1
|
Ngnindji-Youdje Y, Lontsi-Demano M, Diarra AZ, Foyet J, Tchuinkam T, Parola P. Ticks (Acari: Ixodidae) and tick-borne diseases in Cameroon: Current understanding and future directions for more comprehensive surveillance. One Health 2025; 20:100949. [PMID: 39816239 PMCID: PMC11733189 DOI: 10.1016/j.onehlt.2024.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/18/2025] Open
Abstract
Despite the high burden of human and animal infectious diseases in Cameroon, implementing integrative approaches to managing and controlling arthropods and their pathogens remains challenging. Surveillance should be designed to detect diseases and provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public and animal health consequences can occur. Nowadays, ticks are considered the primary vectors of animal diseases in the world, and the second vector of human diseases after mosquitoes. Knowledge of their biodiversity and distribution in any given area is a crucial step towards a better implementation of control strategies. The infections transmitted by ticks remain poorly known or underestimated in Cameroon. Despite the existence of several studies on ticks and associated pathogens, no single review to date summarises all the data available in this field in Cameroon. Following a comprehensive literature search, an inventory of the diversity and distribution of ticks, as well as the different tick-borne diseases (viral, bacteria and protozoa) found in Cameroon was prepared. To date, about 71 species, comprising ten Amblyomma species., eight Hyalomma spp., 26 Rhipicephalus spp., 11 Haemaphysalis spp., seven Ixodes spp., five Aponomma spp. (currently the Bothriocroton species), one Dermacentor, and four soft tick species of minimal or unknown medical and veterinary importance, namely Argas persicus, A. arboreus, Carios vespertilionis, and Ogadenus brumpti have been collected in Cameroon. Many zoonotic tick-borne diseases, such as babesiosis, theileriosis, anaplasmosis, ehrlichiosis, rickettsioses, and Q fever have been reported in the country. Knowledge about tick species and their distribution will aid in designing integrated vector management programs to monitor tick-borne diseases in Cameroon.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, Marseille, France
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
- AgroEcoHealth Platform, International Institute of Tropical Agriculture, PO Box 0932, Cotonou, Benin
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
- Campus International IRD-UCAD Hann, Dakar 1386, Senegal
| | - Juluis Foyet
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
| | - Timolèon Tchuinkam
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, PO Box 067, Dschang, Cameroon
| | - Philippe Parola
- Aix Marseille Univ, Marseille, France
- IHU-Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005 Marseille, France
| |
Collapse
|
2
|
Bouledroua R, Diarra AZ, Amalvict R, Berenger JM, Benakhla A, Parola P, Almeras L. Assessment of MALDI-TOF MS for Arthropod Identification Based on Exuviae Spectra Analysis. Biol Proced Online 2025; 27:12. [PMID: 40186096 PMCID: PMC11971817 DOI: 10.1186/s12575-024-00260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 04/07/2025] Open
Abstract
MALDI-TOF MS is an innovative tool for identifying hematophagous and non-hematophagous arthropods at various life stages. However, identification by MALDI-TOF MS currently requires euthanizing of the specimen, hindering further phenotypic tests. All arthropods have a common factor, molting of their exoskeletons leaving a remaining structure known as the exuviae. This phenomenon is indispensable for their growth and can evidence past arthropod presence. This study assessed the performance of MALDI-TOF MS biotyping for arthropod identification using exuviae from nine distinct laboratory-reared species (Aedes aegypti, Anopheles coluzzii, Cimex lectularius, C. hemipterus, Pediculus humanus humanus, Triatoma infestans, Rhodnius prolixus, Supella longipalpa and Blattella germanica) compared its efficiency with a molecular identification approach using DNA sequencing. Molecular analysis showed low DNA quantity in exuviae (n = 108) across species, resulting in low success of COI, 16s, and 18s amplification (50.0%), depending on the species and sequencing (10.2%). The establishment of an exuviae protocol for MS submission yielded spectra of high reproducibility and specificity per species. After upgrading a homemade reference MS database with exuviae spectra, a query with remaining spectra revealed that 100% of samples were correctly identified, with 85.8% (278/324) exceeding the threshold score value for reliable identification. MALDI-TOF MS showed high efficiency in identifying various arthropod species based on their exuviae. This approach is a groundbreaking development in the field of entomology underlining that MALDI-TOF outperformed traditional methods of exuviae identification, including morphological and molecular tools. It also prevents specimen sacrifice which could be used for complementary analyses.
Collapse
Affiliation(s)
- Rym Bouledroua
- Aix Marseille Univ, SSA, RITMES, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, 13005, France
- IRD, RITMES, MINES, Maladies Infectieuses Négligées et Emergentes au Sud, Marseille, 13005, France
| | - Remy Amalvict
- Aix Marseille Univ, SSA, RITMES, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France
| | - Jean-Michel Berenger
- Aix Marseille Univ, SSA, RITMES, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Ahmed Benakhla
- Département des Sciences Vétérinaire, Université Chadli Bendjdid, El Tarf, 36000, Algeria
| | - Philippe Parola
- Aix Marseille Univ, SSA, RITMES, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Lionel Almeras
- Aix Marseille Univ, SSA, RITMES, Marseille, 13005, France.
- IHU-Méditerranée Infection, Marseille, 13005, France.
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, 13005, France.
| |
Collapse
|
3
|
Ajdi B, El Hidan MA, El Asbahani A, Bocquet M, Ait Hamza M, Elqdhy M, Elmourid A, Touloun O, Boubaker H, Bulet P. Taxonomic identification of Morocco scorpions using MALDI-MS fingerprints of venom proteomes and computational modeling. J Proteomics 2025; 310:105321. [PMID: 39304032 DOI: 10.1016/j.jprot.2024.105321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The venom of scorpions has been the subject of numerous studies. However, their taxonomic identification is not a simple task, leading to misidentifications. This study aims to provide a practical approach for identifying scorpions based on the venom molecular mass fingerprint (MFP). Specimens (251) belonging to fifteen species were collected from different regions in Morocco. Their MFPs were acquired using MALDI-MS. These were used as a training dataset to generate predictive models and a library of mean spectral profiles using software programs based on machine learning. The computational model achieved an overall recognition capability of 99 % comprising 32 molecular signatures. The models and the library were tested using a new dataset for external validation and to evaluate their capability of identification. We recorded an accuracy classification with an average of 97 % and 98 % for the computational models and the library, respectively. To our knowledge, this is the first attempt to demonstrate the potential of MALDI-MS and MFPs to generate predictive models capable of discriminating scorpions from family to species levels, and to build a library of species-specific spectra. These promising results may represent a proof of concept towards developing a reliable approach for rapid molecular identification of scorpions in Morocco. SIGNIFICANCE OF THE STUDY: With their clinical importance, scorpions may constitute a desirable study model for many researchers. The first step in studying scorpion is systematically identifying the species of interest. However, it can be a difficult task, especially for the non-experts. The taxonomy of scorpions is primarily based on morphometric characters. In Morocco, the high number of species and subspecies mainly endemic, and the morphological similarities between different species may result in false identifications. This was observed in many reports according to the scorpion experts. In this study, we describe a reliable practical approach for identifying scorpions based on the venom molecular mass fingerprints (MFPs). By using two software programs based on machine learning, we have demonstrated that these MFPs contains sufficient inter-specific variation to differentiate between the scorpion species mentioned in this study with a good accuracy. Using a drop of venom, this new approach could be a rapid, accurate and cost saving method for taxonomic identification of scorpions in Morocco.
Collapse
Affiliation(s)
- Boujemaa Ajdi
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco; Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000 Grenoble, France; Platform BioPark Archamps, 74160 Archamps, France
| | - Moulay Abdelmonaim El Hidan
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - Abdelhafed El Asbahani
- Laboratory of Applied Chemistry and Environment (LACAPE), Team of Bio-organic Chemistry and Natural substances, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Michel Bocquet
- Platform BioPark Archamps, 74160 Archamps, France; Apimedia, 74370 Annecy, France
| | - Mohamed Ait Hamza
- Laboratory of Biotechnology and Valorization of Natural Resources, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.
| | - M'barka Elqdhy
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco
| | - Abdessamad Elmourid
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, University Sultan My Slimane, Beni Mellal 23030, Morocco
| | - Oulaid Touloun
- Polyvalent Team in Research and Development (EPVRD), Department of Biology & Geology, Polydisciplinary Faculty, University Sultan My Slimane, Beni Mellal 23030, Morocco
| | - Hassan Boubaker
- Laboratory of Microbial Biotechnology and Plant Protection, Faculty of Sciences, University of Ibn Zohr, Agadir, Morocco.
| | - Philippe Bulet
- Institute for Advanced Biosciences, CR Inserm U1209, CNRSUMR 5309, University of Grenoble-Alpes, 38000 Grenoble, France; Platform BioPark Archamps, 74160 Archamps, France.
| |
Collapse
|
4
|
Feucherolles M. Integrating MALDI-TOF Mass Spectrometry with Machine Learning Techniques for Rapid Antimicrobial Resistance Screening of Foodborne Bacterial Pathogens. Methods Mol Biol 2025; 2852:85-103. [PMID: 39235738 DOI: 10.1007/978-1-0716-4100-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Although MALDI-TOF mass spectrometry (MS) is considered as the gold standard for rapid and cost-effective identification of microorganisms in routine laboratory practices, its capability for antimicrobial resistance (AMR) detection has received limited focus. Nevertheless, recent studies explored the predictive performance of MALDI-TOF MS for detecting AMR in clinical pathogens when machine learning techniques are applied. This chapter describes a routine MALDI-TOF MS workflow for the rapid screening of AMR in foodborne pathogens, with Campylobacter spp. as a study model.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Molecular and Thermal Analysis Platform, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg.
| |
Collapse
|
5
|
Aupalee K, Srisuka W, Limsopatham K, Sanit S, Takaoka H, Saeung A. Reliability of wing morphometrics for species identification of human-biting black flies (Diptera: Simuliidae) in Thailand. Parasit Vectors 2024; 17:508. [PMID: 39695748 DOI: 10.1186/s13071-024-06597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Fast and reliable species identification of black flies is essential for research proposes and effective vector control. Besides traditional identification based on morphology, which is usually supplemented with molecular methods, geometric morphometrics (GM) has emerged as a promising tool for identification. Despite its potential, no specific GM techniques have been established for the identification of black fly species. METHODS Adult female black flies collected using human bait, as well as those reared from pupae, were used in this study. Here, landmark-based GM analysis of wings was assessed for the first time to identify human-biting black fly species in Thailand, comparing this approach with the standard morphological identification method and DNA barcoding based on the mitochondrial cytochrome c oxidase subunit I (COI) gene. To explore genetic relationships between species, maximum likelihood (ML) and neighbor-joining (NJ) phylogenetic trees were built. Additionally, three different methods of species delimitation, i.e., assemble species by automatic partitioning (ASAP), generalized mixed yule coalescent (GMYC), and single Poisson tree processes (PTP), were utilized to identify the morphologically defined species. The effectiveness of a COI barcode in identifying black fly species was further examined through the best match (BM) and best close match (BCM) methods. RESULTS Seven black fly species, namely Simulium tenebrosum Takaoka, Srisuka & Saeung, 2018 (complex), S. doipuiense Takaoka & Choochote, 2005 (complex), S. nigrogilvum Summers, 1911, S. nodosum Puri, 1933, S. asakoae Takaoka & Davies, 1995, S. chamlongi Takaoka & Suzuki, 1984, and S. umphangense Takaoka, Srisuka & Saeung, 2017 were morphologically identified. Compared with the standard method, the GM analysis based on wing shape showed high success in separating species, achieving an overall accuracy rate of 88.54%. On the other hand, DNA barcoding surpassed wing GM for species identification with a correct identification rate of 98.57%. Species delimitation analyses confirmed the validity of most nominal species, with an exception for S. tenebrosum complex and S. doipuiense complex, being delimited as a single species. Moreover, the analyses unveiled hidden diversity within S. asakoae, indicating the possible existence of up to four putative species. CONCLUSIONS This study highlights the potential of wing GM as a promising and reliable complementary tool for species identification of human-biting black flies in Thailand.
Collapse
Affiliation(s)
- Kittipat Aupalee
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wichai Srisuka
- Entomology Section, Queen Sirikit Botanic Garden, Mae Rim, Chiang Mai, 50180, Thailand
| | - Kwankamol Limsopatham
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sangob Sanit
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Hiroyuki Takaoka
- Tropical Infectious Diseases Research and Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Atiporn Saeung
- Parasitology and Entomology Research Cluster (PERC), Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
6
|
M'madi SA, Diarra AZ, Bérenger JM, Almeras L, Parola P. Efficiency of MALDI-TOF MS at identifying and discriminating immature stages of cimex lectularius and cimex hemipterus bed bugs. Sci Rep 2024; 14:28694. [PMID: 39562593 PMCID: PMC11577014 DOI: 10.1038/s41598-024-78024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Over the last two decades, an increase in bed bug infestations has been observed worldwide. Although their definitive role as vectors of infectious agents has not yet been demonstrated, bed bugs have a direct effect on human health through dermatological reactions to their bites and psychological disorders linked to domestic infestations. In this study, the effectiveness of using MALDI-TOF MS to correctly identify these two bed bug species at immature stages was assessed, as well as it effectiveness as discriminating between the immature stages (IS) of C. lectularius and C. hemipterus and their associated developmental stages. A total of 305 specimens were subjected to MALDI-TOF MS analysis, including 153 C. lectularius (28 eggs and 25 nymphs per stage from IS1 to IS5) and 152 C. hemipterus (27 eggs and 25 nymphs per stage from IS1 to IS5). ). MALDI-TOF MS analysis enabled us to obtain 84.97% (130/153) of high-quality MS spectra in terms of reproducibility and profile intensity. Twenty-four spectra including two per stage, from egg to IS5, and per bed bug species - were added to our in-house MS reference arthropod spectra database. All specimens were correctly identified at the species level, independently of the developmental stage, with log score values (LSVs) ranging from 1.75 to 2.79 (mean = 2.29 ± 0.12) and 1.81 to 2.71 (mean = 2.37 ± 0.03) for C. lectularius and C. hemipterus, respectively. MALDI-TOF MS correctly classified 53,33% (104/195) of the Cimex at the correct immature stage. Conversely, an accurate comparison of the profiles with a Genetic Algorithm model underlined that grouping the immature stages in two groups, early (IS1-IS2) and late (IS3-IS4-IS5), made it possible to obtain a cross validation (CV) and recognition capability (RC) greater than 92% and 94%, respectively, for both species. This study holds great promise for the management of bed bug infestations.
Collapse
Affiliation(s)
- Saidou Ahamada M'madi
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- MINES, IRD, Marseille, France
| | - Jean-Michel Bérenger
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille University, SSA, RITMES, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Philippe Parola
- Aix Marseille University, SSA, RITMES, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
7
|
Costa MM, Corbel V, Ben Hamouda R, Almeras L. MALDI-TOF MS Profiling and Its Contribution to Mosquito-Borne Diseases: A Systematic Review. INSECTS 2024; 15:651. [PMID: 39336619 PMCID: PMC11432722 DOI: 10.3390/insects15090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Mosquito-borne diseases are responsible for hundreds of thousands of deaths per year. The identification and control of the vectors that transmit pathogens to humans are crucial for disease prevention and management. Currently, morphological classification and molecular analyses via DNA barcoding are the standard methods used for vector identification. However, these approaches have several limitations. In the last decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as an innovative technology in biological sciences and is now considered as a relevant tool for the identification of pathogens and arthropods. Beyond species identification, this tool is also valuable for determining various life traits of arthropod vectors. The purpose of the present systematic review was to highlight the contribution of MALDI-TOF MS to the surveillance and control of mosquito-borne diseases. Published articles from January 2003 to August 2024 were retrieved, focusing on different aspects of mosquito life traits that could be determinants in disease transmission and vector management. The screening of the scientific literature resulted in the selection of 54 published articles that assessed MALDI-TOF MS profiling to study various mosquito biological factors, such species identification, life expectancy, gender, trophic preferences, microbiota, and insecticide resistance. Although a large majority of the selected articles focused on species identification, the present review shows that MALDI-TOF MS profiling is promising for rapidly identifying various mosquito life traits, with high-throughput capacity, reliability, and low cost. The strengths and weaknesses of this proteomic tool for vector control and surveillance are discussed.
Collapse
Affiliation(s)
- Monique Melo Costa
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Vincent Corbel
- Institut de Recherche pour le Développement (IRD), MIVEGEC, Univ. Montpellier, CNRS, IRD, 911 Av. Agropolis, 34394 Montpellier, France;
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC), Avenida Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Refka Ben Hamouda
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Unité de Parasitologie et Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France; (M.M.C.); (R.B.H.)
- Aix Marseille Univ, SSA, AP-HM, RITMES, 13005 Marseille, France
- IHU Méditerranée Infection, 13005 Marseille, France
| |
Collapse
|
8
|
Galletti MFBM, Hecht JA, McQuiston JR, Gartin J, Cochran J, Blocher BH, Ayres BN, Allerdice MEJ, Beati L, Nicholson WL, Snellgrove AN, Paddock CD. Applying MALDI-TOF MS to resolve morphologic and genetic similarities between two Dermacentor tick species of public health importance. Sci Rep 2024; 14:19834. [PMID: 39191821 DOI: 10.1038/s41598-024-69768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Hard ticks (Acari: Ixodidae) have been historically identified by morphological methods which require highly specialized expertise and more recently by DNA-based molecular assays that involve high costs. Although both approaches provide complementary data for tick identification, each method has limitations which restrict their use on large-scale settings such as regional or national tick surveillance programs. To overcome those obstacles, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been introduced as a cost-efficient method for the identification of various organisms, as it balances performance, speed, and high data output. Here we describe the use of this technology to validate the distinction of two closely related Dermacentor tick species based on the development of the first nationwide MALDI-TOF MS reference database described to date. The dataset obtained from this protein-based approach confirms that tick specimens collected from United States regions west of the Rocky Mountains and identified previously as Dermacentor variabilis are the recently described species, Dermacentor similis. Therefore, we propose that this integrative taxonomic tool can facilitate vector and vector-borne pathogen surveillance programs in the United States and elsewhere.
Collapse
Affiliation(s)
- Maria F B M Galletti
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA.
| | - Joy A Hecht
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - John R McQuiston
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jarrett Gartin
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Jake Cochran
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Bessie H Blocher
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Bryan N Ayres
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Michelle E J Allerdice
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Lorenza Beati
- United States National Tick Collection, Institute for Coastal Plain Science, Georgia Southern University, Statesboro, USA
| | - William L Nicholson
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Alyssa N Snellgrove
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Christopher D Paddock
- Rickettsial Zoonoses Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| |
Collapse
|
9
|
Yean S, Prasetyo DB, Marcombe S, Hadi UK, Kazim AR, Tiawsirisup S, Chinh VD, Matsuno K, Low VL, Bonnet S, Boulanger N, Lam TTY, Abdad MY, Herbreteau V, Chavatte JM, Sum S, Ren T, Sakuntabhai A, Maquart PO, Rakotonirina A, Boyer S. Challenges for ticks and tick-borne diseases research in Southeast Asia: Insight from the first international symposium in Cambodia. PLoS Negl Trop Dis 2024; 18:e0012269. [PMID: 38985826 PMCID: PMC11236135 DOI: 10.1371/journal.pntd.0012269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Ticks, as critical vectors of a variety of pathogens, pose a significant public health challenge globally. In Southeast Asia (SEA), ticks are responsible for transmitting a diverse array of pathogens affecting humans and animals. The geographical and ecological diversity of SEA provides a unique environment that supports a wide range of tick species, which complicates the management and study of tick-borne diseases (TBDs). METHODOLOGY/PRINCIPAL FINDINGS This article synthesizes findings from the first international symposium on ticks and TBDs in Southeast Asia, held in Phnom Penh on June 22 and 23, 2023. It highlights regional efforts to understand tick ecology and pathogen transmission. This paper proposes to present a summary of the various presentations given during the symposium following 3 main parts. The first one is devoted to the state of knowledge regarding ticks and TBDs in SEA countries, with presentations from 6 different countries, namely Cambodia, Indonesia, Laos, Malaysia, Thailand, and Vietnam. The second part focuses on the development of new research approaches on tick-borne pathogens (TBPs) and TBDs. The last part is a summary of the round table discussion held on the final day, with the aim of defining the most important challenges and recommendations for researches on TBP and TBD in the SEA region. CONCLUSIONS/SIGNIFICANCE Key topics discussed include advancements in diagnostic tools, such as MALDI-TOF MS and proteomics, and the development of sustainable strategies for tick management and disease prevention. The symposium facilitated the exchange of knowledge and collaborative networks among experts from various disciplines, promoting a unified approach to tackling TBDs in the region. The symposium underscored the need for enhanced surveillance, diagnostics, and inter-regional cooperation to manage the threat of TBDs effectively. Recommendations include the establishment of a regional database for tick identification and the expansion of vector competence studies. These initiatives are crucial for developing targeted interventions and understanding the broader implications of climate change and urbanization on the prevalence of TBDs.
Collapse
Affiliation(s)
- Sony Yean
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Didot Budi Prasetyo
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Upik Kesumawati Hadi
- School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, Indonesia
| | - Abdul Rahman Kazim
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Selangor, Malaysia
| | | | - Vu Duc Chinh
- National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Keita Matsuno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Van Lun Low
- Tropical Infectious Diseases Research and Education Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarah Bonnet
- Ecology and Emergence of Arthropod-borne pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Paris, France
| | - Nathalie Boulanger
- University of Strasbourg and French Reference Center Lyme, Strasbourg, France
| | | | | | | | - Jean-Marc Chavatte
- National Public Health Laboratory–National Centre for Infectious Diseases, Ministry of Health, Singapore
| | - Samuth Sum
- Faculty of Veterinary Medicine, Royal University of Agriculture, Phnom Penh, Cambodia
| | - Theary Ren
- National Animal Health and Production Research Institute, General Directorate of Animal Health and Production, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia
| | - Anavaj Sakuntabhai
- Ecology and Emergence of Arthropod-borne pathogens Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 2000, INRAE USC 1510, Paris, France
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Antsa Rakotonirina
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
10
|
Almeras L, Costa MM, Amalvict R, Guilliet J, Dusfour I, David JP, Corbel V. Potential of MALDI-TOF MS biotyping to detect deltamethrin resistance in the dengue vector Aedes aegypti. PLoS One 2024; 19:e0303027. [PMID: 38728353 PMCID: PMC11086877 DOI: 10.1371/journal.pone.0303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Insecticide resistance in mosquitoes is spreading worldwide and represents a growing threat to vector control. Insecticide resistance is caused by different mechanisms including higher metabolic detoxication, target-site modification, reduced penetration and behavioral changes that are not easily detectable with simple diagnostic methods. Indeed, most molecular resistance diagnostic tools are costly and labor intensive and then difficult to use for routine monitoring of insecticide resistance. The present study aims to determine whether mosquito susceptibility status against the pyrethroid insecticides (mostly used for mosquito control) could be established by the protein signatures of legs and/or thoraxes submitted to MALDI-TOF Mass Spectrometry (MS). The quality of MS spectra for both body parts was controlled to avoid any bias due to unconformity protein profiling. The comparison of MS profiles from three inbreeds Ae. aegypti lines from French Guiana (IRF, IR03, IR13), with distinct deltamethrin resistance genotype / phenotype and the susceptible reference laboratory line BORA (French Polynesia), showed different protein signatures. On both body parts, the analysis of whole protein profiles revealed a singularity of BORA line compared to the three inbreeding lines from French Guiana origin, suggesting that the first criteria of differentiation is the geographical origin and/or the breeding history rather than the insecticide susceptibility profile. However, a deeper analysis of the protein profiles allowed to identify 10 and 11 discriminating peaks from leg and thorax spectra, respectively. Among them, a specific peak around 4870 Da was detected in legs and thoraxes of pyrethroid resistant lines compared to the susceptible counterparts hence suggesting that MS profiling may be promising to rapidly distinguish resistant and susceptible phenotypes. Further work is needed to confirm the nature of this peak as a deltamethrin resistant marker and to validate the routine use of MS profiling to track insecticide resistance in Ae. aegypti field populations.
Collapse
Affiliation(s)
- Lionel Almeras
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Monique Melo Costa
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
| | - Rémy Amalvict
- Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Unité Parasitologie et Entomologie, Marseille, 13005, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, 13005, France
- IHU-Méditerranée Infection, Marseille, 13005, France
- Centre National de Référence du Paludisme, Marseille, 13005, France
| | - Joseph Guilliet
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Isabelle Dusfour
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Unité de Contrôle et Adaptation des Vecteurs, Cayenne, France
| | - Jean-Philippe David
- Laboratoire d’Ecologie Alpine, UMR UGA-USMB-CNRS 5553, Université Grenoble Alpes, Grenoble, 38041, France
| | - Vincent Corbel
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratório de Fisiologia e Controle de Artrópodes Vetores (Laficave), Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Avenida Brasil, Rio de Janeiro–RJ, Brazil
| |
Collapse
|
11
|
Mohammad N, Naudion P, Dia AK, Boëlle PY, Konaté A, Konaté L, Niang EHA, Piarroux R, Tannier X, Nabet C. Predicting the age of field Anopheles mosquitoes using mass spectrometry and deep learning. SCIENCE ADVANCES 2024; 10:eadj6990. [PMID: 38728404 PMCID: PMC11086620 DOI: 10.1126/sciadv.adj6990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of Anopheles mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected Anopheles arabiensis mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like Aedes mosquitoes.
Collapse
Affiliation(s)
- Noshine Mohammad
- Sorbonne Université, Inserm, Institut Pierre-Louis d’Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France
| | - Pauline Naudion
- Sorbonne Université, Inserm, Institut Pierre-Louis d’Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France
| | - Abdoulaye Kane Dia
- Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal
| | - Pierre-Yves Boëlle
- Sorbonne Université, Inserm, Institut Pierre Louis d'Épidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
| | - Abdoulaye Konaté
- Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal
| | - Lassana Konaté
- Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal
| | - El Hadji Amadou Niang
- Laboratoire d'Ecologie Vectorielle et Parasitaire (LEVP), Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, BP 5005 Dakar, Senegal
| | - Renaud Piarroux
- Sorbonne Université, Inserm, Institut Pierre-Louis d’Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France
| | - Xavier Tannier
- Sorbonne Université, Inserm, Université Sorbonne Paris Nord, Laboratoire d’Informatique Médicale et d’Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006 Paris, France
| | - Cécile Nabet
- Sorbonne Université, Inserm, Institut Pierre-Louis d’Epidémiologie et de Santé Publique, IPLESP, AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013 Paris, France
| |
Collapse
|
12
|
Hasnaoui B, Diarra AZ, Makouloutou-Nzassi P, Bérenger JM, Hamame A, Ngoubangoye B, Gaye M, Davoust B, Mediannikov O, Lekana-Douki JB, Parola P. Identification of termites from Gabon using MALDI-TOF MS. Heliyon 2024; 10:e28081. [PMID: 38524549 PMCID: PMC10957415 DOI: 10.1016/j.heliyon.2024.e28081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Termites are one of the most common pests that damage wood and other cellulosic materials. Although Africa has more varieties of termite species than any other continent, few entomological studies have been conducted in Gabon. Identifying termites poses significant difficulties for entomologists. The aim of this study was to evaluate the reliability and confirm the significance of MALDI-TOF MS in identifying fresh termites collected in equatorial Africa. A total of 108 termites were collected from 13 termite nests during a field mission in 2021 in Lekedi and Bongoville, Gabon. Termites were morphologically identified and subjected to MALDI-TOF MS, then molecular analyses using the COI and 12S rRNA genes. Four termite species were morphologically identified in this study: Pseudacanthotermes militaris, Macrotermes muelleri, Macrotermes nobilis, and Noditermes indoensis. However, when using molecular biology, only three species were identified, namely Macrotermes bellicosus, P. militaris, and N. indoensis, because the specimens initially identified as M. muelleri and M. nobilis were found to be M. bellicosus. The MALDI-TOF MS spectral profiles of the termites were all of good quality, with intra-species reproducibility and inter-species specificity. The spectra of 98 termites were blind tested against our upgraded database, which included the spectra of ten termite specimens. All tested spectra were correctly matched to their respective species, with log score values (LSVs) ranging from 1.649 to 2.592. The mean LSV was 2.215 ± 0.203, and the median was 2.241. However, 95.91% (94/98) of our spectra had LSVs above 1.8. This study demonstrates how a proteomic approach can overcome termites' molecular and morphological identification limitations and serve as a useful taxonomic tool.
Collapse
Affiliation(s)
- Bouthaina Hasnaoui
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Patrice Makouloutou-Nzassi
- Unité de Recherches en Ecologie de La Santé (URES), Centre Interdisciplinaire de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon
- Institut de Recherches en Ecologie Tropicale (IRET-CENAREST), B.P. 13354, Libreville, Gabon
| | - Jean-Michel Bérenger
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Afaf Hamame
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Barthelemy Ngoubangoye
- Centre de Primatologie, Centre Interdisciplinaire de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon
| | - Mapenda Gaye
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Bernard Davoust
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Oleg Mediannikov
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Jean Bernard Lekana-Douki
- Unité D’Evolution, Epidémiologie et Résistances Parasitaires, Centre Interdisciplinaire de Recherches Médicales de Franceville, B.P. 769, Franceville, Gabon
- Département de Parasitologie- Mycologie, Université des Sciences de La Santé, B.P. 4009, Libreville, Gabon
| | - Philippe Parola
- Aix-Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
13
|
Gaye PM, Ndiaye EHI, Doucouré S, Sow D, Gaye M, Goumballa N, Cassagne C, L'Ollivier C, Medianikov O, Sokhna C, Ranque S. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry traces the geographical source of Biomphalaria pfeifferi and Bulinus forskalii, involved in schistosomiasis transmission. Infect Dis Poverty 2024; 13:11. [PMID: 38281969 PMCID: PMC10823745 DOI: 10.1186/s40249-023-01168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Freshwater snails of the genera Bulinus spp., Biomphalaria spp., and Oncomelania spp. are the main intermediate hosts of human and animal schistosomiasis. Identification of these snails has long been based on morphological and/or genomic criteria, which have their limitations. These limitations include a lack of precision for the morphological tool and cost and time for the DNA-based approach. Recently, Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight (MALDI-TOF) mass spectrometry, a new tool used which is routinely in clinical microbiology, has emerged in the field of malacology for the identification of freshwater snails. This study aimed to evaluate the ability of MALDI-TOF MS to identify Biomphalaria pfeifferi and Bulinus forskalii snail populations according to their geographical origin. METHODS This study was conducted on 101 Bi. pfeifferi and 81 Bu. forskalii snails collected in three distinct geographical areas of Senegal (the North-East, South-East and central part of the country), and supplemented with wild and laboratory strains. Specimens which had previously been morphologically described were identified by MALDI-TOF MS [identification log score values (LSV) ≥ 1.7], after an initial blind test using the pre-existing database. After DNA-based identification, new reference spectra of Bi. pfeifferi (n = 10) and Bu. forskalii (n = 5) from the geographical areas were added to the MALDI-TOF spectral database. The final blind test against this updated database was performed to assess identification at the geographic source level. RESULTS MALDI-TOF MS correctly identified 92.1% of 101 Bi. pfeifferi snails and 98.8% of 81 Bu. forskalii snails. At the final blind test, 88% of 166 specimens were correctly identified according to both their species and sampling site, with LSVs ranging from 1.74 to 2.70. The geographical source was adequately identified in 90.1% of 91 Bi. pfeifferi and 85.3% of 75 Bu. forskalii samples. CONCLUSIONS Our findings demonstrate that MALDI-TOF MS can identify and differentiate snail populations according to geographical origin. It outperforms the current DNA-based approaches in discriminating laboratory from wild strains. This inexpensive high-throughput approach is likely to further revolutionise epidemiological studies in areas which are endemic for schistosomiasis.
Collapse
Affiliation(s)
- Papa Mouhamadou Gaye
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France
- VITROME, International IRD-UCAD Campus, 1386, Dakar, Senegal
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
- Departement of Animal Biology, Faculty of Sciences and Techniques, UCAD, 5005, Dakar, Senegal
| | - El Hadj Ibrahima Ndiaye
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France
- VITROME, International IRD-UCAD Campus, 1386, Dakar, Senegal
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
- Departement of Animal Biology, Faculty of Sciences and Techniques, UCAD, 5005, Dakar, Senegal
| | | | - Doudou Sow
- Department of Parasitology-Mycology, UFR Sciences de la Santé, Université Gaston Berger, 234, Saint-Louis, Senegal
| | - Mapenda Gaye
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
| | - Ndiaw Goumballa
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France
- VITROME, International IRD-UCAD Campus, 1386, Dakar, Senegal
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
| | - Carole Cassagne
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
| | - Coralie L'Ollivier
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
| | - Oleg Medianikov
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
| | - Cheikh Sokhna
- VITROME, International IRD-UCAD Campus, 1386, Dakar, Senegal
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France
| | - Stéphane Ranque
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, 13005, Marseille, France.
- Hospital-University Institut (IHU) Mediterranée Infection, 13005, Marseille, France.
| |
Collapse
|
14
|
Ngnindji-Youdje Y, Lontsi-Demano M, Diarra AZ, Makaila AM, Tchuinkam T, Berenger JM, Parola P. Morphological, molecular, and MALDI-TOF MS identification of bed bugs and associated Wolbachia species from Cameroon. Acta Trop 2024; 249:107086. [PMID: 38036023 DOI: 10.1016/j.actatropica.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023]
Abstract
After vanishing from the public eye for more than 50 years, bed bugs have resurged to become one of the most widely discussed and heavily researched insect pests in the world. This study presents the basic information of infestations of tropical bed bugs, Cimex hemipterus (Hemiptera: Cimicidae), in Cameroon. A total of 248 immature stage and adult bed bug specimens were collected from households and a travel agency in Yaoundé and Douala, Cameroon. The ability of MALDI-TOF MS to identify bed bugs was tested using heads for adults and cephalothoraxes for immature stages. Microorganism screening was performed by qPCR and confirmed by regular PCR and sequencing. Based on morphometrical criteria, four stages of immature bed bugs are represented. Of the 248 bed bug specimens morphologically identified as Cimex hemipterus, 246 (77 males, 65 females and 104 immature specimens) were submitted to MALDI-TOF MS analysis. Of the 222 adults and immature specimens tested, 122 (59.9 %) produced good quality MALDI-TOF MS spectra (35 adults and 87 immature specimens). Blind testing allowed species level identification of 98.21 % of adult and immature C. hemipterus. Among the bacteria tested, only Wolbachia DNA was found in 12/246 (4.8 %) bed bugs. More surveys in the country are warranted to assess the true level of bed bug infestations, in order to take appropriate action for their control.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France; Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Michel Lontsi-Demano
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Ahmat Mahamat Makaila
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France; Institut Hospitalo-Universitaire MInstitut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
15
|
Benyahia H, Parola P, Almeras L. Evolution of MALDI-TOF MS Profiles from Lice and Fleas Preserved in Alcohol over Time. INSECTS 2023; 14:825. [PMID: 37887837 PMCID: PMC10607003 DOI: 10.3390/insects14100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
MALDI-TOF is now considered a relevant tool for the identification of arthropods, including lice and fleas. However, the duration and conditions of storage, such as in ethanol, which is frequently used to preserve these ectoparasites, could impede their classification. The purpose of the present study was to assess the stability of MS profiles from Pediculus humanus corporis lice and Ctenocephalides felis fleas preserved in alcohol from one to four years and kinetically submitted to MALDI-TOF MS. A total of 469 cephalothoraxes from lice (n = 170) and fleas (n = 299) were tested. The reproducibility of the MS profiles was estimated based on the log score values (LSVs) obtained for query profiles compared to the reference profiles included in the MS database. Only MS spectra from P. humanus corporis and C. felis stored in alcohol for less than one year were included in the reference MS database. Approximately 75% of MS spectra from lice (75.2%, 94/125) and fleas (74.4%, 122/164) specimens stored in alcohol for 12 to 48 months, queried against the reference MS database, obtained relevant identification. An accurate analysis revealed a significant decrease in the proportion of identification for both species stored for more than 22 months in alcohol. It was hypothesized that incomplete drying was responsible for MS spectra variations. Then, 45 lice and 60 fleas were subjected to longer drying periods from 12 to 24 h. The increase in the drying period improved the proportion of relevant identification for lice (95%) and fleas (80%). This study highlighted that a correct rate of identification by MS could be obtained for lice and fleas preserved in alcohol for up to four years on the condition that the drying period was sufficiently long for accurate identification.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 13005 Marseille, France; (H.B.); (P.P.)
- IHU Méditerranée Infection, 13005 Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 13005 Marseille, France
| |
Collapse
|
16
|
Fall FK, Diarra AZ, Bouganali C, Sokhna C, Parola P. Using MALDI-TOF MS to Identify Mosquitoes from Senegal and the Origin of Their Blood Meals. INSECTS 2023; 14:785. [PMID: 37887797 PMCID: PMC10607482 DOI: 10.3390/insects14100785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
Mosquitoes are arthropods that represent a real public health problem in Africa. Morphology and molecular biology techniques are usually used to identify different mosquito species. In recent years, an innovative tool, matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), has been used to identify many arthropods quickly and at low cost, where equipment is available. We evaluated the ability of MALDI-TOF MS to identify mosquitoes collected in Senegal and stored for several months in silica gel, and to determine the origin of their blood meal. A total of 582 mosquitoes were collected and analysed. We obtained 329/582 (56.52%) MALDI-TOF MS good-quality spectra from mosquito legs and 123/157 (78.34%) good-quality spectra from engorged abdomens. We updated our home-made MALDI-TOF MS arthropod spectra database by adding 23 spectra of five mosquito species from Senegal that had been identified morphologically and molecularly. These included legs from Anopheles gambiae, Anopheles arabiensis, Anopheles cf. rivulorum, Culex nebulosus, Anopheles funestus, and three spectra from abdomens engorged with human blood. Having updated the database, all mosquitoes tested by MALDI-TOF MS were identified with scores greater than or equal to 1.7 as An. gambiae (n = 64), Anopheles coluzzii (n = 12), An. arabiensis (n = 1), An. funestus (n = 7), An. cf rivulorum (n = 1), Lutzia tigripes (n = 3), Cx. nebulosus (n = 211), Culex quinquefasciatus (n = 2), Culex duttoni (n = 1), Culex perfescus (n = 1), Culex tritaeniorhynchus (n = 1), and Aedes aegypti (n = 2). Blood meal identification by MALDI-TOF MS revealed that mosquitoes had fed on the blood of humans (n = 97), cows (n = 6), dogs (n = 2), goats (n = 1), sheep (n = 1), and bats (n = 1). Mixed meals were also detected. These results confirm that MALDI-TOF MS is a promising technique for identifying mosquitoes and the origin of their blood meal.
Collapse
Affiliation(s)
- Fatou Kiné Fall
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
| | - Charles Bouganali
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Cheikh Sokhna
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
- VITROME Dakar, Campus International IRD-UCAD Hann, Dakar 1386, Senegal;
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France; (F.K.F.); (A.Z.D.)
- IHU Méditerranée Infection, VITROME, 19–21 Boulevard Jean Moulin, 13005 Marseille, France;
| |
Collapse
|
17
|
Cannet A, Simon-Chane C, Akhoundi M, Histace A, Romain O, Souchaud M, Jacob P, Sereno D, Mouline K, Barnabe C, Lardeux F, Boussès P, Sereno D. Deep learning and wing interferential patterns identify Anopheles species and discriminate amongst Gambiae complex species. Sci Rep 2023; 13:13895. [PMID: 37626130 PMCID: PMC10457333 DOI: 10.1038/s41598-023-41114-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023] Open
Abstract
We present a new and innovative identification method based on deep learning of the wing interferential patterns carried by mosquitoes of the Anopheles genus to classify and assign 20 Anopheles species, including 13 malaria vectors. We provide additional evidence that this approach can identify Anopheles spp. with an accuracy of up to 100% for ten out of 20 species. Although, this accuracy was moderate (> 65%) or weak (50%) for three and seven species. The accuracy of the process to discriminate cryptic or sibling species is also assessed on three species belonging to the Gambiae complex. Strikingly, An. gambiae, An. arabiensis and An. coluzzii, morphologically indistinguishable species belonging to the Gambiae complex, were distinguished with 100%, 100%, and 88% accuracy respectively. Therefore, this tool would help entomological surveys of malaria vectors and vector control implementation. In the future, we anticipate our method can be applied to other arthropod vector-borne diseases.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des Affaires Sanitaires et Sociales de la Nouvelle-Calédonie, Nouméa, France
| | | | | | - Aymeric Histace
- ETIS UMR 8051, ENSEA, CNRS, Cergy Paris University, 95000, Cergy, France
| | - Olivier Romain
- ETIS UMR 8051, ENSEA, CNRS, Cergy Paris University, 95000, Cergy, France
| | - Marc Souchaud
- ETIS UMR 8051, ENSEA, CNRS, Cergy Paris University, 95000, Cergy, France
| | - Pierre Jacob
- CNRS, Bordeaux INP, LaBRI, UMR 5800, Univ. Bordeaux, 33400, Talence, France
| | - Darian Sereno
- InterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ Montpellier, Montpellier, France
| | - Karine Mouline
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Christian Barnabe
- InterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ Montpellier, Montpellier, France
| | | | | | - Denis Sereno
- InterTryp, IRD-CIRAD, Infectiology, Medical entomology & One Health research group, Univ Montpellier, Montpellier, France.
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France.
| |
Collapse
|
18
|
Hasnaoui B, Bérenger JM, Delaunay P, Diarra AZ, Ndiaye EHI, M'madi SA, Masotti N, Sevestre J, Parola P. Survey of bed bug infestations in homeless shelters in southern France. Sci Rep 2023; 13:12557. [PMID: 37532686 PMCID: PMC10397270 DOI: 10.1038/s41598-023-38458-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023] Open
Abstract
Bed bug has become a major public health pest worldwide. Infestation may result in numerous negative health effects. Homeless shelters are one of the most habitats that can be infested with bed bugs, a few studies have focused on bed bug infestations in these settings. We conducted a survey of infestations of bed bugs in a homeless shelter in southern France, using an innovative seven-level scale (0-6) to assess the degree of infestation, MALDI TOF-MS to identify bed bugs, and a biomolecular tool to detect bacteria. Bed bug infestations were documented in 13% (9/68) of investigated rooms. A total of 184 bed bugs were collected and morphologically identified as Cimex lectularius. MALDI TOF-MS analysis allowed us to obtain high-quality MS spectra for all 184 specimens, to correctly identify all specimens, and included 178/184 (97%) Log Score Values higher than 1.8. Among the bacteria tested, Wolbachia sp. DNA was found in 149/184 (81%) of the bed bugs, and one sample was positive for Coxiella burnetii, the agent of Q fever. Our study is the first of its kind that offers new perspectives for increasing public awareness of the conditions in homeless shelters.
Collapse
Affiliation(s)
- Bouthaina Hasnaoui
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Jean Michel Bérenger
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Pascal Delaunay
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- Laboratory of Parasitology Mycology, Nice University Hospital, Nice, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - El Hadji Ibrahima Ndiaye
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Saidou Ahamada M'madi
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Noelle Masotti
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Jacques Sevestre
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.
- IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
19
|
Sivanesan I, Gopal J, Hasan N, Muthu M. A systematic assessment of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) application for rapid identification of pathogenic microbes that affect food crops: delivered and future deliverables. RSC Adv 2023; 13:17297-17314. [PMID: 37304772 PMCID: PMC10251190 DOI: 10.1039/d3ra01633a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/20/2023] [Indexed: 06/13/2023] Open
Abstract
MALDI-TOF MS has decades of experience in the detection and identification of microbial pathogens. This has now become a valuable analytical tool when it comes to the identification and detection of clinical microbial pathogens. This review gives a brief synopsis of what has been achieved using MALDI-TOF MS in clinical microbiology. The major focus, however, is on summarizing and highlighting the effectiveness of MALDI-TOF MS as a novel tool for rapid identification of food crop microbial pathogens. The methods used and the sample preparation methodologies reported thus far have been highlighted and the challenges and gaps and recommendations for fine tuning the technique have been put forth. In an era where anything close to the health and welfare of humanity has been considered as the top priority, this review pitches on one such relevant research topics.
Collapse
Affiliation(s)
- Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University 1 Hwayang-dong, Gwangjin-gu Seoul 05029 Korea
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) Thandalam Chennai 602105 Tamil Nadu India +91 44 2681 1009 +91 44 66726677
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University P.O. Box 114 Jazan Saudi Arabia
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS) Thandalam Chennai 602105 Tamil Nadu India +91 44 2681 1009 +91 44 66726677
| |
Collapse
|
20
|
Gaye PM, Doucouré S, Sow D, Sokhna C, Ranque S. Identification of Bulinus forskalii as a potential intermediate host of Schistosoma hæmatobium in Senegal. PLoS Negl Trop Dis 2023; 17:e0010584. [PMID: 37159452 DOI: 10.1371/journal.pntd.0010584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 05/19/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Understanding the transmission of Schistosoma hæmatobium in the Senegal River Delta requires knowledge of the snails serving as intermediate hosts. Accurate identification of both the snails and the infecting Schistosoma species is therefore essential. Cercarial emission tests and multi-locus (COX1 and ITS) genetic analysis were performed on Bulinus forskalii snails to confirm their susceptibility to S. hæmatobium infection. A total of 55 Bulinus forskalii, adequately identified by MALDI-TOF mass spectrometry, were assessed. Cercarial shedding and RT-PCR assays detected 13 (23.6%) and 17 (31.0%), respectively, Bulinus forskalii snails parasitized by S. hæmatobium complex fluke. Nucleotide sequence analysis identified S. hæmatobium in 6 (11.0%) using COX1 and 3 (5.5%) using ITS2, and S. bovis in 3 (5.5%) using COX1 and 3 (5.5%) using ITS2. This result is the first report of infection of Bulinus forskalii by S. hæmatobium complex parasites in Senegal using innovative and more accurate identification methods to discriminate this snail and characterize its infection by S. hæmatobium.
Collapse
Affiliation(s)
- Papa Mouhamadou Gaye
- Aix-Marseille Université, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l'IRD, Dakar, Senegal
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection de Marseille, Marseille, France
- Département Biologie Animale, Faculté des Sciences et Technique, UCAD de Dakar, Dakar, Senegal
| | | | - Doudou Sow
- Department of Parasitology-Mycology, UFR Sciences de la Santé, Université Gaston Berger, Saint-Louis, Senegal
| | - Cheikh Sokhna
- VITROME, Campus International IRD-UCAD de l'IRD, Dakar, Senegal
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection de Marseille, Marseille, France
| | - Stéphane Ranque
- VITROME, Campus International IRD-UCAD de l'IRD, Dakar, Senegal
- Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection de Marseille, Marseille, France
| |
Collapse
|
21
|
Ngnindji-Youdje Y, Diarra AZ, Lontsi-Demano M, Berenger JM, Tchuinkam T, Parola P. MALDI-TOF MS identification of cattle ticks from Cameroon. Ticks Tick Borne Dis 2023; 14:102159. [PMID: 36907070 DOI: 10.1016/j.ttbdis.2023.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/09/2023] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
MALDI-TOF MS has recently been proposed as an accurate tool for arthropod identification, including ticks. In this study, we evaluate and confirm the ability of MALDI-TOF MS, to identify different tick species collected in Cameroon, considering other lines of evidence (morphology and molecular). A total of 1483 adult ticks were collected from cattle in five distinct sites in the Western Highland of Cameroon. Because of engorged status and/or absence of some morphological criteria, some Ixodes spp. and Rhipicephalus spp. were identified to the genus level only. Among those, 944 ticks (543 males and 401 females) were selected for the current work. They were classified into 5 genera and 11 species: Rhipicephalus (Boophilus) microplus (31.7%), Rhipicephalus lunulatus (26%), Amblyomma variegatum (23%), Rhipicephalus sanguineus s.l. (4.8%), of Haemaphysalis leachi group (4.6%), Hyalomma truncatum (2.6%), Hyalomma rufipes (1.7%), Rhipicephalus muhsamae (1.1%), Rhipicephalus (Boophilus) annulatus (0.6%), Rhipicephalus (Boophilus) decoloratus (0.3%), Ixodes rasus (0.1%), Ixodes spp. (0.2%) and Rhipicephalus spp. (3.3%). Tick legs were subjected to MALDI-TOF MS analyzes, and the spectra of 929 (98.4%) specimens were of good quality. Analysis of these spectra provided intra-species reproducibility and interspecies specificity of MS profiles obtained from the different species. Our in-house MALDI-TOF MS arthropod database was upgraded with spectra from 44 specimens of 10 different tick species. Blind testing of good quality spectra revealed that 99% agreed with the morphological identification. Of these, 96.9% had log score values (LSVs) between 1.73 and 2.57. MALDI-TOF MS also allowed to correct the morphological misidentification of 7 ticks, and to identify 32 engorged ticks that were not morphologically identifiable to the species level. This study supports MALDI-TOF MS as a reliable tool for tick identification and provides new data on tick species identification in Cameroon.
Collapse
Affiliation(s)
- Yannick Ngnindji-Youdje
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, Marseille 13005, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France; Vectors Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, Marseille 13005, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Michel Lontsi-Demano
- Vectors Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, Marseille 13005, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Timoléon Tchuinkam
- Vectors Borne Diseases Laboratory of the Research Unit for Biology and Applied Ecology (VBID-RUBAE), Faculty of Sciences of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, Marseille 13005, France; IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
22
|
Gupta A, Agarwal J, Singh V, Das A, Sen M. Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) as an Indispensable Tool in Diagnostic Bacteriology: A Comparative Analysis With Conventional Technique. Cureus 2023; 15:e36984. [PMID: 37139282 PMCID: PMC10149887 DOI: 10.7759/cureus.36984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
INTRODUCTION Owing to its accurate diagnosis, rapid turnaround time, cost effectivity, and less rates of error, Matrix-assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) has replaced most of the phenotypic methods of identification. Thus, the objective of this study was to compare and evaluate MALDI-TOF MS to conventional biochemical-to identify bacterial microorganisms. METHODS Different bacterial species isolated from 2010 to 2018 (pre-MALDI-TOF era), using routine bio-chemicals were compared to bacterial species isolated from 2019 to August 2021 (post MALDI-TOF), using MALDI-TOF, in the microbiology laboratory of a tertiary care hospital in North India. Chi-Square test (χ2) was used for the evaluation of bacterial identification between biochemical tests and MALDI-TOF MS association with a 95% confidence interval, considering wrong identification in genera or at a species level. RESULTS Many different and new genera and species of bacteria could be identified using MALDI-TOF, which was not possible using only routine manual bio-chemicals like Kocuria rhizophilus, Rothia mucilaginosa, Enterococcus casseliflavus, Enterococcus gallinarum, Leuconostoc, Leclercia adecarboxylata, Raoultella ornithological, Cryseobacterium indologenes. Conclusion: Each of the newly identified bacteria played an important role in deciding treatment. Wide use of the MALDI-TOF system will not only strengthen diagnostic stewardship but also encourage antimicrobial stewardship programs.
Collapse
|
23
|
Huguenin A, Kincaid-Smith J, Depaquit J, Boissier J, Ferté H. MALDI-TOF: A new tool for the identification of Schistosoma cercariae and detection of hybrids. PLoS Negl Trop Dis 2023; 17:e0010577. [PMID: 36976804 PMCID: PMC10081743 DOI: 10.1371/journal.pntd.0010577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/07/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Schistosomiasis is a neglected water-born parasitic disease caused by Schistosoma affecting more than 200 million people. Introgressive hybridization is common among these parasites and raises issues concerning their zoonotic transmission. Morphological identification of Schistosoma cercariae is difficult and does not permit hybrids detection. Our objective was to assess the performance of MALDI-TOF (Matrix Assistated Laser Desorption-Ionization–Time Of Flight) mass spectrometry for the specific identification of cercariae in human and non-human Schistosoma and for the detection of hybridization between S. bovis and S. haematobium. Spectra were collected from laboratory reared molluscs infested with strains of S. haematobium, S. mansoni, S. bovis, S. rodhaini and S. bovis x S. haematobium natural (Corsican hybrid) and artificial hybrids. Cluster analysis showed a clear separation between S. haematobium, S. bovis, S. mansoni and S. rodhaini. Corsican hybrids are classified with those of the parental strain of S. haematobium whereas other hybrids formed a distinct cluster. In blind test analysis the developed MALDI-TOF spectral database permits identification of Schistosoma cercariae with high accuracy (94%) and good specificity (S. bovis: 99.59%, S. haematobium 99.56%, S. mansoni and S. rodhaini: 100%). Most misidentifications were between S. haematobium and the Corsican hybrids. The use of machine learning permits to improve the discrimination between these last two taxa, with accuracy, F1 score and Sensitivity/Specificity > 97%. In multivariate analysis the factors associated with obtaining a valid identification score (> 1.7) were absence of ethanol preservation (p < 0.001) and a number of 2–3 cercariae deposited per well (p < 0.001). Also, spectra acquired from S. mansoni cercariae are more likely to obtain a valid identification score than those acquired from S. haematobium (p<0.001). MALDI-TOF is a reliable technique for high-throughput identification of Schistosoma cercariae of medical and veterinary importance and could be useful for field survey in endemic areas.
Collapse
Affiliation(s)
- Antoine Huguenin
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
- Laboratoire de Parasitologie-Mycologie, pôle de Biopathologie, CHU de Reims, Reims, France
- * E-mail:
| | - Julien Kincaid-Smith
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Perpignan, France
- CBGP, IRD, CIRAD, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Jérôme Depaquit
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
- Laboratoire de Parasitologie-Mycologie, pôle de Biopathologie, CHU de Reims, Reims, France
| | - Jérôme Boissier
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan, Perpignan, France
| | - Hubert Ferté
- Université de Reims Champagne Ardenne, EA7510 ESCAPE, Reims, France
| |
Collapse
|
24
|
Beltran A, Palomar AM, Ercibengoa M, Goñi P, Benito R, Lopez B, Oteo JA. MALDI-TOF MS as a tick identification tool in a tertiary hospital in Spain. Acta Trop 2023; 242:106868. [PMID: 36940856 DOI: 10.1016/j.actatropica.2023.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
In Spain, as in other countries, the spectrum of tick-borne diseases and their number have increased in recent years. The tick identification, at species level, can be a challenging outside research centers although this information is very usufull for decisions making. The performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in tick identification of specimens collected from patients have been seldomly reported. The aim of the present study was to desing a protein-extraction protocol and build a tick-legs reference spectra. This protocol was then validated using specimens from both patients and non-patient sources. Nine species of ticks that usually bites humans in Spain were included: Dermacentor marginatus, Dermacentor reticulatus, Haemaphysalis punctata, Hyalomma usitanicum, Hyalomma marginatum, Ixodes ricinus, Rhipicephalus bursa, Rhipicephalus pusillus and Rhipicephalus sanguineus sensu lato. Other less-frequentbiting species were also included: Haemaphysalis inermis, Haemaphysalis concinna, Hyalomma scupense,Ixodes frontalis, Ixodes hexagonus, and Argas sp. Specimens were identified by PCR and sequencing of a fragment of the 16S rRNA gene of ticks. In the tests performed with non-patient collected specimens, a 100% correlation was observed between molecular methods and MS, while in the tests performed with ticks collected from patients a 92.59% correlation was observed. Misidentification was observed only in two of I. ricinus nymphs (identified as Ctenocephalides felis). Therefore, mass- spectrometry can be confidently used as a tick identification tool in a hospital setting for the rapid identification of tick vectors.
Collapse
Affiliation(s)
- Antonio Beltran
- Microbiology Department, Lozano Blesa University Hospital, 50009 Zaragoza, Spain; Group of Water and Environmental Health, Institute of Environmental Sciences (IUCA)..
| | - Ana M Palomar
- Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), Infectious Diseases Department, San Pedro University Hospital-Center for Biomedical Research from La Rioja (CIBIR), 26006 Logroño, Spain
| | - Maria Ercibengoa
- Biodonostia Health Research Institute, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Biodonostia Health Research Institute, Infectious Diseases Area, Respiratory Infection and Antimicrobial Resistance Group; Osakidetza, Hospital Universitario Donostia, 20014 San Sebastián, Spain
| | - Pilar Goñi
- Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain; Group of Water and Environmental Health, Institute of Environmental Sciences (IUCA)
| | - Rafael Benito
- Microbiology Department, Lozano Blesa University Hospital, 50009 Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain; Institute for Health Research Aragón, Zaragoza, Spain
| | - Beatriz Lopez
- Centro de Salud de Epila, 50290 Epila, Zaragoza, Spain
| | - Jose Antonio Oteo
- Center of Rickettsiosis and Arthropod-Borne Diseases (CRETAV), Infectious Diseases Department, San Pedro University Hospital-Center for Biomedical Research from La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
25
|
Identification of Neotropical Culex Mosquitoes by MALDI-TOF MS Profiling. Trop Med Infect Dis 2023; 8:tropicalmed8030168. [PMID: 36977169 PMCID: PMC10055718 DOI: 10.3390/tropicalmed8030168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The mosquito (Diptera: Culicidae) fauna of French Guiana encompasses 242 species, of which nearly half of them belong to the genus Culex. Whereas several species of Culex are important vectors of arboviruses, only a limited number of studies focus on them due to the difficulties to morphologically identify field-caught females. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising method for the identification of mosquitoes. Culex females collected in French Guiana were morphologically identified and dissected. Abdomens were used for molecular identification using the COI (cytochrome oxidase 1) gene. Legs and thorax of 169 specimens belonging to 13 Culex species, (i.e., Cx. declarator, Cx. nigripalpus, Cx. quinquefasciatus, Cx. usquatus, Cx. adamesi, Cx. dunni, Cx. eastor, Cx. idottus, Cx. pedroi, Cx. phlogistus, Cx. portesi, Cx. rabanicolus and Cx. spissipes) were then submitted to MALDI-TOF MS analysis. A high intra-species reproducibility and inter-species specificity of MS spectra for each mosquito body part tested were obtained. A corroboration of the specimen identification was revealed between MALDI-TOF MS, morphological and molecular results. MALDI-TOF MS protein profiling proves to be a suitable tool for identification of neotropical Culex species and will permit the enhancement of knowledge on this highly diverse genus.
Collapse
|
26
|
Shao H, Zhang P, Peng D, Huang W, Kong LA, Li C, Liu E, Peng H. Current advances in the identification of plant nematode diseases: From lab assays to in-field diagnostics. FRONTIERS IN PLANT SCIENCE 2023; 14:1106784. [PMID: 36760630 PMCID: PMC9902721 DOI: 10.3389/fpls.2023.1106784] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Plant parasitic nematodes (PPNs) cause an important class of diseases that occur in almost all types of crops, seriously affecting yield and quality and causing great economic losses. Accurate and rapid diagnosis of nematodes is the basis for their control. PPNs often have interspecific overlays and large intraspecific variations in morphology, therefore identification is difficult based on morphological characters alone. Instead, molecular approaches have been developed to complement morphology-based approaches and/or avoid these issues with various degrees of achievement. A large number of PPNs species have been successfully detected by biochemical and molecular techniques. Newly developed isothermal amplification technologies and remote sensing methods have been recently introduced to diagnose PPNs directly in the field. These methods have been useful because they are fast, accurate, and cost-effective, but the use of integrative diagnosis, which combines remote sensing and molecular methods, is more appropriate in the field. In this paper, we review the latest research advances and the status of diagnostic approaches and techniques for PPNs, with the goal of improving PPNs identification and detection.
Collapse
Affiliation(s)
- Hudie Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Pan Zhang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling-an Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chuanren Li
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Enliang Liu
- Grain Crops Institute, XinJiang Academy of Agricultural Sciences, Urumqi, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Sevestre J, Lemrabott MAO, Bérenger JM, Zan Diarra A, Ould Mohamed Salem Boukhary A, Parola P. Detection of Arthropod-Borne Bacteria and Assessment of MALDI-TOF MS for the Identification of Field-Collected Immature Bed Bugs from Mauritania. INSECTS 2023; 14:69. [PMID: 36661997 PMCID: PMC9864073 DOI: 10.3390/insects14010069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Human infestations by bed bugs have upsurged globally in recent decades, including in African countries, where recent reports pointed out an increase in infestation. Sympatric dwelling has been described for two species of bed bug parasitizing humans: Cimex hemipterus (the tropical bed bug) and C. lectularius. Identification of these two species is based on morphological characteristics, and gene sequencing, and may also rely on Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS). The present work aimed to assess whether MALDI-TOF MS was applicable for species level identification of immature stages of Cimex. Arthropods were collected in domestic settings in Nouakchott, Mauritania. Identification used morphological keys and MALDI-TOF MS identification was assessed for immature stages. Quantitative PCR and sequencing assays were used to detect arthropod-associated bacteria in each specimen. A total of 92 arthropods were collected, all morphologically identified as C. hemipterus (32 males, 14 females and 45 immature stages). A total of 35/45 specimens produced good quality MALDI-TOF MS spectra. Analysis allowed species level identification of all immature C. hemipterus after their spectra were entered into our in-house MALDI-TOF MS arthropod spectra database. Molecular screening allowed detection of Wolbachia DNA in each specimen. These results suggested that MALDI-TOF MS is a reliable tool for species level identification of Cimex specimens, including immature specimens. Future studies should assess this approach on larger panels of immature specimens for different Cimex species and focus on the precise staging of their different immature developmental stages.
Collapse
Affiliation(s)
- Jacques Sevestre
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Mohamed Aly Ould Lemrabott
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott BP 880, Mauritania
| | - Jean-Michel Bérenger
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Adama Zan Diarra
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| | - Ali Ould Mohamed Salem Boukhary
- Unité de Recherche Génomes et Milieux, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott BP 880, Mauritania
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, CEDEX 05, 13385 Marseille, France
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France
| |
Collapse
|
28
|
Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U, Lal R, Toteja R. DNA barcoding, an effective tool for species identification: a review. Mol Biol Rep 2023; 50:761-775. [PMID: 36308581 DOI: 10.1007/s11033-022-08015-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/07/2022] [Indexed: 02/01/2023]
Abstract
DNA barcoding is a powerful taxonomic tool to identify and discover species. DNA barcoding utilizes one or more standardized short DNA regions for taxon identification. With the emergence of new sequencing techniques, such as Next-generation sequencing (NGS), ONT MinION nanopore sequencing, and Pac Bio sequencing, DNA barcoding has become more accurate, fast, and reliable. Rapid species identification by DNA barcodes has been used in a variety of fields, including forensic science, control of the food supply chain, and disease understanding. The Consortium for Barcode of Life (CBOL) presents various working groups to identify the universal barcode gene, such as COI in metazoans; rbcL, matK, and ITS in plants; ITS in fungi; 16S rRNA gene in bacteria and archaea, and creating a reference DNA barcode library. In this article, an attempt has been made to analyze the various proposed DNA barcode for different organisms, strengths & limitations, recent advancements in DNA barcoding, and methods to speed up the DNA barcode reference library construction. This study concludes that constructing a reference library with high species coverage would be a major step toward identifying species by DNA barcodes. This can be achieved in a short period of time by using advanced sequencing and data analysis methods.
Collapse
Affiliation(s)
- Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | | | - S Sripoorna
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Pooja Bhagat
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, Delhi, 110 021, India
| | - Utkarsh Sood
- The Energy and Resources Institute, IHC Complex, New Delhi, 110003, India
| | - Rup Lal
- The Energy and Resources Institute, IHC Complex, New Delhi, 110003, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, Delhi, India.
| |
Collapse
|
29
|
Huynh LN, Tran LB, Nguyen HS, Ho VH, Parola P, Nguyen XQ. Mosquitoes and Mosquito-Borne Diseases in Vietnam. INSECTS 2022; 13:1076. [PMID: 36554986 PMCID: PMC9781666 DOI: 10.3390/insects13121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Mosquito-borne diseases pose a significant threat to humans in almost every part of the world. Key factors such as global warming, climatic conditions, rapid urbanisation, frequent human relocation, and widespread deforestation significantly increase the number of mosquitoes and mosquito-borne diseases in Vietnam, and elsewhere around the world. In southeast Asia, and notably in Vietnam, national mosquito control programmes contribute to reducing the risk of mosquito-borne disease transmission, however, malaria and dengue remain a threat to public health. The aim of our review is to provide a complete checklist of all Vietnamese mosquitoes that have been recognised, as well as an overview of mosquito-borne diseases in Vietnam. A total of 281 mosquito species of 42 subgenera and 22 genera exist in Vietnam. Of those, Anopheles, Aedes, and Culex are found to be potential vectors for mosquito-borne diseases. Major mosquito-borne diseases in high-incidence areas of Vietnam include malaria, dengue, and Japanese encephalitis. This review may be useful to entomological researchers for future surveys of Vietnamese mosquitoes and to decision-makers responsible for vector control tactics.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 13005 Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), MoH Vietnam, Zone 8, Nhon Phu Ward, Quy Nhon City 590000, Vietnam
| |
Collapse
|
30
|
Cannet A, Simon-Chane C, Akhoundi M, Histace A, Romain O, Souchaud M, Jacob P, Delaunay P, Sereno D, Bousses P, Grebaut P, Geiger A, de Beer C, Kaba D, Sereno D. Wing Interferential Patterns (WIPs) and machine learning, a step toward automatized tsetse (Glossina spp.) identification. Sci Rep 2022; 12:20086. [PMID: 36418429 PMCID: PMC9684539 DOI: 10.1038/s41598-022-24522-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
A simple method for accurately identifying Glossina spp in the field is a challenge to sustain the future elimination of Human African Trypanosomiasis (HAT) as a public health scourge, as well as for the sustainable management of African Animal Trypanosomiasis (AAT). Current methods for Glossina species identification heavily rely on a few well-trained experts. Methodologies that rely on molecular methodologies like DNA barcoding or mass spectrometry protein profiling (MALDI TOFF) haven't been thoroughly investigated for Glossina sp. Nevertheless, because they are destructive, costly, time-consuming, and expensive in infrastructure and materials, they might not be well adapted for the survey of arthropod vectors involved in the transmission of pathogens responsible for Neglected Tropical Diseases, like HAT. This study demonstrates a new type of methodology to classify Glossina species. In conjunction with a deep learning architecture, a database of Wing Interference Patterns (WIPs) representative of the Glossina species involved in the transmission of HAT and AAT was used. This database has 1766 pictures representing 23 Glossina species. This cost-effective methodology, which requires mounting wings on slides and using a commercially available microscope, demonstrates that WIPs are an excellent medium to automatically recognize Glossina species with very high accuracy.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, New Caledonia France
| | - Camille Simon-Chane
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Mohammad Akhoundi
- grid.413780.90000 0000 8715 2621Parasitology-Mycology, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Aymeric Histace
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Olivier Romain
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Marc Souchaud
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pierre Jacob
- grid.424458.b0000 0001 2287 8330ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000 Cergy, France
| | - Pascal Delaunay
- grid.462370.40000 0004 0620 5402Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Université de Nice-Sophia Antipolis, Nice, France ,grid.413770.6Parasitologie-Mycologie, Hôpital de L’Archet, Centre Hospitalier Universitaire de Nice, (CHU), Nice, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Darian Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Philippe Bousses
- grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Pascal Grebaut
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Anne Geiger
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France
| | - Chantel de Beer
- grid.420221.70000 0004 0403 8399Insect Pest Control Laboratory, Joint FAO/IAEA Center of Nuclear Techniques in Food and Agriculture, Vienna, Austria ,grid.428711.90000 0001 2173 1003Epidemiology, Parasites & Vectors, Agricultural Research Council - Onderstepoort Veterinary Research (ARC-OVR), Onderstepoort, South Africa
| | - Dramane Kaba
- grid.452477.7Institut Pierre Richet, Institut National de Santé Publique, Abidjian, Côte d’Ivoire
| | - Denis Sereno
- grid.121334.60000 0001 2097 0141InterTryp, Univ Montpellier, IRD-CIRAD, Parasitology Infectiology and Public Health Research Group, Montpellier, France ,grid.462603.50000 0004 0382 3424MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
31
|
Sánchez-Juanes F, Calvo Sánchez N, Belhassen García M, Vieira Lista C, Román RM, Álamo Sanz R, Muro Álvarez A, Muñoz Bellido JL. Applications of MALDI-TOF Mass Spectrometry to the Identification of Parasites and Arthropod Vectors of Human Diseases. Microorganisms 2022; 10:2300. [PMID: 36422371 PMCID: PMC9695109 DOI: 10.3390/microorganisms10112300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Arthropod vectors and parasites are identified morphologically or, more recently, by molecular methods. Both methods are time consuming and require expertise and, in the case of molecular methods, specific devices. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) identification of bacteria has meant a major change in clinical microbiology laboratories because of its simplicity, speed and specificity, and its capacity to identify microorganisms, in some cases, directly from the sample (urine cultures, blood cultures). Recently, MALDI-TOF MS has been shown as useful for the identification of some parasites. On the other hand, the identification of vector arthropods and the control of their populations is essential for the control of diseases transmitted by arthropods, and in this aspect, it is crucial to have fast, simple and reliable methods for their identification. Ticks are blood-sucking arthropods with a worldwide distribution, that behave as efficient vectors of a wide group of human and animal pathogens, including bacteria, protozoa, viruses, and even helminths. They are capable of parasitizing numerous species of mammals, birds and reptiles. They constitute the second group of vectors of human diseases, after mosquitoes. MALDI-TOF MS has been shown as useful for the identification of different tick species, such as Ixodes, Rhipicephalus and Amblyomma. Some studies even suggest the possibility of being able to determine, through MALDI-TOF MS, if the arthropod is a carrier of certain microorganisms. Regarding mosquitoes, the main group of vector arthropods, the possibility of using MALDI-TOF MS for the identification of different species of Aedes and Anopheles has also been demonstrated. In this review, we address the possibilities of this technology for the identification of parasites and arthropod vectors, its characteristics, advantages and possible limitations.
Collapse
Affiliation(s)
- Fernando Sánchez-Juanes
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Noelia Calvo Sánchez
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Moncef Belhassen García
- Department of Medicine-Infectious Diseases, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Carmen Vieira Lista
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Raul Manzano Román
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
| | - Rufino Álamo Sanz
- Public Health Information Service, Consejería de Sanidad, Junta de Castilla y León, 47007 Valladolid, Spain
| | - Antonio Muro Álvarez
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Department of Microbiology, Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación en Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, 37008 Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Universidad de Salamanca, CSIC, 37007 Salamanca, Spain
| |
Collapse
|
32
|
MALDI-TOF MS Identification of Dromedary Camel Ticks and Detection of Associated Microorganisms, Southern Algeria. Microorganisms 2022; 10:microorganisms10112178. [DOI: 10.3390/microorganisms10112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.
Collapse
|
33
|
Bamou R, Costa MM, Diarra AZ, Martins AJ, Parola P, Almeras L. Enhanced procedures for mosquito identification by MALDI-TOF MS. Parasit Vectors 2022; 15:240. [PMID: 35773735 PMCID: PMC9248115 DOI: 10.1186/s13071-022-05361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background In the last decade, an innovative approach has emerged for arthropod identification based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Increasing interest in applying the original technique for arthropod identification has led to the development of a variety of procedures for sample preparation and selection of body parts, among others. However, the absence of a consensual strategy hampers direct inter-study comparisons. Moreover, these different procedures are confusing to new users. Establishing optimized procedures and standardized protocols for mosquito identification by MALDI-TOF MS is therefore a necessity, and would notably enable the sharing of reference MS databases. Here, we assess the optimal conditions for mosquito identification using MALDI-TOF MS profiling. Methods Three homogenization methods, two of which were manual and one automatic, were used on three distinct body parts (legs, thorax, head) of two mosquito laboratory strains, Anopheles coluzzii and Aedes aegypti, and the results evaluated. The reproducibility of MS profiles, identification rate with relevant scores and the suitability of procedures for high-throughput analyses were the main criteria for establishing optimized guidelines. Additionally, the consequences of blood-feeding and geographical origin were evaluated using both laboratory strains and field-collected mosquitoes. Results Relevant score values for mosquito identification were obtained for all the three body parts assayed using MALDI-TOF MS profiling; however, the thorax and legs were the most suitable specimens, independently of homogenization method or species. Although the manual homogenization methods were associated with a high rate of identification on the three body parts, this homogenization mode is not adaptable to the processing of a large number of samples. Therefore, the automatic homogenization procedure was selected as the reference homogenization method. Blood-feeding status did not hamper the identification of mosquito species, despite the presence of MS peaks from original blood in the MS profiles of the three body parts tested from both species. Finally, a significant improvement in identification scores was obtained for field-collected specimens when MS spectra of species from the same geographical area were added to the database. Conclusion The results of the current study establish guidelines for the selection of mosquito anatomic parts and modality of sample preparation (e.g. homogenization) for future specimen identification by MALDI-TOF MS profiling. These standardized operational protocols could be used as references for creating an international MS database. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05361-0.
Collapse
Affiliation(s)
- Roland Bamou
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Monique Melo Costa
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Adama Zan Diarra
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.,Laboratório Misto Internacional "Sentinela", FIOCRUZ, IRD, Universidade de Brasília (UnB), Rio de Janeiro, RJ, Brazil
| | - Philippe Parola
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME, Marseille, France. .,IHU Méditerranée Infection, Marseille, France. .,Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France.
| |
Collapse
|
34
|
Abdellahoum Z, Nebbak A, Lafri I, Kaced A, Bouhenna MM, Bachari K, Boumegoura A, Agred R, Boudchicha RH, Smadi MA, Maurin M, Bitam I. Identification of Algerian field-caught mosquito vectors by MALDI-TOF MS. Vet Parasitol Reg Stud Reports 2022; 31:100735. [PMID: 35569916 DOI: 10.1016/j.vprsr.2022.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Vector-borne diseases represent a real threats worldwide, in reason of the lack of vaccine and cure for some diseases. Among arthropod vectors, mosquitoes are described to be the most dangerous animal on earth, resulting in an estimated 725,000 deaths per year due to their borne diseases. Geographical position of Algeria makes this country a high risk area for emerging and re-emerging diseases, such as dengue coming from north (Europe) and malaria from south (Africa). To prevent these threats, rapid and continuous surveillance of mosquito vectors is essential. For this purpose we aimed in this study to create a mosquito vectors locale database using MALDI-TOF mass spectrometry technology for rapid identification of these arthropods. This methodology was validated by testing 211 mosquitoes, including four species (Aedes albopictus, Culex pipiens, Culex quinquefasciatus, and Culiseta longiareolata), in two northern wilayahs of Algeria (Algiers and Bejaia). Species determination by MALDI TOF MS was highly concordant with reference phenotypic and genetic methods. Using this MALDI-TOF MS tool will allow better surveillance of mosquito species able to transmit mosquito borne diseases in Algeria.
Collapse
Affiliation(s)
- Zakaria Abdellahoum
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria
| | - Amira Nebbak
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ismail Lafri
- Laboratoire des Biotechnologies Liées à la Reproduction Animale, Institut des Sciences Vétérinaires, Université Blida 1, BP 270 Blida, Algeria.
| | - Amel Kaced
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Mustapha Mounir Bouhenna
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Khaldoun Bachari
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle, BP 284 Bou-Ismail, Tipaza, Algeria
| | - Ali Boumegoura
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rym Agred
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Rima Hind Boudchicha
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria.
| | - Mustapha Adnane Smadi
- National Centre for Biotechnology Research, Ali Mendjli Nouvelle Ville, UV 03, BP E73 Constantine, Algeria; Veterinary and Agricultural Sciences Institute, Department of Veterinary Sciences, University of Batna 1, Batna, Algeria
| | - Max Maurin
- Centre National de Référence des Francisella, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble Alpes, 38043 Grenoble, France; Centre National de la Recherche Scientifique, TIMC-IMAG, UMR5525, Université Grenoble Alpes, 38400, Saint Martin d'Heres, France.
| | - Idir Bitam
- Laboratoire Biodiversité et Environnement: Interaction Génome, Faculté des Sciences Biologique, Université des Sciences et de la Technologie Houari Boumediene, Alger 16111, Algeria; Ecole Supérieure des Sciences de l'Aliment et des Industries Alimentaires, Alger 16004, Algeria
| |
Collapse
|
35
|
M'madi Saidou A, Diarra AZ, Almeras L, Parola P. Identification of ticks from an old collection by MALDI-TOF MS. J Proteomics 2022; 264:104623. [PMID: 35623553 DOI: 10.1016/j.jprot.2022.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Objective of this study is to find the optimal conditions for preparing the samples, resulting in quality, reproducible and specific MS spectra of the ticks, with a shelf life in 70% ethanol of more than ten years. Amblyomma (Am.) variegatum species which had been stored in alcohol for more than twenty years and for which numerous specimens were available were used to compare the performance of four protocols tested. Spectra of insufficient quality were obtained from Am. variegatum legs preserved in alcohol for long periods with the reference protocol, named DO that we had set up years ago. The same observation was made on the spectra from Am. variegatum legs from dry (evaporated alcohol, DO-mod protocol). With new protocols named ReDO and PReDO the spectra were of good quality with high intensities (> 3000 a.u.). Blind testing showed that 94%, and 93% of the spectra were correctly identified with relevant log score values (LSVs ≥1.8), respectively for ReDO and PReDO protocols. All soft ticks treated in this study by PReDO protocol exhibited low intensity spectra with background noise. This study revealed that MALDI-TOF MS is able to identify hard ticks stored during decades in alcohol or dry (evaporated alcohol). SIGNIFICANCE OF THE STUDY: The correct identification of ticks, including vectors responsible for the transmission of infectious diseases in humans and animals is essential for their control. MALDI-TOF MS, a proteomic tool that has emerged in recent years, has become an innovative, accurate and alternative tool for the identification of arthropods, including ticks. However, previous studies reported that preservation of arthropods in alcohol modified the MS spectra obtained from specimens of the same species freshly collected or frozenly stored. In this study, a standard protocol was established for the identification of tick collections which had been stored for more than ten years in alcohol. Four different protocols were assessed. The analysis of the results showed that among the four protocols tested, two protocols named ReDO (Rehydration and incubation of the legs in 40 μl of HPLC water for 12 h in a dry bath at 37°) and PreDO (Drying of the legs for 12 h in a dry bath at 37 °C followed by rehydration and incubation in 40 μl of HPLC water for 12 h.) seem to be more appropriate for the MALDI-TOF MS identification of ticks from old collections preserved in alcohol or dry. This study is promising for the future, as it will make it possible to create a MALDI-TOF MS database from a wide range of ticks which have been stored for a long time in alcohol or which are dry stored in laboratories and museums around the world.
Collapse
Affiliation(s)
- Ahamada M'madi Saidou
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Lionel Almeras
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France; Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
36
|
Rivero J, Zurita A, Cutillas C, Callejón R. The Use of MALDI-TOF MS as a Diagnostic Tool for Adult Trichuris Species. Front Vet Sci 2022; 9:867919. [PMID: 35647091 PMCID: PMC9132177 DOI: 10.3389/fvets.2022.867919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023] Open
Abstract
Trichuriasis is considered a neglected tropical disease, being the second most common helminthiasis in humans. Detection of Trichuris in routine diagnosis is usually done by microscopic detection of eggs in fecal samples. Other molecular analyses are more reliable and could be used, but these analyses are not routinely available in clinical microbiology laboratories. The use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is increasing since the last decades due to its recent evidence as a potential role for reliable identification of microorganisms and a few nematodes. But, for parasites detection, normalized protocols and the acquisition and introduction of new species to the database are required. We carried out a preliminary study confirming the usefulness of MALDI-TOF MS for the rapid and reliable identification of Trichuris suis used as control and the creation of an internal database. To create main spectra profiles (MSPs), the different parts of five whipworms (esophagus and intestine) were used, developing different tests to verify the repeatability and reproducibility of the spectra. Thus, to validate the new internal database, 20 whipworms, separating the esophagus and intestine, were used, of which 100% were accurately identified as T. suis, but could not distinguish between both parts of the worm. Log score values ranged between 1.84 and 2.36, meaning a high-quality identification. The results confirmed that MALDI-TOF MS was able to identify Trichuris species. Additionally, a MALDI-TOF MS profile of T. suis proteome was carried out to develop the first internal database of spectra for the diagnosis of trichuriasis and other Trichuris spp.
Collapse
|
37
|
Ndiaye EHI, Diatta G, Diarra AZ, Berenger JM, Bassene H, Mediannikov O, Bouganali C, Sokhna C, Parola P. Morphological, Molecular and MALDI-TOF MS Identification of Bedbugs and Associated Wolbachia Species in Rural Senegal. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1019-1032. [PMID: 35286393 DOI: 10.1093/jme/tjac019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Bed bugs are known to carry several microorganisms. The purpose of this study was to assess the prevalence of bed bug infestation in two rural areas of Senegal and determine the species present in the population. A screening was conducted to detect some arthropod associated pathogenic bacteria in bed bugs and to evaluate the prevalence of endosymbiont carriage. One survey took place in 17 villages in Niakhar and two surveys in Dielmo and Ndiop and surroundings area in the same 20 villages. Bed bugs collected were identified morphologically and by MALDI-TOF MS tools. Microorganisms screening was performed by qPCR and confirmed by sequencing. During the survey in the Niakhar region, only one household 1/255 (0.4%) in the village of Ngayokhem was found infested by bed bugs. In a monitoring survey of the surroundings of Dielmo and Ndiop area, high prevalence was found during the two rounds of surveys in 65/314 (21%) in 16/20 villages (January-March) and 93/351 (26%) in 19/20 villages (December). All bed bugs were morphologically identified as the species Cimex hemipterus, of which 285/1,637 (17%) were randomly selected for MALDI-TOF MS analysis and bacteria screening. Among the Bacteria tested only Wolbachia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) DNA was found in 248/276 (90%) of the bedbugs. We briefly describe a high level of non-generalized bed bug infestation in rural Senegal and the diversity of Wolbachia strains carried by C. hemipterus. This study opens perspectives for raising household awareness of bed bug infestations and possibilities for appropriate control.
Collapse
Affiliation(s)
- El Hadji Ibrahima Ndiaye
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar, Senegal
| | - Georges Diatta
- VITROME, Campus International IRD-UCAD Hann, Dakar, Senegal
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean Michel Berenger
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Hubert Bassene
- VITROME, Campus International IRD-UCAD Hann, Dakar, Senegal
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Cheikh Sokhna
- IHU Méditerranée Infection, Marseille, France
- VITROME, Campus International IRD-UCAD Hann, Dakar, Senegal
| | - Philippe Parola
- Aix Marseille Univ, IRD, APHM, SSA, VITROME, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
38
|
Abdullah HHAM, Aboelsoued D, Farag TK, Abdel-Shafy S, Abdel Megeed KN, Parola P, Raoult D, Mediannikov O. Molecular characterization of some equine vector-borne diseases and associated arthropods in Egypt. Acta Trop 2022; 227:106274. [PMID: 34954258 DOI: 10.1016/j.actatropica.2021.106274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Equine vector-borne diseases (EVBDs) are emerging and re-emerging diseases, and most of them are zoonotic. This study aimed to investigate EVBDs in equines and associated arthropods (ticks and flies) from Egypt using molecular analyses, in addition to a preliminary characterization of associated ticks and flies by the matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and molecular techniques. In this study, 335 blood samples were obtained from equines that appeared to be in good health (320 horses and 15 donkeys) in Cairo and Beni Suef provinces, Egypt. From the same animals, 166 arthropods (105 sucking flies and 61 ticks) were collected. Ticks and flies were preliminary characterized by the MALDI-TOF and molecular tools. Quantitative PCR (qPCR) and standard PCR coupled with sequencing were performed on the DNA of equines, ticks, and flies to screen multiple pathogens. The MALDI-TOF and molecular characterization of arthropods revealed that louse fly (Hippobosca equina) and cattle tick (Rhipicephalus annulatus) infesting equines. Anaplasma platys-like (1.6%), Anaplasma marginale (1.6%), Candidatus Ehrlichia rustica (6.6%), a new Ehrlichia sp. (4.9%), and Borrelia theileri (3.3%) were identified in R. annulatus. Anaplasma sp. and Borrelia sp. DNAs were only detected in H. equina by qPCR. A. marginale, Anaplasma ovis, and Theileria ovis recorded the same low infection rate (0.6%) in donkeys, while horses were found to be infected with Theileria equi and a new Theileria sp. Africa with recorded prevalence rates of 1.2% and 2.7%, respectively. In conclusion, different pathogens were first detected such as A. platys-like, Candidatus E. rustica, and a new Ehrlichia sp. in R. annulatus; A. marginale, A. ovis, and T. ovis in donkeys; and a new Theileria sp. "Africa" in horses.
Collapse
Affiliation(s)
- Hend H A M Abdullah
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt; Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France.
| | - Dina Aboelsoued
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Tarek K Farag
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Kadria N Abdel Megeed
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre, Dokki, Giza, Egypt
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
39
|
Huynh LN, Diarra AZ, Nguyen HS, Tran LB, Do VN, Ly TDA, Ho VH, Nguyen XQ, Parola P. MALDI-TOF mass spectrometry identification of mosquitoes collected in Vietnam. Parasit Vectors 2022; 15:39. [PMID: 35090542 PMCID: PMC8795957 DOI: 10.1186/s13071-022-05149-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a tool that has revolutionised clinical microbiology and has recently been described as an innovative and effective approach to arthropod identification. METHODS In this study, mosquitoes were captured in Vietnam using four different methods (human landing catch, CDC light traps, BG-Sentinel traps, animal-baited net traps). A total of 4215 mosquitoes were captured and morphologically identified as belonging to three genera: Aedes, Anopheles and Culex. We randomly selected 1253 mosquitoes, including 662 specimens of 14 Anopheles species, 200 specimens of two Aedes species and 391 morphologically unidentified Culex specimens, for molecular and MALDI-TOF MS analysis. The DNA from 98 mosquitoes (69 Anopheles specimens, 23 Culex specimens and six Aedes sp. specimens) was subjected to molecular analysis, either to confirm our morphological identification or the MALDI-TOF MS results, as well as to identify the Culex species that were morphologically identified at the genus level and to resolve the discrepancies between the morphological identification and the MALDI-TOF MS identification. RESULTS High-quality MS spectra were obtained for 1058 of the 1253 specimens (84%), including 192/200 for Aedes, 589/662 for Anopheles and 277/391 for Culex. The blind test showed that 986/997 (99%) of the specimens were correctly identified by MALDI-TOF MS, with log score values ranging from 1.708 to 2.843. Eleven specimens of Culex could not be identified based on morphological features, MALDI-TOF MS or molecular analysis. CONCLUSIONS This study enabled us to identify several species of mosquitoes from Vietnam using MALDI-TOF MS, and to enrich our database of MALDI-TOF MS reference spectra.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Hong Sang Nguyen
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Long Bien Tran
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Van Nguyen Do
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Tran Duc Anh Ly
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
40
|
Benallal KE, Garni R, Harrat Z, Volf P, Dvorak V. Phlebotomine sand flies (Diptera: Psychodidae) of the Maghreb region: A systematic review of distribution, morphology, and role in the transmission of the pathogens. PLoS Negl Trop Dis 2022; 16:e0009952. [PMID: 34990451 PMCID: PMC8735671 DOI: 10.1371/journal.pntd.0009952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phlebotomine sand flies (Diptera: Psychodidae) are important vectors of various human and animal pathogens such as Bartonella bacilliformis, Phlebovirus, and parasitic protozoa of the genus Leishmania, causative agent of leishmaniases that account among most significant vector-borne diseases. The Maghreb countries Mauritania, Morocco, Algeria, Tunisia, and Libya occupy a vast area of North Africa and belong to most affected regions by these diseases. Locally varying climatic and ecological conditions support diverse sand fly fauna that includes many proven or suspected vectors. The aim of this review is to summarize often fragmented information and to provide an updated list of sand fly species of the Maghreb region with illustration of species-specific morphological features and maps of their reported distribution. MATERIALS AND METHODS The literature search focused on scholar databases to review information on the sand fly species distribution and their role in the disease transmissions in Mauritania, Morocco, Algeria, Tunisia, and Libya, surveying sources from the period between 1900 and 2020. Reported distribution of each species was collated using Google Earth, and distribution maps were drawn using ArcGIS software. Morphological illustrations were compiled from various published sources. RESULTS AND CONCLUSIONS In total, 32 species of the genera Phlebotomus (Ph.) and Sergentomyia (Se.) were reported in the Maghreb region (15 from Libya, 18 from Tunisia, 23 from Morocco, 24 from Algeria, and 9 from Mauritania). Phlebotomus mariae and Se. africana subsp. asiatica were recorded only in Morocco, Ph. mascitti, Se. hirtus, and Se. tiberiadis only in Algeria, whereas Ph. duboscqi, Se. dubia, Se. africana africana, Se. lesleyae, Se. magna, and Se. freetownensis were reported only from Mauritania. Our review has updated and summarized the geographic distribution of 26 species reported so far in Morocco, Algeria, Tunisia, and Libya, excluding Mauritania from a detailed analysis due to the unavailability of accurate distribution data. In addition, morphological differences important for species identification are summarized with particular attention to closely related species such as Ph. papatasi and Ph. bergeroti, Ph. chabaudi, and Ph. riouxi, and Se. christophersi and Se. clydei.
Collapse
Affiliation(s)
- Kamal Eddine Benallal
- Laboratory of Parasitic Eco-Epidemiology and Genetic of Populations, Institut Pasteur of Algiers, Algiers, Algeria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Rafik Garni
- Laboratory of Parasitic Eco-Epidemiology and Genetic of Populations, Institut Pasteur of Algiers, Algiers, Algeria
| | - Zoubir Harrat
- Laboratory of Parasitic Eco-Epidemiology and Genetic of Populations, Institut Pasteur of Algiers, Algiers, Algeria
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vít Dvorak
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
41
|
Artificial Intelligence and Malaria. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Wolbachia Detection in Field-Collected Mosquitoes from Cameroon. INSECTS 2021; 12:insects12121133. [PMID: 34940221 PMCID: PMC8704151 DOI: 10.3390/insects12121133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Wolbachia bacteria from different strains, carried by many insects and nematodes, can interact in many ways with their hosts by changing their biology in different ways, including by suppressing vector population and reducing parasite transmission. Consequently, Wolbachia play an important role in vector control strategies. This study assessed the prevalence of natural Wolbachia infections in mosquitoes collected in Cameroon. Despite the low prevalence that was revealed, Wolbachia spp. were found in eight species of field-collected mosquitoes and are closely related to clades A and B. Aedes aegypti and A. gambiae sl., the main vectors of dengue and malaria, respectively, were not infected in this study, while C. moucheti recorded a high prevalence (46.67%). Future characterisation of the Wolbachia bacteria obtained is needed. Abstract Wolbachia spp., known to be maternally inherited intracellular bacteria, are widespread among arthropods, including mosquitoes. Our study assessed the presence and prevalence of Wolbachia infection in wild mosquitoes collected in Cameroon, using the combination of 23s rRNA Anaplasmatacea and 16s rRNA Wolbachia genes. Mosquitoes that were positive for Wolbachia were sequenced for subsequent phylogenetic analysis. Out of a total of 1740 individual mosquitoes belonging to 22 species and five genera screened, 33 mosquitoes (1.87%) belonging to eight species (namely, Aedes albopictus, A. contigus, Culex quinquefasciatus, C. perfuscus, C. wigglesworthi, C. duttoni, Anopheles paludis and Coquillettidia sp.) were found to be positive for Wolbachia infections. Wolbachia spp. were absent in A. gambiae and A. aegypti, the main vectors of malaria and dengue, respectively. Phylogenetic analysis of the 16S RNA sequences showed they belong mainly to two distinct subgroups (A and B). This study reports the presence of Wolbachia in about eight species of mosquitoes in Cameroon and suggests that future characterisation of the strains is needed.
Collapse
|
43
|
Hamlili FZ, Bérenger JM, Diarra AZ, Parola P. Molecular and MALDI-TOF MS identification of swallow bugs Cimex hirundinis (Heteroptera: Cimicidae) and endosymbionts in France. Parasit Vectors 2021; 14:587. [PMID: 34838119 PMCID: PMC8627032 DOI: 10.1186/s13071-021-05073-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 10/16/2021] [Indexed: 01/07/2023] Open
Abstract
Background The Cimicidae are obligatory blood-feeding ectoparasites of medical and veterinary importance. We aim in the current study to assess the ability of MALDI-TOF MS to identify Cimex hirundinis swallow bugs collected in house martin nests. Methods Swallow bugs were picked out from abandoned nests of house martin swallows and identified morphologically to the species level. The bugs were randomly selected, dissected and then subjected to MALDI-TOF MS and molecular analyses. Results A total of 65 adults and 50 nymphs were used in the attempt to determine whether this tool could identify the bug species and discriminate their developmental stages. Five adults and four nymphs of C. hirundinis specimens were molecularly identified to update our MS homemade arthropod database. BLAST analysis of COI gene sequences from these C. hirundinis revealed 98.66–99.12% identity with the corresponding sequences of C. hirundinis of the GenBank. The blind test against the database supplemented with MS reference spectra showed 100% (57/57) C. hirundinis adults and 100% (46/46) C. hirundinis nymphs were reliably identified and in agreement with morphological identification with logarithmic score values between 1.922 and 2.665. Ninety-nine percent of C. hirundinis specimens tested were positive for Wolbachia spp. The sequencing results revealed that they were identical to Wolbachia massiliensis, belonging to the new T-supergroup strain and previously isolated from C. hemipterus. Conclusions We report for the first time to our knowledge a case of human infestation by swallow bugs (C. hirundinis) in France. We also show the usefulness of MALDI-TOF MS in the rapid identification of C. hirundinis specimens and nymphs with minimal sample requirements. We phylogenetically characterized the novel Wolbachia strain (W. massiliensis) infecting C. hirundinis and compared it to other recognized Wolbachia clades. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-05073-x.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-Michel Bérenger
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France. .,Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
44
|
Benyahia H, Diarra AZ, Gherissi DE, Bérenger JM, Benakhla A, Parola P. Molecular and MALDI-TOF MS characterisation of Hyalomma aegyptium ticks collected from turtles and their associated microorganisms in Algeria. Ticks Tick Borne Dis 2021; 13:101858. [PMID: 34814065 DOI: 10.1016/j.ttbdis.2021.101858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023]
Abstract
The identification of ticks and their associated pathogens is important for knowledge on tick-borne diseases. The objective of this study was to use morphological, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and/or molecular biology tools to identify ticks collected from turtles in north-eastern Algeria, as well as to investigate the microorganisms associated with these ticks. A total of 471 adult ticks were collected and identified morphologically as Hyalomma aegyptium, of which 248 (52.7%) were female and 223 (47.3%) were male. amongst them, 230 specimens were randomly selected for molecular and MALDI-TOF MS analysis. Molecular biology confirmed that our ticks were Hy. aegyptium. MALDI-TOF MS analysis revealed that 100% of the spectra were of excellent quality. Four spectra were selected to update our own database MALDI-TOF MS arthropod. The blind test of the 226 remaining spectra showed that all ticks were correctly identified, with scores ranging from 1.774 to 2.655 with a mean of 2.271 ± 0.16 of which, 223 (98.6%) had log score value (LSV)>1.8. Molecular biology screening showed that the ticks carried the DNA of Borrelia turcica, Rickettsia africae, Rickettsia aeschlimannii, Rickettsia sibirica mongolitimonae and with the Anaplasmataceae were close to a potentially new, undescribed Ehrlichia sp. This study confirms that MALDI-TOF MS is a reliable tool for the identification of ticks and that ticks collected from turtles in Algeria are carriers of several species of microorganisms which may be responsible for diseases in humans and animals.
Collapse
Affiliation(s)
- Hanene Benyahia
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Djalel Eddine Gherissi
- Institute of Veterinary and Agronomic Sciences, Mohamed Cherif Messaadia University, Souk-Ahras, Algeria.
| | - Jean-Michel Bérenger
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France
| | - Ahmed Benakhla
- Department of Veterinary Sciences, Chadli Bendjedid University, El Tarf, Algeria
| | - Philippe Parola
- Aix Marseille Univ, IRD, SSA, AP-HM, VITROME, Marseille, France; IHU-Méditerranée Infection, Marseille, France.
| |
Collapse
|
45
|
Wolbachia detection in Aedes aegypti using MALDI-TOF MS coupled to artificial intelligence. Sci Rep 2021; 11:21355. [PMID: 34725401 PMCID: PMC8560810 DOI: 10.1038/s41598-021-00888-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022] Open
Abstract
The mosquito Aedes aegypti is the major vector of arboviruses like dengue, Zika and chikungunya viruses. Attempts to reduce arboviruses emergence focusing on Ae. aegypti control has proven challenging due to the increase of insecticide resistances. An emerging strategy which consists of releasing Ae. aegypti artificially infected with Wolbachia in natural mosquito populations is currently being developed. The monitoring of Wolbachia-positive Ae. aegypti in the field is performed in order to ensure the program effectiveness. Here, the reliability of the Matrix‑Assisted Laser Desorption Ionization‑Time Of Flight (MALDI‑TOF) coupled with the machine learning methods like Convolutional Neural Network (CNN) to detect Wolbachia in field Ae. aegypti was assessed for the first time. For this purpose, laboratory reared and field Ae. aegypti were analyzed. The results showed that the CNN recognized Ae. aegypti spectral patterns associated with Wolbachia-infection. The MALDI-TOF coupled with the CNN (sensitivity = 93%, specificity = 99%, accuracy = 97%) was more efficient than the loop-mediated isothermal amplification (LAMP), and as efficient as qPCR for Wolbachia detection. It therefore represents an interesting method to evaluate the prevalence of Wolbachia in field Ae. aegypti mosquitoes.
Collapse
|
46
|
Sousa-Paula LCD, Pessoa FAC, Otranto D, Dantas-Torres F. Beyond taxonomy: species complexes in New World phlebotomine sand flies. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:267-283. [PMID: 33480064 DOI: 10.1111/mve.12510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
A species complex (= species group, species series) is an assemblage of species, which are related morphologically and phylogenetically. Recent research has revealed several arthropod vector species that were believed to be a single nominal species actually representing a group of closely related species, which are sometimes morphologically indistinguishable at one or more developmental stages. In some instances, differences in terms of vector competence, capacity, or both have been recorded. It highlights the importance of detecting and studying species complexes to improve our understanding of pathogen transmission patterns, which may be vectored more or less efficiently by different species within the complex. Considering more than 540 species, about one-third of the phlebotomine sand flies in the New World present males and/or females morphologically indistinguishable to one or more species. Remarkably, several of these species may act in transmission of pathogenic agents. In this article, we review recent research on species complexes in phlebotomine sand flies from the Americas. Possible practical implications of recently acquired knowledge and future research needs are also discussed.
Collapse
Affiliation(s)
- L C de Sousa-Paula
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| | - F A C Pessoa
- Laboratório de Ecologia e Doenças Transmissíveis na Amazônia, Leônidas e Maria Deane Institute, Oswaldo Cruz Foundation (FIOCRUZ), Manaus, Amazonas, Brazil
| | - D Otranto
- Parasitology Unit, Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - F Dantas-Torres
- Laboratory of Immunoparasitology, Department of Immunology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation (FIOCRUZ), Recife, Pernambuco, Brazil
| |
Collapse
|
47
|
Hamlili FZ, Thiam F, Laroche M, Diarra AZ, Doucouré S, Gaye PM, Fall CB, Faye B, Sokhna C, Sow D, Parola P. MALDI-TOF mass spectrometry for the identification of freshwater snails from Senegal, including intermediate hosts of schistosomes. PLoS Negl Trop Dis 2021; 15:e0009725. [PMID: 34516582 PMCID: PMC8489727 DOI: 10.1371/journal.pntd.0009725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 10/04/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Abstract
Freshwater snails of the genera Biomphalaria, Bulinus, and Oncomelania are intermediate hosts of schistosomes that cause human schistosomiasis, one of the most significant infectious neglected diseases in the world. Identification of freshwater snails is usually based on morphology and potentially DNA-based methods, but these have many drawbacks that hamper their use. MALDI-TOF MS has revolutionised clinical microbiology and has emerged in the medical entomology field. This study aims to evaluate MALDI-TOF MS profiling for the identification of both frozen and ethanol-stored snail species using protein extracts from different body parts. A total of 530 field specimens belonging to nine species (Biomphalaria pfeifferi, Bulinus forskalii, Bulinus senegalensis, Bulinus truncatus, Bulinus globosus, Bellamya unicolor, Cleopatra bulimoides, Lymnaea natalensis, Melanoides tuberculata) and 89 laboratory-reared specimens, including three species (Bi. pfeifferi, Bu. forskalii, Bu. truncatus) were used for this study. For frozen snails, the feet of 127 field and 74 laboratory-reared specimens were used to validate the optimised MALDI-TOF MS protocol. The spectral analysis yielded intra-species reproducibility and inter-species specificity which resulted in the correct identification of all the specimens in blind queries, with log-score values greater than 1.7. In a second step, we demonstrated that MALDI-TOF MS could also be used to identify ethanol-stored snails using proteins extracted from the foot using a specific database including a large number of ethanol preserved specimens. This study shows for the first time that MALDI-TOF MS is a reliable tool for the rapid identification of frozen and ethanol-stored freshwater snails without any malacological expertise.
Collapse
Affiliation(s)
- Fatima Zohra Hamlili
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Fatou Thiam
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Maureen Laroche
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Papa Mouhamadou Gaye
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Laboratoire de Parasitologie-Helminthologie, Département de Biologie Animale, Faculté des Sciences et Techniques, UCAD, Dakar, Senegal
| | - Cheikh Binetou Fall
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Babacar Faye
- Service de Parasitologie-Mycologie, Faculté de médecine, Université Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh Sokhna
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
| | - Doudou Sow
- VITROME, Campus International IRD-UCAD de l’IRD, Dakar, Senegal
- Service de Parasitologie-Mycologie, UFR Sciences de la Santé, Université Gaston Berger de Saint Louis, Senegal
| | - Philippe Parola
- IHU-Méditerranée Infection, Marseille, France
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
48
|
Huynh LN, Diarra AZ, Pham QL, Le-Viet N, Berenger JM, Ho VH, Nguyen XQ, Parola P. Morphological, molecular and MALDI-TOF MS identification of ticks and tick-associated pathogens in Vietnam. PLoS Negl Trop Dis 2021; 15:e0009813. [PMID: 34582467 PMCID: PMC8500424 DOI: 10.1371/journal.pntd.0009813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/08/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been reported as a promising and reliable tool for arthropod identification, including the identification of alcohol-preserved ticks based on extracted leg protein spectra. In this study, the legs of 361 ticks collected in Vietnam, including 251 Rhiphicephalus sanguineus s.l, 99 Rhipicephalus (Boophilus) microplus, two Amblyomma varanensis, seven Dermacentor auratus, one Dermacentor compactus and one Amblyomma sp. were submitted for MALDI-TOF MS analyses. Spectral analysis showed intra-species reproducibility and inter-species specificity and the spectra of 329 (91%) specimens were of excellent quality. The blind test of 310 spectra remaining after updating the database with 19 spectra revealed that all were correctly identified with log score values (LSV) ranging from 1.7 to 2.396 with a mean of 1.982 ± 0.142 and a median of 1.971. The DNA of several microorganisms including Anaplasma platys, Anaplasma phagocytophilum, Anaplasma marginale, Ehrlichia rustica, Babesia vogeli, Theileria sinensis, and Theileria orientalis were detected in 25 ticks. Co-infection by A. phagocytophilum and T. sinensis was found in one Rh. (B) microplus.
Collapse
Affiliation(s)
- Ly Na Huynh
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Quang Luan Pham
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Nhiem Le-Viet
- School of Medicine and Pharmacy, The University of Da Nang (UD), Da Nang, Vietnam
| | - Jean-Michel Berenger
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Van Hoang Ho
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Xuan Quang Nguyen
- Institute of Malariology, Parasitology and Entomology, Quy Nhon (IMPE-QN), Vietnam
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
49
|
Sevestre J, Diarra AZ, Oumarou HA, Durant J, Delaunay P, Parola P. Detection of emerging tick-borne disease agents in the Alpes-Maritimes region, southeastern France. Ticks Tick Borne Dis 2021; 12:101800. [PMID: 34352531 DOI: 10.1016/j.ttbdis.2021.101800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Lyme borreliosis is a zoonotic tick-borne infection representing the most frequent vector-borne disease in the northern hemisphere. The Mediterranean rim is generally described as unsuitable for the European vector, Ixodes ricinus. We conducted an epidemiological study to assess whether I. ricinus was present and study its infection status for tick-borne bacteria. Ticks originating from southeastern France were obtained from flagging sampling and removed from animals and tick-bitten patients. Species level identification used morphological keys and MALDI-TOF MS. Quantitative PCR and sequencing assays were used to detect and identify tick-associated bacteria (Borrelia, Rickettsia, Anaplasmataceae, Bartonella, Coxiella burnetii) in each specimen. A total of 1232 ticks were collected in several localities. Among these, 863 were identified as I. ricinus (70%). Bacterial screening allowed identification of Lyme group Borrelia among I. ricinus ticks originating from various regional areas. Other emerging tick-borne pathogens like Borrelia miyamotoi and Rickettsia species were also detected. The Alpes-Maritimes region, part of the French Riviera, harbours I. ricinus ticks infected with Lyme group Borrelia and several other tick-borne bacterial agents. Clinicians and outdoor activity participants should be aware of the local Lyme borreliosis transmission risk.
Collapse
Affiliation(s)
- Jacques Sevestre
- Service de Parasitologie, Centre Hospitalier Universitaire de Nice, Nice, France; Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Adama Zan Diarra
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Jacques Durant
- Service d'Infectiologie, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, Université de Montpellier, Montpellier, France
| | - Philippe Parola
- Institut Hospitalo-Universitaire Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13385 Cedex 05, France; Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
50
|
Ngoy S, Diarra AZ, Laudisoit A, Gembu GC, Verheyen E, Mubenga O, Mbalitini SG, Baelo P, Laroche M, Parola P. Using MALDI-TOF mass spectrometry to identify ticks collected on domestic and wild animals from the Democratic Republic of the Congo. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 84:637-657. [PMID: 34146230 PMCID: PMC8257524 DOI: 10.1007/s10493-021-00629-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/22/2021] [Indexed: 05/25/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) has recently emerged as an alternative to morphological and molecular tools to identify tick species. In this study, we set out to evaluate and confirm the ability of MALDI-TOF MS to identify different species of ticks collected in the Democratic Republic of the Congo and preserved in 70% ethanol. A total of 575 ticks, of which 530 were collected from domestic pigs and 45 from wild animals, were subjected to MALDI-TOF MS analysis to evaluate the intraspecies reproducibility and interspecies specificity of MS profiles obtained from the different species. Morphologically, the ticks belonged to seven different species, namely Rhipicephalus complanatus, Rhipicephalus congolensis, Haemaphysalis muhsamae, Ixodes cumulatimpunctatus, Amblyomma exornatum, Amblyomma compressum and an unidentified Rhipicephalus sp. A total of 535/575 (93%) of the spectra obtained were of good enough quality to be used for our analyses. Our home-made MALDI-TOF MS arthropod database was upgraded with spectra obtained from between one and five randomly selected specimens per species. For these reference specimens, molecular identification of the ticks was also made using 16S, 12S rDNA genes and the Cox1 mtDNA gene sequencing. The remaining good quality spectra were then queried against the upgraded MALDI-TOF MS database, showing that 100% were in agreement with the morphological identification, with logarithmic score values (LSVs) between 1.813 and 2.51. The consistency between our morphological, molecular and MALDI-TOF MS identification confirms the capability and precision of MALDI-TOF MS for tick identification.
Collapse
Affiliation(s)
- Steve Ngoy
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
| | - Adama Zan Diarra
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille, France
| | | | - Guy-Crispin Gembu
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Erik Verheyen
- Evolutionary Ecology Group, University of Antwerp, 2020, Antwerp, Belgium
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, 1000, Brussels, Belgium
| | - Onésime Mubenga
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
- Faculté de Gestion des Ressources Naturelles Renouvelables, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
| | - Sylvestre Gambalemoke Mbalitini
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
- Faculty of Sciences, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Pascal Baelo
- Department of Zoology Centre de Surveillance de la Biodiversité, University of Kisangani, P.O. Box 2012, Kisangani, Democratic Republic of the Congo
| | - Maureen Laroche
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille, France
| | - Philippe Parola
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|