1
|
Wang J, Chen T, Peng S, Li L, Wang L, Li J, He W. Multiple skin abscesses due to Nocardia neocaledoniensis: a case report and literature review. BMC Infect Dis 2024; 24:1259. [PMID: 39511490 PMCID: PMC11542391 DOI: 10.1186/s12879-024-10177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
N. neocaledoniensis is a very rare infectious pathogen that causes human disease, particularly in immunocompromised individuals. In this case report, we describe the successful diagnosis of N. neocaledoniensis in a patient confirmed by mNGS and the treatment of multiple skin abscesses due to N. neocaledoniensis infection. mNGS is an important diagnostic method complementary to routine bacterial culture and identification methods, especially for rare, novel, co-infected pathogens, and pathogens that are difficult to culture. This report may provide a reference for the clinical treatment and diagnosis of N. neocaledoniensis infection in humans.
Collapse
Affiliation(s)
- Jun Wang
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Taigui Chen
- Affiliated Hospital of Panzhihua University, Panzhihua, China.
| | - Shijie Peng
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Lianbao Li
- Panzhihua Central Hospital, Panzhihua, China
| | - Liling Wang
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Jun Li
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| | - Wei He
- Affiliated Hospital of Panzhihua University, Panzhihua, China
| |
Collapse
|
2
|
Wang C, Yang S, Liu Q, Liu H, Jin S, Zheng J, Xiao X, Hou X, Li J, Ma S, Cui L. Application of Second-Generation Sequencing Technology in Lower Respiratory Tract Infection. J Clin Lab Anal 2024; 38:e25090. [PMID: 39158216 PMCID: PMC11492342 DOI: 10.1002/jcla.25090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Lower respiratory tract infection (LRTI) has long been an important threat to people's life and health, so the rapid diagnosis of LRTI is of great significance in clinical treatment. In recent years, the development of the sequencing technology provides a new direction for the rapid diagnosis of LRTI. In this review, the advantages and disadvantages of second-generation sequencing techniques represented by metagenomics next-generation sequencing (mNGS) and droplet digital polymerase chain reaction (ddPCR) in LRTI were reviewed. Furthermore, it offers insights into the future trajectory of this technology, highlighting its potential to revolutionise the field of respiratory infection diagnostics. OBJECTIVE This review summarises developments in mechanistic research of second-generation sequencing technology their relationship with clinical practice, providing insights for future research. METHODS Authors conducted a search on PubMed and Web of Science using the professional terms 'Lower respiratory tract infection' and 'droplet digital polymerase chain reaction' and 'metagenomics next generation sequencing'. The obtained literature was then roughly categorised based on their research content. Similar studies were grouped into the same sections, and further searches were conducted based on the keywords of each section. RESULTS Different studies discussed the application of second-generation sequencing technology in LRTI from different angles, including the detection of pathogens of LRTI by mNGS and ddPCR, the prediction ability of drug-resistant bacteria, and comparison with traditional methods. We try to analyse the advantages and disadvantages of the second-generation sequencing technology by combing the research results of mNGS and ddPCR. In addition, the development direction of the second-generation sequencing technology is prospected.
Collapse
Affiliation(s)
- Chong Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Qi Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Shangjia Jin
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jiajia Zheng
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Xiumei Xiao
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Xin Hou
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Jing Li
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Sisi Ma
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Liyan Cui
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
3
|
Shen D, Lv X, Zhang H, Fei C, Feng J, Zhou J, Cao L, Ying Y, Li N, Ma X. Association between Clinical Characteristics and Microbiota in Bronchiectasis Patients Based on Metagenomic Next-Generation Sequencing Technology. Pol J Microbiol 2024; 73:59-68. [PMID: 38437464 PMCID: PMC10911701 DOI: 10.33073/pjm-2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/15/2024] [Indexed: 03/06/2024] Open
Abstract
This study aimed to investigate the disparities between metagenomic next-generation sequencing (mNGS) and conventional culture results in patients with bronchiectasis. Additionally, we sought to investigate the correlation between the clinical characteristics of patients and their microbiome profiles. The overarching goal was to enhance the effective management and treatment of bronchiectasis patients, providing a theoretical foundation for healthcare professionals. A retrospective survey was conducted on 67 bronchiectasis patients admitted to The First Hospital of Jiaxing from October 2019 to March 2023. Clinical baseline information, inflammatory indicators, and pathogen detection reports, including mNGS, conventional blood culture, bronchoalveolar lavage fluid (BALF) culture, and sputum culture results, were collected. By comparing the results of mNGS and conventional culture, the differences in pathogen detection rate and pathogen types were explored, and the diagnostic performance of mNGS compared to conventional culture was evaluated. Based on the various pathogens detected by mNGS, the association between clinical characteristics of bronchiectasis patients and mNGS microbiota results was analyzed. The number and types of pathogens detected by mNGS were significantly larger than those detected by conventional culture. The diagnostic efficacy of mNGS was significantly superior to conventional culture for all types of pathogens, particularly in viral detection (p < 0.01). Regarding pathogen detection rate, the bacteria with the highest detection rate were Pseudomonas aeruginosa (17/58) and Haemophilus influenzae (11/58); the fungus with the highest detection rate was Aspergillus fumigatus (10/21), and the virus with the highest detection rate was human herpes virus 4 (4/11). Differences were observed between the positive and negative groups for P. aeruginosa in terms of common scoring systems for bronchiectasis and whether the main symptom of bronchiectasis manifested as thick sputum (p < 0.05). Significant distinctions were also noted between the positive and negative groups for A. fumigatus regarding Reiff score, neutrophil percentage, bronchiectasis etiology, and alterations in treatment plans following mNGS results reporting (p < 0.05). Notably, 70% of patients with positive A. fumigatus infection opted to change their treatment plans. The correlation study between clinical characteristics of bronchiectasis patients and mNGS microbiological results revealed that bacteria, such as P. aeruginosa, and fungi, such as A. fumigatus, were associated with specific clinical features of patients. This underscored the significance of mNGS in guiding personalized treatment approaches. mNGS could identify multiple pathogens in different types of bronchiectasis samples and was a rapid and effective diagnostic tool for pathogen identification. Its use was recommended for diagnosing the causes of infections in bronchiectasis patients.
Collapse
Affiliation(s)
- Dongfeng Shen
- The Intensive Care of Unit, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Xiaodong Lv
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Hui Zhang
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Chunyuan Fei
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Jing Feng
- Department of Respiratory, Zhengzhou YIHE Hospital, Zhengzhou, China
| | - Jiaqi Zhou
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Linfeng Cao
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Ying Ying
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Na Li
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| | - Xiaolong Ma
- Department of Respiratory, The First Hospital of Jiaxing (The Affiliated Hospital of Jiaxing University), Jiaxing, China
| |
Collapse
|
4
|
Hauser S, Lazarevic V, Tournoud M, Ruppé E, Santiago Allexant E, Guigon G, Schicklin S, Lanet V, Girard M, Mirande C, Gervasi G, Schrenzel J. A metagenomics method for the quantitative detection of bacterial pathogens causing hospital-associated and ventilator-associated pneumonia. Microbiol Spectr 2023; 11:e0129423. [PMID: 37889000 PMCID: PMC10715005 DOI: 10.1128/spectrum.01294-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE The management of ventilator-associated pneumonia and hospital-acquired pneumonia requires rapid and accurate quantitative detection of the infecting pathogen. To this end, we propose a metagenomic sequencing assay that includes the use of an internal sample processing control for the quantitative detection of 20 relevant bacterial species from bronchoalveolar lavage samples.
Collapse
Affiliation(s)
| | - V. Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | - E. Ruppé
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | - V. Lanet
- bioMérieux, Marcy-l'Étoile, France
| | - M. Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - C. Mirande
- bioMérieux, La Balme-les-Grottes, France
| | | | - J. Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
5
|
Wang X, Wang K, Xie F, Han Z, Liu Y, Pan L, Zhu G, Cao Z, Yan P, Xiao L, Duan Z, Hu Y, Xiao K, Chen X, Fu H, Shi Y, Song Y, Han X, Xie W, Xie L. Protocol of a multicenter, single-blind, randomized, parallel controlled trial evaluating the effect of microbiological rapid on-site evaluation (M-ROSE) guiding anti-infection treatment in patients with severe hospital-acquired pneumonia. Trials 2023; 24:552. [PMID: 37612723 PMCID: PMC10464107 DOI: 10.1186/s13063-023-07570-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/05/2023] [Indexed: 08/25/2023] Open
Abstract
INTRODUCTION The mortality rate of hospitalized patients with severe hospital-acquired pneumonia (SHAP) remains high. Empirical broad-spectrum antibiotic coverage and the misuse of high-grade antibiotics could lead to the emergence of multi-drug and even pandrug-resistant bacteria. In addition to metagenomic next-generation sequencing (mNGS), microbiological rapid on-site evaluation (M-ROSE) might be a useful technique to identify the pathogens in the early stage; however, the effect of M-ROSE guiding anti-infection treatment on prognostic outcomes of SHAP patients is still unclear. METHODS/DESIGN This is a multicenter, single-blind, prospective, randomized controlled trial to evaluate the effect of M-ROSE guiding anti-infection treatment in SHAP patients, which will provide new strategies for the prevention and control of clinical multi-drug resistance bacteria. A total of 166 patients with SHAP, aged 18 years and over, will be recruited from seven centers in Beijing and randomly assigned to the intervention group (M-ROSE combined with mNGS) or the control group (mNGS only) in a 1:1 ratio using the central randomization system. Patients in the intervention group will accept M-ROSE and mNGS analysis, and the control group will accept mNGS analysis. Individualized anti-infective treatment and routine treatment will be selected according to the analysis results. The primary outcome is the ICU outcome (mortality). The safety of the intervention measures will be evaluated during the entire trial period. This trial will be the first randomized controlled trial to evaluate the effect of M-ROSE guiding treatment on mortality in patients with SHAP and may change the prevalence of multi-drug resistant bacteria. ETHICS AND DISSEMINATION This trial adheres to the Declaration of Helsinki and guidelines of Good Clinical Practice. Signed informed consent will be obtained from all participants. The trial has been approved by the Chinese PLA General Hospital (Approval Number: 20220322001). TRIAL REGISTRATION ClinicalTrials.gov NCT05300776. Registered on 25 March 2022.
Collapse
Affiliation(s)
- Xiuli Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Kaifei Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Fei Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhihai Han
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yuhong Liu
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Lei Pan
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guangfa Zhu
- Department of Respiratory and Critical Care Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhixin Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Yan
- Department of Respiratory and Critical Care Medicine, AMHT Group Aerospace 731 Hospital, Beijing, China
| | - Li Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Zhimei Duan
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Ye Hu
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Kun Xiao
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xuxin Chen
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Han Fu
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Yinghan Shi
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Yuwei Song
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xiaobo Han
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Wuxiang Xie
- Peking University Clinical Research Institute, Peking University Health Science Center, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Lixin Xie
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Zhang J, Gao L, Zhu C, Jin J, Song C, Dong H, Li Z, Wang Z, Chen Y, Yang Z, Tan Y, Wang L. Clinical value of metagenomic next-generation sequencing by Illumina and Nanopore for the detection of pathogens in bronchoalveolar lavage fluid in suspected community-acquired pneumonia patients. Front Cell Infect Microbiol 2022; 12:1021320. [PMID: 36237436 PMCID: PMC9551279 DOI: 10.3389/fcimb.2022.1021320] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
At present, metagenomic next-generation sequencing (mNGS) based on Illumina platform has been widely reported for pathogen detection. There are few studies on the diagnosis of major pathogens and treatment regulation using mNGS based on Illumina versus Nanopore. We aim to evaluate the clinical value of metagenomic next-generation sequencing (mNGS) by Illumina and Nanopore for the detection of pathogens in bronchoalveolar lavage fluid (BALF) in suspected community-acquired pneumonia (CAP) patients. BALF samples collected from 66 suspected CAP patients within 48 hours of hospitalization were divided into two parts, one for conventional culture and the other for mNGS by two platforms (Illumina and Nanopore). The clinical value based on infection diagnosis, diagnostic performance for main pathogens and treatment guidance were assessed. More types of species were detected by Nanopore than Illumina, especially in viruses, fungus and mycobacterium. Illumina and Nanopore showed similar detectability in bacterium except for mycobacterium tuberculosis complex/nontuberculosis mycobacteria. Pathogenic infection was established or excluded in 53 of 66 patients. There was little difference in the coincidence rate between Illumina and Nanopore with the clinical diagnosis, but both were superior to the culture (57.81%, 59.38%, 25%, respectively). Compared with Illumina, the diagnostic area under the curve of Nanopore was higher in fungi, but lower in bacteria and Chlamydia psittaci. There was no statistically significant difference between Illumina and Nanopore in guiding drug treatment (56.1% vs. 50%, p=0.43), but both were superior to the culture (56.1% vs. 28.8%, p=0.01; 50% vs. 28.8%, p=0.01). Single inflammatory indicators could not be used to determine whether the patients with culture-negative BALF were established or excluded from infection. The species detected at 1 h and 4 h by Nanopore were consistent to some extent, and its turn-around time (TAT) was significantly shorter than Illumina (p<0.01). Illumina and Nanopore both have its own advantages in pathogenic diagnosis and play similar roles in infection diagnosis and guiding clinical treatment. Nanopore has a relatively short TAT, which may be promising in rapid etiological diagnosis of acute and critically ill patients.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Gao
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chi Zhu
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Jiajia Jin
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Song
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Hang Dong
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Zhenzhong Li
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Zheng Wang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yubao Chen
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhenhua Yang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yan Tan
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Application of mNGS in the Etiological Analysis of Lower Respiratory Tract Infections and the Prediction of Drug Resistance. Microbiol Spectr 2022; 10:e0250221. [PMID: 35171007 PMCID: PMC8849087 DOI: 10.1128/spectrum.02502-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) have high morbidity and mortality rates. However, traditional etiological detection methods have not been able to meet the needs for the clinical diagnosis and prognosis of LRTIs. The rapid development of metagenomic next-generation sequencing (mNGS) provides new insights for the diagnosis and treatment of LRTIs; however, little is known about how to interpret the application of mNGS results in LRTIs. In this study, lower respiratory tract specimens from 46 patients with suspected LRTIs were tested simultaneously using conventional microbiological detection methods and mNGS. Receiver operating characteristic (ROC) curves were used to evaluate the performance of the logarithm of reads per kilobase per million mapped reads [lg(RPKM)], genomic coverage, and relative abundance of the organism in predicting the true-positive pathogenic bacteria. True-positive viruses were identified according to the lg(RPKM) threshold of bacteria. We also evaluated the ability to predict drug resistance genes using mNGS. Compared to that using conventional detection methods, the false-positive detection rate of pathogenic bacteria was significantly higher using mNGS. It was concluded from the ROC curves that the lg(RPKM) and genomic coverage contributed to the identification of pathogenic bacteria, with the performance of lg(RPKM) being the best (area under the curve [AUC] = 0.99). The corresponding lg(RPKM) threshold for identifying the pathogenic bacteria was −1.35. Thirty-five strains of true-positive virus were identified based on the lg(RPKM) threshold of bacteria, with the detection of human gammaherpesvirus 4 being the highest and prone to coinfection with Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. Antimicrobial susceptibility tests (AST) revealed the resistance of bacteria containing drug resistance genes (detected by mNGS). However, the drug resistance genes of some multidrug-resistant bacteria were not detected. As an emerging technology, mNGS has shown many advantages for the unbiased etiological detection and the prediction of antibiotic resistance. However, a correct understanding of mNGS results is a prerequisite for its clinical application, especially for LRTIs. IMPORTANCE LRTIs are caused by hundreds of pathogens, and they have become a great threat to human health due to the limitations of traditional etiological detection methods. As an unbiased approach to detect pathogens, mNGS overcomes such etiological diagnostic challenges. However, there is no unified standard on how to use mNGS indicators (the sequencing reads, genomic coverage, and relative abundance of each organism) to distinguish between pathogens and colonizing microorganisms or contaminant microorganisms. Here, we selected the mNGS indicator with the best identification performance and established a cutoff value for the identification of pathogens in LRTIs using ROC curves. In addition, we also evaluated the accuracy of antibiotic resistance prediction using mNGS.
Collapse
|
8
|
Zong F, Gan C, Wang Y, Su D, Deng M, Xiao N, Zhang Z, Zhou D, Gao B, Yang H. Exposure to aerosolized staphylococcal enterotoxin B potentiated by lipopolysaccharide modifies lung transcriptomes and results in lung injury in the mouse model. J Appl Toxicol 2022; 42:1205-1217. [DOI: 10.1002/jat.4289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fuliang Zong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Changjiao Gan
- Tianjin Key Laboratory of Artificial Cell, Tianjin Institute of Hepatobiliary Disease Nankai University Affiliated Third Center Hospital Tianjin China
| | - Yifeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Duo Su
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Mengyun Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Zhipeng Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| | - Bo Gao
- Institute of Military Cognition and Brain Sciences Beijing China
| | - Huiying Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology Beijing China
| |
Collapse
|
9
|
Diagnosis of Multidrug-Resistant Pathogens of Pneumonia. Diagnostics (Basel) 2021; 11:diagnostics11122287. [PMID: 34943524 PMCID: PMC8700525 DOI: 10.3390/diagnostics11122287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Hospital-acquired pneumonia and ventilator-associated pneumonia that are caused by multidrug resistant (MDR) pathogens represent a common and severe problem with increased mortality. Accurate diagnosis is essential to initiate appropriate antimicrobial therapy promptly while simultaneously avoiding antibiotic overuse and subsequent antibiotic resistance. Here, we discuss the main conventional phenotypic diagnostic tests and the advanced molecular tests that are currently available to diagnose the primary MDR pathogens and the resistance genes causing pneumonia.
Collapse
|
10
|
The Application of Metagenomic Next-Generation Sequencing in Detection of Pathogen in Bronchoalveolar Lavage Fluid and Sputum Samples of Patients with Pulmonary Infection. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7238495. [PMID: 34790254 PMCID: PMC8592753 DOI: 10.1155/2021/7238495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 11/17/2022]
Abstract
Objective To uncover the application value of metagenomic next-generation sequencing (mNGS) in the detection of pathogen in bronchoalveolar lavage fluid (BALF) and sputum samples. Methods Totally, 32 patients with pulmonary infection were included. Pathogens in BALF and sputum samples were tested simultaneously by routine microbial culture and mNGS. Main infected pathogens (bacteria, fungi, and viruses) and their distribution in BALF and sputum samples were analyzed. Moreover, the diagnostic performance of mNGS in paired BALF and sputum samples was assessed. Results The pathogen culture results were positive in 9 patients and negative in 13 patients. No statistical differences were recorded on the sensitivity (78.94% vs. 63.15%, p = 0.283) and specificity (62.50% vs. 75.00%, p = 0.375) of mNGS diagnosis in bacteria and fungus in two types of samples. As shown in mNGS detection, 10 patients' two samples were both positive, 13 patients' two samples were both negative, 7 patients were only positive in BALF samples, and 2 patients' sputum samples were positive. Main viruses mNGS detected were EB virus, human adenovirus 5, herpes simplex virus type 1, and human cytomegalovirus. Kappa consensus analysis indicated that mNGS showed significant consistency in detecting pathogens in two samples, no matter bacteria (p < 0.001), fungi (p = 0.026), or viruses (p = 0.008). Conclusion mNGS showed no statistical differences in sensitivity and specificity of pathogen detection in BALF and sputum samples. Under certain conditions, sputum samples might be more suitable for pathogen detection because of invasiveness of BALF samples.
Collapse
|
11
|
Leo S, Cherkaoui A, Renzi G, Schrenzel J. Mini Review: Clinical Routine Microbiology in the Era of Automation and Digital Health. Front Cell Infect Microbiol 2020; 10:582028. [PMID: 33330127 PMCID: PMC7734209 DOI: 10.3389/fcimb.2020.582028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical microbiology laboratories are the first line to combat and handle infectious diseases and antibiotic resistance, including newly emerging ones. Although most clinical laboratories still rely on conventional methods, a cascade of technological changes, driven by digital imaging and high-throughput sequencing, will revolutionize the management of clinical diagnostics for direct detection of bacteria and swift antimicrobial susceptibility testing. Importantly, such technological advancements occur in the golden age of machine learning where computers are no longer acting passively in data mining, but once trained, can also help physicians in making decisions for diagnostics and optimal treatment administration. The further potential of physically integrating new technologies in an automation chain, combined to machine-learning-based software for data analyses, is seducing and would indeed lead to a faster management in infectious diseases. However, if, from one side, technological advancement would achieve a better performance than conventional methods, on the other side, this evolution challenges clinicians in terms of data interpretation and impacts the entire hospital personnel organization and management. In this mini review, we discuss such technological achievements offering practical examples of their operability but also their limitations and potential issues that their implementation could rise in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Abdessalam Cherkaoui
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Gesuele Renzi
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Bacteriology Laboratory, Division of Laboratory Medicine, Department of Diagnostics, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
12
|
The Value of Combined Radial Endobronchial Ultrasound-Guided Transbronchial Lung Biopsy and Metagenomic Next-Generation Sequencing for Peripheral Pulmonary Infectious Lesions. Can Respir J 2020; 2020:2367505. [PMID: 32322324 PMCID: PMC7165338 DOI: 10.1155/2020/2367505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/21/2020] [Accepted: 02/14/2020] [Indexed: 11/18/2022] Open
Abstract
Background Metagenomic next-generation sequencing (mNGS) is a new technology that allows for unbiased detection of pathogens. However, there are few reports on mNGS of lung biopsy tissues for pulmonary infection diagnosis. In addition, radial endobronchial ultrasound (R-EBUS) is widely used to detect peripheral pulmonary lesions (PPLs), but it is rarely used in the diagnosis of peripheral lung infection. Objective The present study aims to evaluate the combined application of R-EBUS-guided transbronchial lung biopsy (TBLB) and mNGS for the diagnosis of peripheral pulmonary infectious lesions. Methods From July 2018 to April 2019, 121 patients from Tianjin Medical University General Hospital diagnosed with PPLs and lung infection were enrolled in this prospective randomized study . Once the lesion was located, either TBLB or R-EBUS-guided-TBLB was performed in randomly selected patients, and mNGS was applied for pathogen detection in lung biopsy tissues. The results of mNGS were compared between the TBLB group and R-EBUS-guided TBLB group. In addition, the clinical characteristics and EBUS images from 61 patients receiving bronchoscopy for peripheral lung infectious detection were analyzed and compared with the results of mNGS. Results The positivity rate of mNGS in R-EBUS-guided TBLB was (78.7%, 48/61) that was significantly higher than (60.0%, 36/60) in the TBLB group. Difference in the position of R-EBUS probe and image characteristics of peripheral lung infectious lesions affected the positivity rate of mNGS. Tissue collected by R-EBUS within the lesion produced higher positivity rate than samples collected adjacent to the lesion (P=0.030, odds ratio 17.742; 95% confidence interval, from 1.325 to 237.645). Anechoic areas and luminant areas of ultrasonic image characteristics were correlated with lower positivity rate of mNGS (respectively, P=0.019, odds ratio 17.878; 95% confidence interval, from 1.595 to 200.399; P=0.042, odds ratio 16.745; 95% confidence interval, from 1.106 to 253.479). Conclusions R-EBUS-guided TBLB is a safe and effective technique in the diagnosis of peripheral lung infectious lesions. R-EBUS significantly facilitates the accurate insertion of bronchoscope into the lesions, which improves positivity rate of mNGS analysis in pathogen detection. The R-EBUS probe position within lesion produced a higher positivity rate of mNGS analysis. Nevertheless, the presence of anechoic and luminant areas on ultrasonic image was correlated with poor mNGS positivity rate.
Collapse
|
13
|
Huang J, Jiang E, Yang D, Wei J, Zhao M, Feng J, Cao J. Metagenomic Next-Generation Sequencing versus Traditional Pathogen Detection in the Diagnosis of Peripheral Pulmonary Infectious Lesions. Infect Drug Resist 2020; 13:567-576. [PMID: 32110067 PMCID: PMC7036976 DOI: 10.2147/idr.s235182] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/24/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose The aim of this study was to evaluate the value of metagenomic next-generation sequencing (mNGS) in peripheral pulmonary infection management by comparing the diagnostic yield of mNGS and traditional pathogen detection methods on interventional specimens obtained by bronchoscopy. Patients and Methods This study enrolled patients suspected with pulmonary infection who were admitted to Tianjin Medical University General Hospital from June 2018 to August 2019. Specimens were obtained from bronchoscopy for mNGS analysis and traditional pathogen detection (including bronchoalveolar lavage fluid microbial culture, smear microscopy, and lung biopsy histopathology), and the diagnostic yields were compared between mNGS and traditional methods to evaluate the diagnostic value of mNGS in peripheral pulmonary infection diagnosis. Results In this study, by comparing mNGS with traditional pathogen detection, the results indicated that, first, mNGS identified at least one microbial species in almost 89% of the patients with pulmonary infection; second, mNGS detected microbes related to human diseases in 94.49% of samples from pulmonary infection patients who had received negative results from traditional pathogen detection; third, the accuracy and sensitivity of mNGS are higher than those of traditional pathogen detection; and, finally, mNGS could simultaneously detect and identify a large variety of pathogens. Conclusion Metagenomic NGS analysis provided fast and precise pathogen detection and identification, contributing to prompt and accurate treatment of peripheral pulmonary infection.
Collapse
Affiliation(s)
- Jie Huang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.,Graduate School, Tianjin Medical University, Tianjin, People's Republic of China
| | - Erlie Jiang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Donglin Yang
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Jialin Wei
- Hematopoietic Stem Cell Transplantation Center, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, People's Republic of China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, People's Republic of China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Emonet S, Lazarevic V, Pugin J, Schrenzel J, Ruppé E. Clinical Metagenomics for the Diagnosis of Hospital-acquired Infections: Promises and Hurdles. Am J Respir Crit Care Med 2019; 196:1617-1618. [PMID: 28679062 DOI: 10.1164/rccm.201705-0983le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Jérôme Pugin
- 1 Geneva University Hospitals Geneva, Switzerland
| | | | | |
Collapse
|
15
|
Mintzer V, Moran-Gilad J, Simon-Tuval T. Operational models and criteria for incorporating microbial whole genome sequencing in hospital microbiology - A systematic literature review. Clin Microbiol Infect 2019; 25:1086-1095. [PMID: 31039443 DOI: 10.1016/j.cmi.2019.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microbial whole genome sequencing (WGS) has many advantages over standard microbiological methods. However, it is not yet widely implemented in routine hospital diagnostics due to notable challenges. OBJECTIVES The aim was to extract managerial, financial and clinical criteria supporting the decision to implement WGS in routine diagnostic microbiology, across different operational models of implementation in the hospital setting. METHODS This was a systematic review of literature identified through PubMed and Web of Science. English literature studies discussing the applications of microbial WGS without limitation on publication date were eligible. A narrative approach for categorization and synthesis of the sources identified was adopted. RESULTS A total of 98 sources were included. Four main alternative operational models for incorporating WGS in clinical microbiology laboratories were identified: full in-house sequencing and analysis, full outsourcing of sequencing and analysis and two hybrid models combining in-house/outsourcing of the sequencing and analysis components. Six main criteria (and multiple related sub-criteria) for WGS implementation emerged from our review and included cost (e.g. the availability of resources for capital and operational investment); manpower (e.g. the ability to provide training programmes or recruit trained personnel), laboratory infrastructure (e.g. the availability of supplies and consumables or sequencing platforms), bioinformatics requirements (e.g. the availability of valid analysis tools); computational infrastructure (e.g. the availability of storage space or data safety arrangements); and quality control (e.g. the existence of standardized procedures). CONCLUSIONS The decision to incorporate WGS in routine diagnostics involves multiple, sometimes competing, criteria and sub-criteria. Mapping these criteria systematically is an essential stage in developing policies for adoption of this technology, e.g. using a multicriteria decision tool. Future research that will prioritize criteria and sub-criteria that were identified in our review in the context of operational models will inform decision-making at clinical and managerial levels with respect to effective implementation of WGS for routine use. Beyond WGS, similar decision-making challenges are expected with respect to future integration of clinical metagenomics.
Collapse
Affiliation(s)
- V Mintzer
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; Leumit Health Services, Israel
| | - J Moran-Gilad
- Department of Health Policy and Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel; ESCMID Study Group for Genomic and Molecular Diagnostics (ESGMD), Basel, Switzerland
| | - T Simon-Tuval
- Department of Health Systems Management, Guilford Glazer Faculty of Business and Management and Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel.
| |
Collapse
|
16
|
Xie Y, Du J, Jin W, Teng X, Cheng R, Huang P, Xie H, Zhou Z, Tian R, Wang R, Feng T. Next generation sequencing for diagnosis of severe pneumonia: China, 2010-2018. J Infect 2019; 78:158-169. [PMID: 30237069 DOI: 10.1016/j.jinf.2018.09.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Yun Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Jiang Du
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Wei Jin
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Xiaolei Teng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Ruijie Cheng
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Peijie Huang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Hui Xie
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Zhigang Zhou
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Rui Tian
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China.
| | - Ruilan Wang
- Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai 201600, Songjiang, China
| | - Tienan Feng
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road No. 227, Shanghai 200025, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
17
|
Timsit JF, Bassetti M, Cremer O, Daikos G, de Waele J, Kallil A, Kipnis E, Kollef M, Laupland K, Paiva JA, Rodríguez-Baño J, Ruppé É, Salluh J, Taccone FS, Weiss E, Barbier F. Rationalizing antimicrobial therapy in the ICU: a narrative review. Intensive Care Med 2019; 45:172-189. [PMID: 30659311 DOI: 10.1007/s00134-019-05520-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
The massive consumption of antibiotics in the ICU is responsible for substantial ecological side effects that promote the dissemination of multidrug-resistant bacteria (MDRB) in this environment. Strikingly, up to half of ICU patients receiving empirical antibiotic therapy have no definitively confirmed infection, while de-escalation and shortened treatment duration are insufficiently considered in those with documented sepsis, highlighting the potential benefit of implementing antibiotic stewardship programs (ASP) and other quality improvement initiatives. The objective of this narrative review is to summarize the available evidence, emerging options, and unsolved controversies for the optimization of antibiotic therapy in the ICU. Published data notably support the need for better identification of patients at risk of MDRB infection, more accurate diagnostic tools enabling a rule-in/rule-out approach for bacterial sepsis, an individualized reasoning for the selection of single-drug or combination empirical regimen, the use of adequate dosing and administration schemes to ensure the attainment of pharmacokinetics/pharmacodynamics targets, concomitant source control when appropriate, and a systematic reappraisal of initial therapy in an attempt to minimize collateral damage on commensal ecosystems through de-escalation and treatment-shortening whenever conceivable. This narrative review also aims at compiling arguments for the elaboration of actionable ASP in the ICU, including improved patient outcomes and a reduction in antibiotic-related selection pressure that may help to control the dissemination of MDRB in this healthcare setting.
Collapse
Affiliation(s)
- Jean-François Timsit
- Medical and Infectious Diseases ICU, APHP, Bichat-Claude Bernard Hospital, 46 Rue Henri-Huchard, 75877, Paris Cedex 18, France.
- INSERM, IAME, UMR 1137, Paris-Diderot Sorbonne-Paris Cité University, Paris, France.
| | - Matteo Bassetti
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Olaf Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - George Daikos
- Scool of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Jan de Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - Andre Kallil
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eric Kipnis
- Surgical Critical Care Unit, Department of Anesthesiology, Critical Care and Perioperative Medicine, CHU Lille, Lille, France
| | - Marin Kollef
- Critical Care Research, Washington University School of Medicine and Respiratory Care Services, Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Kevin Laupland
- Department of Medicine, Royal Inland Hospital, Kamloops, Canada
| | - Jose-Artur Paiva
- Intensive Care Medicine Department, Centro Hospitalar São João and Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jesús Rodríguez-Baño
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena, Departament of Medicine, University of Sevilla, Biomedicine Institute of Seville (IBiS), Seville, Spain
| | - Étienne Ruppé
- INSERM, IAME, UMR 1137, Paris-Diderot Sorbonne-Paris Cité University, Paris, France
- Bacteriology Laboratory, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Jorge Salluh
- Department of Critical Care and Graduate Program in Translational Medicine, D'Or Institute for Research and Education, IDOR, Rio De Janeiro, Brazil
| | | | - Emmanuel Weiss
- Department of Anesthesiology and Critical Care, Beaujon Hospital, AP-HP, Clichy, France
- INSERM, CRI, UMR 1149, Paris-Diderot Sorbonne-Paris Cité University, Paris, France
| | | |
Collapse
|
18
|
Lazarevic V, Gaïa N, Girard M, Leo S, Cherkaoui A, Renzi G, Emonet S, Jamme S, Ruppé E, Vijgen S, Rubbia-Brandt L, Toso C, Schrenzel J. When Bacterial Culture Fails, Metagenomics Can Help: A Case of Chronic Hepatic Brucelloma Assessed by Next-Generation Sequencing. Front Microbiol 2018; 9:1566. [PMID: 30065706 PMCID: PMC6056729 DOI: 10.3389/fmicb.2018.01566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 12/30/2022] Open
Abstract
Here, we sequenced DNA extracted from a necrotic hepatic lesion from a patient with suspected chronic hepatic brucelloma but negative culture results. Although most of the taxonomically classified sequencing reads corresponded to human genome sequences, our data suggest that whole-metagenome shotgun sequencing may be used together with other tests to strengthen the diagnosis of hepatic brucelloma.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Myriam Girard
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Abdessalam Cherkaoui
- Bacteriology Laboratory, Department of Genetics and Laboratory Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Gesuele Renzi
- Bacteriology Laboratory, Department of Genetics and Laboratory Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Stéphane Emonet
- Bacteriology Laboratory, Department of Genetics and Laboratory Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sharon Jamme
- Department of Community, Primary Care and Emergency Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Etienne Ruppé
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sandrine Vijgen
- Division of Clinical Pathology, Department of Genetics and Laboratory Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Department of Genetics and Laboratory Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Department of Surgery, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jacques Schrenzel
- Genomic Research Laboratory, Division of Infectious Diseases, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Bacteriology Laboratory, Department of Genetics and Laboratory Medicine, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
19
|
Li H, Gao H, Meng H, Wang Q, Li S, Chen H, Li Y, Wang H. Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing. Front Cell Infect Microbiol 2018; 8:205. [PMID: 29988504 PMCID: PMC6026637 DOI: 10.3389/fcimb.2018.00205] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/05/2018] [Indexed: 01/26/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is a comprehensive approach for sequence-based identification of pathogenic microbes. However, reports on the use of mNGS in pulmonary infection applied to lung biopsy tissues remain scarce. In this study, we applied mNGS to detect the presence of pathogenic microbes in lung biopsy tissues from 20 patients with pulmonary disorders indicating possible infection. We applied a new data management for identifying pathogen species based on mNGS data. We determined the thresholds for the unique reads and relative abundance required to identify the infectious pathogens. Potential pathogens of pulmonary infections in 15 patients were identified by mNGS. The comparison between mNGS and culture method resulted that the sensitivity and specificity were 100.0% (95% CI: 31.0–100.0%) and 76.5% (95% CI: 49.8–92.2%) for bacteria, 57.1% (95% CI: 20.2–88.2%) and 61.5% (95% CI: 32.2–84.9%) for fungi. The positive predictive value (PPV) (42.9% for bacteria, 44.4% for fungi) was much lower than negative predictive value (NPV) (100% for bacteria, 72.7% for fungi) in mNGS vs. culture method. The mNGS showed the highest specificity (100.0 and 94.1%) and PPV (100.0 and 75.0%) in the evaluation of fungi and MTBC respectively, when compared with histopathology method. The study indicated that mNGS of lung biopsy tissues can be used to detect the presence (or absence) of pulmonary pathogens in patients, with potential benefits in speed and sensitivity. However, accurate data management and interpretation of mNGS are required, and should be combined with observations of clinical manifestations and conventional laboratory-based diagnostic methods.
Collapse
Affiliation(s)
- Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Han Meng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yongjun Li
- BGI Genomics, Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
20
|
Vandenberg O, Kozlakidis Z, Schrenzel J, Struelens MJ, Breuer J. Control of Infectious Diseases in the Era of European Clinical Microbiology Laboratory Consolidation: New Challenges and Opportunities for the Patient and for Public Health Surveillance. Front Med (Lausanne) 2018; 5:15. [PMID: 29457001 PMCID: PMC5801420 DOI: 10.3389/fmed.2018.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/18/2018] [Indexed: 01/03/2023] Open
Abstract
Many new innovative diagnostic approaches have been made available during the last 10 years with major impact on patient care and public health surveillance. In parallel, to enhance the cost-effectiveness of the clinical microbiology laboratories (CMLs), European laboratory professionals have streamlined their organization leading to amalgamation of activities and restructuring of their professional relationships with clinicians and public health specialists. Through this consolidation process, an operational model has emerged that combines large centralized clinical laboratories performing most tests on one high-throughput analytical platform connected to several distal laboratories dealing locally with urgent analyses at near point of care. The centralization of diagnostic services over a large geographical region has given rise to the concept of regional-scale "microbiology laboratories network." Although the volume-driven cost savings associated with such laboratory networks seem self-evident, the consequence(s) for the quality of patient care and infectious disease surveillance and control remain less obvious. In this article, we describe the range of opportunities that the changing landscape of CMLs in Europe can contribute toward improving the quality of patient care but also the early detection and enhanced surveillance of public health threats caused by infectious diseases. The success of this transformation of health services is reliant on the appropriate preparation in terms of staff, skills, and processes that would be inclusive of stakeholders. In addition, rigorous metrics are needed to set out more concrete laboratory service performance objectives and assess the expected benefits to society in terms of saving lives and preventing diseases.
Collapse
Affiliation(s)
- Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Zisis Kozlakidis
- Division of Infection and Immunity, University College London, London, United Kingdom
- The Farr Institute of Health Informatics Research, University College London, London, United Kingdom
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
- Bacteriology Laboratory, Service of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Marc Jean Struelens
- Microbiology Coordination Section, Office of the Chief Scientist, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
21
|
Li H, Gao H, Meng H, Wang Q, Li S, Chen H, Li Y, Wang H. Detection of Pulmonary Infectious Pathogens From Lung Biopsy Tissues by Metagenomic Next-Generation Sequencing. Front Cell Infect Microbiol 2018. [PMID: 29988504 DOI: 10.3389/fcimb.2018.00205.ecollection2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is a comprehensive approach for sequence-based identification of pathogenic microbes. However, reports on the use of mNGS in pulmonary infection applied to lung biopsy tissues remain scarce. In this study, we applied mNGS to detect the presence of pathogenic microbes in lung biopsy tissues from 20 patients with pulmonary disorders indicating possible infection. We applied a new data management for identifying pathogen species based on mNGS data. We determined the thresholds for the unique reads and relative abundance required to identify the infectious pathogens. Potential pathogens of pulmonary infections in 15 patients were identified by mNGS. The comparison between mNGS and culture method resulted that the sensitivity and specificity were 100.0% (95% CI: 31.0-100.0%) and 76.5% (95% CI: 49.8-92.2%) for bacteria, 57.1% (95% CI: 20.2-88.2%) and 61.5% (95% CI: 32.2-84.9%) for fungi. The positive predictive value (PPV) (42.9% for bacteria, 44.4% for fungi) was much lower than negative predictive value (NPV) (100% for bacteria, 72.7% for fungi) in mNGS vs. culture method. The mNGS showed the highest specificity (100.0 and 94.1%) and PPV (100.0 and 75.0%) in the evaluation of fungi and MTBC respectively, when compared with histopathology method. The study indicated that mNGS of lung biopsy tissues can be used to detect the presence (or absence) of pulmonary pathogens in patients, with potential benefits in speed and sensitivity. However, accurate data management and interpretation of mNGS are required, and should be combined with observations of clinical manifestations and conventional laboratory-based diagnostic methods.
Collapse
Affiliation(s)
- Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Han Meng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yongjun Li
- BGI Genomics, Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
22
|
Ruppé E, Cherkaoui A, Lazarevic V, Emonet S, Schrenzel J. Establishing Genotype-to-Phenotype Relationships in Bacteria Causing Hospital-Acquired Pneumonia: A Prelude to the Application of Clinical Metagenomics. Antibiotics (Basel) 2017; 6:antibiotics6040030. [PMID: 29186015 PMCID: PMC5745473 DOI: 10.3390/antibiotics6040030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023] Open
Abstract
Clinical metagenomics (CMg), referred to as the application of next-generation sequencing (NGS) to clinical samples, is a promising tool for the diagnosis of hospital-acquired pneumonia (HAP). Indeed, CMg allows identifying pathogens and antibiotic resistance genes (ARGs), thereby providing the information required for the optimization of the antibiotic regimen. Hence, provided that CMg would be faster than conventional culture, the probabilistic regimen used in HAP could be tailored faster, which should lead to an expected decrease of mortality and morbidity. While the inference of the antibiotic susceptibility testing from metagenomic or even genomic data is challenging, a limited number of antibiotics are used in the probabilistic regimen of HAP (namely beta-lactams, aminoglycosides, fluoroquinolones, glycopeptides and oxazolidinones). Accordingly, based on the perspective of applying CMg to the early diagnostic of HAP, we aimed at reviewing the performances of whole genomic sequencing (WGS) of the main HAP-causing bacteria (Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, Stenotrophomonas maltophilia and Staphylococcus aureus) for the prediction of susceptibility to the antibiotic families advocated in the probabilistic regimen of HAP.
Collapse
Affiliation(s)
- Etienne Ruppé
- Genomic Research Laboratory, Geneva University Hospitals, CMU-9F, Rue Michel Servet 1, CH-1211 Geneva 14, Switzerland.
| | - Abdessalam Cherkaoui
- Laboratory of Bacteriology, University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Geneva University Hospitals, CMU-9F, Rue Michel Servet 1, CH-1211 Geneva 14, Switzerland.
| | - Stéphane Emonet
- Service of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| | - Jacques Schrenzel
- Genomic Research Laboratory, Geneva University Hospitals, CMU-9F, Rue Michel Servet 1, CH-1211 Geneva 14, Switzerland.
- Laboratory of Bacteriology, University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
- Service of Infectious Diseases, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, CH-1211 Geneva 14, Switzerland.
| |
Collapse
|
23
|
Ruppé E, Lazarevic V, Girard M, Mouton W, Ferry T, Laurent F, Schrenzel J. Clinical metagenomics of bone and joint infections: a proof of concept study. Sci Rep 2017; 7:7718. [PMID: 28798333 PMCID: PMC5552814 DOI: 10.1038/s41598-017-07546-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/29/2017] [Indexed: 12/19/2022] Open
Abstract
Bone and joint infections (BJI) are severe infections that require a tailored and protracted antibiotic treatment. Yet, the diagnostic based on culturing samples lacks sensitivity, especially for hardly culturable bacteria. Metagenomic sequencing could potentially address those limitations. Here, we assessed the performances of metagenomic sequencing on 24 BJI samples for the identification of pathogens and the prediction of their antibiotic susceptibility. For monomicrobial samples in culture (n = 8), the presence of the pathogen was confirmed by metagenomics in all cases. For polymicrobial samples (n = 16), 32/55 bacteria (58.2%) were found at the species level (and 41/55 [74.5%] at the genus level). Conversely, 273 bacteria not found in culture were identified, 182 being possible pathogens and 91 contaminants. A correct antibiotic susceptibility could be inferred in 94.1% and 76.5% cases for monomicrobial and polymicrobial samples, respectively. Altogether, we found that clinical metagenomics applied to BJI samples is a potential tool to support conventional culture.
Collapse
Affiliation(s)
- Etienne Ruppé
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland.
| | - Vladimir Lazarevic
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Myriam Girard
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
| | - William Mouton
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France
- Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Tristan Ferry
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France
- Infectious Diseases Department, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre International de Recherche en Infectiologie, INSERM U1111, Pathogenesis of staphylococcal infections, University of Lyon 1, Lyon, France
- Department of Clinical Microbiology, Northern Hospital Group, Hospices Civils de Lyon, Lyon, France
| | - Jacques Schrenzel
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, rue Gabrielle-Perret-Gentil 4, 1205, Geneva, Switzerland
- Bacteriology Laboratory, Service of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
| |
Collapse
|
24
|
Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. Metagenomics: The Next Culture-Independent Game Changer. Front Microbiol 2017; 8:1069. [PMID: 28725217 PMCID: PMC5495826 DOI: 10.3389/fmicb.2017.01069] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/29/2017] [Indexed: 02/01/2023] Open
Abstract
A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs) including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other 'omics' disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of metagenomics and comparable detection techniques in clinical microbiology, food and public health laboratories. Early advances in the discipline of metagenomics, however, have indicated noteworthy challenges. Through forthcoming improvements in sequencing technology and analytical pipelines among others, we anticipate that within the next decade, detection and characterization of pathogens via metagenomics-based workflows will be implemented in routine usage in diagnostic and public health laboratories.
Collapse
Affiliation(s)
- Jessica D. Forbes
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, MontrealQC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, MontrealQC, Canada
| | - Franco Pagotto
- Bureau of Microbial Hazards, Food Directorate, Health Canada, OttawaON, Canada
- Listeriosis Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, OttawaON, Canada
| | - Aleisha Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| |
Collapse
|
25
|
Cazzola M, Rogliani P, Aliberti S, Blasi F, Matera MG. An update on the pharmacotherapeutic management of lower respiratory tract infections. Expert Opin Pharmacother 2017; 18:973-988. [PMID: 28480770 DOI: 10.1080/14656566.2017.1328497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Our knowledge about lower respiratory tract infections (LRTIs) has improved substantially in the last years, but the management of respiratory infections is still a challenge and we are still far from using precision medicine in their treatment. Areas covered: The approaches developed in recent years to improve the pharmacotherapeutic management of LRTIs, such as novel diagnostic assays to facilitate medical decision-making, attempts for selecting an optimal empiric antibiotic regimen, and the role of new and possibly unproven adjunctive therapies, are described. Expert opinion: Early and appropriate antibiotics remain the cornerstone in the treatment of LRTIs. The updated trend is to apply antimicrobial stewardship principles and initiatives to optimize both the management and the outcomes of LTRIs. Biomarkers, mainly C-reactive protein (CRP) and procalcitonin (PCT), can improve the diagnostic and prognostic assessment of LRTIs and aid to guide antibiotic therapy. The widespread use of antimicrobial agents has greatly contributed to faster development of antibiotic resistance and the emergence of opportunistic pathogens, which substitute the indigenous microbiota. However, very few new antibiotics in development to overcome existing resistance and ensure continued success in the treatment of LRTIs have been approved, likely because antibiotic stewardship programs discourage the use of new agents.
Collapse
Affiliation(s)
- Mario Cazzola
- a Department of Systems Medicine , Università degli Studi di Roma "Tor Vergata" , Rome , Italy
| | - Paola Rogliani
- a Department of Systems Medicine , Università degli Studi di Roma "Tor Vergata" , Rome , Italy
| | - Stefano Aliberti
- b Department of Pathophysiology and Transplantation , Università degli Studi di Milano, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Francesco Blasi
- b Department of Pathophysiology and Transplantation , Università degli Studi di Milano, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico , Milan , Italy
| | - Maria Gabriella Matera
- c Department of Experimental Medicine , Università degli Studi della Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|