1
|
Singh K, Hamilton ST, Shand AW, Hannan NJ, Rawlinson WD. Receptors in host pathogen interactions between human cytomegalovirus and the placenta during congenital infection. Rev Med Virol 2021; 31:e2233. [PMID: 33709529 DOI: 10.1002/rmv.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/09/2022]
Abstract
Cellular receptors in human cytomegalovirus (HCMV) mother to child transmission play an important role in congenital infection. Placental trophoblast cells are a significant cell type in placental development, placental functional processes, and in HCMV transmission. Different cells within the placental floating and chorionic villi present alternate receptors for HCMV cell entry. Syncytiotrophoblasts present neonatal Fc receptors that bind and transport circulating maternal immunoglobulin G across the placental interface which can also be bound to HCMV virions, facilitating viral entry into the placenta and foetal circulation. Cytotrophoblast express HCMV receptors including integrin-α1β1, integrin-αVβ3, epidermal growth factor receptor and platelet-derived growth factor receptor alpha. The latter interacts with HCMV glycoprotein-H, glycoprotein-L and glycoprotein-O (gH/gL/gO) trimers (predominantly in placental fibroblasts) and the gH/gL/pUL128, UL130-UL131A pentameric complex in other placental cell types. The pentameric complex allows viral tropism of placental trophoblasts, endothelial cells, epithelial cells, leukocytes and monocytes. This review outlines HCMV ligands and target receptor proteins in congenital HCMV infection.
Collapse
Affiliation(s)
- Krishneel Singh
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonia W Shand
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women Heidelberg, Victoria, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Du Y, Zhang G, Liu Z. Human cytomegalovirus infection and coronary heart disease: a systematic review. Virol J 2018; 15:31. [PMID: 29409508 PMCID: PMC5801777 DOI: 10.1186/s12985-018-0937-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/18/2018] [Indexed: 12/15/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) infection is closely associated with coronary heart disease. Main body of the abstract In 1987, Adam et al. were the first to report an association between HCMV infection and atherosclerosis (AS), and later, many serum epidemiology and molecular biology studies showed that HCMV-infected endothelial cells play an important role in the development of AS. As patients with HCMV are generally susceptible to coronary heart disease, and with the increasing elderly population, a review of recent studies focusing on the relationships of HCMV infection and coronary heart disease is timely and necessary. Short conclusion The role of HCMV infection in the development of AS needs further study, since many remaining issues need to be explored and resolved. For example, whether HCMV promotes the development of coronary AS, and what the independent factors that lead to coronary artery AS by viral infection are. A comprehensive understanding of HCMV infection is needed in order to develop better strategies for preventing AS.
Collapse
Affiliation(s)
- Yu Du
- Department of Microbiology, Weifang Medical University, Weifang, 261053, China
| | - Guangxue Zhang
- Department of Clinical Laboratory, Shandong Qingzhou Rongjun Hospital, Qingzhou, 262500, China
| | - Zhijun Liu
- Department of Microbiology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
3
|
Xia L, Su R, An Z, Fu TM, Luo W. Human cytomegalovirus vaccine development: Immune responses to look into vaccine strategy. Hum Vaccin Immunother 2017; 14:292-303. [PMID: 29053403 DOI: 10.1080/21645515.2017.1391433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes considerable morbidity and disability in high risk, immunocompromised populations including recipients of solid organ transplants, and fetuses whose immune systems are not yet mature. Vaccines aimed at ameliorating the severity of disease and preventing HCMV infection can be categorized into two main approaches of vaccine design, with one focusing on virus modification and the other on individual antigens. However, no candidates in either class have been successful in achieving durable and protective immunity. Recent studies on the natural immune response provide new insight into HCMV vaccine strategy. In particular, studies have demonstrated that the incorporation of a pentameric complex is necessary for a vaccine to generate the potent neutralizing antibodies often seen in seropositive individuals. This review summarizes recent findings in the development of HCMV vaccines and key considerations that should be taken into vaccine design based on improved understanding of natural HCMV immunity.
Collapse
Affiliation(s)
- Lin Xia
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Science , Xiamen University , Xiamen , Fujian , China.,b Key Laboratory for Cancer T-Cell Theranostics and Clinical Translation (CTCTCT), Translational Medicine Research Center, School of Pharmaceutical Science , Xiamen University , Xiamen , Fujian , China
| | - Ruopeng Su
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Science , Xiamen University , Xiamen , Fujian , China
| | - Zhiqiang An
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Science , Xiamen University , Xiamen , Fujian , China.,c Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine , University of Texas Health Science Center at Houston , Houston , TX , USA
| | - Tong-Ming Fu
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Science , Xiamen University , Xiamen , Fujian , China.,d Department of Vaccines Research, Merck Research Laboratories , Merck & Co., Inc. , Kenilworth , NJ , USA
| | - Wenxin Luo
- a State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, School of Life Science , Xiamen University , Xiamen , Fujian , China
| |
Collapse
|
4
|
Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L. Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:112-118. [PMID: 28238879 DOI: 10.1016/j.dci.2017.02.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Infections by Frog Virus 3 (FV3) and other ranaviruses (RVs) are contributing to the amphibian declines, while the mechanisms controlling anuran tadpole susceptibility and adult frog resistance to RVs, including the roles of polymorphonuclear granulocytes (PMNs) during anti-FV3 responses, remain largely unknown. Since amphibian kidneys represent an important FV3 target, the inability of amphibian (Xenopus laevis) tadpoles to mount effective kidney inflammatory responses to FV3 is thought to contribute to their susceptibility. Here we demonstrate that a recombinant X. laevis granulocyte colony-stimulating factor (G-CSF) generates PMNs with hallmark granulocyte morphology. Tadpole pretreatment with G-CSF prior to FV3 infection reduces animal kidney FV3 loads and extends their survival. Moreover, G-CSF-derived PMNs are resistant to FV3 infection and express high levels of TNFα in response to this virus. Notably, FV3-infected tadpoles fail to recruit G-CSFR expressing granulocytes into their kidneys, suggesting that they lack an integral inflammatory effector population at this site.
Collapse
Affiliation(s)
- Daphne V Koubourli
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Emily S Wendel
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Jonathan R Ghaul
- Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
5
|
Le D, Miller JD, Ganusov VV. Mathematical modeling provides kinetic details of the human immune response to vaccination. Front Cell Infect Microbiol 2015; 4:177. [PMID: 25621280 PMCID: PMC4288384 DOI: 10.3389/fcimb.2014.00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/04/2014] [Indexed: 02/01/2023] Open
Abstract
With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.
Collapse
Affiliation(s)
- Dustin Le
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
| | - Joseph D. Miller
- Hope Clinic of the Emory Vaccine Center, Emory University School of MedicineAtlanta, GA, USA
| | - Vitaly V. Ganusov
- Department of Microbiology, University of TennesseeKnoxville, TN, USA
- Department of Mathematics, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
6
|
Wang D, Fu TM. Progress on human cytomegalovirus vaccines for prevention of congenital infection and disease. Curr Opin Virol 2014; 6:13-23. [DOI: 10.1016/j.coviro.2014.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/14/2022]
|
7
|
Fu TM, An Z, Wang D. Progress on pursuit of human cytomegalovirus vaccines for prevention of congenital infection and disease. Vaccine 2014; 32:2525-33. [DOI: 10.1016/j.vaccine.2014.03.057] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 02/28/2014] [Accepted: 03/13/2014] [Indexed: 12/14/2022]
|