1
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
2
|
Stoccoro A, Lari M, Migliore L, Coppedè F. Associations between Circulating Biomarkers of One-Carbon Metabolism and Mitochondrial D-Loop Region Methylation Levels. EPIGENOMES 2024; 8:38. [PMID: 39449362 PMCID: PMC11503383 DOI: 10.3390/epigenomes8040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES One-carbon metabolism is a critical pathway for epigenetic mechanisms. Circulating biomarkers of one-carbon metabolism have been associated with changes in nuclear DNA methylation levels in individuals affected by age-related diseases. More and more studies are showing that even mitochondrial DNA (mtDNA) could be methylated. In particular, methylation of the mitochondrial displacement (D-loop) region modulates the gene expression and replication of mtDNA and, when altered, can contribute to the development of human illnesses. However, no study until now has demonstrated an association between circulating biomarkers of one-carbon metabolism and D-loop methylation levels. METHODS In the study presented herein, we searched for associations between circulating one-carbon metabolism biomarkers, including folate, homocysteine, and vitamin B12, and the methylation levels of the D-loop region in DNA obtained from the peripheral blood of 94 elderly voluntary subjects. RESULTS We observed a positive correlation between D-loop methylation and vitamin B12 (r = 0.21; p = 0.03), while no significant correlation was observed with folate (r = 0.02; p = 0.80) or homocysteine levels (r = 0.02; p = 0.82). Moreover, D-loop methylation was increased in individuals with high vitamin B12 levels compared to those with normal vitamin B12 levels (p = 0.04). CONCLUSIONS This is the first study suggesting an association between vitamin B12 circulating levels and mtDNA methylation in human subjects. Given the potential implications of altered one-carbon metabolism and mitochondrial epigenetics in human diseases, a deeper understanding of their interaction could inspire novel interventions with beneficial effects for human health.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Martina Lari
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical & Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (A.S.); (M.L.); (L.M.)
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
3
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Ding B, Zhang X, Wan Z, Tian F, Ling J, Tan J, Peng X. Characterization of Mitochondrial DNA Methylation of Alzheimer's Disease in Plasma Cell-Free DNA. Diagnostics (Basel) 2023; 13:2351. [PMID: 37510095 PMCID: PMC10378411 DOI: 10.3390/diagnostics13142351] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Noninvasive diagnosis of Alzheimer's disease (AD) is important for patients. Significant differences in the methylation of mitochondrial DNA (mtDNA) were found in AD brain tissue. Cell-free DNA (cfDNA) is a noninvasive and economical diagnostic tool. We aimed to characterize mtDNA methylation alterations in the plasma cfDNA of 31 AD patients and 26 age- and sex-matched cognitively normal control subjects. We found that the mtDNA methylation patterns differed between AD patients and control subjects. The mtDNA was predominantly hypomethylated in the plasma cfDNA of AD patients. The hypomethylation sites or regions were mainly located in mt-rRNA, mt-tRNA, and D-Loop regions. The hypomethylation of the D-Loop region in plasma cfDNA of AD patients was consistent with that in previous studies. This study presents evidence that hypomethylation in the non-protein coding region of mtDNA may contribute to the pathogenesis of AD and potential application for the diagnosis of AD.
Collapse
Affiliation(s)
- Binrong Ding
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feng Tian
- The 8 Ward, The Ninth Hospital of Changsha, Changsha 410000, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jieqiong Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| | - Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| |
Collapse
|
5
|
Devall M, Soanes DM, Smith AR, Dempster EL, Smith RG, Burrage J, Iatrou A, Hannon E, Troakes C, Moore K, O'Neill P, Al-Sarraj S, Schalkwyk L, Mill J, Weedon M, Lunnon K. Genome-wide characterization of mitochondrial DNA methylation in human brain. Front Endocrinol (Lausanne) 2023; 13:1059120. [PMID: 36726473 PMCID: PMC9885148 DOI: 10.3389/fendo.2022.1059120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in the role of DNA methylation in regulating the transcription of mitochondrial genes, particularly in brain disorders characterized by mitochondrial dysfunction. Here, we present a novel approach to interrogate the mitochondrial DNA methylome at single base resolution using targeted bisulfite sequencing. We applied this method to investigate mitochondrial DNA methylation patterns in post-mortem superior temporal gyrus and cerebellum brain tissue from seven human donors. Results We show that mitochondrial DNA methylation patterns are relatively low but conserved, with peaks in DNA methylation at several sites, such as within the D-LOOP and the genes MT-ND2, MT-ATP6, MT-ND4, MT-ND5 and MT-ND6, predominantly in a non-CpG context. The elevated DNA methylation we observe in the D-LOOP we validate using pyrosequencing. We identify loci that show differential DNA methylation patterns associated with age, sex and brain region. Finally, we replicate previously reported differentially methylated regions between brain regions from a methylated DNA immunoprecipitation sequencing study. Conclusions We have annotated patterns of DNA methylation at single base resolution across the mitochondrial genome in human brain samples. Looking to the future this approach could be utilized to investigate the role of mitochondrial epigenetic mechanisms in disorders that display mitochondrial dysfunction.
Collapse
Affiliation(s)
- Matthew Devall
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Darren M Soanes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Adam R Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma L Dempster
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Rebecca G Smith
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Joe Burrage
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Artemis Iatrou
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Eilis Hannon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Claire Troakes
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Karen Moore
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Paul O'Neill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Safa Al-Sarraj
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Leonard Schalkwyk
- School of Biological Sciences, University of Essex, Essex, United Kingdom
| | - Jonathan Mill
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Michael Weedon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
6
|
Lu X, Yang YM, Lu YQ. Immunosenescence: A Critical Factor Associated With Organ Injury After Sepsis. Front Immunol 2022; 13:917293. [PMID: 35924237 PMCID: PMC9339684 DOI: 10.3389/fimmu.2022.917293] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Progressive immune dysfunction associated with aging is known as immunosenescence. The age-related deterioration of immune function is accompanied by chronic inflammation and microenvironment changes. Immunosenescence can affect both innate and acquired immunity. Sepsis is a systemic inflammatory response that affects parenchymal organs, such as the respiratory system, cardiovascular system, liver, urinary system, and central nervous system, according to the sequential organ failure assessment (SOFA). The initial immune response is characterized by an excess release of inflammatory factors, followed by persistent immune paralysis. Moreover, immunosenescence was found to complement the severity of the immune disorder following sepsis. Furthermore, the immune characteristics associated with sepsis include lymphocytopenia, thymus degeneration, and immunosuppressive cell proliferation, which are very similar to the characteristics of immunosenescence. Therefore, an in-depth understanding of immunosenescence after sepsis and its subsequent effects on the organs may contribute to the development of promising therapeutic strategies. This paper focuses on the characteristics of immunosenescence after sepsis and rigorously analyzes the possible underlying mechanism of action. Based on several recent studies, we summarized the relationship between immunosenescence and sepsis-related organs. We believe that the association between immunosenescence and parenchymal organs might be able to explain the delayed consequences associated with sepsis.
Collapse
Affiliation(s)
- Xuan Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yun-Mei Yang
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
| | - Yuan-Qiang Lu
- Department of Geriatric and Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, China
- *Correspondence: Yuan-Qiang Lu,
| |
Collapse
|
7
|
Chatterjee D, Das P, Chakrabarti O. Mitochondrial Epigenetics Regulating Inflammation in Cancer and Aging. Front Cell Dev Biol 2022; 10:929708. [PMID: 35903542 PMCID: PMC9314556 DOI: 10.3389/fcell.2022.929708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a defining factor in disease progression; epigenetic modifications of this first line of defence pathway can affect many physiological and pathological conditions, like aging and tumorigenesis. Inflammageing, one of the hallmarks of aging, represents a chronic, low key but a persistent inflammatory state. Oxidative stress, alterations in mitochondrial DNA (mtDNA) copy number and mis-localized extra-mitochondrial mtDNA are suggested to directly induce various immune response pathways. This could ultimately perturb cellular homeostasis and lead to pathological consequences. Epigenetic remodelling of mtDNA by DNA methylation, post-translational modifications of mtDNA binding proteins and regulation of mitochondrial gene expression by nuclear DNA or mtDNA encoded non-coding RNAs, are suggested to directly correlate with the onset and progression of various types of cancer. Mitochondria are also capable of regulating immune response to various infections and tissue damage by producing pro- or anti-inflammatory signals. This occurs by altering the levels of mitochondrial metabolites and reactive oxygen species (ROS) levels. Since mitochondria are known as the guardians of the inflammatory response, it is plausible that mitochondrial epigenetics might play a pivotal role in inflammation. Hence, this review focuses on the intricate dynamics of epigenetic alterations of inflammation, with emphasis on mitochondria in cancer and aging.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Palamou Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhabha National Institute, Mumbai, India
- *Correspondence: Oishee Chakrabarti, ; Debmita Chatterjee, ; Palamou Das,
| |
Collapse
|
8
|
Huang CH, Chang MC, Lai YC, Lin CY, Hsu CH, Tseng BY, Hsiao CK, Lu TP, Yu SL, Hsieh ST, Chen WJ. Mitochondrial DNA methylation profiling of the human prefrontal cortex and nucleus accumbens: correlations with aging and drug use. Clin Epigenetics 2022; 14:79. [PMID: 35752846 PMCID: PMC9233363 DOI: 10.1186/s13148-022-01300-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the brain's high demand for energy, research on its epigenetics focuses on nuclear methylation, and much of the mitochondrial DNA methylation remains seldom investigated. With a focus on the nucleus accumbens (NAcc) and the prefrontal cortex (PFC), we aimed to identify the mitochondrial methylation signatures for (1) distinguishing the two brain areas, (2) correlating with aging, and (3) reflecting the influence of illicit drugs on the brain. RESULT We collected the brain tissue in the NAcc and the PFC from the deceased individuals without (n = 39) and with (n = 14) drug use and used whole-genome bisulfite sequencing to cover cytosine sites in the mitochondrial genome. We first detected differential methylations between the NAcc and the PFC in the nonusers group (P = 3.89 × 10-9). These function-related methylation differences diminished in the drug use group due to the selective alteration in the NAcc. Then, we found the correlation between the methylation levels and the chronological ages in the nonusers group (R2 = 0.34 in the NAcc and 0.37 in the PFC). The epigenetic clocks in illicit drug users, especially in the ketamine users, were accelerated in both brain regions by comparison with the nonusers. Finally, we summarized the effect of the illicit drugs on the methylation, which could significantly differentiate the drug users from the nonusers (AUC = 0.88 in the NAcc, AUC = 0.94 in the PFC). CONCLUSION The mitochondrial methylations were different between different brain areas, generally accumulated with aging, and sensitive to the effects of illicit drugs. We believed this is the first report to elucidate comprehensively the importance of mitochondrial DNA methylation in human brain.
Collapse
Affiliation(s)
- Chia-Hung Huang
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan.,Forensic Pathology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan.,Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Man-Chen Chang
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Yung-Chun Lai
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Chun-Yen Lin
- Forensic Biology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Cho-Hsien Hsu
- Forensic Pathology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Bo-Yuan Tseng
- Forensic Pathology Division, Institute of Forensic Medicine, Ministry of Justice, New Taipei City, Taiwan
| | - Chuhsing Kate Hsiao
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Wei J Chen
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Psychiatry, College of Medicine and National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan. .,Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
9
|
Stoccoro A, Baldacci F, Ceravolo R, Giampietri L, Tognoni G, Siciliano G, Migliore L, Coppedè F. Increase in Mitochondrial D-Loop Region Methylation Levels in Mild Cognitive Impairment Individuals. Int J Mol Sci 2022; 23:ijms23105393. [PMID: 35628202 PMCID: PMC9142993 DOI: 10.3390/ijms23105393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
Methylation levels of the mitochondrial displacement loop (D-loop) region have been reported to be altered in the brain and blood of Alzheimer’s disease (AD) patients. Moreover, a dynamic D-loop methylation pattern was observed in the brain of transgenic AD mice along with disease progression. However, investigations on the blood cells of AD patients in the prodromal phases of the disease have not been performed so far. The aim of this study was to analyze D-loop methylation levels by means of the MS-HRM technique in the peripheral blood cells of 14 mild cognitive impairment (MCI) patients, 18 early stage AD patients, 70 advanced stage AD patients, and 105 healthy control subjects. We found higher D-loop methylation levels in MCI patients than in control subjects and AD patients. Moreover, higher D-loop methylation levels were observed in control subjects than in AD patients in advanced stages of the disease, but not in those at early stages. The present pilot study shows that peripheral D-loop methylation levels differ in patients at different stages of AD pathology, suggesting that further studies deserve to be performed in order to validate the usefulness of D-loop methylation analysis as a peripheral biomarker for the early detection of AD.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (A.S.); (F.C.); Tel.: +39-0502-218549 (A.S.); +39-0502-218544 (F.C.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (A.S.); (F.C.); Tel.: +39-0502-218549 (A.S.); +39-0502-218544 (F.C.)
| |
Collapse
|
10
|
Bicci I, Calabrese C, Golder ZJ, Gomez-Duran A, Chinnery P. Single-molecule mitochondrial DNA sequencing shows no evidence of CpG methylation in human cells and tissues. Nucleic Acids Res 2021; 49:12757-12768. [PMID: 34850165 PMCID: PMC8682748 DOI: 10.1093/nar/gkab1179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
Methylation on CpG residues is one of the most important epigenetic modifications of nuclear DNA, regulating gene expression. Methylation of mitochondrial DNA (mtDNA) has been studied using whole genome bisulfite sequencing (WGBS), but recent evidence has uncovered technical issues which introduce a potential bias during methylation quantification. Here, we validate the technical concerns of WGBS, and develop and assess the accuracy of a new protocol for mtDNA nucleotide variant-specific methylation using single-molecule Oxford Nanopore Sequencing (ONS). Our approach circumvents confounders by enriching for full-length molecules over nuclear DNA. Variant calling analysis against showed that 99.5% of homoplasmic mtDNA variants can be reliably identified providing there is adequate sequencing depth. We show that some of the mtDNA methylation signal detected by ONS is due to sequence-specific false positives introduced by the technique. The residual signal was observed across several human primary and cancer cell lines and multiple human tissues, but was always below the error threshold modelled using negative controls. We conclude that there is no evidence for CpG methylation in human mtDNA, thus resolving previous controversies. Additionally, we developed a reliable protocol to study epigenetic modifications of mtDNA at single-molecule and single-base resolution, with potential applications beyond CpG methylation.
Collapse
Affiliation(s)
- Iacopo Bicci
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Calabrese
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Zoe J Golder
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| | - Aurora Gomez-Duran
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
- Centro de Investigaciones Biológicas Margarita Salas. Spanish National Research Council, Madrid, Spain
| | - Patrick F Chinnery
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, Cambridge CB2 0XY, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
11
|
Cao K, Feng Z, Gao F, Zang W, Liu J. Mitoepigenetics: An intriguing regulatory layer in aging and metabolic-related diseases. Free Radic Biol Med 2021; 177:337-346. [PMID: 34715295 DOI: 10.1016/j.freeradbiomed.2021.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/06/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
As a key organelle in eukaryotic cells, mitochondria play a central role in maintaining normal cellular functions. Mitochondrial dysfunction is reported to be closely related with aging and various diseases. Epigenetic modifications in nuclear genome provide a substantial layer for the modulation of nuclear-encoded gene expression. However, whether mitochondria could also be subjected to such similar epigenetic alterations and the involved mechanisms remain largely obscure and controversial. Recently, accumulating evidence has suggested that mitochondrial epigenetics, also known as mitoepigenetics may serve as an intriguing regulatory layer in mitochondrial DNA (mtDNA)-encoded gene expression. Given the potential regulatory role of mitoepigenetics, mitochondrial dysfunction derived from mitoepigenetics-induced abnormal gene expression could also be closely associated with aging and disease development. In this review, we summarized the recent advances in mitoepigenetics, with a special focus on mtDNA methylation in aging and metabolic-related diseases as well as the new methods and technologies for the study of mitoepigenetics. Uncovering the regulatory role of mitoepigenetics will help to understand the underlying mechanisms of mitochondrial dysfunction and provide novel strategies for delaying aging and preventing metabolic-related diseases.
Collapse
Affiliation(s)
- Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| |
Collapse
|
12
|
Ruple BA, Godwin JS, Mesquita PHC, Osburn SC, Vann CG, Lamb DA, Sexton CL, Candow DG, Forbes SC, Frugé AD, Kavazis AN, Young KC, Seaborne RA, Sharples AP, Roberts MD. Resistance training rejuvenates the mitochondrial methylome in aged human skeletal muscle. FASEB J 2021; 35:e21864. [PMID: 34423880 DOI: 10.1096/fj.202100873rr] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022]
Abstract
Resistance training (RT) dynamically alters the skeletal muscle nuclear DNA methylome. However, no study has examined if RT affects the mitochondrial DNA (mtDNA) methylome. Herein, ten older, Caucasian untrained males (65 ± 7 y.o.) performed six weeks of full-body RT (twice weekly). Body composition and knee extensor torque were assessed prior to and 72 h following the last RT session. Vastus lateralis (VL) biopsies were also obtained. VL DNA was subjected to reduced representation bisulfite sequencing providing excellent coverage across the ~16-kilobase mtDNA methylome (254 CpG sites). Biochemical assays were also performed, and older male data were compared to younger trained males (22 ± 2 y.o., n = 7, n = 6 Caucasian & n = 1 African American). RT increased whole-body lean tissue mass (p = .017), VL thickness (p = .012), and knee extensor torque (p = .029) in older males. RT also affected the mtDNA methylome, as 63% (159/254) of the CpG sites demonstrated reduced methylation (p < .05). Several mtDNA sites presented a more "youthful" signature in older males after RT in comparison to younger males. The 1.12 kilobase mtDNA D-loop/control region, which regulates replication and transcription, possessed enriched hypomethylation in older males following RT. Enhanced expression of mitochondrial H- and L-strand genes and complex III/IV protein levels were also observed (p < .05). While limited to a shorter-term intervention, this is the first evidence showing that RT alters the mtDNA methylome in skeletal muscle. Observed methylome alterations may enhance mitochondrial transcription, and RT evokes mitochondrial methylome profiles to mimic younger men. The significance of these findings relative to broader RT-induced epigenetic changes needs to be elucidated.
Collapse
Affiliation(s)
- Bradley A Ruple
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Joshua S Godwin
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | | | - Shelby C Osburn
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | | | - Donald A Lamb
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Casey L Sexton
- School of Kinesiology, Auburn University, Auburn, Alabama, USA
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Scott C Forbes
- Faculty of Education, Department of Physical Education Studies, Brandon University, Brandon, Manitoba, Canada
| | - Andrew D Frugé
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | | | - Kaelin C Young
- School of Kinesiology, Auburn University, Auburn, Alabama, USA.,Edward Via College of Osteopathic Medicine, Auburn, Alabama, USA
| | - Robert A Seaborne
- Centre for Genomics and Child Health, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Adam P Sharples
- Institute for Physical Performance, Norwegian School of Sport Sciences, Olso, Norway
| | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, USA.,Edward Via College of Osteopathic Medicine, Auburn, Alabama, USA
| |
Collapse
|
13
|
Stoccoro A, Smith AR, Baldacci F, Del Gamba C, Lo Gerfo A, Ceravolo R, Lunnon K, Migliore L, Coppedè F. Mitochondrial D-Loop Region Methylation and Copy Number in Peripheral Blood DNA of Parkinson's Disease Patients. Genes (Basel) 2021; 12:genes12050720. [PMID: 34065874 PMCID: PMC8151519 DOI: 10.3390/genes12050720] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Altered mitochondrial DNA (mtDNA) methylation has been detected in several human pathologies, although little attention has been given to neurodegenerative diseases. Recently, altered methylation levels of the mitochondrial displacement loop (D-loop) region, which regulates mtDNA replication, were observed in peripheral blood cells of Alzheimer’s disease and amyotrophic lateral sclerosis patients. However, nothing is yet known about D-loop region methylation levels in peripheral blood of Parkinson’s disease (PD) patients. In the current study, we investigated D-loop methylation levels and mtDNA copy number in peripheral blood of 30 PD patients and 30 age- and sex-matched control subjects. DNA methylation analyses have been performed by means of methylation-sensitive high-resolution melting (MS-HRM) and pyrosequencing techniques, while mtDNA copy number was analyzed by quantitative PCR. MS-HRM and pyrosequencing analyses provided very similar D-loop methylation levels in PD patients and control subjects, and no differences between the two groups have been observed. Treatment with L-dopa and duration of the disease had no effect on D-loop methylation levels in PD patients. Additionally, mtDNA copy number did not differ between PD patients and control subjects. Current results suggest that D-loop methylation levels are not altered in peripheral blood of PD patients nor influenced by dopaminergic treatment.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.S.); (L.M.)
| | - Adam R. Smith
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK; (A.R.S.); (K.L.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (C.D.G.); (A.L.G.); (R.C.)
| | - Claudia Del Gamba
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (C.D.G.); (A.L.G.); (R.C.)
| | - Annalisa Lo Gerfo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (C.D.G.); (A.L.G.); (R.C.)
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (C.D.G.); (A.L.G.); (R.C.)
| | - Katie Lunnon
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK; (A.R.S.); (K.L.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.S.); (L.M.)
- Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy; (A.S.); (L.M.)
- Correspondence:
| |
Collapse
|
14
|
Mitochondrial DNA Methylation and Human Diseases. Int J Mol Sci 2021; 22:ijms22094594. [PMID: 33925624 PMCID: PMC8123858 DOI: 10.3390/ijms22094594] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.
Collapse
|
15
|
Wang Y, Gao J, Wu F, Lai C, Li Y, Zhang G, Peng X, Yu S, Yang J, Wang W, Zhang W, Yang X. Biological and epigenetic alterations of mitochondria involved in cellular replicative and hydrogen peroxide-induced premature senescence of human embryonic lung fibroblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112204. [PMID: 33845364 DOI: 10.1016/j.ecoenv.2021.112204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The mitoepigenetic modifications may be closely related to cellular fate. Both the replicative and hydrogen peroxide (H2O2)-induced premature senescence models were used to detect the mitochondrial biological characteristics and the epigenetic factors during senescence of human embryonic lung fibroblasts. The mitochondrial quantity was decreased in two senescence stages, while the mitochondrial DNA (mtDNA) copy number was increased significantly and the methyltransferases activity likewise. And the acute mtROS accumulation could launch premature senescence. Later, the persistent premature senescence owned the higher level of adenosine triphosphate (ATP) and mitochondrial 5-methylcytosine (mt-5-mC), and the less level of 8-hydroxydeoxyguanosine (8-OHdG) than those of replicative senescence. The mtDNA methylation-related enzymes, binding protein and the mitochondrial transcription regulators presented the differentially expressed profiles in both senescent states. Interestingly, the hypermethylation in the CpG region of mitochondrial transcription factor B2 (TFB2M) contributed to its downregulation of mRNA level in replicative senescence. The alterations of the mitochondrial biological functions and mtDNA features would be novel candidate biomarkers involved in cellular senescence. The specific methylation status of mtDNA may also have a crosstalk with oxidative stress to the mitochondrial function, contributing to cellular senescence.
Collapse
Affiliation(s)
- Yan Wang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jianji Gao
- Department of Medical Quality Management, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, PR China
| | - Fan Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Caiyun Lai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Yueqi Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Gaoqiang Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Xinyue Peng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Susu Yu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiani Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Xingfen Yang
- Key Laboratory of Tropical Disease Research of Guangdong Province, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, PR China.
| |
Collapse
|
16
|
Xu Y, Cheng L, Sun J, Li F, Liu X, Wei Y, Han M, Zhu Z, Bi J, Lai C, Wang Y. Hypermethylation of Mitochondrial Cytochrome b and Cytochrome c Oxidase II Genes with Decreased Mitochondrial DNA Copy Numbers in the APP/PS1 Transgenic Mouse Model of Alzheimer's Disease. Neurochem Res 2021; 46:564-572. [PMID: 33580369 DOI: 10.1007/s11064-020-03192-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Increasing evidence shows that mitochondrial DNA (mtDNA) methylation plays an essential role in many diseases related to mitochondrial dysfunction. Since mitochondrial impairment is a key feature of AD, mtDNA methylation may also contribute to AD, but few studies have addressed this issue. Methylation changes of the mitochondrial cytochrome b (CYTB) and cytochrome c oxidase II (COX II) genes in AD have not been reported. We analyzed mtDNA methylation changes of the CYTB and COX II genes in an APP/PS1 transgenic mouse model of AD using pyrosequencing. We examined mtDNA copy numbers and the levels of expression by quantitative real-time PCR. Average methylation levels of different CpG sites were ≤ 4.0%. Methylated mtDNA accounted for only a small part of the total mtDNA. We also observed hypermethylation of mitochondrial CYTB and COX II genes with decreased mtDNA copy numbers and expression in the hippocampi of APP/PS1 transgenic mice. mtDNA methylation may play an important role in AD pathology, which may open a new window for AD therapy.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Ling Cheng
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Jing Sun
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Fan Li
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Xiangtian Liu
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Yan Wei
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Min Han
- Department of General Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Zhengyu Zhu
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Jianzhong Bi
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China
| | - Chao Lai
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China.
| | - Yun Wang
- Department of Neurology Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 247th of Beiyuan Rd., Jinan, Shandong, China.
| |
Collapse
|
17
|
Stoccoro A, Smith AR, Mosca L, Marocchi A, Gerardi F, Lunetta C, Cereda C, Gagliardi S, Lunnon K, Migliore L, Coppedè F. Reduced mitochondrial D-loop methylation levels in sporadic amyotrophic lateral sclerosis. Clin Epigenetics 2020; 12:137. [PMID: 32917270 PMCID: PMC7488473 DOI: 10.1186/s13148-020-00933-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondrial dysregulation and aberrant epigenetic mechanisms have been frequently reported in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), and several researchers suggested that epigenetic dysregulation in mitochondrial DNA (mtDNA) could contribute to the neurodegenerative process. We recently screened families with mutations in the major ALS causative genes, namely C9orf72, SOD1, FUS, and TARDBP, observing reduced methylation levels of the mtDNA regulatory region (D-loop) only in peripheral lymphocytes of SOD1 carriers. However, until now no studies investigated the potential role of mtDNA methylation impairment in the sporadic form of ALS, which accounts for the majority of disease cases. The aim of the current study was to investigate the D-loop methylation levels and the mtDNA copy number in sporadic ALS patients and compare them to those observed in healthy controls and in familial ALS patients. Pyrosequencing analysis of D-loop methylation levels and quantitative analysis of mtDNA copy number were performed in peripheral white blood cells from 36 sporadic ALS patients, 51 age- and sex-matched controls, and 27 familial ALS patients with germinal mutations in SOD1 or C9orf72 that represent the major familial ALS forms. Results In the total sample, D-loop methylation levels were significantly lower in ALS patients compared to controls, and a significant inverse correlation between D-loop methylation levels and the mtDNA copy number was observed. Stratification of ALS patients into different subtypes revealed that both SOD1-mutant and sporadic ALS patients showed lower D-loop methylation levels compared to controls, while C9orf72-ALS patients showed similar D-loop methylation levels than controls. In healthy controls, but not in ALS patients, D-loop methylation levels decreased with increasing age at sampling and were higher in males compared to females. Conclusions Present data reveal altered D-loop methylation levels in sporadic ALS and confirm previous evidence of an inverse correlation between D-loop methylation levels and the mtDNA copy number, as well as differences among the major familial ALS subtypes. Overall, present results suggest that D-loop methylation and mitochondrial replication are strictly related to each other and could represent compensatory mechanisms to counteract mitochondrial impairment in sporadic and SOD1-related ALS forms.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy
| | - Adam R Smith
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Lorena Mosca
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandro Marocchi
- Medical Genetics Unit, Department of Laboratory Medicine, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | | | | | - Cristina Cereda
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Stella Gagliardi
- Genomic and Post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100, Pavia, Italy
| | - Katie Lunnon
- University of Exeter Medical School, College of Medicine and Health, Exeter University, Exeter, UK
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, Lab. of Medical Genetics, University of Pisa, Medical School, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
18
|
Guarasci F, D'Aquila P, Montesanto A, Corsonello A, Bellizzi D, Passarino G. Individual DNA Methylation Profile is Correlated with Age and can be Targeted to Modulate Healthy Aging and Longevity. Curr Pharm Des 2019; 25:4139-4149. [DOI: 10.2174/1381612825666191112095655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023]
Abstract
:Patterns of DNA methylation, the best characterized epigenetic modification, are modulated by aging. In humans, different studies at both site-specific and genome-wide levels have reported that modifications of DNA methylation are associated with the chronological aging process but also with the quality of aging (or biological aging), providing new perspectives for establishing powerful biomarkers of aging.:In this article, the role of DNA methylation in aging and longevity has been reviewed by analysing literature data about DNA methylation variations occurring during the lifetime in response to environmental factors and genetic background, and their association with the aging process and, in particular, with the quality of aging. Special attention has been devoted to the relationship between nuclear DNA methylation patterns, mitochondrial DNA epigenetic modifications, and longevity. Mitochondrial DNA has recently been reported to modulate global DNA methylation levels of the nuclear genome during the lifetime, and, in spite of the previous belief, it has been found to be the target of methylation modifications.:Analysis of DNA methylation profiles across lifetime shows that a remodeling of the methylome occurs with age and/or with age-related decline. Thus, it can be an excellent biomarker of aging and of the individual decline and frailty status. The knowledge about the mechanisms underlying these modifications is crucial since it might allow the opportunity for targeted treatment to modulate the rate of aging and longevity.
Collapse
Affiliation(s)
- Francesco Guarasci
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Andrea Corsonello
- Unit of Geriatric Pharmacoepidemiology, Scientific Research Institute - Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Science, University of Calabria, 87030 Rende, Italy
| |
Collapse
|
19
|
Xu Y, Xu L, Han M, Liu X, Li F, Zhou X, Wang Y, Bi J. Altered mitochondrial DNA methylation and mitochondrial DNA copy number in an APP/PS1 transgenic mouse model of Alzheimer disease. Biochem Biophys Res Commun 2019; 520:41-46. [PMID: 31564416 DOI: 10.1016/j.bbrc.2019.09.094] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/21/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and mitochondrial impairment is a key feature of AD. The mitochondrial DNA (mtDNA) epigenetic mechanism is a relatively new field compared to nuclear DNA. The relationship between mtDNA epigenetic mechanism and AD hasn't been established. So we analyzed the mtDNA methylation in D-loop region and 12 S rRNA gene in the hippocampi in amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice by bisulfite pyrosequencing. Mitochondrial DNA copy number and gene expression were studied by quantitative real-time PCR (qRT-PCR). We observed a decrease in the displacement loop (D-loop) methylation and an increase in 12 S rRNA gene methylation, while both the mtDNA copy number and the mitochondrial gene expression were reduced in APP/PS1 transgenic mice. In summary, the present finding suggest that mtDNA methylation may play a role in AD pathology, which warrants larger future investigations.
Collapse
Affiliation(s)
- YingYing Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - LinLin Xu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Min Han
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - XiangTian Liu
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Fan Li
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - XiaoYan Zhou
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| | - Yun Wang
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China.
| | - JianZhong Bi
- Department of Neurology Medicine, Second Hospital of Shandong University, Jinan, 250033, China
| |
Collapse
|
20
|
The role of DNA methylation and hydroxymethylation in immunosenescence. Ageing Res Rev 2019; 51:11-23. [PMID: 30769150 DOI: 10.1016/j.arr.2019.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
A healthy functioning immune system is critical to stave off infectious diseases, but as humans and other organisms age, their immune systems decline. As a result, diseases that were readily thwarted in early life pose nontrivial harm and can even be deadly in late life. Immunosenescence is defined as the general deterioration of the immune system with age, and it is characterized by functional changes in hematopoietic stem cells (HSCs) and specific blood cell types as well as changes in levels of numerous factors, particularly those involved in inflammation. Potential mechanisms underlying immunosenescence include epigenetic changes such as changes in DNA methylation (DNAm) and DNA hydroxymethylation (DNAhm) that occur with age. The purpose of this review is to describe what is currently known about the relationship between immunosenescence and the age-related changes to DNAm and DNAhm, and to discuss experimental approaches best suited to fill gaps in our understanding.
Collapse
|
21
|
Montesanto A, D'Aquila P, Rossano V, Passarino G, Bellizzi D. Mini Nutritional Assessment Scores Indicate Higher Risk for Prospective Mortality and Contrasting Correlation With Age-Related Epigenetic Biomarkers. Front Endocrinol (Lausanne) 2019; 10:672. [PMID: 31632350 PMCID: PMC6779723 DOI: 10.3389/fendo.2019.00672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023] Open
Abstract
The plasticity of the individual epigenetic landscape that goes to countless rearrangements throughout life is closely the reflection of environmental factors such as chemical exposure, socio-economic status and nutrient intakes both early and late in life. The Mini Nutritional Assessment (MNA) is a well-validated tool for assessing malnutrition in old people. It includes 6 (MNA-SF) or 18 (MNA-LF) self-reported questions derived from general, anthropometric, dietary, and self- assessment. We evaluated the association between the nutritional status, as measured by MNA, and methylation biomarkers we previously demonstrated to be associated with chronological and biological age in human. We found that malnutrition is positively correlated with DNA methylation status at the global level, in line with our previous reports. On the contrary, most of the sites located within specific genes, which were previously reported to be correlated with chronological and biological aging, showed to be not affected by malnutrition, or even to have correlations with malnutrition opposite to those previously reported with frailty. These results may suggest that malnutrition is among the first effects of disability and other age- related problems and a generalized non-specific epigenetic remodeling may be the initial response of the organism. By contrast, the fine remodeling of specific genomic sites is scarcely affected by malnutrition and may respond to a more complex interaction of different factors. Therefore, although malnutrition in the elderly is certainly a risk factor for survival, this is partially independent of the aging process of the organism which leads to the methylation remodeling previously described to measure chronological and biological aging.
Collapse
|
22
|
Coppedè F, Stoccoro A. Mitoepigenetics and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2019; 10:86. [PMID: 30837953 PMCID: PMC6389613 DOI: 10.3389/fendo.2019.00086] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial impairment and increased oxidative stress are common features in neurodegenerative disorders, leading researchers to speculate that epigenetic changes in the mitochondrial DNA (mitoepigenetics) could contribute to neurodegeneration. The few studies performed so far to address this issue revealed impaired methylation levels of the mitochondrial regulatory region (D-loop region) in both animal models, postmortem brain regions, or circulating blood cells of patients with Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Those studies also revealed that mtDNA D-loop methylation levels are subjected to a dynamic regulation within the progression of the neurodegenerative process, could be affected by certain neurodegenerative disease-causative mutations, and are inversely correlated with the mtDNA copy number. The methylation levels of other mtDNA regions than the D-loop have been scarcely investigated in human specimens from patients with neurodegenerative disorders or in animal models of the disease, and evidence of impaired methylation levels is often limited to a single study, making it difficult to clarify their correlation with mitochondrial dynamics and gene expression levels in these disorders. Overall, the preliminary results of the studies performed so far are encouraging making mitoepigenetics a timely and attractive field of investigation, but additional research is warranted to clarify the connections among epigenetic changes occurring in the mitochondrial genome, mitochondrial DNA dynamics and gene expression, and the neurodegenerative process.
Collapse
|
23
|
Ren Y, Feng X, Xia X, Zhang Y, Zhang W, Su J, Wang Z, Xu Y, Zhou F. Gender specificity improves the early-stage detection of clear cell renal cell carcinoma based on methylomic biomarkers. Biomark Med 2018; 12:607-618. [PMID: 29707986 DOI: 10.2217/bmm-2018-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM The two genders are different ranging from the molecular to the phenotypic levels. But most studies did not use this important information. We hypothesize that the integration of gender information may improve the overall prediction accuracy. MATERIALS & METHODS A comprehensive comparative study was carried out to test the hypothesis. The classification of the stages I + II versus III + IV of the clear cell renal cell carcinoma samples was formulated as an example. RESULTS & CONCLUSION In most cases, female-specific model significantly outperformed both-gender model, as similarly for the male-specific model. Our data suggested that gender information is essential for building biomedical classification models and even a simple strategy of building two gender-specific models may outperform the gender-mixed model.
Collapse
Affiliation(s)
- Yanjiao Ren
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.,College of Information Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xin Feng
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Xin Xia
- College of Software, Jilin University, Changchun, Jilin 130012, China
| | - Yexian Zhang
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Wenniu Zhang
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhongyu Wang
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Ying Xu
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.,Computational Systems Biology Lab, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA.,College of Public Health, Jilin University, Changchun, Jilin 130012, China
| | - Fengfeng Zhou
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
24
|
Silva MBD, Melo ARDS, Costa LDA, Barroso H, Oliveira NFPD. Global and gene-specific DNA methylation and hydroxymethylation in human skin exposed and not exposed to sun radiation. An Bras Dermatol 2018; 92:793-800. [PMID: 29364434 PMCID: PMC5786392 DOI: 10.1590/abd1806-4841.20175875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/07/2016] [Indexed: 12/19/2022] Open
Abstract
Background epigenomes can be influenced by environmental factors leading to the
development of diseases. Objective To investigate the influence of sun exposure on global DNA methylation and
hydroxymethylation status and at specific sites of the miR-9-1, miR-9-3 and
MTHFR genes in skin samples of subjects with no history of skin
diseases. Methods Skin samples were obtained by punch on sun-exposed and sun-protected arm
areas from 24 corpses of 16-89 years of age. Genomic DNA was extracted from
skin samples that were ranked according to Fitzpatrick's criteria as light,
moderate, and dark brown. Global DNA methylation and hydroxymethylation and
DNA methylation analyses at specific sites were performed using ELISA and
MSP, respectively. Results No significant differences in global DNA methylation and hydroxymethylation
levels were found among the skin areas, skin types, or age. However,
gender-related differences were detected, where women showed higher
methylation levels. Global DNA methylation levels were higher than
hydroxymethylation levels, and the levels of these DNA modifications
correlated in skin tissue. For specific sites, no differences among the
areas were detected. Additional analyses showed no differences in the
methylation status when age, gender, and skin type were considered; however,
the methylation status of the miR-9-1 gene seems to be gender related. Study limitations there was no separation of dermis and epidermis and low sample size. Conclusion sun exposure does not induce changes in the DNA methylation and
hydroxymethylation status or in miR-9-1, miR-9-3 and MTHFR genes for the
studied skin types.
Collapse
Affiliation(s)
- Mikaelly Batista da Silva
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Alanne Rayssa da Silva Melo
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Ludimila de Araújo Costa
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Haline Barroso
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| | - Naila Francis Paulo de Oliveira
- Center for Exact Sciences and Nature, Post-graduate Program in Cellular and Molecular Biology, Universidade Federal da Paraíba (UFPB) -Paraíba, (PB), Brazil
| |
Collapse
|
25
|
Han X, Zhao Z, Zhang M, Li G, Yang C, Du F, Wang J, Zhang Y, Wang Y, Jia Y, Li B, Sun Y. Maternal trans-general analysis of the human mitochondrial DNA pattern. Biochem Biophys Res Commun 2017; 493:643-649. [PMID: 28865962 DOI: 10.1016/j.bbrc.2017.08.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023]
Abstract
There is an intimate connection between mitochondrial DNA (mtDNA) methylation and some diseases, such as cancer. MtDNA is almost strictly maternally inherited. However, whether the aberrant mtDNA methylation involved in breast cancer progression and whether mtDNA methylation can be transmitted through maternal line are poorly understood. Here we applied bisulfite sequencing to global mitochondrial DNA and whole genomic DNA methylation array from fifteen members of five three-female-generation families with one breast cancer patient in each family. We found that mtDNA methylation was maternally inherited in D-loop region and eight aberrant mtDNA methylation sites were correlated with breast cancer. Furthermore, conjoint analysis showed that mtDNA methylation sites could be potential biomarkers combined with nuclear DNA methylation sites for breast cancer risk prediction.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zitong Zhao
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjie Zhang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guochao Li
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caiyun Yang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Du
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyun Wang
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yuanyuan Wang
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Tianjin 300060, China
| | - Binghui Li
- Laboratory of Cancer Cell Biology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yingli Sun
- Key Laboratory of Genomic and Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
26
|
Novielli C, Mandò C, Tabano S, Anelli GM, Fontana L, Antonazzo P, Miozzo M, Cetin I. Mitochondrial DNA content and methylation in fetal cord blood of pregnancies with placental insufficiency. Placenta 2017. [PMID: 28623975 DOI: 10.1016/j.placenta.2017.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Intrauterine growth restriction (IUGR) and preeclampsia (PE) are pregnancy disorders characterized by placental insufficiency with oxygen/nutrient restriction and oxidative stress, all influencing mitochondria functionality and number. Moreover, IUGR and PE fetuses are predisposed to diseases later in life, and this might occur through epigenetic alterations. Here we analyze content and methylation of mitochondrial DNA (mtDNA), for the first time in IUGR and PE singleton fetuses, to identify possible alterations in mtDNA levels and/or epigenetic control of mitochondrial loci relevant to replication (D-loop) and functionality (mt-TF/RNR1: protein synthesis, mt-CO1: respiratory chain complex). METHODS We studied 35 term and 8 preterm control, 31 IUGR, 17 PE/IUGR and 17 PE human singleton pregnancies with elective cesarean delivery. Fetal cord blood was collected and evaluated for biochemical parameters. Extracted DNA was subjected to Real-time PCR to assess mtDNA content and analyzed for D-loop, mt-TF/RNR1 and mt-CO1 methylation by bisulfite conversion and pyrosequencing. RESULTS mtDNA levels were increased in all pathologic groups compared to controls. Mitochondrial loci showed very low methylation levels in all samples; D-loop methylation was further decreased in the most severe cases and associated to umbilical vein pO2. mt-CO1 methylation levels inversely correlated to mtDNA content. DISCUSSION Increased mtDNA levels in IUGR, PE/IUGR and PE cord blood may denote a fetal response to placental insufficiency. Hypomethylation of D-loop, mt-TF/RNR1 and mt-CO1 loci confirms their relevance in pregnancy.
Collapse
Affiliation(s)
- Chiara Novielli
- "L. Sacco" Department of Biomedical and Clinical Sciences, Laboratory of Maternal-Fetal Translational Research "Giorgio Pardi", Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Chiara Mandò
- "L. Sacco" Department of Biomedical and Clinical Sciences, Laboratory of Maternal-Fetal Translational Research "Giorgio Pardi", Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Silvia Tabano
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via F. Sforza 35, 20122 Milano, Italy
| | - Gaia M Anelli
- "L. Sacco" Department of Biomedical and Clinical Sciences, Laboratory of Maternal-Fetal Translational Research "Giorgio Pardi", Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy
| | - Laura Fontana
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via F. Sforza 35, 20122 Milano, Italy
| | - Patrizio Antonazzo
- Department of Mother and Child, Luigi Sacco Hospital, via G.B. Grassi 74, 20157 Milano, Italy
| | - Monica Miozzo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via F. Sforza 35, 20122 Milano, Italy
| | - Irene Cetin
- "L. Sacco" Department of Biomedical and Clinical Sciences, Laboratory of Maternal-Fetal Translational Research "Giorgio Pardi", Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; Department of Mother and Child, Luigi Sacco Hospital, via G.B. Grassi 74, 20157 Milano, Italy.
| |
Collapse
|
27
|
Bacalini MG, D'Aquila P, Marasco E, Nardini C, Montesanto A, Franceschi C, Passarino G, Garagnani P, Bellizzi D. The methylation of nuclear and mitochondrial DNA in ageing phenotypes and longevity. Mech Ageing Dev 2017; 165:156-161. [PMID: 28115210 DOI: 10.1016/j.mad.2017.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/29/2016] [Accepted: 01/16/2017] [Indexed: 12/28/2022]
Abstract
An increasing body of data is progressively indicating that the comprehension of the epigenetic landscape, actively integrated with the genetic elements, is crucial to delineate the molecular basis of the inter-individual complexity of ageing process. Indeed, it has emerged that DNA methylation changes occur during ageing, consisting mainly in a progressive process of genome demethylation, in a hypermethylation of gene-specific CpG dinucleotides, as well as in an inter-individual divergence of the epigenome due to stochastic events and environmental exposures throughout life, namely as epigenetic drift. Additionally, it has also come to light an implication of the mitochondrial genome in the regulation of the intracellular epigenetic landscape, as demonstrated by the being itself object of epigenetic modifications. An overview of DNA methylation changes occurring during ageing process at both nuclear and mitochondrial level will be described in this review, also taking into account the recent and promising data available on the 5-hydroxymethylcytosine.
Collapse
Affiliation(s)
- Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | | | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 1/8, 40139 Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy; Applied Biomedical Research Center, S.Orsola-Malpighi Polyclinic, 40138 Bologna, Italy; Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|