1
|
Chu X, Hou Y, Peng C, Li W, Liang M, Mei J, Qian M, Wang J, Xu S, Jiang Y, Wen X, Chen Y, Yuan F, Xie J, Wang C, Zhang J. Exosome-derived miR-548ag drives hepatic lipid accumulation via upregulating FASN through inhibition of DNMT3B. J Lipid Res 2025:100818. [PMID: 40339699 DOI: 10.1016/j.jlr.2025.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/26/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease worldwide. This study investigates the role of serum miR-548ag in regulating lipid metabolism and its contribution to MASLD in obesity. We found that miR-548ag levels were significantly elevated in the serum of both obese and MASLD patients, and positively correlated with body mass index (BMI), fasting plasma glucose (FPG), triglycerides (TG), total cholesterol (TC), LDL, HDL, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Additionally, miR-548ag expression was significantly higher in the liver and abdominal adipose tissue of obese individuals compared to those of normal weight. In vitro studies in HepG2 and L02 cells, along with previous findings, demonstrated that miR-548ag promotes fatty acid synthase (FASN) expression by inhibiting DNA methyltransferase 3B (DNMT3B), thereby enhancing lipid synthesis. This was confirmed in two mouse models: one with tail vein injections of miR-548ag mimic/inhibitor adeno-associated viruses, and another with tail vein injections of exosomes from serum of normal-weight and obese individuals. Both models showed that miR-548ag upregulated FASN through DNMT3B inhibition, leading to increased lipid synthesis and larger hepatic lipid droplets, effects that were reversed by miR-548ag inhibition. Taken together, elevated miR-548ag expression in obesity enhances hepatic lipid synthesis by targeting DNMT3B to upregulate FASN, contributing to the development of MASLD.
Collapse
Affiliation(s)
- Xiaolong Chu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China
| | - Yanting Hou
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Chaoling Peng
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wei Li
- First Affiliated Hospital of Shihezi University School of Medicine, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China
| | - Maodi Liang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jin Mei
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meiyu Qian
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Juan Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Shibo Xu
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yidan Jiang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xin Wen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yao Chen
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Fangyuan Yuan
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Jianxin Xie
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Department of Medical Genetics , Medical College of Tarim University, 296 Tarim Avenue, Alar, Xinjiang, 843300, China.
| | - Cuizhe Wang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang, 832000, China; Laboratory of Xinjiang Endemic and Ethic Diseases, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
2
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
3
|
Banerjee S, Paradkar MU, Ponde CK, Rajani RM, Pillai S, Ashavaid TF. Does epigenetic markers of HLA gene show association with coronary artery disease in Indian subjects? Mol Biol Rep 2024; 51:173. [PMID: 38252175 DOI: 10.1007/s11033-023-08974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND DNA methylation, one of the most stable forms of epigenetic modification is associated with the development and progression of coronary artery disease (CAD). Our previously reported study on epigenome-wide microarray analysis showed significantly methylated CpG sites. Top 5 significant CpGs from HLA gene were selected and analysed by Pyrosequencing (PSQ) to determine their association with severity of CAD. METHODS Blood samples of 50-age matched angiographically CAD positive male cases with 50 angiographically CAD negative male controls were subjected to lipid profile estimation and PSQ for methylation level analysis. Findings and subgroup analysis were evaluated by Mann-Whitney U; Kruskal-Wallis' rank test and two-way ANOVA by MedCalc (v19.6). RESULTS Methylation levels in HLA-DQA1 for cg10217052 was 78.5 (37-85) and 76.5 (24-84); cg09411910 was 81 (72.0 to 93.0) and 81.5 (50.0 to 89.0) in cases and controls respectively. Levels in HLA-DQB1-cg03344051, were 28.88 + 9.41 for cases and 30.36 + 9.37 in controls. For HLA-DRB1-cg07889003, levels in cases and controls were 15.5 (5.00-39.00) and 10.5 (5.00-29.0); while in cg08269402 were 52 (16-65) and 42.5 (17-61) respectively. No association was observed between methylation levels and lipid profile. cg03344051, cg07889003 and cg08269402 were significantly differentiated in double or triple vessel disease (DVD or TVD) as compared to single vessel disease (SVD) suggesting an increase in the extent of methylation with the increase in CAD severity. CONCLUSION The present study shows significant increase in the extent of methylation in 3 CpG sites in DVD/TVD cases as compared to SVD cases. Additionally, a novel site, cg07889003 identified in our discovery phase has shown association with the severity of CAD.
Collapse
Affiliation(s)
- Shyamashree Banerjee
- Research Laboratories, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Minal U Paradkar
- Research Laboratories, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
- Department of Biochemistry, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | | | - Rajesh M Rajani
- Department of Cardiology, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Sudhir Pillai
- Department of Cardiology, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Tester F Ashavaid
- Research Laboratories, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India.
- Department of Biochemistry, P.D Hinduja Hospital & Medical Research Centre, Mumbai, India.
| |
Collapse
|
4
|
Tebani A, Bekri S. [The promise of omics in the precision medicine era]. Rev Med Interne 2022; 43:649-660. [PMID: 36041909 DOI: 10.1016/j.revmed.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The rise of omics technologies that simultaneously measure thousands of molecules in a complex biological sample represents the core of systems biology. These technologies have profoundly impacted biomarkers and therapeutic targets discovery in the precision medicine era. Systems biology aims to perform a systematic probing of complex interactions in biological systems. Powered by high-throughput omics technologies and high-performance computing, systems biology provides relevant, resolving, and multi-scale overviews from cells to populations. Precision medicine takes advantage of these conceptual and technological developments and is based on two main pillars: the generation of multimodal data and their subsequent modeling. High-throughput omics technologies enable the comprehensive and holistic extraction of biological information, while computational capabilities enable multidimensional modeling and, as a result, offer an intuitive and intelligible visualization. Despite their promise, translating these technologies into clinically actionable tools has been slow. In this contribution, we present the most recent multi-omics data generation and analysis strategies and their clinical deployment in the post-genomic era. Furthermore, medical application challenges of omics-based biomarkers are discussed.
Collapse
Affiliation(s)
- A Tebani
- UNIROUEN, Inserm U1245, Department of Metabolic Biochemistry, Normandie University, CHU Rouen, 76000 Rouen, France.
| | - S Bekri
- UNIROUEN, Inserm U1245, Department of Metabolic Biochemistry, Normandie University, CHU Rouen, 76000 Rouen, France
| |
Collapse
|
5
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
6
|
Pedro-Botet J, Climent E, Benaiges D. Familial Hypercholesterolemia: Do HDL Play a Role? Biomedicines 2021; 9:biomedicines9070810. [PMID: 34356876 PMCID: PMC8301335 DOI: 10.3390/biomedicines9070810] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/09/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) in heterozygous familial hypercholesterolemia (HeFH), the most frequent monogenic disorder of human metabolism, is largely driven by low-density lipoprotein (LDL) cholesterol concentrations. Since the CVD rate differs considerably in this population, beyond the lifetime LDL cholesterol vascular accumulation, other classical risk factors are involved in the high cardiovascular risk of HeFH. Among other lipoprotein disturbances, alterations in the phenotype and functionality of high-density lipoproteins (HDL) have been described in HeFH patients, contributing to the presence and severity of CVD. In fact, HDL are the first defensive barrier against the burden of high LDL cholesterol levels owing to their contribution to reverse cholesterol transport as well as their antioxidant and anti-inflammatory properties, among others. In this context, the present narrative review aimed to focus on quantitative and qualitative abnormalities in HDL particles in HeFH, encompassing metabolic, genetic and epigenetic aspects.
Collapse
Affiliation(s)
- Juan Pedro-Botet
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
- Correspondence: ; Tel.: +34-932483902; Fax: +34-932483254
| | - Elisenda Climent
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| | - David Benaiges
- Endocrinology and Nutrition Department, Hospital del Mar, 08003 Barcelona, Spain; (E.C.); (D.B.)
- Department of Medicine, Universitat Autònoma de Barcelona, Campus Universitari Mar, 08003 Barcelona, Spain
- Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain
| |
Collapse
|
7
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
8
|
Navarrete-Muñoz EM, Vioque J, Toledo E, Oncina-Canovas A, Martínez-González MÁ, Salas-Salvadó J, Corella D, Fitó M, Romaguera D, Alonso-Gómez ÁM, Wärnberg J, Martínez JA, Serra-Majem L, Estruch R, Tinahones FJ, Lapetra J, Pintó X, Tur JA, López-Miranda J, Bueno-Cavanillas A, Matía-Martín P, Daimiel L, Sánchez VM, Vidal J, de Cos Blanco AI, Ros E, Diez-Espino J, Babio N, Fernandez-Carrion R, Castañer O, Colom A, Compañ-Gabucio L, Lete IS, Crespo-Oliva E, Abete I, Tomaino L, Casas R, Fernandez-Garcia JC, Santos-Lozano JM, Sarasa I, Gámez JM, Garcia-Rios JMA, Martín-Pelaez S, Ruiz-Canela M, Díaz-López A, Martinez-Lacruz R, Zomeño MD, Rayó E, Sellés CG, Canudas S, Goday A, García-de-la-Hera M. Dietary folate intake and metabolic syndrome in participants of PREDIMED-Plus study: a cross-sectional study. Eur J Nutr 2021; 60:1125-1136. [PMID: 32833162 DOI: 10.1007/s00394-020-02364-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE We examined the association between dietary folate intake and a score of MetS (metabolic syndrome) and its components among older adults at higher cardiometabolic risk participating in the PREDIMED-Plus trial. METHODS A cross-sectional analysis with 6633 with overweight/obesity participants with MetS was conducted. Folate intake (per 100 mcg/day and in quintiles) was estimated using a validated food frequency questionnaire. We calculated a MetS score using the standardized values as shown in the formula: [(body mass index + waist-to-height ratio)/2] + [(systolic blood pressure + diastolic blood pressure)/2] + plasma fasting glucose-HDL cholesterol + plasma triglycerides. The MetS score as continuous variable and its seven components were the outcome variables. Multiple robust linear regression using MM-type estimator was performed to evaluate the association adjusting for potential confounders. RESULTS We observed that an increase in energy-adjusted folate intake was associated with a reduction of MetS score (β for 100 mcg/day = - 0.12; 95% CI: - 0.19 to - 0.05), and plasma fasting glucose (β = - 0.03; 95% CI: - 0.05 to - 0.02) independently of the adherence to Mediterranean diet and other potential confounders. We also found a positive association with HDL-cholesterol (β = 0.07; 95% CI: 0.04-0.10). These associations were also observed when quintiles of energy-adjusted folate intake were used instead. CONCLUSION This study suggests that a higher folate intake may be associated with a lower MetS score in older adults, a lower plasma fasting glucose, and a greater HDL cholesterol in high-risk cardio-metabolic subjects.
Collapse
Affiliation(s)
- Eva-Maria Navarrete-Muñoz
- Grupo de Investigación en Terapia Ocupacional (InTeO), Department of Surgery and Pathology, Miguel Hernández University, 03550, Alicante, Spain
| | - Jesus Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain.
- Nutritional Epidemiology Unit, Universidad Miguel Hernández, ISABIAL-UMH, Alicante, Spain.
- Departamento Salud Pública, Campus San Juan, Universidad Miguel Hernández, Ctra. Nacional 332 s/n, 03550, Sant Joan d'Alacant, Spain.
| | - Estefanía Toledo
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | | | - Miguel Ángel Martínez-González
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jordi Salas-Salvadó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Dolores Corella
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Dora Romaguera
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | - Ángel M Alonso-Gómez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julia Wärnberg
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Nursing, School of Health Sciences, University of Málaga-Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Luís Serra-Majem
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria and Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas de Gran Canaria, Spain
| | - Ramon Estruch
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francisco J Tinahones
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Málaga, Málaga, Spain
| | - José Lapetra
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Xavier Pintó
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - Josep A Tur
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
| | - José López-Miranda
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Aurora Bueno-Cavanillas
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Pilar Matía-Martín
- Department of Endocrinology and Nutrition, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Lidia Daimiel
- Nutritional Control of the Epigenom Group, Precision Nutrition and Obesity Program, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Vicente Martín Sánchez
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Ana Isabel de Cos Blanco
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Fundación Jimenez Díaz, Instituto de Investigaciones Biomédicas IISFJD, University Autonoma, Madrid, Spain
| | - Emili Ros
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Javier Diez-Espino
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
- Gerencia de Atención Primaria, Servicio Navarro de Salud-Osasunbidea, Pamplona, Spain
| | - Nancy Babio
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Rebeca Fernandez-Carrion
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Olga Castañer
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Antoni Colom
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | - Laura Compañ-Gabucio
- Nutritional Epidemiology Unit, Universidad Miguel Hernández, ISABIAL-UMH, Alicante, Spain
| | - Itziar Salaverria Lete
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Edelys Crespo-Oliva
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Nursing, School of Health Sciences, University of Málaga-Institute of Biomedical Research in Malaga (IBIMA), Málaga, Spain
| | - Itziar Abete
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Nutrition, Food Sciences, and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Laura Tomaino
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria and Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Canarian Health Service, Las Palmas de Gran Canaria, Spain
- Department of Clinical and Community Health (DISCCO), Università degli Studi di Milano, Milan, Italy
| | - Rosa Casas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - José Carlos Fernandez-Garcia
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Endocrinology, Instituto de Investigación Biomédica de Málaga (IBIMA), Virgen de la Victoria Hospital, University of Málaga, Málaga, Spain
| | - José Manuel Santos-Lozano
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Iziar Sarasa
- Lipids and Vascular Risk Unit, Internal Medicine, Hospital Universitario de Bellvitge, Hospitalet de Llobregat, Barcelona, Spain
| | - José M Gámez
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, Palma de Mallorca, Spain
- Department of Cardiology, Hospital Son Llàtzer, 07198, Palma de Mallorca, Spain
| | - José M Antonio Garcia-Rios
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Sandra Martín-Pelaez
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Miguel Ruiz-Canela
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Navarra, IdiSNA, Pamplona, Spain
| | - Andrés Díaz-López
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Raul Martinez-Lacruz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Maria Dolors Zomeño
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Elena Rayó
- Health Research Institute of the Balearic Islands (IdISBa), University Hospital Son Espases, Palma de Mallorca, Spain
| | | | - Silvia Canudas
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Universitat Rovira i Virgili, Reus, Spain
- Nutrition Unit, University Hospital of Sant Joan de Reus, Reus, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Albert Goday
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Manoli García-de-la-Hera
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
- Nutritional Epidemiology Unit, Universidad Miguel Hernández, ISABIAL-UMH, Alicante, Spain
| |
Collapse
|
9
|
Gomez-Alonso MDC, Kretschmer A, Wilson R, Pfeiffer L, Karhunen V, Seppälä I, Zhang W, Mittelstraß K, Wahl S, Matias-Garcia PR, Prokisch H, Horn S, Meitinger T, Serrano-Garcia LR, Sebert S, Raitakari O, Loh M, Rathmann W, Müller-Nurasyid M, Herder C, Roden M, Hurme M, Jarvelin MR, Ala-Korpela M, Kooner JS, Peters A, Lehtimäki T, Chambers JC, Gieger C, Kettunen J, Waldenberger M. DNA methylation and lipid metabolism: an EWAS of 226 metabolic measures. Clin Epigenetics 2021; 13:7. [PMID: 33413638 PMCID: PMC7789600 DOI: 10.1186/s13148-020-00957-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The discovery of robust and trans-ethnically replicated DNA methylation markers of metabolic phenotypes, has hinted at a potential role of epigenetic mechanisms in lipid metabolism. However, DNA methylation and the lipid compositions and lipid concentrations of lipoprotein sizes have been scarcely studied. Here, we present an epigenome-wide association study (EWAS) (N = 5414 total) of mostly lipid-related metabolic measures, including a fine profiling of lipoproteins. As lipoproteins are the main players in the different stages of lipid metabolism, examination of epigenetic markers of detailed lipoprotein features might improve the diagnosis, prognosis, and treatment of metabolic disturbances. RESULTS We conducted an EWAS of leukocyte DNA methylation and 226 metabolic measurements determined by nuclear magnetic resonance spectroscopy in the population-based KORA F4 study (N = 1662) and replicated the results in the LOLIPOP, NFBC1966, and YFS cohorts (N = 3752). Follow-up analyses in the discovery cohort included investigations into gene transcripts, metabolic-measure ratios for pathway analysis, and disease endpoints. We identified 161 associations (p value < 4.7 × 10-10), covering 16 CpG sites at 11 loci and 57 metabolic measures. Identified metabolic measures were primarily medium and small lipoproteins, and fatty acids. For apolipoprotein B-containing lipoproteins, the associations mainly involved triglyceride composition and concentrations of cholesterol esters, triglycerides, free cholesterol, and phospholipids. All associations for HDL lipoproteins involved triglyceride measures only. Associated metabolic measure ratios, proxies of enzymatic activity, highlight amino acid, glucose, and lipid pathways as being potentially epigenetically implicated. Five CpG sites in four genes were associated with differential expression of transcripts in blood or adipose tissue. CpG sites in ABCG1 and PHGDH showed associations with metabolic measures, gene transcription, and metabolic measure ratios and were additionally linked to obesity or previous myocardial infarction, extending previously reported observations. CONCLUSION Our study provides evidence of a link between DNA methylation and the lipid compositions and lipid concentrations of different lipoprotein size subclasses, thus offering in-depth insights into well-known associations of DNA methylation with total serum lipids. The results support detailed profiling of lipid metabolism to improve the molecular understanding of dyslipidemia and related disease mechanisms.
Collapse
Affiliation(s)
- Monica Del C Gomez-Alonso
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Anja Kretschmer
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Liliane Pfeiffer
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Ville Karhunen
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, Middlesex, UK
| | - Kirstin Mittelstraß
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Pamela R Matias-Garcia
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
| | - Sacha Horn
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Luis R Serrano-Garcia
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Microbiology, Technical University of Munich, Freising, Germany
| | - Sylvain Sebert
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku, Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, University of Turku, Turku University Hospital, Turku, Finland
| | - Marie Loh
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Martina Müller-Nurasyid
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Genetic Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, 55101, Mainz, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Mikko Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
- UKMRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, UK
| | - Mika Ala-Korpela
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, Middlesex, UK
- National Heart and Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and Finnish Cardiovascular Research Center, Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, London, Middlesex, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Kettunen
- Center for Life Course Health Research, University of Oulu, Oulu University Hospital, Oulu, Finland
- Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Ingolstaedter Landstraße 1, 85764, Neuherberg, Germany.
- Institute of Epidemiology, Helmholtz Zentrum München German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
10
|
Jiang S, Cai Q, Zhang D, Fan J, Hu S, Venners SA. Effect of ABCG1 gene DNA methylations on the lipid-lowering efficacy of simvastatin. Pharmacogenomics 2020; 22:27-39. [PMID: 33356546 DOI: 10.2217/pgs-2020-0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We investigated the effect of ABCG1 gene DNA methylation in the lipid-lowering efficacy of simvastatin. Materials & methods: An extreme sampling approach was used to select 211 individuals from the top and bottom 15% of adjusted lipid-lowering response residuals to simvastatin after eight consecutive weeks. DNA methylation was measured before treatment by the MethylTarget bisulfite sequencing method. Results: ABCG1_A DNA methylations were negatively associated with baseline high-density lipoprotein cholesterol (HDL-C) and the change in HDL-C after treatment. ABCG1_C methylations were also related to the change in triglyceride and HDL-C. Moreover, mean ABCG1_A and ABCG1_C methylations explain 7.2% of the ΔTC (total cholesterol) and 17.5% of the ΔHDL-C level variability, respectively. Conclusion: DNA methylations at the ABCG1 gene play significant inhibitory effects in the lipid-lowering therapy of simvastatin.
Collapse
Affiliation(s)
- Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, 230601, China.,Institute of Physical Science & Information Technology, Anhui University, Hefei, 230601, China.,Institute of Biomedicine, Anhui Medical University, Hefei, 230032, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Shengnan Hu
- School of Life Sciences, Anhui University, Hefei, 230601, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| |
Collapse
|
11
|
Stevenson AJ, McCartney DL, Hillary RF, Campbell A, Morris SW, Bermingham ML, Walker RM, Evans KL, Boutin TS, Hayward C, McRae AF, McColl BW, Spires-Jones TL, McIntosh AM, Deary IJ, Marioni RE. Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clin Epigenetics 2020; 12:113. [PMID: 32718350 PMCID: PMC7385981 DOI: 10.1186/s13148-020-00903-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Chronic systemic inflammation has been associated with incident dementia, but its association with age-related cognitive decline is less clear. The acute responses of many inflammatory biomarkers mean they may provide an unreliable picture of the chronicity of inflammation. Recently, a large-scale epigenome-wide association study identified DNA methylation correlates of C-reactive protein (CRP)-a widely used acute-phase inflammatory biomarker. DNA methylation is thought to be relatively stable in the short term, marking it as a potentially useful signature of exposure. METHODS We utilise a DNA methylation-based score for CRP and investigate its trajectories with age, and associations with cognitive ability in comparison with serum CRP and a genetic CRP score in a longitudinal study of older adults (n = 889) and a large, cross-sectional cohort (n = 7028). RESULTS We identified no homogeneous trajectories of serum CRP with age across the cohorts, whereas the epigenetic CRP score was consistently found to increase with age (standardised β = 0.07 and 0.01) and to do so more rapidly in males compared to females. Additionally, the epigenetic CRP score had higher test-retest reliability compared to serum CRP, indicating its enhanced temporal stability. Higher serum CRP was not found to be associated with poorer cognitive ability (standardised β = - 0.08 and - 0.05); however, a consistent negative association was identified between cognitive ability and the epigenetic CRP score in both cohorts (standardised β = - 0.15 and - 0.08). CONCLUSIONS An epigenetic proxy of CRP may provide a more reliable signature of chronic inflammation, allowing for more accurate stratification of individuals, and thus clearer inference of associations with incident health outcomes.
Collapse
Affiliation(s)
- Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.,UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mairead L Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Allan F McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Barry W McColl
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.,Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Ian J Deary
- Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK.,Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK. .,Lothian Birth Cohorts, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
12
|
Fan J, Cai Q, Zhang D, Weinstock J, Qu X, Jiang S. PHOSPHO1 Gene DNA Methylations are Associated with a Change in HDL-C Response to Simvastatin Treatment. Curr Pharm Des 2020; 26:4944-4952. [PMID: 32693758 DOI: 10.2174/1381612826666200720234604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/24/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Our aim was to detect the effects of DNA methylations in the phosphoethanolamine/ phosphocholine phosphatase (PHOSPHO1) gene on the therapeutic efficacy of simvastatin. METHODS We used an extreme sampling approach by selecting 211 individuals from approximately the top and bottom 15% of adjusted lipid-lowering response residuals to simvastatin (n=104 for the high response group and n=107 for the low response group) from a total of 734 subjects with hyperlipidemia. They received a daily oral dose of 20 mg simvastatin for eight consecutive weeks. DNA methylation loci at the PHOSPHO1 gene were measured using high-throughput next-generation sequencing-based sequencing technology. Fasting serum lipids were measured at baseline and after eight weeks of simvastatin treatment. RESULTS Mean PHOSPHO1 DNA methylation had a significant negative correlation with high-density lipoprotein cholesterol (HDL-C) variation (β=-0.014, P=0.045) in the high response group. After stratifying by body mass index (BMI), the associations between the PHOSPHO1 DNA methylations and the change in HDL-C in response to simvastatin were more significant in obese subjects with a BMI of 25 kg/m2 or higher (β=-0.027, P=0.002). Mean PHOSPHO1 methylation and traditional predictors could explain up to 24.7% (adjusted R2) of the change in HDL-C response in obese patients. There was a statistically significant additive interaction term (P=0.028) between BMI and mean PHOSPHO1 methylation in the model of the change in HDL-C in response to simvastatin. CONCLUSION Our findings suggest that PHOSPHO1 DNA methylations are associated with a change in HDL-C in response to simvastatin treatment, and this association is especially dependent on the extent of patient obesity.
Collapse
Affiliation(s)
- Juanlin Fan
- School of Life Sciences, Anhui University, Hefei, China
| | - Qianru Cai
- School of Life Sciences, Anhui University, Hefei, China
| | - Di Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Justin Weinstock
- Department of Statistics, University of Virginia, Charlottesville, VA, United States
| | - Xiaoxiao Qu
- Center for Genetics & Genomics Analysis, Genesky Biotechnologies Inc., Shanghai, China
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
13
|
Fan Y, Vilgalys TP, Sun S, Peng Q, Tung J, Zhou X. IMAGE: high-powered detection of genetic effects on DNA methylation using integrated methylation QTL mapping and allele-specific analysis. Genome Biol 2019; 20:220. [PMID: 31651351 PMCID: PMC6813132 DOI: 10.1186/s13059-019-1813-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Identifying genetic variants that are associated with methylation variation-an analysis commonly referred to as methylation quantitative trait locus (mQTL) mapping-is important for understanding the epigenetic mechanisms underlying genotype-trait associations. Here, we develop a statistical method, IMAGE, for mQTL mapping in sequencing-based methylation studies. IMAGE properly accounts for the count nature of bisulfite sequencing data and incorporates allele-specific methylation patterns from heterozygous individuals to enable more powerful mQTL discovery. We compare IMAGE with existing approaches through extensive simulation. We also apply IMAGE to analyze two bisulfite sequencing studies, in which IMAGE identifies more mQTL than existing approaches.
Collapse
Affiliation(s)
- Yue Fan
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tauras P Vilgalys
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
| | - Shiquan Sun
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Qinke Peng
- Systems Engineering Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, People's Republic of China
| | - Jenny Tung
- Departments of Evolutionary Anthropology and Biology, Duke University, Durham, NC, 27708, USA
- Duke University Population Research Institute, Duke University, Durham, NC, 27708, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Lima RPA, Ribeiro MR, de Farias Lima KQ, Sena EAD, de Oliveira Costa D, Luna RCP, do Nascimento RAF, da Conceição Rodrigues Gonçalves M, de Toledo Vianna RP, de Moraes RM, de Oliveira NFP, de Almeida ATC, de Carvalho Costa MJ. Methylation profile of the ADRB3 gene and its association with lipid profile and nutritional status in adults. Biol Res 2019; 52:21. [PMID: 30954083 PMCID: PMC6451774 DOI: 10.1186/s40659-019-0226-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/29/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Defects in DNA methylation have been shown to be associated with metabolic diseases such as obesity, dyslipidemia, and hypercholesterolemia. To analyze the methylation profile of the ADRB3 gene and correlate it with lipid profile, lipid intake, and oxidative stress based on malondialdehyde (MDA) and total antioxidant capacity (TAC), homocysteine and folic acid levels, nutritional status, lifestyle, and socioeconomic variables in an adult population. A cross-sectional epidemiological study representative of the East and West regions of the municipality of João Pessoa, Paraíba state, Brazil, enrolled 265 adults of both genders. Demographic, lifestyle, and socioeconomic questionnaires and a 24-h recall questionnaire were applied by trained interviewers' home. Nutritional and biochemical evaluation (DNA methylation, lipid profile, MDA, TAC, homocysteine and folic acid levels) was performed. RESULTS DNA hypermethylation of the ADRB3 gene, analyzed in leukocytes, was present in 50% of subjects and was associated with a higher risk of being overweight (OR 3.28; p = 0.008) or obese (OR 3.06; p = 0.017), a higher waist-hip ratio in males (OR 1.17; p = 0.000), greater intake of trans fats (OR 1.94; p = 0.032), higher LDL (OR 2.64; p = 0.003) and triglycerides (OR 1.81; p = 0.031), and higher folic acid levels (OR 1.85; p = 0.022). CONCLUSIONS These results suggest that epigenetic changes in the ADRB3 gene locus may explain the development of obesity and non-communicable diseases associated with trans-fat intake, altered lipid profile, and elevated folic acid. Because of its persistence, DNA methylation may have an impact in adults, in association with the development of non-communicable diseases. This study is the first population-based study of the ADRB3 gene, and the data further support evaluation of ADRB3 DNA methylation as an effective biomarker.
Collapse
Affiliation(s)
- Raquel Patrícia Ataíde Lima
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil.
| | - Marina Ramalho Ribeiro
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Keylha Querino de Farias Lima
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Elisama Araújo de Sena
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Diego de Oliveira Costa
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | - Rafaella Cristhine Pordeus Luna
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | | | | | | | - Ronei Marcos de Moraes
- Graduate Program in Nutrition Sciences, Health Sciences Center (Centro de Ciências da Saúde, CCS), Federal University of Paraíba (UFPB), João Pessoa, Brazil
| | | | | | | |
Collapse
|
15
|
Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019; 14:421-444. [PMID: 30915894 DOI: 10.1080/15592294.2019.1595297] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The fact that not all individuals exposed to the same environmental risk factors develop obesity supports the hypothesis of the existence of underlying genetic and epigenetic elements. There is suggestive evidence that environmental stimuli, such as dietary pattern, particularly during pregnancy and early life, but also in adult life, can induce changes in DNA methylation predisposing to obesity and related comorbidities. In this context, the DNA methylation marks of each individual have emerged not only as a promising tool for the prediction, screening, diagnosis, and prognosis of obesity and metabolic syndrome features, but also for the improvement of weight loss therapies in the context of precision nutrition. The main objectives in this field are to understand the mechanisms involved in transgenerational epigenetic inheritance, and featuring the nutritional and lifestyle factors implicated in the epigenetic modifications. Likewise, DNA methylation modulation caused by diet and environment may be a target for newer therapeutic strategies concerning the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Mirian Samblas
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain
| | - Fermín I Milagro
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain
| | - Alfredo Martínez
- a Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research , University of Navarra , Pamplona , Spain.,b CIBERobn, CIBER Fisiopatología de la Obesidad y Nutrición , Instituto de Salud Carlos III. Madrid , Spain.,c IdiSNA, Instituto de Investigación Sanitaria de Navarra (IdiSNA) , Pamplona , Spain.,d IMDEA, Research Institute on Food & Health Sciences , Madrid , Spain
| |
Collapse
|
16
|
Banerjee S, Ponde CK, Rajani RM, Ashavaid TF. Differential methylation pattern in patients with coronary artery disease: pilot study. Mol Biol Rep 2019; 46:541-550. [PMID: 30470965 DOI: 10.1007/s11033-018-4507-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022]
Abstract
Epidemiological studies have revealed that coronary artery disease (CAD) is highly heritable. However, genetic studies have not been able to fully elucidate its etiology. Accumulating evidences suggest that epigenetic alterations like DNA methylation may provide an alternative and additional explanation of its pathophysiology. DNA methylation regulates hypomethylation and hypermethylation of various genes which are involved in the development of CAD. Our aim was to identify differentially methylated regions (DMRs) in genome of CAD patients by using the microarray chip having a coverage of > 4,50,000 CpG sites (Illumina's Infinium HumanMethylation450 BeadChip). In this pilot study, an epigenome-wide analysis of DNA methylation from whole blood was performed in six angiographically positive male cases, who were age and gender matched with six angiographically negative controls. All subjects were non-smokers, non-diabetic, non-alcoholic, with no previous history of cardiac ailment. Illumina's GenomeStudio (v 2011.1) software was used to identify DMRs and pathway analysis, gene ontology was carried out using DAVID (Database for Annotation, Visualisation and Integrated Discovery). 429 DMRs were found to be significant of which 222 were hypomethylated and 207 were hypermethylated. Antigen processing and presentation was identified to be the most significant biological function with a statistical significance of p = 4.35 × 10- 5. HLA-DRB1, HLA-DQA1, HLA-DQB1 along with non-classical HLA molecules HLA-G, HLA-C are responsible for triggering the inflammatory pathway which have been identified in our study. To the best of our knowledge, this is the first study to identify a panel of DMRs using a high coverage microarray chip in India.
Collapse
Affiliation(s)
- Shyamashree Banerjee
- Research Laboratories, P. D. Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Chandrashekhar K Ponde
- Department of Cardiology, P. D. Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Rajesh M Rajani
- Department of Cardiology, P. D. Hinduja Hospital & Medical Research Centre, Mumbai, India
| | - Tester F Ashavaid
- Research Laboratories, P. D. Hinduja Hospital & Medical Research Centre, Mumbai, India.
- Department of Biochemistry, P. D. Hinduja Hospital & Medical Research Centre, Mumbai, India.
| |
Collapse
|
17
|
McCartney DL, Hillary RF, Stevenson AJ, Ritchie SJ, Walker RM, Zhang Q, Morris SW, Bermingham ML, Campbell A, Murray AD, Whalley HC, Gale CR, Porteous DJ, Haley CS, McRae AF, Wray NR, Visscher PM, McIntosh AM, Evans KL, Deary IJ, Marioni RE. Epigenetic prediction of complex traits and death. Genome Biol 2018; 19:136. [PMID: 30257690 PMCID: PMC6158884 DOI: 10.1186/s13059-018-1514-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide DNA methylation (DNAm) profiling has allowed for the development of molecular predictors for a multitude of traits and diseases. Such predictors may be more accurate than the self-reported phenotypes and could have clinical applications. RESULTS Here, penalized regression models are used to develop DNAm predictors for ten modifiable health and lifestyle factors in a cohort of 5087 individuals. Using an independent test cohort comprising 895 individuals, the proportion of phenotypic variance explained in each trait is examined for DNAm-based and genetic predictors. Receiver operator characteristic curves are generated to investigate the predictive performance of DNAm-based predictors, using dichotomized phenotypes. The relationship between DNAm scores and all-cause mortality (n = 212 events) is assessed via Cox proportional hazards models. DNAm predictors for smoking, alcohol, education, and waist-to-hip ratio are shown to predict mortality in multivariate models. The predictors show moderate discrimination of obesity, alcohol consumption, and HDL cholesterol. There is excellent discrimination of current smoking status, poorer discrimination of college-educated individuals and those with high total cholesterol, LDL with remnant cholesterol, and total:HDL cholesterol ratios. CONCLUSIONS DNAm predictors correlate with lifestyle factors that are associated with health and mortality. They may supplement DNAm-based predictors of age to identify the lifestyle profiles of individuals and predict disease risk.
Collapse
Affiliation(s)
- Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Anna J. Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Stuart J. Ritchie
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Rosie M. Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Qian Zhang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD Australia
| | - Stewart W. Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Mairead L. Bermingham
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Alison D. Murray
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD UK
| | - Heather C. Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Catharine R. Gale
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - David J. Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Chris S. Haley
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Allan F. McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD Australia
| | - Naomi R. Wray
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD Australia
| | - Peter M. Visscher
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD Australia
| | - Andrew M. McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF UK
| | - Kathryn L. Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ UK
| |
Collapse
|
18
|
Abstract
Even though the importance of epigenetics was first recognized in light of its role in tissue development, an increasing amount of evidence has shown that it also plays an important role in the development and progression of many common diseases. We discuss some recent findings on one representative epigenetic modification, DNA methylation, in some common diseases. While many new risk factors have been identified through the population-based epigenetic epidemiologic studies on the role of epigenetics in common diseases, this relatively new field still faces many unique challenges. Here, we describe those promises and unique challenges of epigenetic epidemiological studies and propose some potential solutions.
Collapse
Affiliation(s)
| | - Yun Liu
- The Ministry of Education Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Musunuru K, Ingelsson E, Fornage M, Liu P, Murphy AM, Newby LK, Newton-Cheh C, Perez MV, Voora D, Woo D. The Expressed Genome in Cardiovascular Diseases and Stroke: Refinement, Diagnosis, and Prediction: A Scientific Statement From the American Heart Association. ACTA ACUST UNITED AC 2018; 10:HCG.0000000000000037. [PMID: 28760750 DOI: 10.1161/hcg.0000000000000037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There have been major advances in our knowledge of the contribution of DNA sequence variations to cardiovascular disease and stroke. However, the inner workings of the body reflect the complex interplay of factors beyond the DNA sequence, including epigenetic modifications, RNA transcripts, proteins, and metabolites, which together can be considered the "expressed genome." The emergence of high-throughput technologies, including epigenomics, transcriptomics, proteomics, and metabolomics, is now making it possible to address the contributions of the expressed genome to cardiovascular disorders. This statement describes how the expressed genome can currently and, in the future, potentially be used to diagnose diseases and to predict who will develop diseases such as coronary artery disease, stroke, heart failure, and arrhythmias.
Collapse
|
20
|
Braun KVE, Dhana K, de Vries PS, Voortman T, van Meurs JBJ, Uitterlinden AG, Hofman A, Hu FB, Franco OH, Dehghan A. Epigenome-wide association study (EWAS) on lipids: the Rotterdam Study. Clin Epigenetics 2017; 9:15. [PMID: 28194238 PMCID: PMC5297218 DOI: 10.1186/s13148-016-0304-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND DNA methylation is a key epigenetic mechanism that is suggested to be associated with blood lipid levels. We aimed to identify CpG sites at which DNA methylation levels are associated with blood levels of triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and total cholesterol in 725 participants of the Rotterdam Study, a population-based cohort study. Subsequently, we sought replication in a non-overlapping set of 760 participants. RESULTS Genome-wide methylation levels were measured in whole blood using the Illumina Methylation 450 array. Associations between lipid levels and DNA methylation beta values were examined using linear mixed-effect models. All models were adjusted for sex, age, smoking, white blood cell proportions, array number, and position on array. A Bonferroni-corrected p value lower than 1.08 × 10-7 was considered statistically significant. Five CpG sites annotated to genes including DHCR24, CPT1A, ABCG1, and SREBF1 were identified and replicated. Four CpG sites were associated with triglycerides, including CpG sites annotated to CPT1A (cg00574958 and cg17058475), ABCG1 (cg06500161), and SREBF1 (cg11024682). Two CpG sites were associated with HDL-C, including ABCG1 (cg06500161) and DHCR24 (cg17901584). No significant associations were observed with LDL-C or total cholesterol. CONCLUSIONS We report an association of HDL-C levels with methylation of a CpG site near DHCR24, a protein-coding gene involved in cholesterol biosynthesis, which has previously been reported to be associated with other metabolic traits. Furthermore, we confirmed previously reported associations of methylation of CpG sites within CPT1A, ABCG1, and SREBF1 and lipids. These results provide insight in the mechanisms that are involved in lipid metabolism.
Collapse
Affiliation(s)
- Kim V E Braun
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Paul S de Vries
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands.,Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands
| | - Andre G Uitterlinden
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,The Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging (NGI-NCHA), Leiden/Rotterdam, The Netherlands
| | | | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA USA.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center, Dr. Molewaterplein 50, Office NA2906, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
21
|
Sayols-Baixeras S, Subirana I, Lluis-Ganella C, Civeira F, Roquer J, Do AN, Absher D, Cenarro A, Muñoz D, Soriano-Tárraga C, Jiménez-Conde J, Ordovas JM, Senti M, Aslibekyan S, Marrugat J, Arnett DK, Elosua R. Identification and validation of seven new loci showing differential DNA methylation related to serum lipid profile: an epigenome-wide approach. The REGICOR study. Hum Mol Genet 2016; 25:4556-4565. [PMID: 28173150 PMCID: PMC6284258 DOI: 10.1093/hmg/ddw285] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/13/2016] [Accepted: 08/19/2016] [Indexed: 11/13/2022] Open
Abstract
Lipid traits (total, low-density and high-density lipoprotein cholesterol, and triglycerides) are risk factors for cardiovascular disease. DNA methylation is not only an inherited but also modifiable epigenetic mark that has been related to cardiovascular risk factors. Our aim was to identify loci showing differential DNA methylation related to serum lipid levels. Blood DNA methylation was assessed using the Illumina Human Methylation 450 BeadChip. A two-stage epigenome-wide association study was performed, with a discovery sample in the REGICOR study (n = 645) and validation in the Framingham Offspring Study (n = 2,542). Fourteen CpG sites located in nine genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1, CPT1A, MYLIP, TXNIP and SLC7A11) and 2 intergenic regions showed differential methylation in association with lipid traits. Six of these genes and 1 intergenic region were new discoveries showing differential methylation related to total cholesterol (SREBF2), HDL-cholesterol (PHOSPHO1, SYNGAP1 and an intergenic region in chromosome 2) and triglycerides (MYLIP, TXNIP and SLC7A11). These CpGs explained 0.7%, 9.5% and 18.9% of the variability of total cholesterol, HDL cholesterol and triglycerides in the Framingham Offspring Study, respectively. The expression of the genes SREBF2 and SREBF1 was inversely associated with methylation of their corresponding CpGs (P-value = 0.0042 and 0.0045, respectively) in participants of the GOLDN study (n = 98). In turn, SREBF1 expression was directly associated with HDL cholesterol (P-value = 0.0429). Genetic variants in SREBF1, PHOSPHO1, ABCG1 and CPT1A were also associated with lipid profile. Further research is warranted to functionally validate these new loci and assess the causality of new and established associations between these differentially methylated loci and lipid metabolism.
Collapse
Affiliation(s)
- S Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - I Subirana
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
- CIBER Epidemiology and Public Health, Barcelona, Catalonia, Spain
| | - C Lluis-Ganella
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| | - F Civeira
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis,
Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza,
Spain
| | - J Roquer
- Department of Neurology, Neurovascular Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona 08003, Catalonia, Spain
| | - AN Do
- Department of Epidemiology, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - D Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | - A Cenarro
- Unidad Clínica y de Investigación en Lípidos y Arteriosclerosis,
Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón, Zaragoza,
Spain
| | - D Muñoz
- Cardiovascular Risk and Nutrition Research Group, IMIM (Hospital del Mar
Medical Research Institute), Barcelona, Catalonia, Spain
| | - C Soriano-Tárraga
- Department of Neurology, Neurovascular Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona 08003, Catalonia, Spain
| | - J Jiménez-Conde
- Department of Neurology, Neurovascular Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona 08003, Catalonia, Spain
| | - J M Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts
University, Boston, MA, USA
| | - M Senti
- Department of Experimental and Health Sciences, Pompeu Fabra
University, Barcelona, Catalonia, Spain
| | - S Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham,
Birmingham, AL, USA
| | - J Marrugat
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| | - D K Arnett
- Dean's Office, College of Public Health, University of Kentucky,
Lexington, KY, USA
| | - R Elosua
- Cardiovascular Epidemiology and Genetics Research Group, IMIM (Hospital
del Mar Medical Research Institute), Barcelona, Catalonia, Spain
| |
Collapse
|
22
|
Braun KV, Voortman T, Dhana K, Troup J, Bramer WM, Troup J, Chowdhury R, Dehghan A, Muka T, Franco OH. The role of DNA methylation in dyslipidaemia: A systematic review. Prog Lipid Res 2016; 64:178-191. [DOI: 10.1016/j.plipres.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/21/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
|
23
|
Sayols-Baixeras S, Irvin MR, Arnett DK, Elosua R, Aslibekyan SW. Epigenetics of Lipid Phenotypes. CURRENT CARDIOVASCULAR RISK REPORTS 2016; 10:31. [PMID: 28496562 PMCID: PMC5421987 DOI: 10.1007/s12170-016-0513-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dyslipidemia is a well-established risk factor for cardiovascular disease, the main cause of death worldwide. Blood lipid profiles are patterned by both genetic and environmental factors. In recent years, epigenetics has emerged as a paradigm that unifies these influences. In this review, we have summarized the latest evidence implicating epigenetic mechanisms-DNA methylation, histone modification, and regulation by RNAs-in lipid homeostasis. Key findings have emerged in a number of novel epigenetic loci located in biologically plausible genes (e.g. CPT1A, ABCG1, SREBF1, and others), as well as microRNA-33a/b. Evidence from animal and cell culture models suggests a complex interplay between different classes of epigenetic processes in the lipid-related genomic regions. While epigenetic findings hold the potential to explain the interindividual variability in lipid profiles as well as the underlying mechanisms, they have yet to be translated into effective therapies for dyslipidemia.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain, (tel) 34-93-316-07-27, (fax) 34-93-316-04-10
| | - Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 220F, Birmingham, AL 35205, USA, (tel) 1-205-975-7672, (fax)1-205-975-3329
| | - Donna K Arnett
- College of Public Health, University of Kentucky, 111 Washington Avenue, Lexington, KY 40536, USA, (tel) 1-859-257-5678, (fax) 1-859-257-8811
| | - Roberto Elosua
- Cardiovascular Epidemiology and Genetics Group, Institut Hospital del Mar d'Investigacions Mediques (IMIM), Dr. Aiguader, 88, Barcelona 08003, Spain, (tel) 34-93-316-08-00, (fax) 34-93-316-04-10
| | - Stella W Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35205, USA, (tel) 1-205-975-7675, (fax) 1-205-975-3329
| |
Collapse
|
24
|
Tebani A, Afonso C, Marret S, Bekri S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int J Mol Sci 2016; 17:ijms17091555. [PMID: 27649151 PMCID: PMC5037827 DOI: 10.3390/ijms17091555] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022] Open
Abstract
The rise of technologies that simultaneously measure thousands of data points represents the heart of systems biology. These technologies have had a huge impact on the discovery of next-generation diagnostics, biomarkers, and drugs in the precision medicine era. Systems biology aims to achieve systemic exploration of complex interactions in biological systems. Driven by high-throughput omics technologies and the computational surge, it enables multi-scale and insightful overviews of cells, organisms, and populations. Precision medicine capitalizes on these conceptual and technological advancements and stands on two main pillars: data generation and data modeling. High-throughput omics technologies allow the retrieval of comprehensive and holistic biological information, whereas computational capabilities enable high-dimensional data modeling and, therefore, accessible and user-friendly visualization. Furthermore, bioinformatics has enabled comprehensive multi-omics and clinical data integration for insightful interpretation. Despite their promise, the translation of these technologies into clinically actionable tools has been slow. In this review, we present state-of-the-art multi-omics data analysis strategies in a clinical context. The challenges of omics-based biomarker translation are discussed. Perspectives regarding the use of multi-omics approaches for inborn errors of metabolism (IEM) are presented by introducing a new paradigm shift in addressing IEM investigations in the post-genomic era.
Collapse
Affiliation(s)
- Abdellah Tebani
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031 Rouen, France.
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Carlos Afonso
- Normandie University, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Stéphane Marret
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Rouen University Hospital, 76031 Rouen, France.
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Rouen University Hospital, 76031 Rouen, France.
- Normandie University, UNIROUEN, INSERM, CHU Rouen, Laboratoire NeoVasc ERI28, 76000 Rouen, France.
| |
Collapse
|
25
|
APOA5 genetic and epigenetic variability jointly regulate circulating triacylglycerol levels. Clin Sci (Lond) 2016; 130:2053-2059. [PMID: 27613158 DOI: 10.1042/cs20160433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/09/2016] [Indexed: 02/08/2023]
Abstract
Apolipoprotein A5 gene (APOA5) variability explains part of the individual's predisposition to hypertriacylglycerolaemia (HTG). Such predisposition has an inherited component (polymorphisms) and an acquired component regulated by the environment (epigenetic modifications). We hypothesize that the integrated analysis of both components will improve our capacity to estimate APOA5 contribution to HTG. We followed a recruit-by-genotype strategy to study a population composed of 44 individuals with high cardiovascular disease risk selected as being carriers of at least one APOA5 SNP (-1131T>C and/or, S19W and/or 724C>G) compared against 34 individuals wild-type (WT) for these SNPs. DNA methylation patterns of three APOA5 regions [promoter, exon 2 and CpG island (CGI) in exon 3] were evaluated using pyrosequencing technology. Carriers of APOA5 SNPs had an average of 57.5% higher circulating triacylglycerol (TG) levels (P=0.039). APOA5 promoter and exon 3 were hypermethylated whereas exon 2 was hypomethylated. Exon 3 methylation positively correlated with TG concentration (r=0.359, P=0.003) and with a lipoprotein profile associated with atherogenic dyslipidaemia. The highest TG concentrations were found in carriers of at least one SNP and with a methylation percentage in exon 3 ≥82% (P=0.009). In conclusion, CGI methylation in exon 3 of APOA5 acts, in combination with -1131T>C, S19W and 724C>G polymorphisms, in the individual's predisposition to high circulating TG levels. This serves as an example that combined analysis of SNPs and methylation applied to a larger set of genes would improve our understanding of predisposition to HTG.
Collapse
|
26
|
Guay SP, Légaré C, Brisson D, Mathieu P, Bossé Y, Gaudet D, Bouchard L. Epigenetic and genetic variations at the TNNT1 gene locus are associated with HDL-C levels and coronary artery disease. Epigenomics 2016; 8:359-71. [PMID: 26950807 DOI: 10.2217/epi.15.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM To assess whether epigenetic and genetic variations at the TNNT1 gene locus are associated with high-density lipoprotein cholesterol (HDL-C) and coronary artery disease (CAD). Patients, materials & methods: TNNT1 DNA methylation and c.-20G>A polymorphism were genotyped in subjects with and without familial hypercholesterolemia (FH). RESULTS Lower TNNT1 DNA methylation levels were independently associated with lower HDL-C levels and with the TNNT1 c.-20G>A polymorphism. In FH men, carriers of the TNNT1 c.-20G>A polymorphism had lower HDL-C levels and an increased risk of CAD compared with noncarriers. In non-FH men, a higher TNNT1 DNA methylation level was associated with CAD. CONCLUSION These results suggest that TNNT1 genetic and epigenetic variations are associated with HDL-C levels and CAD.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.,ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada
| | - Cécilia Légaré
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.,ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada
| | - Diane Brisson
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada.,Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick Mathieu
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 0A6, Canada
| | - Yohan Bossé
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC G1V 0A6, Canada.,Department of Molecular Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Daniel Gaudet
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada.,Department of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.,ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, QC G7H 5H6, Canada
| |
Collapse
|
27
|
Guay SP, Brisson D, Mathieu P, Bossé Y, Gaudet D, Bouchard L. A study in familial hypercholesterolemia suggests reduced methylomic plasticity in men with coronary artery disease. Epigenomics 2015; 7:17-34. [DOI: 10.2217/epi.14.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: To assess whether DNA methylation is associated with coronary artery disease (CAD). Materials & methods: An epigenome-wide analysis has been performed on leucocytes from familial hypercholesterolemic (FH) men with (n = 6) or without CAD (n = 6). The results were replicated in an extended sample of FH men (n = 61) and in non-FH men (n = 100) for two of the top differentially methylated loci. Results: FH men with CAD had significantly more hypomethylated and hypermethylated loci and showed less DNA methylation level variability compared with men without CAD (p < 0.001). Moreover, COL14A1 and MMP9 DNA methylation levels were associated with CAD, age of onset of CAD or CAD risk factors. Conclusion: These results suggest that epigenome-wide changes are associated with CAD occurrence in men.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, University-Affiliated Chicoutimi Hospital, 305 rue St-Vallier, Saguenay, Québec G7H 5H6, Canada
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, Québec, Canada
| | - Diane Brisson
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Patrick Mathieu
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Yohan Bossé
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
- Department of Molecular Medicine, Université Laval, Québec, Canada
| | - Daniel Gaudet
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, Québec, Canada
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Université de Sherbrooke, University-Affiliated Chicoutimi Hospital, 305 rue St-Vallier, Saguenay, Québec G7H 5H6, Canada
- ECOGENE-21 & Lipid Clinic, Chicoutimi Hospital, Saguenay, Québec, Canada
| |
Collapse
|
28
|
Pfeiffer L, Wahl S, Pilling LC, Reischl E, Sandling JK, Kunze S, Holdt LM, Kretschmer A, Schramm K, Adamski J, Klopp N, Illig T, Hedman ÅK, Roden M, Hernandez DG, Singleton AB, Thasler WE, Grallert H, Gieger C, Herder C, Teupser D, Meisinger C, Spector TD, Kronenberg F, Prokisch H, Melzer D, Peters A, Deloukas P, Ferrucci L, Waldenberger M. DNA methylation of lipid-related genes affects blood lipid levels. ACTA ACUST UNITED AC 2015; 8:334-42. [PMID: 25583993 DOI: 10.1161/circgenetics.114.000804] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 12/16/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction. METHODS AND RESULTS Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=-0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06-1.25). CONCLUSIONS Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases.
Collapse
|
29
|
Clinical applications of epigenetics in cardiovascular disease: the long road ahead. Transl Res 2015; 165:143-53. [PMID: 24768945 PMCID: PMC4190107 DOI: 10.1016/j.trsl.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Epigenetic processes, defined as heritable changes in gene expression that occur without changes to the DNA sequence, have emerged as a promising area of cardiovascular disease research. Epigenetic information transcends that of the genotype alone and provides for an integrated etiologic picture of cardiovascular disease pathogenesis because of the interaction of the epigenome with the environment. Epigenetic biomarkers, which include DNA methylation, histone modifications, and RNA-based mechanisms, are both modifiable and cell-type specific, which makes them not only responsive to the environment, but also an attractive target for drug development. However, the enthusiasm surrounding possible applications of cardiovascular epigenetics currently outpaces available evidence. In this review, the authors synthesize the evidence linking epigenetic changes with cardiovascular disease, emphasizing the gap between the translational potential and the clinical reality of cardiovascular epigenetics.
Collapse
|
30
|
Goni L, Milagro FI, Cuervo M, Martínez JA. Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight. Nutr Rev 2014; 72:673-90. [DOI: 10.1111/nure.12143] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leticia Goni
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
- Instituto de Salud Carlos III; CIBER Fisiología Obesidad y Nutrición (CIBERobn); Madrid Spain
| | - Marta Cuervo
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
- Instituto de Salud Carlos III; CIBER Fisiología Obesidad y Nutrición (CIBERobn); Madrid Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology; Centre for Nutrition Research; University of Navarra; Pamplona Spain
- Instituto de Salud Carlos III; CIBER Fisiología Obesidad y Nutrición (CIBERobn); Madrid Spain
| |
Collapse
|
31
|
Guay SP, Légaré C, Houde AA, Mathieu P, Bossé Y, Bouchard L. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men. Clin Epigenetics 2014; 6:14. [PMID: 25093045 PMCID: PMC4120725 DOI: 10.1186/1868-7083-6-14] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/17/2014] [Indexed: 11/30/2022] Open
Abstract
Background Previous studies have suggested that DNA methylation contributes to coronary artery disease (CAD) risk variability. DNA hypermethylation at the ATP-binding cassette transporter A1 (ABCA1) gene, an important modulator of high-density lipoprotein cholesterol and reverse cholesterol transport, has been previously associated with plasma lipid levels, aging and CAD, but the association with CAD has yet to be replicated. Results ABCA1 DNA methylation levels were measured in leucocytes of 88 men using bis-pyrosequencing. We first showed that DNA methylation at the ABCA1 gene promoter locus is associated with aging and CAD occurrence in men (P < 0.05). The latter association is stronger among older men with CAD (≥61 years old; n = 19), who showed at least 4.7% higher ABCA1 DNA methylation levels as compared to younger men with CAD (<61 years old; n = 19) or men without CAD (n = 50; P < 0.001). Higher ABCA1 DNA methylation levels in older men were also associated with higher total cholesterol (r = 0.34, P = 0.03), low-density lipoprotein cholesterol (r = 0.32, P = 0.04) and triglyceride levels (r = 0.26, P = 0.09). Furthermore, we showed that acetylsalicylic acid therapy is associated with 3.6% lower ABCA1 DNA methylation levels (P = 0.006), independent of aging and CAD status of patients. Conclusions This study provides new evidence that the ABCA1 epigenetic profile is associated with CAD and aging, and highlights that epigenetic modifications might be a significant molecular mechanism involved in the pathophysiological processes associated with CAD. Acetylsalicylic acid treatment for CAD prevention might involve epigenetic mechanisms.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry, Faculté de médecine et des sciences de la santé, de l'Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5 N4, Canada ; ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, 305 rue St-Vallier, Saguenay, Québec G7H5H6, Canada
| | - Cécilia Légaré
- Department of Biochemistry, Faculté de médecine et des sciences de la santé, de l'Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5 N4, Canada ; ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, 305 rue St-Vallier, Saguenay, Québec G7H5H6, Canada
| | - Andrée-Anne Houde
- Department of Biochemistry, Faculté de médecine et des sciences de la santé, de l'Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5 N4, Canada ; ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, 305 rue St-Vallier, Saguenay, Québec G7H5H6, Canada
| | - Patrick Mathieu
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, 2725 chemin Ste-Foy, Québec, Québec G1V 4G5, Canada
| | - Yohan Bossé
- Centre de Recherche Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, 2725 chemin Ste-Foy, Québec, Québec G1V 4G5, Canada ; Department of Molecular Medicine, Université Laval, 2325 rue de l'Université, Québec, Québec G1V 0A6, Canada
| | - Luigi Bouchard
- Department of Biochemistry, Faculté de médecine et des sciences de la santé, de l'Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5 N4, Canada ; ECOGENE-21 and Lipid Clinic, Chicoutimi Hospital, 305 rue St-Vallier, Saguenay, Québec G7H5H6, Canada
| |
Collapse
|
32
|
Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, Liang L, Chen BH, Yao C, Tiwari HK, Ordovas JM, Levy D, Absher D, Arnett DK. Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study. Circulation 2014; 130:565-72. [PMID: 24920721 DOI: 10.1161/circulationaha.114.009158] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genetic research regarding blood lipids has largely focused on DNA sequence variation; few studies have explored epigenetic effects. Genome-wide surveys of DNA methylation may uncover epigenetic factors influencing lipid metabolism. METHODS AND RESULTS To identify whether differential methylation of cytosine-(phosphate)-guanine dinucleotides (CpGs) correlated with lipid phenotypes, we isolated DNA from CD4+ T cells and quantified the proportion of sample methylation at >450 000 CpGs by using the Illumina Infinium HumanMethylation450 Beadchip in 991 participants of the Genetics of Lipid Lowering Drugs and Diet Network. We modeled the percentage of methylation at individual CpGs as a function of fasting very-low-density lipoprotein cholesterol and triglycerides (TGs) by using mixed linear regression adjusted for age, sex, study site, cell purity, and family structure. Four CpGs (cg00574958, cg17058475, cg01082498, and cg09737197) in intron 1 of carnitine palmitoyltransferase 1A (CPT1A) were strongly associated with very-low low-density lipoprotein cholesterol (P=1.8×10(-21) to 1.6×10(-8)) and TG (P=1.6×10(-26) to 1.5×10(-9)). Array findings were validated by bisulfite sequencing. We performed quantitative polymerase chain reaction experiments demonstrating that methylation of the top CpG (cg00574958) was correlated with CPT1A expression. The association of cg00574958 with TG and CPT1A expression were replicated in the Framingham Heart Study (P=4.1×10(-14) and 3.1×10(-13), respectively). DNA methylation at CPT1A cg00574958 explained 11.6% and 5.5% of the variation in TG in the discovery and replication cohorts, respectively. CONCLUSIONS This genome-wide epigenomic study identified CPT1A methylation as strongly and robustly associated with fasting very-low low-density lipoprotein cholesterol and TG. Identifying novel epigenetic contributions to lipid traits may inform future efforts to identify new treatment targets and biomarkers of disease risk.
Collapse
Affiliation(s)
- Marguerite R Irvin
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.).
| | - Degui Zhi
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Roby Joehanes
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Michael Mendelson
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Stella Aslibekyan
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Steven A Claas
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Krista S Thibeault
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Nikita Patel
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Kenneth Day
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Lindsay Waite Jones
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Liming Liang
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Brian H Chen
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Chen Yao
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Hemant K Tiwari
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Jose M Ordovas
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Daniel Levy
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Devin Absher
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| | - Donna K Arnett
- From the Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL (M.R.I., S.A., S.A.C., D.K.A.); Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL (D.Z., H.K.T.); Population Sciences Branch National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Framingham Heart Study, Framingham, MA (R.J., M.M., L.L., B.H.C., C.Y., D.L.); Department of Cardiology, Boston Children's Hospital, Boston, MA (M.M.); Hudson Alpha Institute for Biotechnology, Huntsville, AL (K.S.T, N.P., K.D., L.W.J., D.A.); Departments of Epidemiology and Biostatistics, School of Public Health, Harvard University, Boston, MA (L.L.); and Nutrition and Genomics Laboratory, Jean Mayer-USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA (J.M.O.)
| |
Collapse
|
33
|
Azpiazu R, Amaral A, Castillo J, Estanyol JM, Guimerà M, Ballescà JL, Balasch J, Oliva R. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction. Hum Reprod 2014; 29:1225-37. [PMID: 24781426 DOI: 10.1093/humrep/deu073] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
STUDY QUESTION Are there quantitative alterations in the proteome of normozoospermic sperm samples that are able to complete IVF but whose female partner does not achieve pregnancy? SUMMARY ANSWER Normozoospermic sperm samples with different IVF outcomes (pregnancy versus no pregnancy) differed in the levels of at least 66 proteins. WHAT IS KNOWN ALREADY The analysis of the proteome of sperm samples with distinct fertilization capacity using low-throughput proteomic techniques resulted in the detection of a few differential proteins. Current high-throughput mass spectrometry approaches allow the identification and quantification of a substantially higher number of proteins. STUDY DESIGN, SIZE, DURATION This was a case-control study including 31 men with normozoospermic sperm and their partners who underwent IVF with successful fertilization recruited between 2007 and 2008. PARTICIPANTS/MATERIALS, SETTING, METHODS Normozoospermic sperm samples from 15 men whose female partners did not achieve pregnancy after IVF (no pregnancy) and 16 men from couples that did achieve pregnancy after IVF (pregnancy) were included in this study. To perform the differential proteomic experiments, 10 no pregnancy samples and 10 pregnancy samples were separately pooled and subsequently used for tandem mass tags (TMT) protein labelling, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) identification and peak intensity relative protein quantification. Bioinformatic analyses were performed using UniProt Knowledgebase, DAVID and Reactome. Individual samples (n = 5 no pregnancy samples; n = 6 pregnancy samples) and aliquots from the above TMT pools were used for western blotting. MAIN RESULTS AND THE ROLE OF CHANCE By using TMT labelling and LC-MS/MS, we have detected 31 proteins present at lower abundance (ratio no pregnancy/pregnancy < 0.67) and 35 at higher abundance (ratio no pregnancy/pregnancy > 1.5) in the no pregnancy group. Bioinformatic analyses showed that the proteins with differing abundance are involved in chromatin assembly and lipoprotein metabolism (P values < 0.05). In addition, the differential abundance of one of the proteins (SRSF protein kinase 1) was further validated by western blotting using independent samples (P value < 0.01). LIMITATIONS, REASONS FOR CAUTION For individual samples the amount of recovered sperm not used for IVF was low and in most of the cases insufficient for MS analysis, therefore pools of samples had to be used to this end. WIDER IMPLICATIONS OF THE FINDINGS Alterations in the proteins involved in chromatin assembly and metabolism may result in epigenetic errors during spermatogenesis, leading to inaccurate sperm epigenetic signatures, which could ultimately prevent embryonic development. These sperm proteins may thus possibly have clinical relevance. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Spanish Ministry of Economy and Competitiveness (Ministerio de Economia y Competividad; FEDER BFU 2009-07118 and PI13/00699) and Fundación Salud 2000 SERONO13-015. There are no competing interests to declare.
Collapse
Affiliation(s)
- Rubén Azpiazu
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143, Barcelona 08036, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Epigenetic mechanisms of transcriptional regulation in atherosclerosis have gained an increasing interest in recent years. We focus on the relevance of DNA methylation, a well characterized epigenetic modification of the genome, as a biomarker and underlying mechanism of atherosclerosis. RECENT FINDINGS A growing number of loci have been identified, which are good candidate biomarkers for atherosclerosis and provide novel insights into the molecular changes taking place in the diseased vessel. Understanding the global change in DNA methylation during atherosclerosis remains a challenge. Novel unfolding research avenues include the interplay between genetic variants and DNA methylation patterns, and the role of long noncoding RNAs as epigenetic regulators. SUMMARY Epigenetics continues to represent a promising area of research in atherosclerosis. The full exploitation of cutting edge epigenomics will be decisive to define whether epigenetics will contribute to lower the burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, Campus León, University of Guanajuato, León, Mexico
| |
Collapse
|
35
|
Guay SP, Brisson D, Lamarche B, Gaudet D, Bouchard L. Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia. Epigenetics 2014; 9:718-29. [PMID: 24504152 DOI: 10.4161/epi.27981] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene polymorphisms associated so far with plasma lipid concentrations explain only a fraction of their heritability, which can reach up to 60%. Recent studies suggest that epigenetic modifications (DNA methylation) could contribute to explain part of this missing heritability. We therefore assessed whether the DNA methylation of key lipoprotein metabolism genes is associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride levels in patients with familial hypercholesterolemia (FH). Untreated FH patients (61 men and 37 women) were recruited for the measurement of blood DNA methylation levels at the ABCG1, LIPC, PLTP and SCARB1 gene loci using bisulfite pyrosequencing. ABCG1, LIPC and PLTP DNA methylation was significantly associated with HDL-C, LDL-C and triglyceride levels in a sex-specific manner (all P<0.05). FH subjects with previous history of coronary artery disease (CAD) had higher LIPC DNA methylation levels compared with FH subjects without CAD (P = 0.02). Sex-specific multivariable linear regression models showed that new and previously reported epipolymorphisms (ABCG1-CpGC3, LIPC-CpGA2, mean PLTP-CpGC, LPL-CpGA3, CETP-CpGA2, and CETP-CpGB2) significantly contribute to variations in plasma lipid levels (all P<0.001 in men and P<0.02 in women), independently of traditional predictors such as age, waist circumference, blood pressure, fasting plasma lipids and glucose levels. These results suggest that epigenetic perturbations of key lipoprotein metabolism genes are associated with plasma lipid levels, contribute to the interindividual variability and might partially explain the missing heritability of plasma lipid levels, at least in FH.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada; ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| | - Diane Brisson
- ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada; Department of Medicine; Université de Montréal; Montréal, QC Canada
| | - Benoit Lamarche
- Institute of Nutrition and Functional Foods; Université Laval; Québec, QC Canada
| | - Daniel Gaudet
- ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada; Department of Medicine; Université de Montréal; Montréal, QC Canada
| | - Luigi Bouchard
- Department of Biochemistry; Université de Sherbrooke; Sherbrooke, QC Canada; ECOGENE-21 and Lipid Clinic; Chicoutimi Hospital; Saguenay, QC Canada
| |
Collapse
|
36
|
|
37
|
Zaina S, Lund G. Atherosclerosis: cell biology and lipoproteins--panoramic views of DNA methylation landscapes of atherosclerosis. Curr Opin Lipidol 2013; 24:369-70. [PMID: 23839336 DOI: 10.1097/mol.0b013e3283638c47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Guay SP, Brisson D, Lamarche B, Marceau P, Vohl MC, Gaudet D, Bouchard L. DNA methylation variations at CETP and LPL gene promoter loci: new molecular biomarkers associated with blood lipid profile variability. Atherosclerosis 2013; 228:413-20. [PMID: 23623643 DOI: 10.1016/j.atherosclerosis.2013.03.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/16/2013] [Accepted: 03/09/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent findings suggest that DNA methylation, a well-known epigenetic mechanism, is involved in high-density lipoprotein cholesterol (HDL-C) metabolism and increased cardiovascular disease risk. The aim of this study was thus to assess whether DNA methylation within key genes of lipoprotein metabolism is associated with blood lipid profile variability. METHODS AND RESULTS Ninety-eight untreated familial hypercholesterolaemia patients (61 men and 37 women) were recruited for leucocyte DNA methylation analyses at the LDLR, CETP, LCAT and LPL gene promoter loci using bisulfite pyrosequencing. LPL DNA methylation was correlated with HDL-C (r = 0.22; p = 0.031) and HDL particle size (r = 0.47, p = 0.013). In both sex, CETP DNA methylation was negatively associated with low-density lipoprotein cholesterol levels (r < -0.32; p < 0.05). In men, CETP DNA methylation was associated with HDL-C (r = -0.36; p = 0.006), HDL-triglyceride levels (r = 0.59; p < 0.001) and HDL particle size (r = -0.44, p = 0.019). In visceral adipose tissue from 30 men with severe obesity, the associations between LPL DNA methylation, HDL-C (r = -0.40; p = 0.03) and LPL mRNA levels (r = -0.61, p < 0.001) were confirmed. CONCLUSION CETP and LPL DNA methylation levels are associated with blood lipid profile, suggesting that further studies of epipolymorphisms should most certainly contribute to a better understanding of the molecular bases of dyslipidemia.
Collapse
Affiliation(s)
- S P Guay
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | | | | | | | |
Collapse
|