xinhua Hospital, Shanghai, P.R. China
| | - Yili Yang
- 6Center for Systems Medicine, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
41
|
Duforestel M, Briand J, Bougras-Cartron G, Heymann D, Frenel JS, Vallette FM, Cartron PF. Cell-free circulating epimarks in cancer monitoring. Epigenomics 2020; 12:145-155. [PMID: 31916450 DOI: 10.2217/epi-2019-0170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer numbers increasing, cases heterogeneity and the drug resistance emergence have pushed scientists to search for innovative solutions for patients and epimutations can be one. Methylated DNA, modified nucleosomes and noncoding RNAs are found in all cells, including tumor cells. They are intracellular actors but also have intercellular communication roles, being released in extracellular environment and in different body fluids. Here, we reviewed current literature on the use of these blood circulating epimarks in cancer monitoring. What stands out is that epimarkers must be considered as ‘real time’ images of the tumor, and can be isolated without invasive methods. In the future, the real challenge lies in the development of specific, sensitive, fast and clinically applicable detection and analysis methods of epimarkers.
Collapse
Affiliation(s)
- Manon Duforestel
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
| | - Joséphine Briand
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
| | - Gwenola Bougras-Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
| | - Dominique Heymann
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Jean-Sébastien Frenel
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
- Department of Medical Oncology, Institut de Cancérologie de l'Ouest Site René Gauducheau, Saint Herblain, France
| | - François M Vallette
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
- LabEX IGO, Université de Nantes, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors Network from Cancéropôle Grand Ouest
- EpiSAVMEN Network (Région Pays de la Loire)
- LabEX IGO, Université de Nantes, France
| |
Collapse
|
42
|
Constâncio V, Nunes SP, Moreira-Barbosa C, Freitas R, Oliveira J, Pousa I, Oliveira J, Soares M, Dias CG, Dias T, Antunes L, Henrique R, Jerónimo C. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin Epigenetics 2019; 11:175. [PMID: 31791387 PMCID: PMC6889617 DOI: 10.1186/s13148-019-0779-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lung (LC), prostate (PCa) and colorectal (CRC) cancers are the most incident in males worldwide. Despite recent advances, optimal population-based cancer screening methods remain an unmet need. Due to its early onset, cancer specificity and accessibility in body fluids, aberrant DNA promoter methylation might be a valuable minimally invasive tool for early cancer detection. Herein, we aimed to develop a minimally invasive methylation-based test for simultaneous early detection of LC, PCa and CRC in males, using liquid biopsies. RESULTS Circulating cell-free DNA was extracted from 102 LC, 121 PCa and 100 CRC patients and 136 asymptomatic donors' plasma samples. Sodium-bisulfite modification and whole-genome amplification was performed. Promoter methylation levels of APCme, FOXA1me, GSTP1me, HOXD3me, RARβ2me, RASSF1Ame, SEPT9me and SOX17me were assessed by multiplex quantitative methylation-specific PCR. SEPT9me and SOX17me were the only biomarkers shared by all three cancer types, although they detected CRC with limited sensitivity. A "PanCancer" panel (FOXA1me, RARβ2me and RASSF1Ame) detected LC and PCa with 64% sensitivity and 70% specificity, complemented with "CancerType" panel (GSTP1me and SOX17me) which discriminated between LC and PCa with 93% specificity, but with modest sensitivity. Moreover, a HOXD3me and RASSF1Ame panel discriminated small cell lung carcinoma from non-small cell lung carcinoma with 75% sensitivity, 88% specificity, 6.5 LR+ and 0.28 LR-. An APCme and RASSF1Ame panel independently predicted disease-specific mortality in LC patients. CONCLUSIONS We concluded that a DNA methylation-based test in liquid biopsies might enable minimally invasive screening of LC and PCa, improving patient compliance and reducing healthcare costs. Moreover, it might assist in LC subtyping and prognostication.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Freitas
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Inês Pousa
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Júlio Oliveira
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marta Soares
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carlos Gonçalves Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Teresa Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
43
|
Asai A, Konno M, Koseki J, Taniguchi M, Vecchione A, Ishii H. One-carbon metabolism for cancer diagnostic and therapeutic approaches. Cancer Lett 2019; 470:141-148. [PMID: 31759958 DOI: 10.1016/j.canlet.2019.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022]
Abstract
Altered metabolism is critical for the rapid and unregulated proliferation of cancer cells; hence the requirement for an abundant source of nucleotides. One characteristic of this metabolic reprogramming is in one-carbon (1C) metabolism, which is particularly noteworthy for its role in DNA synthesis. Various forms of methylation are also noteworthy as they relate to cancer cell survival and proliferation. In recent years, 1C metabolism has received substantial attention for its role in cancer malignancy via these functions. Therefore, therapeutic inhibitors targeting 1C metabolism have been utilized as anticancer drugs. This review outlines the importance of 1C metabolism and its clinical application in cancer. Understanding 1C metabolism could aid the development of novel cancer diagnostic and therapeutic methods.
Collapse
Affiliation(s)
- Ayumu Asai
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan; Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan; Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Jun Koseki
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Masateru Taniguchi
- Artificial Intelligence Research Center, The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, University of Rome "Sapienza", Santo Andrea Hospital, Via di Grottarossa, Rome, 1035-00189, Italy
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
44
|
Ibrahim J, Op de Beeck K, Fransen E, Peeters M, Van Camp G. The Gasdermin E Gene Has Potential as a Pan-Cancer Biomarker, While Discriminating between Different Tumor Types. Cancers (Basel) 2019; 11:cancers11111810. [PMID: 31752152 PMCID: PMC6896019 DOI: 10.3390/cancers11111810] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
Due to the elevated rates of incidence and mortality of cancer, early and accurate detection is crucial for achieving optimal treatment. Molecular biomarkers remain important screening and detection tools, especially in light of novel blood-based assays. DNA methylation in cancer has been linked to tumorigenesis, but its value as a biomarker has not been fully explored. In this study, we have investigated the methylation patterns of the Gasdermin E gene across 14 different tumor types using The Cancer Genome Atlas (TCGA) methylation data (N = 6502). We were able to identify six CpG sites that could effectively distinguish tumors from normal samples in a pan-cancer setting (AUC = 0.86). This combination of pan-cancer biomarkers was validated in six independent datasets (AUC = 0.84–0.97). Moreover, we tested 74,613 different combinations of six CpG probes, where we identified tumor-specific signatures that could differentiate one tumor type versus all the others (AUC = 0.79–0.98). In all, methylation patterns exhibited great variation between cancer and normal tissues, but were also tumor specific. Our analyses highlight that a Gasdermin E methylation biomarker assay, not only has the potential for being a methylation-specific pan-cancer detection marker, but it also possesses the capacity to discriminate between different types of tumors.
Collapse
Affiliation(s)
- Joe Ibrahim
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
| | - Ken Op de Beeck
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
| | - Erik Fransen
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- StatUa Centre for Statistics, University of Antwerp, 2000 Antwerp, Belgium
| | - Marc Peeters
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
- Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Guy Van Camp
- Centre of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium; (J.I.); (K.O.d.B.); (E.F.)
- Centre for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium;
- Correspondence: ; Tel.: +32-3275-9762
| |
Collapse
|
45
|
Locke WJ, Guanzon D, Ma C, Liew YJ, Duesing KR, Fung KYC, Ross JP. DNA Methylation Cancer Biomarkers: Translation to the Clinic. Front Genet 2019; 10:1150. [PMID: 31803237 PMCID: PMC6870840 DOI: 10.3389/fgene.2019.01150] [Citation(s) in RCA: 296] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
Carcinogenesis is accompanied by widespread DNA methylation changes within the cell. These changes are characterized by a globally hypomethylated genome with focal hypermethylation of numerous 5’-cytosine-phosphate-guanine-3’ (CpG) islands, often spanning gene promoters and first exons. Many of these epigenetic changes occur early in tumorigenesis and are highly pervasive across a tumor type. This allows DNA methylation cancer biomarkers to be suitable for early detection and also to have utility across a range of areas relevant to cancer detection and treatment. Such tests are also simple in construction, as only one or a few loci need to be targeted for good test coverage. These properties make cancer-associated DNA methylation changes very attractive for development of cancer biomarker tests with substantive clinical utility. Across the patient journey from initial detection, to treatment and then monitoring, there are several points where DNA methylation assays can inform clinical practice. Assays on surgically removed tumor tissue are useful to determine indicators of treatment resistance, prognostication of outcome, or to molecularly characterize, classify, and determine the tissue of origin of a tumor. Cancer-associated DNA methylation changes can also be detected with accuracy in the cell-free DNA present in blood, stool, urine, and other biosamples. Such tests hold great promise for the development of simple, economical, and highly specific cancer detection tests suitable for population-wide screening, with several successfully translated examples already. The ability of circulating tumor DNA liquid biopsy assays to monitor cancer in situ also allows for the ability to monitor response to therapy, to detect minimal residual disease and as an early biomarker for cancer recurrence. This review will summarize existing DNA methylation cancer biomarkers used in clinical practice across the application domains above, discuss what makes a suitable DNA methylation cancer biomarker, and identify barriers to translation. We discuss technical factors such as the analytical performance and product-market fit, factors that contribute to successful downstream investment, including geography, and how this impacts intellectual property, regulatory hurdles, and the future of the marketplace and healthcare system.
Collapse
Affiliation(s)
- Warwick J Locke
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia.,Probing Biosystems Future Science Platform, CSIRO Health and Biosecurity, Canberra, ACT, Australia
| | - Dominic Guanzon
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia.,Probing Biosystems Future Science Platform, CSIRO Health and Biosecurity, Canberra, ACT, Australia
| | - Chenkai Ma
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia
| | - Yi Jin Liew
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia.,Probing Biosystems Future Science Platform, CSIRO Health and Biosecurity, Canberra, ACT, Australia
| | - Konsta R Duesing
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia
| | - Kim Y C Fung
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia.,Probing Biosystems Future Science Platform, CSIRO Health and Biosecurity, Canberra, ACT, Australia
| | - Jason P Ross
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, North Ryde, NSW, Australia.,Probing Biosystems Future Science Platform, CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
46
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
47
|
Danese E, Montagnana M, Lippi G. Circulating molecular biomarkers for screening or early diagnosis of colorectal cancer: which is ready for prime time? ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:610. [PMID: 32047771 PMCID: PMC7011594 DOI: 10.21037/atm.2019.08.97] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
According to recent statistics, colorectal cancer (CRC) is a frequent disease, the second most frequent malignancy in women and the third most common malignant disease in men, respectively. Although reinforced emphasis on CRC screening by means of immunochemical fecal occult blood test, colonoscopy or sigmoidoscopy has contributed to decrease cancer-related deaths, alternative diagnostic tests would be needed for establishing earlier and more potentially effective treatments. Innovative diagnostic techniques have recently emerged, some of which hold promises for screening and/or early CRC detection. Recent evidence suggests that the so-called "liquid biopsy", conventionally defined as detection and quantification of circulating tumor cells (CTCs) and cancer-related nucleic acids in peripheral blood, may allow earlier diagnosis of CRC combined with lower invasiveness and less patient inconvenience, higher throughput, faster turnaround time, inferior usage of healthcare resources and relatively low cost. Encouraging data have emerged from trials based on CTCs detection, though the sensitivity of the current diagnostic techniques is still perhaps insufficient for enabling early CRC diagnosis. Among the various biomarkers that can be detected with liquid biopsy, SEPT9 methylation displays good diagnostic performance and relatively high cancer detection rate (between 57-64% in patients with CRC stages 0-I), which would make this test a promising tool for population screening, alone or in combination with other conventional diagnostic investigations. Encouraging evidence has also been recently published for BCAT1/IKZF1 methylation. Regarding microRNA (miRNAs), the available evidence highlights that the combination of some of these biomarkers rather than the assessment of a single miRNA alone would enable efficient identification of early CRCs, though widespread clinical application is still challenged by a number of preanalytical, analytical and clinical issues.
Collapse
Affiliation(s)
- Elisa Danese
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| |
Collapse
|
48
|
Circulating biomarkers for early detection and clinical management of colorectal cancer. Mol Aspects Med 2019; 69:107-122. [PMID: 31189073 DOI: 10.1016/j.mam.2019.06.002] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 02/06/2023]
Abstract
New non-invasive approaches that can complement and improve on current strategies for colorectal cancer (CRC) screening and management are urgently needed. A growing number of publications have documented that components of tumors, which are shed into the circulation, can be detected in the form of liquid biopsies and can be used to detect CRC at early stages, to predict response to certain therapies and to detect CRC recurrence in a minimally invasive way. The analysis of circulating tumor DNA (ctDNA), tumor-derived cells (CTC, circulating tumor cells) or circulating microRNA (miRNA) in blood and other body fluids, have a great potential to improve different aspects of CRC management. The challenge now is to find which types of components, biofluids and detection methods would be the most suitable to be applied in the different steps of CRC detection and treatment. This chapter will provide an up to date review on ctDNA, CTCs and circulating miRNAs as new biomarkers for CRC, either for clinical management or early detection, highlighting their advantages and limitations.
Collapse
|
49
|
Molnár B, Galamb O, Kalmár A, Barták BK, Nagy ZB, Tóth K, Tulassay Z, Igaz P, Dank M. Circulating cell-free nucleic acids as biomarkers in colorectal cancer screening and diagnosis - an update. Expert Rev Mol Diagn 2019; 19:477-498. [PMID: 31046485 DOI: 10.1080/14737159.2019.1613891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
Abstract
Introduction: Screening methods for one of the most frequently diagnosed malignancy, colorectal cancer (CRC), have limitations. Circulating cell-free nucleic acids (cfNA) hold clinical relevance as screening, prognostic and therapy monitoring markers. Area covered: In this review, we summarize potential CRC-specific cfNA biomarkers, the recently developed sample preparation techniques, their applications, and pitfalls. Expert opinion: Automated extraction of cfDNA is highly reproducible, however, cfDNA yield is less compared to manual isolation. Quantitative and highly sensitive detection techniques (e.g. digital PCR, NGS) can be applied to analyze genetic and epigenetic changes. Detection of DNA mutations or methylation in cfDNA and related altered levels of mRNA, miRNA, and lncRNA may improve early cancer recognition, based on specific, CRC-related patterns. Detection of cfDNA mutations (e.g. TP53, KRAS, APC) has limited diagnostic sensitivity (40-60%), however, methylated DNA including SEPT9, SFRP1, SDC2 can be applied with higher sensitivity (up to 90%) for CRC. Circulating miRNAs (e.g. miR-21, miR-92, miR-141) provide comparably high sensitivity for CRC as the circulating tumor cell mRNA markers (e.g. EGFR, CK19, CK20, CEA). Automation of cfNA isolation coupled with quantitative analysis of CRC-related, highly sensitive biomarkers may enhance CRC screening and early detection in the future.
Collapse
Affiliation(s)
- Béla Molnár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Orsolya Galamb
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Alexandra Kalmár
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Barbara Kinga Barták
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsófia Brigitta Nagy
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Kinga Tóth
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Zsolt Tulassay
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Péter Igaz
- a 2nd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
- b MTA-SE Molecular Medicine Research Unit , Hungarian Academy of Sciences and Semmelweis University , Budapest , Hungary
| | - Magdolna Dank
- c Department of Oncology , Semmelweis University , Budapest , Hungary
| |
Collapse
|
50
|
Kottorou AE, Antonacopoulou AG, Dimitrakopoulos FID, Diamantopoulou G, Sirinian C, Kalofonou M, Theodorakopoulos T, Oikonomou C, Katsakoulis EC, Koutras A, Makatsoris T, Demopoulos N, Stephanou G, Stavropoulos M, Thomopoulos KC, Kalofonos HP. Deregulation of methylation of transcribed-ultra conserved regions in colorectal cancer and their value for detection of adenomas and adenocarcinomas. Oncotarget 2018; 9:21411-21428. [PMID: 29765549 PMCID: PMC5940382 DOI: 10.18632/oncotarget.25115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/02/2018] [Indexed: 02/06/2023] Open
Abstract
Expression of Transcribed Ultraconserved Regions (T-UCRs) is often deregulated in cancer. The present study assesses the expression and methylation of three T-UCRs (Uc160, Uc283 and Uc346) in colorectal cancer (CRC) and explores the potential of T-UCR methylation in circulating DNA for the detection of adenomas and adenocarcinomas. Expression levels of Uc160, Uc283 and Uc346 were lower in neoplastic tissues from 64 CRC patients (statistically significant for Uc160, p<0.001), compared to non-malignant tissues, while methylation levels displayed the inverse pattern (p<0.001, p=0.001 and p=0.004 respectively). In colon cancer cell lines, overexpression of Uc160 and Uc346 led to increased proliferation and migration rates. Methylation levels of Uc160 in plasma of 50 CRC, 59 adenoma patients, 40 healthy subjects and 12 patients with colon inflammation or diverticulosis predicted the presence of CRC with 35% sensitivity and 89% specificity (p=0.016), while methylation levels of the combination of all three T-UCRs resulted in 45% sensitivity and 74.3% specificity (p=0.013). In conclusion, studied T-UCRs' expression and methylation status are deregulated in CRC while Uc160 and Uc346 appear to have a complicated role in CRC progression. Moreover their methylation status appears a promising non-invasive screening test for CRC, provided that the sensitivity of the assay is improved.
Collapse
Affiliation(s)
- Anastasia E. Kottorou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
| | - Anna G. Antonacopoulou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
| | - Foteinos-Ioannis D. Dimitrakopoulos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
- Division of Oncology, University Hospital of Patras, Patras, Greece
| | | | - Chaido Sirinian
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
| | - Melpomeni Kalofonou
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
- Institute of Biomedical Engineering, Imperial College London, London, UK
| | | | - Chrysa Oikonomou
- Division of Oncology, University Hospital of Patras, Patras, Greece
| | | | - Angelos Koutras
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
- Division of Oncology, University Hospital of Patras, Patras, Greece
| | - Thomas Makatsoris
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
- Division of Oncology, University Hospital of Patras, Patras, Greece
| | - Nikos Demopoulos
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Georgia Stephanou
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | - Haralabos P. Kalofonos
- Clinical and Molecular Oncology Laboratory, Division of Oncology, Medical School, University of Patras, Patras, Greece
- Division of Oncology, University Hospital of Patras, Patras, Greece
| |
Collapse
|