1
|
Baker EC, San AE, Cilkiz KZ, Littlejohn BP, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Welsh TH, Riley DG. Inter-Individual Variation in DNA Methylation Patterns across Two Tissues and Leukocytes in Mature Brahman Cattle. BIOLOGY 2023; 12:biology12020252. [PMID: 36829529 PMCID: PMC9953534 DOI: 10.3390/biology12020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Quantifying the natural inter-individual variation in DNA methylation patterns is important for identifying its contribution to phenotypic variation, but also for understanding how the environment affects variability, and for incorporation into statistical analyses. The inter-individual variation in DNA methylation patterns in female cattle and the effect that a prenatal stressor has on such variability have yet to be quantified. Thus, the objective of this study was to utilize methylation data from mature Brahman females to quantify the inter-individual variation in DNA methylation. Pregnant Brahman cows were transported for 2 h durations at days 60 ± 5; 80 ± 5; 100 ± 5; 120 ± 5; and 140 ± 5 of gestation. A non-transport group was maintained as a control. Leukocytes, amygdala, and anterior pituitary glands were harvested from eight cows born from the non-transport group (Control) and six from the transport group (PNS) at 5 years of age. The DNA harvested from the anterior pituitary contained the greatest variability in DNA methylation of cytosine-phosphate-guanine (mCpG) sites from both the PNS and Control groups, and the amygdala had the least. Numerous variable mCpG sites were associated with retrotransposable elements and highly repetitive regions of the genome. Some of the genomic features that had high variation in DNA methylation are involved in immune responses, signaling, responses to stimuli, and metabolic processes. The small overlap of highly variable CpG sites and features between tissues and leukocytes supports the role of variable DNA methylation in regulating tissue-specific gene expression. Many of the CpG sites that exhibited high variability in DNA methylation were common between the PNS and Control groups within a tissue, but there was little overlap in genomic features with high variability. The interaction between the prenatal environment and the genome could be responsible for the differences in location of the variable DNA methylation.
Collapse
Affiliation(s)
- Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Audrey E. San
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Brittni P. Littlejohn
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Texas A&M AgriLife Research, College Station, TX 77845, USA
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
- Correspondence:
| |
Collapse
|
2
|
Li XJ, Liu LQ, Dong H, Yang JJ, Wang WW, Zhang Q, Wang CL, Zhou J, Chen HQ. Comparative genome-wide methylation analysis of longissimus dorsi muscles in Yorkshire and Wannanhua pigs. Anim Genet 2020; 52:78-89. [PMID: 33301219 DOI: 10.1111/age.13029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
Abstract
DNA methylation was one of the earliest discovered epigenetic modifications in vertebrates, and is an important epigenetic mechanism involved in the expression of genes in many biological processes, including muscle growth and development. Its effects on economically important traits are evidenced in reported differences in meat quality traits between Chinese indigenous pig breeds (Wannanhua pig) and Western commercial pig breeds (Yorkshire pig), and this presents a unique model for analyzing the effects of DNA methylation on these traits. In the present study, a whole genome DNA methylation analysis was performed on the two breeds using methylated DNA immunoprecipitation. GO functional enrichment and pathway enrichment analyses identified differentially methylated genes primarily associated with fatty acid metabolism, biological processes of muscle development and signaling pathways related to muscle development and pork quality. Differentially methylated genes were verified by sodium pyrosequencing, and the results were consistent with the sequencing results. The results of the integrative analysis between DNA methylation and gene expression revealed that the DNA methylation levels showed a significantly negative correlation with gene expression levels around the transcription start site of genes. In total, 41 genes were both differentially expressed and methylated; these genes were related to fat metabolism, lipid metabolism and skeletal muscle development. This study could help further explore the molecular mechanisms and phenotypic differences in pig growth and development among different breeds.
Collapse
Affiliation(s)
- X-J Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - L-Q Liu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - H Dong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - J-J Yang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - W-W Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Q Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - C-L Wang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - J Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - H-Q Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
3
|
Cerna M. Epigenetic Regulation in Etiology of Type 1 Diabetes Mellitus. Int J Mol Sci 2019; 21:ijms21010036. [PMID: 31861649 PMCID: PMC6981658 DOI: 10.3390/ijms21010036] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is caused by an autoimmune destruction of the pancreatic β-cells, a process in which autoreactive T cells play a pivotal role, and it is characterized by islet autoantibodies. Consequent hyperglycemia is requiring lifelong insulin replacement therapy. T1DM is caused by the interaction of multiple environmental and genetic factors. The integrations of environments and genes occur via epigenetic regulations of the genome, which allow adaptation of organism to changing life conditions by alternation of gene expression. T1DM has increased several-fold over the past half century. Such a short time indicates involvement of environment factors and excludes genetic changes. This review summarizes the most current knowledge of epigenetic changes in that process leading to autoimmune diabetes mellitus.
Collapse
Affiliation(s)
- Marie Cerna
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague 10, Czech Republic
| |
Collapse
|
4
|
iMETHYL: an integrative database of human DNA methylation, gene expression, and genomic variation. Hum Genome Var 2018; 5:18008. [PMID: 29619235 PMCID: PMC5874393 DOI: 10.1038/hgv.2018.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 12/25/2022] Open
Abstract
We launched an integrative multi-omics database, iMETHYL (http://imethyl.iwate-megabank.org). iMETHYL provides whole-DNA methylation (~24 million autosomal CpG sites), whole-genome (~9 million single-nucleotide variants), and whole-transcriptome (>14 000 genes) data for CD4+ T-lymphocytes, monocytes, and neutrophils collected from approximately 100 subjects. These data were obtained from whole-genome bisulfite sequencing, whole-genome sequencing, and whole-transcriptome sequencing, making iMETHYL a comprehensive database.
Collapse
|
5
|
The Genome-Wide DNA Methylation Profile of Peripheral Blood Is Not Systematically Changed by Short-Time Storage at Room Temperature. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Saliva as a Blood Alternative for Genome-Wide DNA Methylation Profiling by Methylated DNA Immunoprecipitation (MeDIP) Sequencing. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Xie FF, Deng FY, Wu LF, Mo XB, Zhu H, Wu J, Guo YF, Zeng KQ, Wang MJ, Zhu XW, Xia W, Wang L, He P, Bing PF, Lu X, Zhang YH, Lei SF. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells. Funct Integr Genomics 2017; 18:1-10. [PMID: 28735351 DOI: 10.1007/s10142-017-0568-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/18/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.
Collapse
Affiliation(s)
- Fang-Fei Xie
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Hong Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yu-Fan Guo
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ke-Qin Zeng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Ming-Jun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Lan Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Peng-Fei Bing
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, People's Republic of China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Gervin K, Andreassen BK, Hjorthaug HS, Carlsen KCL, Carlsen KH, Undlien DE, Lyle R, Munthe-Kaas MC. Intra-individual changes in DNA methylation not mediated by cell-type composition are correlated with aging during childhood. Clin Epigenetics 2016; 8:110. [PMID: 27785156 PMCID: PMC5073885 DOI: 10.1186/s13148-016-0277-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background Several studies have reported age-associated changes in DNA methylation in the first few years of life and in adult populations, but the extent of such changes during childhood is less well studied. The goals of this study were to investigate to what degree intra-individual changes in DNA methylation are associated with aging during childhood and dissect the methylation changes directly associated with aging from the effect mediated through variation in cell-type composition (CTC). Results We performed reduced representation bisulfite sequencing (RRBS) in peripheral whole-blood samples collected at 2, 10, and 16 years of age. We identified age-associated longitudinal changes in DNA methylation at 346 CpGs in 178 genes. Analyses separating the effect mediated by CTC variability across age identified 26 CpGs located in 12 genes that associated directly with age. Hence, the CTC changes across age appear to act as a mediator of the observed DNA methylation associated with age. The results were replicated using EpiTYPER in a second sample set selected from the same cohort. Gene ontology analyses revealed enrichment of transcriptional regulation and developmental processes. Further, comparisons of the mean DNA methylation differences between the time points reveal greater differences between 2 to 10 years and 10 to 16 years, suggesting that the identified age-associated DNA methylation patterns manifests in early childhood. Conclusions This study reveals insights into the epigenetic dynamics associated with aging early in life. Such information could ultimately provide clues and point towards molecular pathways that are susceptible to aging-related disease-associated epigenetic dysregulation. Electronic supplementary material The online version of this article (doi:10.1186/s13148-016-0277-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristina Gervin
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bettina Kulle Andreassen
- Department of Molecular Biology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Cancer Registry of Norway, Institute of population based Cancer Research, Oslo, Norway
| | | | | | - Kai-Håkon Carlsen
- Department of Pediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Dag Erik Undlien
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.,School of Pharmacy, University of Oslo, Oslo, Norway
| | - Monica Cheng Munthe-Kaas
- Department of Pediatrics, Section of Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Staunstrup NH, Starnawska A, Nyegaard M, Christiansen L, Nielsen AL, Børglum A, Mors O. Genome-wide DNA methylation profiling with MeDIP-seq using archived dried blood spots. Clin Epigenetics 2016; 8:81. [PMID: 27462375 PMCID: PMC4960904 DOI: 10.1186/s13148-016-0242-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In utero and early-life experienced environmental exposures are suggested to play an important role in many multifactorial diseases potentially mediated through lasting effects on the epigenome. As the epigenome in addition remains modifiable throughout life, identifying specific disease-relevant biomarkers may prove challenging. This has led to an increased interest in epigenome-wide association studies using dried blood spots (DBS) routinely collected in perinatal screening programs. Such programs are in place in numerous countries around the world producing large and unique biobanks. However, availability of this biological material is highly limited as each DBS is made only from a few droplets of blood and storage conditions may be suboptimal for epigenetic studies. Furthermore, as relevant markers may reside outside gene bodies, epigenome-wide interrogation is needed. RESULTS Here we demonstrate, as a proof of principle, that genome-wide interrogation of the methylome based on methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-seq) is feasible using a single 3.2 mm DBS punch (60 ng DNA) from filter cards archived for up to 16 years. The enrichment profile, sequence quality and distribution of reads across genetic regions were comparable between samples archived 16 years, 4 years and a freshly prepared control sample. CONCLUSIONS In summary, we show that high-quality MeDIP-seq data is achievable from neonatal screening filter cards stored at room temperature, thereby providing information on annotated as well as on non-RefSeq genes and repetitive elements. Moreover, the quantity of DNA from one DBS punch proved sufficient allowing for multiple epigenome studies using one single DBS.
Collapse
Affiliation(s)
- Nicklas H Staunstrup
- Department of Biomedicine, University of Aarhus, Aarhus C, 8000 Denmark ; Translational Neuropsychiatric Unit, Aarhus University Hospital, Risskov, 8240 Denmark ; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus C, Denmark
| | - Anna Starnawska
- Department of Biomedicine, University of Aarhus, Aarhus C, 8000 Denmark ; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus C, Denmark ; Center for Integrative Sequencing, iSEQ, AU, Aarhus C, Denmark
| | - Mette Nyegaard
- Department of Biomedicine, University of Aarhus, Aarhus C, 8000 Denmark ; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus C, Denmark ; Center for Integrative Sequencing, iSEQ, AU, Aarhus C, Denmark
| | - Lene Christiansen
- Department of Public Health, University of Southern Denmark, Odense C, 5000 Denmark
| | - Anders L Nielsen
- Department of Biomedicine, University of Aarhus, Aarhus C, 8000 Denmark ; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus C, Denmark
| | - Anders Børglum
- Department of Biomedicine, University of Aarhus, Aarhus C, 8000 Denmark ; Research Department P, Aarhus University Hospital, Risskov, 8240 Denmark ; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus C, Denmark ; Center for Integrative Sequencing, iSEQ, AU, Aarhus C, Denmark
| | - Ole Mors
- Translational Neuropsychiatric Unit, Aarhus University Hospital, Risskov, 8240 Denmark ; Research Department P, Aarhus University Hospital, Risskov, 8240 Denmark ; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus C, Denmark
| |
Collapse
|
10
|
Brennan-Olsen SL, Page RS, Berk M, Riancho JA, Leslie WD, Wilson SG, Saban KL, Janusek L, Pasco JA, Hodge JM, Quirk SE, Hyde NK, Hosking SM, Williams LJ. DNA methylation and the social gradient of osteoporotic fracture: A conceptual model. Bone 2016; 84:204-212. [PMID: 26723576 DOI: 10.1016/j.bone.2015.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/19/2015] [Accepted: 12/21/2015] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Although there is a documented social gradient for osteoporosis, the underlying mechanism(s) for that gradient remain unknown. We propose a conceptual model based upon the allostatic load theory, to suggest how DNA methylation (DNAm) might underpin the social gradient in osteoporosis and fracture. We hypothesise that social disadvantage is associated with priming of inflammatory pathways mediated by epigenetic modification that leads to an enhanced state of inflammatory reactivity and oxidative stress, and thus places socially disadvantaged individuals at greater risk of osteoporotic fracture. METHODS/RESULTS Based on a review of the literature, we present a conceptual model in which social disadvantage increases stress throughout the lifespan, and engenders a proinflammatory epigenetic signature, leading to a heightened inflammatory state that increases risk for osteoporotic fracture in disadvantaged groups that are chronically stressed. CONCLUSIONS Our model proposes that, in addition to the direct biological effects exerted on bone by factors such as physical activity and nutrition, the recognised socially patterned risk factors for osteoporosis also act via epigenetic-mediated dysregulation of inflammation. DNAm is a dynamic modulator of gene expression with considerable relevance to the field of osteoporosis. Elucidating the extent to which this epigenetic mechanism transduces the psycho-social environment to increase the risk of osteoporotic fracture may yield novel entry points for intervention that can be used to reduce individual and population-wide risks for osteoporotic fracture. Specifically, an epigenetic evidence-base may strengthen the importance of lifestyle modification and stress reduction programs, and help to reduce health inequities across social groups. MINI ABSTRACT Our conceptual model proposes how DNA methylation might underpin the social gradient in osteoporotic fracture. We suggest that social disadvantage is associated with priming of inflammatory signalling pathways, which is mediated by epigenetic modifications, leading to a chronically heightened inflammatory state that places disadvantaged individuals at greater risk of osteoporosis.
Collapse
Affiliation(s)
- Sharon L Brennan-Olsen
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia; Australian Institute for Musculoskeletal Sciences, The University of Melbourne, C/- Sunshine Hospital, Furlong Road, Melbourne, 3021, VIC, Australia; Institute for Health and Ageing, Australian Catholic University, Melbourne, 3000, VIC, Australia.
| | - Richard S Page
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia; Barwon Orthopaedic Research Unit, Barwon Health, Geelong, 3220, VIC, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| | - José A Riancho
- Department of Internal Medicine, Valdecilla Research Institute (IDIVAL), University of Cantabria, Santander, Spain
| | - William D Leslie
- Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Scott G Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, 6009, Australia; School of Medicine and Pharmacology, The University of Western Australia, Nedlands, 6009, WA, Australia; Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Karen L Saban
- Marcella Niehoff School of Nursing, Loyola University Chicago, Maywood, IL, USA; Centre of Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Linda Janusek
- Marcella Niehoff School of Nursing, Loyola University Chicago, Maywood, IL, USA
| | - Julie A Pasco
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| | - Jason M Hodge
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| | - Shae E Quirk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| | - Natalie K Hyde
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| | - Sarah M Hosking
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| | - Lana J Williams
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, C/- Barwon Health, Ryrie Street, Geelong, 3220, VIC, Australia
| |
Collapse
|
11
|
Liu YZ, Maney P, Puri J, Zhou Y, Baddoo M, Strong M, Wang YP, Flemington E, Deng HW. RNA-sequencing study of peripheral blood monocytes in chronic periodontitis. Gene 2016; 581:152-60. [PMID: 26812355 DOI: 10.1016/j.gene.2016.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Monocytes are an important cell type in chronic periodontitis (CP) by interacting with oral bacteria and mediating host immune response. The aim of this study was to reveal new functional genes and pathways for CP at monocyte transcriptomic level. METHODS We performed an RNA-sequencing (RNA-seq) study of peripheral blood monocytes (PBMs) in 5 non-smoking moderate to severe CP (case) individuals vs. 5 controls. We took advantage of a microarray study of periodontitis to support our findings. We also performed pathway-based analysis on the identified differentially expressed (DEx) transcripts/isoforms using DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS Through differential expression analyses at both whole gene (or whole non-coding RNA) and isoform levels, we identified 380 DEx transcripts and 5955 DEx isoforms with a PPEE (posterior probability of equal expression) of <0.05. Pervasive up-regulation of transcripts at isoform level in CP vs. control individuals was observed, suggesting a more functionally active monocyte transcriptome for CP. By comparing with the microarray dataset, we identified several CP-associated novel genes (e.g., FACR and CUX1) that have functions to interact with invading microorganisms or enhance TNF production on lipopolysaccharide stimulation. DAVID analysis of both the RNA-seq and the microarray datasets leads to converging evidence supporting "endocytosis", "cytokine production" and "apoptosis" as significant biological processes in CP. CONCLUSIONS As the first RNA-seq study of PBMs for CP, this study provided novel findings at both gene (e.g., FCAR and CUX1) and biological process level. The findings will contribute to better understanding of CP disease mechanisms.
Collapse
Affiliation(s)
- Yao-Zhong Liu
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States.
| | - Pooja Maney
- Dept. of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States.
| | - Jyoti Puri
- Dept. of Periodontics, School of Dentistry, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Yu Zhou
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| | - Melody Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Michael Strong
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Yu-Ping Wang
- Dept. of Biomedical Engineering, Tulane University School of Science and Engineering, United States
| | - Erik Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hong-Wen Deng
- Center of Genomics and Bioinformatics, Dept. of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
12
|
Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation. Sci Rep 2015; 5:17328. [PMID: 26612583 PMCID: PMC4661471 DOI: 10.1038/srep17328] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
The extent of variation in DNA methylation patterns in healthy individuals is not yet well documented. Identification of inter-individual epigenetic variation is important for understanding phenotypic variation and disease susceptibility. Using neutrophils from a cohort of healthy individuals, we generated base-resolution DNA methylation maps to document inter-individual epigenetic variation. We identified 12851 autosomal inter-individual variably methylated fragments (iVMFs). Gene promoters were the least variable, whereas gene body and upstream regions showed higher variation in DNA methylation. The iVMFs were relatively enriched in repetitive elements compared to non-iVMFs, and were associated with genome regulation and chromatin function elements. Further, variably methylated genes were disproportionately associated with regulation of transcription, responsive function and signal transduction pathways. Transcriptome analysis indicates that iVMF methylation at differentially expressed exons has a positive correlation and local effect on the inclusion of that exon in the mRNA transcript.
Collapse
|
13
|
Yang J, Yu L, Gaiteri C, Srivastava GP, Chibnik LB, Leurgans SE, Schneider JA, Meissner A, De Jager PL, Bennett DA. Association of DNA methylation in the brain with age in older persons is confounded by common neuropathologies. Int J Biochem Cell Biol 2015; 67:58-64. [PMID: 26003740 PMCID: PMC4564337 DOI: 10.1016/j.biocel.2015.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022]
Abstract
DNA methylation plays a crucial role in the regulation of gene expression, cell differentiation and development. Previous studies have reported age-related alterations of methylation levels in the human brain across the lifespan, but little is known about whether the observed association with age is confounded by common neuropathologies among older persons. Using genome-wide DNA methylation data from 740 postmortem brains, we interrogated 420,132 CpG sites across the genome in a cohort of individuals with ages from 66 to 108 years old, a range of ages at which many neuropathologic indices become quite common. We compared the association of DNA methylation prior to and following adjustment for common neuropathologies using a series of linear regression models. In the simplest model adjusting for technical factors including batch effect and bisulfite conversion rate, we found 8156 CpGs associated with age. The number of CpGs associated with age dropped by more than 10% following adjustment for sex. Notably, after adjusting for common neuropathologies, the total number of CpGs associated with age was reduced by approximately 40%, compared to the sex-adjusted model. These data illustrate that the association of methylation changes in the brain with age is inflated if one does not account for age-related brain pathologies. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gyan P Srivastava
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Lori B Chibnik
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Philip L De Jager
- Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
14
|
Delgado-Cruzata L, Vin-Raviv N, Tehranifar P, Flom J, Reynolds D, Gonzalez K, Santella RM, Terry MB. Correlations in global DNA methylation measures in peripheral blood mononuclear cells and granulocytes. Epigenetics 2015; 9:1504-10. [PMID: 25482109 DOI: 10.4161/15592294.2014.983364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Alterations in global DNA methylation levels have been associated with chronic diseases. Despite the increase in the number of studies measuring markers of global methylation, few have adequately examined within-individual differences by source of DNA and whether within-individual differences by source of DNA differ by age, race and other lifestyle factors. We examined correlations between peripheral mononuclear cell (PBMC) and granulocyte DNA methylation levels measured by the luminometric methylation assay (LUMA), and in LINE-1, Sat2, and Alu by MethyLight and pyrosequencing, in the same individual in 112 women participating in The New York City Multiethnic Breast Cancer Project. Levels of DNA methylation of Sat2 by MethyLight (r = 0.57; P < 0.01) and LINE-1 by pyrosequencing (r = 0.30; P < 0.01) were correlated between PBMC and granulocyte DNA of the same individuals, but LUMA and Alu levels were not. The magnitude of the correlations for Sat2 and LINE-1 varied when stratified by selected demographic and lifestyle factors, although the study sample size limited our comparisons across subgroups. These results lend further support to the importance of considering the source of DNA in epidemiologic studies of white blood cell DNA methylation. Results from studies that combine individuals with different available DNA sources need to be interpreted with caution.
Collapse
Affiliation(s)
- Lissette Delgado-Cruzata
- a Department of Environmental Health Sciences ; Columbia University Medical Center; Mailman School of Public Health ; New York , NY USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Green BB, McKay SD, Kerr DE. Age dependent changes in the LPS induced transcriptome of bovine dermal fibroblasts occurs without major changes in the methylome. BMC Genomics 2015; 16:30. [PMID: 25623529 PMCID: PMC4312471 DOI: 10.1186/s12864-015-1223-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/05/2015] [Indexed: 11/15/2022] Open
Abstract
Background By comparing fibroblasts collected from animals at 5-months or 16-months of age we have previously found that the cultures from older animals produce much more IL-8 in response to lipopolysaccharide (LPS) stimulation. We now expand this finding by examining whole transcriptome differences in the LPS response between cultures from the same animals at different ages, and also investigate the contribution of DNA methylation to the epigenetic basis for the age-dependent increases in responsiveness. Results Age-dependent differences in IL-8 production by fibroblasts in response to LPS exposure for 24 h were abolished by pretreatment of cultures with a DNA demethylation agent, 5-aza-2′deoxycytidine (AZA). RNA-Seq analysis of fibroblasts collected from the same individuals at either 5 or 16 months of age and exposed in parallel to LPS for 0, 2, and 8 h revealed a robust response to LPS that was much greater in the cultures from older animals. Pro-inflammatory genes including IL-8, IL-6, TNF-α, and CCL20 (among many other immune associated genes), were more highly expressed (FDR < 0.05) in the 16-month old cultures following LPS exposure. Methylated CpG island recovery assay sequencing (MIRA-Seq) revealed numerous methylation peaks spread across the genome, combined with an overall hypomethylation of gene promoter regions, and a remarkable similarity, except for 20 regions along the genome, between the fibroblasts collected at the two ages from the same animals. Conclusions The fibroblast pro-inflammatory response to LPS increases dramatically from 5 to 16 months of age within individual animals. A better understanding of the mechanisms underlying this process could illuminate the physiological processes by which the innate immune response develops and possibly individual variation in innate immune response arises. In addition, although relatively unchanged by age, our data presents a general overview of the bovine fibroblast methylome as a guide for future studies in cattle epigenetics utilizing this cell type. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1223-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Benjamin B Green
- Department of Animal Science, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| | - Stephanie D McKay
- Department of Animal Science, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| | - David E Kerr
- Department of Animal Science, University of Vermont, Terrill Hall, 570 Main Street, Burlington, VT, 05405, USA.
| |
Collapse
|
16
|
Simar D, Versteyhe S, Donkin I, Liu J, Hesson L, Nylander V, Fossum A, Barrès R. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human. Metabolism 2014; 63:1188-97. [PMID: 24996265 DOI: 10.1016/j.metabol.2014.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/17/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Obesity is associated with low-grade inflammation and the infiltration of immune cells in insulin-sensitive tissues, leading to metabolic impairment. Epigenetic mechanisms control immune cell lineage determination, function and migration and are implicated in obesity and type 2 diabetes (T2D). The aim of this study was to determine the global DNA methylation profile of immune cells in obese and T2D individuals in a cell type-specific manner. MATERIAL AND METHODS Fourteen obese subjects and 11 age-matched lean subjects, as well as 12 T2D obese subjects and 7 age-matched lean subjects were recruited. Global DNA methylation levels were measured in a cell type-specific manner by flow cytometry. We validated the assay against mass spectrometry measures of the total 5-methylcytosine content in cultured cells treated with the hypomethylation agent decitabine (r=0.97, p<0.001). RESULTS Global DNA methylation in peripheral blood mononuclear cells, monocytes, lymphocytes or T cells was not altered in obese or T2D subjects. However, analysis of blood fractions from lean, obese, and T2D subjects showed increased methylation levels in B cells from obese and T2D subjects and in natural killer cells from T2D patients. In these cell types, DNA methylation levels were positively correlated with insulin resistance, suggesting an association between DNA methylation changes, immune function and metabolic dysfunction. CONCLUSIONS Both obesity and T2D are associated with an altered epigenetic signature of the immune system in a cell type-specific manner. These changes could contribute to the altered immune functions associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- David Simar
- Inflammation and Infection Research, School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia.
| | - Soetkin Versteyhe
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Donkin
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jia Liu
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia, Sydney NSW 2052, Australia
| | - Luke Hesson
- Adult Cancer Program, Lowy Cancer Research Centre and Prince of Wales Clinical School, UNSW Australia, Sydney NSW 2052, Australia
| | - Vibe Nylander
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna Fossum
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; School of Medical Sciences, UNSW Australia, Sydney NSW 2052, Australia.
| |
Collapse
|