1
|
Habtamu K, Getachew H, Abossie A, Demissew A, Tsegaye A, Degefa T, Zhong D, Wang X, Lee MC, Zhou G, Kibret S, King CL, Kazura JW, Petros B, Yewhalaw D, Yan G. Post-treatment transmissibility of Plasmodium falciparum infections: an observational cohort study. Malar J 2025; 24:87. [PMID: 40098038 PMCID: PMC11917023 DOI: 10.1186/s12936-025-05279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/01/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Strengthening malaria control and expediting progress toward elimination requires targeting gametocytes to interrupt transmission. Artemisinin-based combination therapy (ACT) effectively clears Plasmodium falciparum asexual parasites and immature gametocytes but has a limited impact on mature gametocytes, which mosquitoes ingest during a blood meal. To address this gap, the World Health Organization recommends adding a single low dose of primaquine (PQ) to ACT regimens. This study assessed the efficacy of a single low-dose PQ for P. falciparum gametocyte clearance and evaluated mosquito infectiousness in Ethiopia. METHODS A prospective cohort study was conducted using passive case detection to enrol individuals with uncomplicated P. falciparum malaria at six health facilities. Participants were treated with either ACT alone or ACT plus 0.25 mg/kg single-dose PQ (ACT + PQ) and followed for 28 days with weekly visits. Blood smears for parasite counts, filter paper samples for DNA isolation, and whole blood for RNA preservation were collected on days 0, 7, 14, 21, and 28. On day 7, venous blood was obtained for membrane feeding assays using the Hemotek® system to assess mosquito infection. Logistic regression analysed mosquito infection predictors, while gametocyte prevalence was compared between treatment arms using χ2 or Fisher's exact tests. RESULTS Of 304 screened patients, 192 were enroled, with a median age of 23 (IQR 17-30) years; 65.7% were male. Post-treatment, 11 human-to-mosquito transmission cases were identified on day 7. Participants receiving ACT + SLD-PQ were significantly less likely to be infectious on day 7 (OR 0.12, 95% CI 0.02-0.57, p = 0.008) and had a significantly reduced prevalence of gametocytes (OR 0.22, 95% CI 0.06-0.83, p = 0.026) compared to those receiving ACT alone. CONCLUSION A single course of low-dose primaquine (PQ) given with ACT significantly decreases the prevalence of gametocytaemia. Furthermore, membrane-feeding assays show that this combination also considerably lowers mosquito infection, confirming existing knowledge and emphasizing the promise of low-dose PQ as a successful transmission-blocking strategy in managing malaria.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, Menelik II Medical and Health Science College, Addis Ababa, Ethiopia.
| | - Hallelujah Getachew
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Ashenafi Abossie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Arega Tsegaye
- College of Natural Science, Department of Biology, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Solomon Kibret
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Christopher L King
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James W Kazura
- Center for Global Health and Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Beyene Petros
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
2
|
Ouologuem DT, Dara A, Kone A, Ouattara A, Djimde AA. Plasmodium falciparum Development from Gametocyte to Oocyst: Insight from Functional Studies. Microorganisms 2023; 11:1966. [PMID: 37630530 PMCID: PMC10460021 DOI: 10.3390/microorganisms11081966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.
Collapse
Affiliation(s)
- Dinkorma T. Ouologuem
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Antoine Dara
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Aminatou Kone
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| | - Amed Ouattara
- Malaria Research Program, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center, Faculty of Pharmacy, Faculty of Medicine and Dentistry, University of Sciences, Techniques, and Technologies of Bamako, Bamako 1805, Mali
| |
Collapse
|
3
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
4
|
Cruz Camacho A, Kiper E, Oren S, Zaharoni N, Nir N, Soffer N, Noy Y, Ben David B, Rivkin A, Rotkopf R, Michael D, Carvalho TG, Regev-Rudzki N. High-throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors 2023; 16:14. [PMID: 36639683 PMCID: PMC9838061 DOI: 10.1186/s13071-022-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Edo Kiper
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sonia Oren
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nir Zaharoni
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Netta Nir
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noam Soffer
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Noy
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Bar Ben David
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anna Rivkin
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ron Rotkopf
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Michael
- grid.13992.300000 0004 0604 7563Feinberg Graduate School, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Teresa G. Carvalho
- grid.1018.80000 0001 2342 0938Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086 Australia
| | - Neta Regev-Rudzki
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
5
|
Pattaradilokrat S, Wu J, Xu F, Su XZ. The origins, isolation, and biological characterization of rodent malaria parasites. Parasitol Int 2022; 91:102636. [PMID: 35926694 PMCID: PMC9465976 DOI: 10.1016/j.parint.2022.102636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
Abstract
Rodent malaria parasites have been widely used in all aspects of malaria research to study parasite development within rodent and insect hosts, drug resistance, disease pathogenesis, host immune response, and vaccine efficacy. Rodent malaria parasites were isolated from African thicket rats and initially characterized by scientists at the University of Edinburgh, UK, particularly by Drs. Richard Carter, David Walliker, and colleagues. Through their efforts and elegant work, many rodent malaria parasite species, subspecies, and strains are now available. Because of the ease of maintaining these parasites in laboratory mice, genetic crosses can be performed to map the parasite and host genes contributing to parasite growth and disease severity. Recombinant DNA technologies are now available to manipulate the parasite genomes and to study gene functions efficiently. In this chapter, we provide a brief history of the isolation and species identification of rodent malaria parasites. We also discuss some recent studies to further characterize the different developing stages of the parasites including parasite genomes and chromosomes. Although there are differences between rodent and human malaria parasite infections, the knowledge gained from studies of rodent malaria parasites has contributed greatly to our understanding of and the fight against human malaria.
Collapse
Affiliation(s)
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
ApiAP2 Gene-Network Regulates Gametocytogenesis in Plasmodium Parasites. Cell Microbiol 2022. [DOI: 10.1155/2022/5796578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Malaria is a mosquito-borne infectious disease, caused by unicellular Apicomplexan protozoa of the genus Plasmodium. The sexual stage of Plasmodium is one of the most fascinating aspects of the Plasmodium life cycle, yet relatively less explored until now. The production of sexually fit gametocytes through gametocytogenesis is essential to the transmission of the Plasmodium parasite into an anopheline mosquito vector. Understanding how gametocytogenesis is regulated promotes the identification of novel drug targets and also the development of transmission-blocking vaccines that would help reduce the disease burden in endemic areas. Transcriptional regulation in Plasmodium parasites is primarily controlled by a family of twenty-seven Apicomplexan Apetela 2 (ApiAP2) genes which act in a cascade to enable the parasite to progress through its asexual replication as well as gametocytogenesis. Here, we review the latest progress made on members of the ApiAP2 family characterized as key players of the transcriptional machinery of gametocytes. Further, we will highlight the transcriptional regulation network of ApiAP2 genes at each stage of gametocytogenesis.
Collapse
|
7
|
Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines 2021; 6:140. [PMID: 34845210 PMCID: PMC8630063 DOI: 10.1038/s41541-021-00401-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Despite considerable effort, malaria remains a major public health burden. Malaria is caused by five Plasmodium species and is transmitted to humans via the female Anopheles mosquito. The development of malaria vaccines against the liver and blood stages has been challenging. Therefore, malaria elimination strategies advocate integrated measures, including transmission-blocking approaches. Designing an effective transmission-blocking strategy relies on a sophisticated understanding of the molecular mechanisms governing the interactions between the mosquito midgut molecules and the malaria parasite. Here we review recent advances in the biology of malaria transmission, focusing on molecular interactions between Plasmodium and Anopheles mosquito midgut proteins. We provide an overview of parasite and mosquito proteins that are either targets for drugs currently in clinical trials or candidates of promising transmission-blocking vaccines.
Collapse
Affiliation(s)
- Yacob Keleta
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Julian Ramelow
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Liwang Cui
- College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
8
|
Rawat M, Srivastava A, Johri S, Gupta I, Karmodiya K. Single-Cell RNA Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature Stress in Synchronized Plasmodium falciparum Cells. Microbiol Spectr 2021; 9:e0000821. [PMID: 34232098 PMCID: PMC8552519 DOI: 10.1128/spectrum.00008-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The malaria parasite has a complex life cycle exhibiting phenotypic and morphogenic variations in two different hosts by existing in heterogeneous developmental states. To investigate this cellular heterogeneity of the parasite within the human host, we performed single-cell RNA sequencing of synchronized Plasmodium cells under control and temperature treatment conditions. Using the Malaria Cell Atlas (https://www.sanger.ac.uk/science/tools/mca) as a guide, we identified 9 subtypes of the parasite distributed across known intraerythrocytic stages. Interestingly, temperature treatment results in the upregulation of the AP2-G gene, the master regulator of sexual development in a small subpopulation of the parasites. Moreover, we identified a heterogeneous stress-responsive subpopulation (clusters 5, 6, and 7 [∼10% of the total population]) that exhibits upregulation of stress response pathways under normal growth conditions. We also developed an online exploratory tool that will provide new insights into gene function under normal and temperature stress conditions. Thus, our study reveals important insights into cell-to-cell heterogeneity in the parasite population under temperature treatment that will be instrumental toward a mechanistic understanding of cellular adaptation and population dynamics in Plasmodium falciparum. IMPORTANCE The malaria parasite has a complex life cycle exhibiting phenotypic variations in two different hosts accompanied by cell-to-cell variability that is important for stress tolerance, immune evasion, and drug resistance. To investigate cellular heterogeneity determined by gene expression, we performed single-cell RNA sequencing (scRNA-seq) of about 12,000 synchronized Plasmodium cells under physiologically relevant normal (37°C) and temperature stress (40°C) conditions phenocopying the cyclic bouts of fever experienced during malarial infection. In this study, we found that parasites exhibit transcriptional heterogeneity in an otherwise morphologically synchronized culture. Also, a subset of parasites is continually committed to gametocytogenesis and stress-responsive pathways. These observations have important implications for understanding the mechanisms of drug resistance generation and vaccine development against the malaria parasite.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Ashish Srivastava
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Shreya Johri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| |
Collapse
|
9
|
Schneider P, Reece SE. The private life of malaria parasites: Strategies for sexual reproduction. Mol Biochem Parasitol 2021; 244:111375. [PMID: 34023299 PMCID: PMC8346949 DOI: 10.1016/j.molbiopara.2021.111375] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
Malaria parasites exhibit a complex lifecycle, requiring extensive asexual replication in the liver and blood of the vertebrate host, and in the haemocoel of the insect vector. Yet, they must also undergo a single round of sexual reproduction, which occurs in the vector's midgut upon uptake of a blood meal. Sexual reproduction is obligate for infection of the vector and thus, is essential for onwards transmission to new hosts. Sex in malaria parasites involves several bottlenecks in parasite number, making the stages involved attractive targets for blocking disease transmission. Malaria parasites have evolved a suite of adaptations ("strategies") to maximise the success of sexual reproduction and transmission, which could undermine transmission-blocking interventions. Yet, understanding parasite strategies may also reveal novel opportunities for such interventions. Here, we outline how evolutionary and ecological theories, developed to explain reproductive strategies in multicellular taxa, can be applied to explain two reproductive strategies (conversion rate and sex ratio) expressed by malaria parasites within the vertebrate host.
Collapse
Affiliation(s)
- Petra Schneider
- Institute of Evolutionary Biology, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Evolutionary Biology, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Reproduction in Trypanosomatids: Past and Present. BIOLOGY 2021; 10:biology10060471. [PMID: 34071741 PMCID: PMC8230138 DOI: 10.3390/biology10060471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary The reproduction of trypanosomatids is a fundamental issue for host–parasite interaction, and its biological importance lies in knowing how these species acquire new defense mechanisms against the countermeasures imposed by the host, which is consistent with the theory of the endless race or the Red Queen hypothesis for the existence of meiotic sex. Moreover, the way these species re-produce may also be at the origin of novel and more virulent clades and is relevant from a thera-peutic or vaccination point of view, as sex may contribute to increased tolerance and even to the rapid acquisition of drug resistance mechanisms. Kinetoplastids are single-celled organisms, many of them being responsible for important parasitic diseases, globally termed neglected diseases, which are endemic in low-income countries. Leishmaniasis, African (sleeping sickness) and American trypanosomiasis (Chagas disease) caused by trypanosomatids are among the most ne-glected tropical scourges related to poverty and poor health systems. The reproduction of these microorganisms has long been considered to be clonal due to population genetic observations. However, there is increasing evidence of true sex and genetic exchange events under laboratory conditions. We would like to highlight the importance of this topic in the field of host/parasite in-terplay, virulence, and drug resistance. Abstract Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.
Collapse
|
11
|
Shifts in gene expression variability in the blood-stage of Plasmodium relictum. Gene 2021; 792:145723. [PMID: 34019936 DOI: 10.1016/j.gene.2021.145723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/22/2022]
Abstract
Avian malaria is a common and widespread disease of birds caused by a diverse group of pathogens of the genera Plasmodium. We investigated the transcriptomal profiles of one of the most common species, Plasmodium relictum, lineage SGS1, at multiple timepoints during the blood stages of the infection under experimental settings. The parasite showed well separated overall transcriptome profiles between day 8 and 20 after the infection, shown by well separated PCA profiles. Moreover, gene expression becomes more heterogenous within the experimental group late in the infection, either due to adaptations to individual differences between the experimental hosts, or due to desynchronisation of the life-cycle of the parasite. Overall, this study shows how the avian malaria system can be used to study gene expression of the avian Plasmodium parasite under controlled experimental settings, thus allowing for future comparative analysis of gene responses of parasite with different life-history traits and host effects.
Collapse
|
12
|
Singh S, Santos JM, Orchard LM, Yamada N, van Biljon R, Painter HJ, Mahony S, Llinás M. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation. Mol Microbiol 2021; 115:1005-1024. [PMID: 33368818 PMCID: PMC8330521 DOI: 10.1111/mmi.14676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Differentiation from asexual blood stages to mature sexual gametocytes is required for the transmission of malaria parasites. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3,000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-G2 bound genes are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Collapse
Affiliation(s)
- Suprita Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Joana M. Santos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Naomi Yamada
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| | - Riëtte van Biljon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Heather J. Painter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| |
Collapse
|
13
|
Kumar V, Behl A, Sharma R, Sharma A, Hora R. Plasmodium helical interspersed subtelomeric family-an enigmatic piece of the Plasmodium biology puzzle. Parasitol Res 2019; 118:2753-2766. [PMID: 31418110 DOI: 10.1007/s00436-019-06420-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
Abstract
Plasmodium falciparum (Pf) refurbishes the infected erythrocytes by exporting a myriad of parasite proteins to the host cell. A novel exported protein family 'Plasmodium Helical Interspersed Subtelomeric' (PHIST) has gained attention for its significant roles in parasite biology. Here, we have collected and analysed available information on PHIST members to enhance understanding of their functions, varied localization and structure-function correlation. Functional diversity of PHIST proteins is highlighted by their involvement in PfEMP1 (Pf erythrocyte membrane protein 1) expression, trafficking and switching. This family also contributes to cytoadherence, gametocytogenesis, host cell modification and generation of extracellular vesicles. While the PHIST domain forms the hallmark of this family, existence and functions of additional domains (LyMP, TIGR01639) and the MEC motif underscores its diversity further. Since specific PHIST proteins seem to form pairs with PfEMP1 members, we have used in silico tools to predict such potential partners in Pf. This information and our analysis of structural data on a PHIST member provide important insights into their functioning. This review overall enables readers to view the PHIST family comprehensively, while highlighting key knowledge gaps in the field.
Collapse
Affiliation(s)
- Vikash Kumar
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Ankita Behl
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachana Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aanchal Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rachna Hora
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India.
| |
Collapse
|
14
|
Zhu X, Sun L, He Y, Wei H, Hong M, Liu F, Liu Q, Cao Y, Cui L. Plasmodium berghei serine/threonine protein phosphatase PP5 plays a critical role in male gamete fertility. Int J Parasitol 2019; 49:685-695. [DOI: 10.1016/j.ijpara.2019.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
15
|
Burns AL, Dans MG, Balbin JM, de Koning-Ward TF, Gilson PR, Beeson JG, Boyle MJ, Wilson DW. Targeting malaria parasite invasion of red blood cells as an antimalarial strategy. FEMS Microbiol Rev 2019; 43:223-238. [PMID: 30753425 PMCID: PMC6524681 DOI: 10.1093/femsre/fuz005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Plasmodium spp. parasites that cause malaria disease remain a significant global-health burden. With the spread of parasites resistant to artemisinin combination therapies in Southeast Asia, there is a growing need to develop new antimalarials with novel targets. Invasion of the red blood cell by Plasmodium merozoites is essential for parasite survival and proliferation, thus representing an attractive target for therapeutic development. Red blood cell invasion requires a co-ordinated series of protein/protein interactions, protease cleavage events, intracellular signals, organelle release and engagement of an actin-myosin motor, which provide many potential targets for drug development. As these steps occur in the bloodstream, they are directly susceptible and exposed to drugs. A number of invasion inhibitors against a diverse range of parasite proteins involved in these different processes of invasion have been identified, with several showing potential to be optimised for improved drug-like properties. In this review, we discuss red blood cell invasion as a drug target and highlight a number of approaches for developing antimalarials with invasion inhibitory activity to use in future combination therapies.
Collapse
Affiliation(s)
- Amy L Burns
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | - Madeline G Dans
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Deakin University, School of Medicine, Waurn Ponds, Victoria, Australia 3216
| | - Juan M Balbin
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia 3004
| | - James G Beeson
- Burnet Institute, Melbourne, Victoria, Australia 3004.,Central Clinical School and Department of Microbiology, Monash University 3004.,Department of Medicine, University of Melbourne, Australia 3052
| | - Michelle J Boyle
- Burnet Institute, Melbourne, Victoria, Australia 3004.,QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia 4006
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia 5005.,Burnet Institute, Melbourne, Victoria, Australia 3004
| |
Collapse
|
16
|
Adaptive plasticity in the gametocyte conversion rate of malaria parasites. PLoS Pathog 2018; 14:e1007371. [PMID: 30427935 PMCID: PMC6261640 DOI: 10.1371/journal.ppat.1007371] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/28/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022] Open
Abstract
Sexually reproducing parasites, such as malaria parasites, experience a trade-off between the allocation of resources to asexual replication and the production of sexual forms. Allocation by malaria parasites to sexual forms (the conversion rate) is variable but the evolutionary drivers of this plasticity are poorly understood. We use evolutionary theory for life histories to combine a mathematical model and experiments to reveal that parasites adjust conversion rate according to the dynamics of asexual densities in the blood of the host. Our model predicts the direction of change in conversion rates that returns the greatest fitness after perturbation of asexual densities by different doses of antimalarial drugs. The loss of a high proportion of asexuals is predicted to elicit increased conversion (terminal investment), while smaller losses are managed by reducing conversion (reproductive restraint) to facilitate within-host survival and future transmission. This non-linear pattern of allocation is consistent with adaptive reproductive strategies observed in multicellular organisms. We then empirically estimate conversion rates of the rodent malaria parasite Plasmodium chabaudi in response to the killing of asexual stages by different doses of antimalarial drugs and forecast the short-term fitness consequences of these responses. Our data reveal the predicted non-linear pattern, and this is further supported by analyses of previous experiments that perturb asexual stage densities using drugs or within-host competition, across multiple parasite genotypes. Whilst conversion rates, across all datasets, are most strongly influenced by changes in asexual density, parasites also modulate conversion according to the availability of red blood cell resources. In summary, increasing conversion maximises short-term transmission and reducing conversion facilitates in-host survival and thus, future transmission. Understanding patterns of parasite allocation to reproduction matters because within-host replication is responsible for disease symptoms and between-host transmission determines disease spread. Malaria parasites in the host replicate asexually and, during each replication cycle, some asexuals transform into sexual stages that enable between-host transmission. It is not understood why the rate of conversion to sexual stages varies during infections despite its importance for the severity and spread of the disease. We combined a mathematical model and experiments to show that parasites adjust conversion rates depending on changes in their in-host population size. When population sizes plummet, between-host transmission is prioritised. However, smaller losses in number elicit reproductive restraint, which facilitates in-host survival and future transmission. We show that increased and decreased conversion in response to a range of in-host environments are actually part of one continuum: a sophisticated reproductive strategy similar to that of multicellular organisms.
Collapse
|
17
|
Josling GA, Williamson KC, Llinás M. Regulation of Sexual Commitment and Gametocytogenesis in Malaria Parasites. Annu Rev Microbiol 2018; 72:501-519. [PMID: 29975590 DOI: 10.1146/annurev-micro-090817-062712] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sexual differentiation of malaria parasites from the asexual blood stage into gametocytes is an essential part of the life cycle, as gametocytes are the form that is taken up by the mosquito host. Because of the essentiality of this process for transmission to the mosquito, gametocytogenesis is an extremely attractive target for therapeutic interventions. The subject of this review is the considerable progress that has been made in recent years in elucidating the molecular mechanisms governing this important differentiation process. In particular, a number of critical transcription factors and epigenetic regulators have emerged as crucial elements in the regulation of commitment. The identification of these factors has allowed us to understand better than ever before the events occurring prior to and during commitment to sexual development and offers potential for new therapeutic interventions.
Collapse
Affiliation(s)
- Gabrielle A Josling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Kim C Williamson
- Microbiology and Immunology Department, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA; .,Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
18
|
Abstract
In the mosquito-human life cycle, the six species of malaria parasites infecting humans (Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale wallickeri, Plasmodium ovale curtisi, Plasmodium malariae, and Plasmodium knowlesi) undergo 10 or more morphological states, replicate from single to 10,000+ cells, and vary in total population from one to many more than 106 organisms. In the human host, only a small number of these morphological stages lead to clinical disease and the vast majority of all malaria-infected patients in the world produce few (if any) symptoms in the human. Human clinical disease (e.g., fever, anemia, coma) is the result of the parasite preprogrammed biology in concert with the human pathophysiological response. Caveats and corollaries that add variation to this host-parasite interaction include parasite genetic diversity of key proteins, coinfections, comorbidities, delays in treatment, human polymorphisms, and environmental determinants.
Collapse
Affiliation(s)
- Danny A Milner
- Harvard T.H. Chan School of Public Health, American Society for Clinical Pathology, Center for Global Health, Chicago, Illinois 60603
| |
Collapse
|
19
|
Painter HJ, Carrasquilla M, Llinás M. Capturing in vivo RNA transcriptional dynamics from the malaria parasite Plasmodium falciparum. Genome Res 2017; 27:1074-1086. [PMID: 28416533 PMCID: PMC5453321 DOI: 10.1101/gr.217356.116] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
Abstract
To capture the transcriptional dynamics within proliferating cells, methods to differentiate nascent transcription from preexisting mRNAs are desired. One approach is to label newly synthesized mRNA transcripts in vivo through the incorporation of modified pyrimidines. However, the human malaria parasite, Plasmodium falciparum, is incapable of pyrimidine salvage for mRNA biogenesis. To capture cellular mRNA dynamics during Plasmodium development, we engineered parasites that can salvage pyrimidines through the expression of a single bifunctional yeast fusion gene, cytosine deaminase/uracil phosphoribosyltransferase (FCU). We show that expression of FCU allows for the direct incorporation of thiol-modified pyrimidines into nascent mRNAs. Using developmental stage-specific promoters to express FCU-GFP enables the biosynthetic capture and in-depth analysis of mRNA dynamics from subpopulations of cells undergoing differentiation. We demonstrate the utility of this method by examining the transcriptional dynamics of the sexual gametocyte stage transition, a process that is essential to malaria transmission between hosts. Using the pfs16 gametocyte-specific promoter to express FCU-GFP in 3D7 parasites, we found that sexual stage commitment is governed by transcriptional reprogramming and stabilization of a subset of essential gametocyte transcripts. We also measured mRNA dynamics in F12 gametocyte-deficient parasites and demonstrate that the transcriptional program required for sexual commitment and maturation is initiated but likely aborted due to the absence of the PfAP2-G transcriptional regulator and a lack of gametocyte-specific mRNA stabilization. Biosynthetic labeling of Plasmodium mRNAs is incredibly versatile, can be used to measure transcriptional dynamics at any stage of parasite development, and will allow for future applications to comprehensively measure RNA-protein interactions in the malaria parasite.
Collapse
Affiliation(s)
- Heather J Painter
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Manuela Carrasquilla
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Jalovecka M, Bonsergent C, Hajdusek O, Kopacek P, Malandrin L. Stimulation and quantification of Babesia divergens gametocytogenesis. Parasit Vectors 2016; 9:439. [PMID: 27502772 PMCID: PMC4977898 DOI: 10.1186/s13071-016-1731-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Babesia divergens is the most common blood parasite in Europe causing babesiosis, a tick-borne malaria-like disease. Despite an increasing focus on B. divergens, especially regarding veterinary and human medicine, the sexual development of Babesia is poorly understood. Development of Babesia sexual stages in the host blood (gametocytes) plays a decisive role in parasite acquisition by the tick vector. However, the exact mechanism of gametocytogenesis is still unexplained. METHODS Babesia divergens gametocytes are characterized by expression of bdccp1, bdccp2 and bdccp3 genes. Using previously described sequences of bdccp1, bdccp2 and bdccp3, we have established a quantitative real-time PCR (qRT-PCR) assay for detection and assessment of the efficiency of B. divergens gametocytes production in bovine blood. We analysed fluctuations in expression of bdccp genes during cultivation in vitro, as well as in cultures treated with different drugs and stimuli. RESULTS We demonstrated that all B. divergens clonal lines tested, originally derived from naturally infected cows, exhibited sexual stages. Furthermore, sexual commitment was stimulated during continuous growth of the cultures, by addition of specific stress-inducing drugs or by alternating cultivation conditions. Expression of bdccp genes was greatly reduced or even lost after long-term cultivation, suggesting possible problems in the artificial infections of ticks in feeding assays in vitro. CONCLUSIONS Our research provides insight into sexual development of B. divergens and may facilitate the development of transmission models in vitro, enabling a more detailed understanding of Babesia-tick interactions.
Collapse
Affiliation(s)
- Marie Jalovecka
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France. .,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France. .,Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, CZ-370 05, Ceske Budejovice, Czech Republic.
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| | - Ondrej Hajdusek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Petr Kopacek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, CZ-370 05, Ceske Budejovice, Czech Republic
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307, Nantes, France.,LUNAM University, Nantes-Atlantic College of Veterinary Medicine and Food Sciences and Engineering, UMR BioEpAR, F-44307, Nantes, France
| |
Collapse
|
21
|
Josling GA, Llinás M. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat Rev Microbiol 2015; 13:573-87. [DOI: 10.1038/nrmicro3519] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Sohn MB, An L, Pookhao N, Li Q. Accurate genome relative abundance estimation for closely related species in a metagenomic sample. BMC Bioinformatics 2014; 15:242. [PMID: 25027647 PMCID: PMC4131027 DOI: 10.1186/1471-2105-15-242] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 07/07/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Metagenomics has a great potential to discover previously unattainable information about microbial communities. An important prerequisite for such discoveries is to accurately estimate the composition of microbial communities. Most of prevalent homology-based approaches utilize solely the results of an alignment tool such as BLAST, limiting their estimation accuracy to high ranks of the taxonomy tree. RESULTS We developed a new homology-based approach called Taxonomic Analysis by Elimination and Correction (TAEC), which utilizes the similarity in the genomic sequence in addition to the result of an alignment tool. The proposed method is comprehensively tested on various simulated benchmark datasets of diverse complexity of microbial structure. Compared with other available methods designed for estimating taxonomic composition at a relatively low taxonomic rank, TAEC demonstrates greater accuracy in quantification of genomes in a given microbial sample. We also applied TAEC on two real metagenomic datasets, oral cavity dataset and Crohn's disease dataset. Our results, while agreeing with previous findings at higher ranks of the taxonomy tree, provide accurate estimation of taxonomic compositions at the species/strain level, narrowing down which species/strains need more attention in the study of oral cavity and the Crohn's disease. CONCLUSIONS By taking account of the similarity in the genomic sequence TAEC outperforms other available tools in estimating taxonomic composition at a very low rank, especially when closely related species/strains exist in a metagenomic sample.
Collapse
Affiliation(s)
- Michael B Sohn
- />Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ 85721 USA
| | - Lingling An
- />Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ 85721 USA
- />Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Naruekamol Pookhao
- />Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Qike Li
- />Interdisciplinary Program in Statistics, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
23
|
Carter LM, Schneider P, Reece SE. Information use and plasticity in the reproductive decisions of malaria parasites. Malar J 2014; 13:115. [PMID: 24670151 PMCID: PMC3986881 DOI: 10.1186/1475-2875-13-115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/23/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Investment in the production of transmissible stages (gametocytes) and their sex ratio are malaria parasite traits that underpin mosquito infectivity and are therefore central to epidemiology. Malaria parasites adjust their levels of investment into gametocytes and sex ratio in response to changes in the in-host environment (including red blood cell resource availability, host immune responses, competition from con-specific genotypes in mixed infections, and drug treatment). This plasticity appears to be adaptive (strategic) because parasites prioritize investment (in sexual versus asexual stages and male versus female stages) in manners predicted to maximize fitness. However, the information, or 'cues' that parasites use to detect environmental changes and make appropriate decisions about investment into gametocytes and their sex ratio are unknown. METHODS Single genotype Plasmodium chabaudi infections were exposed to 'cue' treatments consisting of intact or lysed uninfected red blood cells, lysed parasitized RBCs of the same clone or an unrelated clone, and an unmanipulated control. Infection dynamics (proportion of reticulocytes, red blood cell and asexual stage parasite densities) were monitored, and changes in gametocyte investment and sex ratio in response to cue treatments, applied either pre- or post-peak of infection were examined. RESULTS AND CONCLUSIONS A significant reduction in gametocyte density was observed in response to the presence of lysed parasite material and a borderline significant increase in sex ratio (proportion of male gametocytes) upon exposure to lysed red blood cells (both uninfected and infected) was observed. Furthermore, the changes in gametocyte density and sex ratio in response to these cues depend on the age of infection. Demonstrating that variation in gametocyte investment and sex ratio observed during infections are a result of parasite strategies (rather than the footprint of host physiology), provides a foundation to investigate the fitness consequences of plasticity and explore whether drugs could be developed to trick parasites into making suboptimal decisions.
Collapse
Affiliation(s)
- Lucy M Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Petra Schneider
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection & Evolution, Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Lindblade KA, Steinhardt L, Samuels A, Kachur SP, Slutsker L. The silent threat: asymptomatic parasitemia and malaria transmission. Expert Rev Anti Infect Ther 2014; 11:623-39. [PMID: 23750733 DOI: 10.1586/eri.13.45] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Scale-up of malaria control interventions has resulted in a substantial decline in global malaria morbidity and mortality. Despite this achievement, there is evidence that current interventions alone will not lead to malaria elimination in most malaria-endemic areas and additional strategies need to be considered. Use of antimalarial drugs to target the reservoir of malaria infection is an option to reduce the transmission of malaria between humans and mosquito vectors. However, a large proportion of human malaria infections are asymptomatic, requiring treatment that is not triggered by care-seeking for clinical illness. This article reviews the evidence that asymptomatic malaria infection plays an important role in malaria transmission and that interventions to target this parasite reservoir may be needed to achieve malaria elimination in both low- and high-transmission areas.
Collapse
Affiliation(s)
- Kim A Lindblade
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, MS A-06, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
25
|
Hasenkamp S, Russell K, Ullah I, Horrocks P. Functional analysis of the 5' untranslated region of the phosphoglutamase 2 transcript in Plasmodium falciparum. Acta Trop 2013; 127:69-74. [PMID: 23567550 DOI: 10.1016/j.actatropica.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum transcripts contain long untranslated regions (UTR), with some of the longest in any eukaryote that uses monocistronic transcription. Owing to the extreme AT nucleotide bias within the intergenic regions that encode these UTR, attempts to characterise how they are apportioned over genes and to describe their contribution to the absolute and temporal control of gene expression have been limited. Here we describe a study using a typical house-keeping gene that encodes phosphoglutamase 2 (PFD0660w), whose expression is subject to developmentally linked control during intraerythrocytic development. We show that deletion of a significant proportion (80%) of the predicted 5' UTR has no apparent effect on the developmentally linked expression of a luciferase reporter cassette. Further, serial deletions reveal that whilst the absolute level of transcription is unaffected when up to 50% of the predicted 5' UTR is removed, the subsequent efficiency of translation is affected. These data provide key insights into the interplay of transcriptional and post-transcriptional mechanisms in the control of gene expression in this important human pathogen.
Collapse
Affiliation(s)
- Sandra Hasenkamp
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
26
|
Carter LM, Kafsack BF, Llinás M, Mideo N, Pollitt LC, Reece SE. Stress and sex in malaria parasites. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:135-47. [PMID: 24481194 PMCID: PMC3854026 DOI: 10.1093/emph/eot011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Collapse
Affiliation(s)
- Lucy M. Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- *Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. Tel: +44 131 650 7706; Fax: +44 131 650 6564; E-mail:
| | - Björn F.C. Kafsack
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Manuel Llinás
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Laura C. Pollitt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
27
|
Peatey CL, Dixon MWA, Gardiner DL, Trenholme KR. Temporal evaluation of commitment to sexual development in Plasmodium falciparum. Malar J 2013; 12:134. [PMID: 23607486 PMCID: PMC3659030 DOI: 10.1186/1475-2875-12-134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/12/2013] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The production of gametocytes is essential for transmission of malaria parasites from the mammalian host to the mosquito vector. However the process by which the asexual blood-stage parasite undergoes commitment to sexual development is not well understood. This process is known to be sensitive to environmental stimuli and it has been suggested that a G protein dependent system may mediate the switch, but there is little evidence that the Plasmodium falciparum genome encodes heterotrimeric G proteins. Previous studies have indicated that the malaria parasite can interact with endogenous erythrocyte G proteins, and other components of the cyclic nucleotide pathway have been identified in P. falciparum. Also, the polypeptide cholera toxin, which induces commitment to gametocytogenesis is known to catalyze the ADP-ribosylation of the α(s) class of heterotrimeric G protein α subunits in mammalian systems has been reported to detect a number of G(α) subunits in P. falciparum-infected red cells. METHODS Cholera toxin and Mas 7 (a structural analogue of Mastoparan) were used to assess the role played by putative G protein signalling in the commitment process, both are reported to interact with different components of classical Gas and Gai/o signalling pathways. Their ability to induce gametocyte production in the transgenic P. falciparum line Pfs16-GFP was determined and downstream effects on the secondary messenger cAMP measured. RESULTS Treatment of parasite cultures with either cholera toxin or MAS 7 resulted in increased gametocyte production, but only treatment with MAS 7 resulted in a significant increase in cAMP levels. This indicates that MAS 7 acts either directly or indirectly on the P. falciparum adenylyl cyclase. CONCLUSION The observation that cholera toxin treatment did not affect cAMP levels indicates that while addition of cholera toxin does increase gametocytogenesis the method by which it induces increased commitment is not immediately obvious, except that is unlikely to be via heterotrimeric G proteins.
Collapse
Affiliation(s)
- Christopher L Peatey
- Malaria Biology Laboratory, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | | | | | | |
Collapse
|
28
|
Russell K, Hasenkamp S, Emes R, Horrocks P. Analysis of the spatial and temporal arrangement of transcripts over intergenic regions in the human malarial parasite Plasmodium falciparum. BMC Genomics 2013; 14:267. [PMID: 23601558 PMCID: PMC3681616 DOI: 10.1186/1471-2164-14-267] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/06/2013] [Indexed: 11/25/2022] Open
Abstract
Background The ability of the human malarial parasite Plasmodium falciparum to invade, colonise and multiply within diverse host environments, as well as to manifest its virulence within the human host, are activities tightly linked to the temporal and spatial control of gene expression. Yet, despite the wealth of high throughput transcriptomic data available for this organism there is very little information regarding the location of key transcriptional landmarks or their associated cis-acting regulatory elements. Here we provide a systematic exploration of the size and organisation of transcripts within intergenic regions to yield surrogate information regarding transcriptional landmarks, and to also explore the spatial and temporal organisation of transcripts over these poorly characterised genomic regions. Results Utilising the transcript data for a cohort of 105 genes we demonstrate that the untranscribed regions of mRNA are large and apportioned predominantly to the 5′ end of the open reading frame. Given the relatively compact size of the P. falciparum genome, we suggest that whilst transcriptional units are likely to spatially overlap, temporal co-transcription of adjacent transcriptional units is actually limited. Critically, the size of intergenic regions is directly dependent on the orientation of the two transcriptional units arrayed over them, an observation we extend to an analysis of the complete sequences of twelve additional organisms that share moderately compact genomes. Conclusions Our study provides a theoretical framework that extends our current understanding of the transcriptional landscape across the P. falciparum genome. Demonstration of a consensus gene-spacing rule that is shared between P. falciparum and ten other moderately compact genomes of apicomplexan parasites reveals the potential for our findings to have a wider impact across a phylum that contains many organisms important to human and veterinary health.
Collapse
Affiliation(s)
- Karen Russell
- Institute for Science and Technology in Medicine, Keele University, Huxley Building, Staffordshire ST5 5BG, United Kingdom
| | | | | | | |
Collapse
|
29
|
Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, Xu H, Kiattibutr K, Suri A, Czesny B, Adeyemo A, Myers TG, Sattabongkot J, Su XZ, Williamson KC. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog 2012; 8:e1002964. [PMID: 23093935 PMCID: PMC3475683 DOI: 10.1371/journal.ppat.1002964] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Malaria transmission requires the production of male and female gametocytes in the human host followed by fertilization and sporogonic development in the mosquito midgut. Although essential for the spread of malaria through the population, little is known about the initiation of gametocytogenesis in vitro or in vivo. Using a gametocyte-defective parasite line and genetic complementation, we show that Plasmodium falciparumgametocyte development 1 gene (Pfgdv1), encoding a peri-nuclear protein, is critical for early sexual differentiation. Transcriptional analysis of Pfgdv1 negative and positive parasite lines identified a set of gametocytogenesis early genes (Pfge) that were significantly down-regulated (>10 fold) in the absence of Pfgdv1 and expression was restored after Pfgdv1 complementation. Progressive accumulation of Pfge transcripts during successive rounds of asexual replication in synchronized cultures suggests that gametocytes are induced continuously during asexual growth. Comparison of Pfge gene transcriptional profiles in patient samples divided the genes into two groups differing in their expression in mature circulating gametocytes and providing candidates to evaluate gametocyte induction and maturation separately in vivo. The expression profile of one of the early gametocyte specific genes, Pfge1, correlated significantly with asexual parasitemia, which is consistent with the ongoing induction of gametocytogenesis during asexual growth observed in vitro and reinforces the need for sustained transmission-blocking strategies to eliminate malaria. As malaria control efforts move toward eradication it becomes increasingly important to develop interventions that block transmission. Consequently, advances are needed in our understanding of the production of gametocytes, which are required to transmit the disease. This report provides a first view of the initial stages of gametocytogenesis in vitro and in vivo and demonstrates that during each asexual replication cycle a subpopulation of parasites convert to gametocyte development providing a long transmission window. We also identify a gene that is critical for gametocyte production, P. falciparumgametocyte development 1 (Pfgdv1) and a set of genes specifically expressed during early gametocytogenesis in P. falciparum (Pfge genes). The expression profile and peri-nuclear location of Pfgdv1 in a subpopulation of schizonts is consistent with a role in an early step in gametocytogenesis. The RNA levels of Pfgdv1 and the Pfge genes accumulated gradually over several asexual cycles in vitro suggesting ongoing gametocyte formation during asexual growth. The further evaluation of these genes in a cohort of malaria infected patients indicated they are good candidates for markers to distinguish ring stage parasites committed to gametocyte production from circulating mature gametocytes, allowing direct analysis of the initiation of sexual differentiation in vivo.
Collapse
Affiliation(s)
- Saliha Eksi
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Belinda J. Morahan
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yoseph Haile
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Tetsuya Furuya
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hongying Jiang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Omar Ali
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Huichun Xu
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kirakorn Kiattibutr
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Amreena Suri
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Adebowale Adeyemo
- Center for Research on Genomics and Global Health, Inherited Disease Research Branch, National Human Genomics Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Timothy G. Myers
- Genomic Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Xin-zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kim C. Williamson
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Tantular IS, Pusarawati S, Khin L, Kanbe T, Kimura M, Kido Y, Kawamoto F. Preservation of wild isolates of human malaria parasites in wet ice and adaptation efficacy to in vitro culture. Trop Med Health 2012; 40:37-45. [PMID: 23097618 PMCID: PMC3475313 DOI: 10.2149/tmh.2012-07o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/10/2012] [Indexed: 12/04/2022] Open
Abstract
Wild isolates of malaria parasites were preserved in wet ice for 2–12 days and cultivated by a candle jar method. In four isolates of Plasmodium falciparum collected from Myanmar and preserved for 12 days, all failed to grow. In 31 isolates preserved for 5–10 days, nine were transformed to young gametocytes, but 22 isolates grew well. From Ranong, Thailand, nine isolates preserved for 7 days were examined, and six grew well. On the other hand, all of the 59 isolates collected from eastern Indonesian islands failed to establish as culture-adapted isolates, even most of them were preserved only for 2–3 days: 10 isolates stopped to grow, and 49 isolates were transformed to sexual stages by Day 10. These results indicated that a great difference in adaptation to in vitro culture may exist between wild isolates distributed in continental Southeast Asia and in eastern Indonesia and that gametocytogenesis might be easily switched on in Indonesian isolates. In wild isolates of P. vivax, P. malariae and P. ovale preserved for 2–9 days, ring forms or young trophozoites survived, but adaptation to in vitro culture failed. These results indicate that wild isolates can be preserved in wet ice for 9–10 days.
Collapse
Affiliation(s)
- Indah S Tantular
- Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia ; Department of Parasitology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | | | | | | | | | | | | |
Collapse
|
31
|
Application of genomics to field investigations of malaria by the international centers of excellence for malaria research. Acta Trop 2012; 121:324-32. [PMID: 22182668 DOI: 10.1016/j.actatropica.2011.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 11/28/2011] [Accepted: 12/02/2011] [Indexed: 12/15/2022]
Abstract
Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and Plasmodium vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence for Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden.
Collapse
|