1
|
Niharika DG, Salaria P, M AR. Unraveling potent Glycyrrhiza glabra flavonoids as AKT1 inhibitors using network pharmacology and machine learning-assisted QSAR. Mol Divers 2025:10.1007/s11030-025-11210-w. [PMID: 40335842 DOI: 10.1007/s11030-025-11210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025]
Abstract
Glycyrrhiza glabra (G. glabra) phytocompounds have been reported to interact with neurological targets, including those implicated in epilepsy, and may modulate epilepsy-related targets. While substantial evidence supports their potential antiepileptic effects, the underlying molecular mechanisms remain unclear. This study aims to elucidate the molecular mechanism of G. glabra phytocompounds by integrating network pharmacology and machine learning (ML)-based quantitative structure-activity relationship (QSAR) techniques. Network pharmacology analysis identified AKT1 as a key epilepsy-related target, and four ML-based 2D-QSAR models were developed using AKT1 inhibitors. The developed models underwent comprehensive validation, including internal and external validation, Y-randomization, statistical analysis, and applicability domain assessment to ensure robustness and reliability. Among them, the Multilayer Perceptron (MLP) model excelled as the most robust and demonstrated superior predictive ability with a correlation coefficient r2training = 0.95, r2test = 0.84, and cross-validation coefficient q2 = 0.72. The MLP model accurately predicted pIC50 values of phytoflavonoids, leading to the identification of 19 active molecules through the activity atlas model. ADME and drug-likeliness screening narrowed the selection to eleven promising compounds for further docking analysis. Molecular docking highlighted glabranin and 3'-hydroxy-4'-O-methylglabridin as top lead compounds with a binding energy of - 5.75 and - 5.37 kcal/mol, respectively. Additionally, 400 ns molecular dynamics simulation confirmed the structural and conformational stability of the glabranin-AKT1 complex, further reinforced by Principal Component Analysis, free energy landscapes, and Molecular Mechanics Poisson-Boltzmann/Generalized Born Surface Area. Collectively, these findings underscore the potential of G. glabra phytocompounds as promising antiepileptic candidates, paving the way for future advancements in this field.
Collapse
Affiliation(s)
- Desu Gayathri Niharika
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Punam Salaria
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India
| | - Amarendar Reddy M
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, Andhra Pradesh, 534101, India.
| |
Collapse
|
2
|
Nazir SS, Goel D, Vohora D. A network pharmacology-based approach to decipher the pharmacological mechanisms of Salvia officinalis in neurodegenerative disorders. Metab Brain Dis 2025; 40:190. [PMID: 40266402 DOI: 10.1007/s11011-025-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
The present study aimed to assess the pharmacological mechanism of Salvia officinalis in Neurodegenerative disorders using a network pharmacology approach followed by molecular docking analysis. Phytoconstituents of S.officinalis were obtained from various databases, followed by the screening of active ingredients using the Swiss ADME web tool. Potential targets of active ingredients were identified using PubChem & SwissTargetPrediction. Genes related to Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) were gathered using online databases. Besides, the correlation between active ingredient targets and disease-associated genes was linked. Networks were constructed, visualized, and analyzed using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were performed using DAVID database. Decisively, Autodock was used for molecular docking. The results of network analysis identified 9 key active ingredients based on topological analysis of the active ingredient-candidate targets network. Also, the analysis revealed a shared target of 9 key active ingredients of S. officinalis that interacted with 133 AD-related targets whereas only 6 active ingredients interacted with 85 and 58 targets of PD and HD respectively. The core genes from the network were AKT1, BACE1, CASP3, MAPK1, TNF, and IL6. Furthermore, GO and KEGG enrichment analysis showed that FOXO, TNF, MAPK, PI3K-Akt, Rap 1, and neurotrophin signalling pathways as enriched, which were further evaluated by molecular docking suggesting the protective role of S. officinalis in neurodegenerative diseases. Our research reveals the therapeutic benefits of S. officinalis, which might play a crucial role in modulating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheikh Sana Nazir
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110062, New Delhi, India
| | - Divya Goel
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110062, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110062, New Delhi, India.
| |
Collapse
|
3
|
Liu S, Liu T, Li J, Hong J, Moosavi-Movahedi AA, Wei J. Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors. Neurosci Bull 2025; 41:676-690. [PMID: 39754628 PMCID: PMC11978575 DOI: 10.1007/s12264-024-01342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/15/2024] [Indexed: 01/06/2025] Open
Abstract
Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism. Conventional drugs for treating T2DM, such as metformin and glucagon-like peptide-1 receptor agonists, affect nerve repair. Even drugs for treating PD, such as levodopa, can affect insulin secretion. This review summarizes the relationship between PD and T2DM and related therapeutic drugs from the perspective of insulin signaling pathways in the brain.
Collapse
Affiliation(s)
- Shufen Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Tingting Liu
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jingwen Li
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | - Jun Hong
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China
| | | | - Jianshe Wei
- Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.
- School of Life Sciences, Institute for Brain Sciences Research, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Wu Y, Hao C, Gao C, Hageman M, Lee S, Kirkland TA, Gray NS, Su Y, Lin MZ. Pharmacodynamics of Akt drugs revealed by a kinase-modulated bioluminescent indicator. Nat Chem Biol 2025:10.1038/s41589-025-01846-y. [PMID: 39934397 DOI: 10.1038/s41589-025-01846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Measuring pharmacodynamics (PD)-the biochemical effects of drug dosing-and correlating them with therapeutic efficacy in animal models is crucial for the development of effective drugs but traditional PD studies are labor and resource intensive. Here we developed a kinase-modulated bioluminescent indicator (KiMBI) for rapid, noninvasive PD assessment of Akt-targeted drugs, minimizing drug and animal use. Using KiMBI, we performed a structure-PD relationship analysis on the brain-active Akt inhibitor ipatasertib by generating and characterizing two novel analogs. One analog, ML-B01, successfully inhibited Akt in both the brain and the body. Interestingly, capivasertib, ipatasertib and ML-B01 all exhibited PD durations beyond their pharmacokinetic profiles. Furthermore, KiMBI revealed that the PD effects of an Akt-targeted proteolysis-targeting chimera degrader endured for over 3 days. Thus, bioluminescence imaging with Akt KiMBI provides a noninvasive and efficient method for in vivo visualization of the PD of Akt inhibitors and degraders.
Collapse
Affiliation(s)
- Yan Wu
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Chenzhou Hao
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Chao Gao
- Promega Corporation, San Luis Obispo, CA, USA
| | | | - Sungmoo Lee
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Yichi Su
- Department of Nuclear Medicine, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Neurobiology, Stanford University, Stanford, CA, USA.
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Fan Y, Luan X, Wang X, Li H, Zhao H, Li S, Li X, Qiu Z. Exploring the association between BDNF related signaling pathways and depression: A literature review. Brain Res Bull 2025; 220:111143. [PMID: 39608613 DOI: 10.1016/j.brainresbull.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Depression is a debilitating mental disease that inflicts significant harm upon individuals and society, yet effective treatment options remain elusive. At present, the pathogenesis of multiple depression is not fully clear, but its occurrence can be related to biological or environmental pathways, among which Brain-derived neurotrophic factor (BDNF) can unequivocally act on two downstream receptors, tyrosine kinase receptor (TrkB) and the p75 neurotrophin receptor (p75NTR), then affect the related signal pathways, affecting the occurrence and development of depression. Accumulating studies have revealed that BDNF-related pathways are critical in the pathophysiology of depression, and their interaction can further influence the efficacy of depression treatment. In this review, we mainly summarized the signaling pathways associated with BDNF and classified them according to different receptors and related molecules, providing promising insights and future directions in the treatment of depression.
Collapse
Affiliation(s)
- Yuchen Fan
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xinchi Luan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xuezhe Wang
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongchi Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongjiao Zhao
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Sheng Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xiaoxuan Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Shafiek MS, Mekky RY, Nassar NN, El-Yamany MF, Rabie MA. Vortioxetine ameliorates experimental autoimmune encephalomyelitis model of multiple sclerosis in mice via activation of PI3K/Akt/CREB/BDNF cascade and modulation of serotonergic pathway signaling. Eur J Pharmacol 2024; 982:176929. [PMID: 39181226 DOI: 10.1016/j.ejphar.2024.176929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition characterized by immune cell infiltration and cytokine overproduction that led to myelin sheath inflammatory assaults, thus causing axonal destruction. The former consequently provokes motor impairment and psychological disorders. Markedly, depression is one of the most prevalent lifelong comorbidities that negatively impacts the quality of life in MS patients. Vortioxetine (VTX), a multi-modal molecule prescribed to manage depression and anxiety disorder, additionally, it displays a promising neuroprotective properties against neurodegenerative diseases such as Alzheimer's and Parkinson's. To this end, the present study investigated the potential therapeutic efficacy of VTX against experimental autoimmune encephalomyelitis (EAE) model of MS in mice. Notably, treatment with VTX significantly ameliorated EAE-induced motor disability, as evident by enhanced performance in open field, rotarod and grip strength tests, alongside a reduction in immobility time during the forced swimming test, indicating a mitigation of the depressive-like behavior; outcomes that were corroborated with histological examinations and biochemical analyses. Mechanistically, VTX enhanced serotonin levels by inhibiting both serotonin transporter (SERT) and indoleamine 2,3-dioxygenase (IDO) enzyme, thereby promoting the activation of serotonin 1A (5-HT1A) receptor. The latter triggered the stimulation of phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) cascade that entailed activation/phosphorylation of cAMP response element-binding protein (CREB). This activation increased brain derived neurotrophic factor (BDNF) and myelin basic protein (MBP) contents that mitigated demyelination in the corpus callosum. Furthermore, VTX suppressed phospho serine 536 nuclear factor kappa B (pS536 NF-κB p65) activity and reduced tumor necrosis factor-alpha (TNF-α) production. The results underscore VTX's beneficial effects on disease severity in EAE model of MS in mice by amending both inflammatory and neurodegenerative components of MS progression.
Collapse
Affiliation(s)
- Marwa S Shafiek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa Y Mekky
- Department of Pharmacology and Toxicology, October University for Modern Science and Arts (MSA), Giza, 12622, Egypt
| | - Noha N Nassar
- Department of Pharmacology and Toxicology, October University for Modern Science and Arts (MSA), Giza, 12622, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| |
Collapse
|
7
|
Wright B, King S, Suphioglu C. The Importance of Phosphoinositide 3-Kinase in Neuroinflammation. Int J Mol Sci 2024; 25:11638. [PMID: 39519189 PMCID: PMC11546674 DOI: 10.3390/ijms252111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neuroinflammation, characterised by the activation of immune cells in the central nervous system (CNS), plays a dual role in both protecting against and contributing to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD) and multiple sclerosis (MS). This review explores the role of phosphoinositide 3-kinase (PI3K), a key enzyme involved in cellular survival, proliferation, and inflammatory responses, within the context of neuroinflammation. Two PI3K isoforms of interest, PI3Kγ and PI3Kδ, are specific to the regulation of CNS cells, such as microglia, astrocytes, neurons, and oligodendrocytes, influencing pathways, such as Akt, mTOR, and NF-κB, that control cytokine production, immune cell activation, and neuroprotection. The dysregulation of PI3K signalling is implicated in chronic neuroinflammation, contributing to the exacerbation of neurodegenerative diseases. Preclinical studies show promise in targeting neuronal disorders using PI3K inhibitors, such as AS605240 (PI3Kγ) and idelalisib (PI3Kδ), which have reduced inflammation, microglial activation, and neuronal death in in vivo models of AD. However, the clinical translation of these inhibitors faces challenges, including blood-brain barrier (BBB) permeability, isoform specificity, and long-term safety concerns. This review highlights the therapeutic potential of PI3K modulation in neuroinflammatory diseases, identifying key gaps in the current research, particularly in the need for brain-penetrating and isoform-specific inhibitors. These findings underscore the importance of future research to develop targeted therapies that can effectively modulate PI3K activity and provide neuroprotection in chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- Brock Wright
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Samuel King
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia; (B.W.); (S.K.)
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, 75 Pigdons Road, Geelong, VIC 3216, Australia
| |
Collapse
|
8
|
Montero-Martin N, Girón MD, Vílchez JD, Salto R. Sodium Tungstate Promotes Neurite Outgrowth and Confers Neuroprotection in Neuro2a and SH-SY5Y Cells. Int J Mol Sci 2024; 25:9150. [PMID: 39273113 PMCID: PMC11394838 DOI: 10.3390/ijms25179150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.
Collapse
Affiliation(s)
- Nora Montero-Martin
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - María D Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - José D Vílchez
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E18071 Granada, Spain
| |
Collapse
|
9
|
Verma J, Vashisth H. Molecular basis for differential recognition of an allosteric inhibitor by receptor tyrosine kinases. Proteins 2024; 92:905-922. [PMID: 38506327 PMCID: PMC11222054 DOI: 10.1002/prot.26685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Understanding kinase-inhibitor selectivity continues to be a major objective in kinase drug discovery. We probe the molecular basis of selectivity of an allosteric inhibitor (MSC1609119A-1) of the insulin-like growth factor-I receptor kinase (IGF1RK), which has been shown to be ineffective for the homologous insulin receptor kinase (IRK). Specifically, we investigated the structural and energetic basis of the allosteric binding of this inhibitor to each kinase by combining molecular modeling, molecular dynamics (MD) simulations, and thermodynamic calculations. We predict the inhibitor conformation in the binding pocket of IRK and highlight that the charged residues in the histidine-arginine-aspartic acid (HRD) and aspartic acid-phenylalanine-glycine (DFG) motifs and the nonpolar residues in the binding pocket govern inhibitor interactions in the allosteric pocket of each kinase. We suggest that the conformational changes in the IGF1RK residues M1054 and M1079, movement of the ⍺C-helix, and the conformational stabilization of the DFG motif favor the selectivity of the inhibitor toward IGF1RK. Our thermodynamic calculations reveal that the observed selectivity can be rationalized through differences observed in the electrostatic interaction energy of the inhibitor in each inhibitor/kinase complex and the hydrogen bonding interactions of the inhibitor with the residue V1063 in IGF1RK that are not attained with the corresponding residue V1060 in IRK. Overall, our study provides a rationale for the molecular basis of recognition of this allosteric inhibitor by IGF1RK and IRK, which is potentially useful in developing novel inhibitors with improved affinity and selectivity.
Collapse
Affiliation(s)
- Jyoti Verma
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824
| | - Harish Vashisth
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824
- Department of Chemistry, University of New Hampshire, Durham, NH 03824
- Integrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824
- Molecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
10
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
11
|
Mushtaq A, Wu P, Naseer MM. Recent drug design strategies and identification of key heterocyclic scaffolds for promising anticancer targets. Pharmacol Ther 2024; 254:108579. [PMID: 38160914 DOI: 10.1016/j.pharmthera.2023.108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Cancer, a noncommunicable disease, is the leading cause of mortality worldwide and is anticipated to rise by 75% in the next two decades, reaching approximately 25 million cases. Traditional cancer treatments, such as radiotherapy and surgery, have shown limited success in reducing cancer incidence. As a result, the focus of cancer chemotherapy has switched to the development of novel small molecule antitumor agents as an alternate strategy for combating and managing cancer rates. Heterocyclic compounds are such agents that bind to specific residues in target proteins, inhibiting their function and potentially providing cancer treatment. This review focuses on privileged heterocyclic pharmacophores with potent activity against carbonic anhydrases and kinases, which are important anticancer targets. Evaluation of ongoing pre-clinical and clinical research of heterocyclic compounds with potential therapeutic value against a variety of malignancies as well as the provision of a concise summary of the role of heterocyclic scaffolds in various chemotherapy protocols have also been discussed. The main objective of the article is to highlight key heterocyclic scaffolds involved in recent anticancer drug design that demands further attention from the drug development community to find more effective and safer targeted small-molecule anticancer agents.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Peng Wu
- Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany
| | - Muhammad Moazzam Naseer
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan; Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Otto-Hahn Str. 11, Dortmund 44227, Germany.
| |
Collapse
|
12
|
Ruiz-Pozo VA, Tamayo-Trujillo R, Cadena-Ullauri S, Frias-Toral E, Guevara-Ramírez P, Paz-Cruz E, Chapela S, Montalván M, Morales-López T, Simancas-Racines D, Zambrano AK. The Molecular Mechanisms of the Relationship between Insulin Resistance and Parkinson's Disease Pathogenesis. Nutrients 2023; 15:3585. [PMID: 37630775 PMCID: PMC10458139 DOI: 10.3390/nu15163585] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a degenerative condition resulting from the loss of dopaminergic neurons. This neuronal loss leads to motor and non-motor neurological symptoms. Most PD cases are idiopathic, and no cure is available. Recently, it has been proposed that insulin resistance (IR) could be a central factor in PD development. IR has been associated with PD neuropathological features like α-synuclein aggregation, dopaminergic neuronal loss, neuroinflammation, mitochondrial dysfunction, and autophagy. These features are related to impaired neurological metabolism, neuronal death, and the aggravation of PD symptoms. Moreover, pharmacological options that involve insulin signaling improvement and dopaminergic and non-dopaminergic strategies have been under development. These drugs could prevent the metabolic pathways involved in neuronal damage. All these approaches could improve PD outcomes. Also, new biomarker identification may allow for an earlier PD diagnosis in high-risk individuals. This review describes the main pathways implicated in PD development involving IR. Also, it presents several therapeutic options that are directed at insulin signaling improvement and could be used in PD treatment. The understanding of IR molecular mechanisms involved in neurodegenerative development could enhance PD therapeutic options and diagnosis.
Collapse
Affiliation(s)
- Viviana A Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Guayaquil 090615, Ecuador
| | - Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Sebastián Chapela
- Departamento de Bioquímica, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires C1121ABE, Argentina
- Equipo de Soporte Nutricional, Hospital Británico de Buenos Aires, Ciudad Autónoma de Buenos Aires C1280AEB, Argentina
| | - Martha Montalván
- School of Medicine, Universidad Espíritu Santo, Samborondón 091952, Ecuador
| | - Tania Morales-López
- Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito 170527, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| |
Collapse
|
13
|
Singha M, Pu L, Srivastava G, Ni X, Stanfield BA, Uche IK, Rider PJF, Kousoulas KG, Ramanujam J, Brylinski M. Unlocking the Potential of Kinase Targets in Cancer: Insights from CancerOmicsNet, an AI-Driven Approach to Drug Response Prediction in Cancer. Cancers (Basel) 2023; 15:4050. [PMID: 37627077 PMCID: PMC10452340 DOI: 10.3390/cancers15164050] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Deregulated protein kinases are crucial in promoting cancer cell proliferation and driving malignant cell signaling. Although these kinases are essential targets for cancer therapy due to their involvement in cell development and proliferation, only a small part of the human kinome has been targeted by drugs. A comprehensive scoring system is needed to evaluate and prioritize clinically relevant kinases. We recently developed CancerOmicsNet, an artificial intelligence model employing graph-based algorithms to predict the cancer cell response to treatment with kinase inhibitors. The performance of this approach has been evaluated in large-scale benchmarking calculations, followed by the experimental validation of selected predictions against several cancer types. To shed light on the decision-making process of CancerOmicsNet and to better understand the role of each kinase in the model, we employed a customized saliency map with adjustable channel weights. The saliency map, functioning as an explainable AI tool, allows for the analysis of input contributions to the output of a trained deep-learning model and facilitates the identification of essential kinases involved in tumor progression. The comprehensive survey of biomedical literature for essential kinases selected by CancerOmicsNet demonstrated that it could help pinpoint potential druggable targets for further investigation in diverse cancer types.
Collapse
Affiliation(s)
- Manali Singha
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.); (X.N.)
| | - Limeng Pu
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA; (L.P.); (J.R.)
| | - Gopal Srivastava
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.); (X.N.)
| | - Xialong Ni
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.); (X.N.)
| | - Brent A. Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (B.A.S.); (I.K.U.); (P.J.F.R.); (K.G.K.)
| | - Ifeanyi K. Uche
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (B.A.S.); (I.K.U.); (P.J.F.R.); (K.G.K.)
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Paul J. F. Rider
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (B.A.S.); (I.K.U.); (P.J.F.R.); (K.G.K.)
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Konstantin G. Kousoulas
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (B.A.S.); (I.K.U.); (P.J.F.R.); (K.G.K.)
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J. Ramanujam
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA; (L.P.); (J.R.)
- Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; (M.S.); (G.S.); (X.N.)
- Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA; (L.P.); (J.R.)
| |
Collapse
|
14
|
Xu L, Li L, Chen Q, Huang Y, Chen X, Qiao D. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 2023; 43:2415-2436. [PMID: 36752885 PMCID: PMC11410138 DOI: 10.1007/s10571-023-01323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse. Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood-brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.
Collapse
Affiliation(s)
- Luyao Xu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Lingyue Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Qianling Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Yuebing Huang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China
| | - Xuebing Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| | - Dongfang Qiao
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023. 510515, Guangzhou, China.
| |
Collapse
|
15
|
Liu P, Xue X, Zhang C, Zhou H, Ding Z, Wang L, Jiang Y, Shen W, Yang S, Wang F. Transcriptional Profile Changes after Noise-Induced Tinnitus in Rats. Brain Sci 2023; 13:brainsci13040573. [PMID: 37190538 DOI: 10.3390/brainsci13040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Tinnitus is an unpleasant symptom characterized by detective hearing without the actual sound input. Despite numerous studies elucidating a variety of pathomechanisms inducing tinnitus, the pathophysiology of tinnitus is not fully understood. The genes that are closely associated with this subtype of the auditory hallucination that could be utilized as potential treatment targets are still unknown. In this study, we explored the transcriptional profile changes of the auditory cortex after noise-induced tinnitus in rats using high throughput sequencing and verification of the detected genes using quantitative PCR (qPCR). Tinnitus models were established by analyzing startle behaviors through gap pre-pulse inhibition (PPI) of the acoustic startle. Two hundred and fifty-nine differential genes were identified, of which 162 genes were up-regulated and 97 genes were down-regulated. Analysis of the pathway enrichment indicated that the tinnitus group exhibited increased gene expression related to neurodegenerative disorders such as Huntington’s disease and Amyotrophic lateral sclerosis. Based on the identified genes, networks of protein–protein interaction were established and five hub genes were identified through degree rank, including Fos, Nr4a1, Nr4a3, Egr2, and Egr3. Therein, the Fos gene ranked first with the highest degree after noise exposure, and may be a potential target for the modulation of noise-induced tinnitus.
Collapse
|
16
|
Iranpanah A, Kooshki L, Moradi SZ, Saso L, Fakhri S, Khan H. The Exosome-Mediated PI3K/Akt/mTOR Signaling Pathway in Neurological Diseases. Pharmaceutics 2023; 15:pharmaceutics15031006. [PMID: 36986865 PMCID: PMC10057486 DOI: 10.3390/pharmaceutics15031006] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/24/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
As major public health concerns associated with a rapidly growing aging population, neurodegenerative diseases (NDDs) and neurological diseases are important causes of disability and mortality. Neurological diseases affect millions of people worldwide. Recent studies have indicated that apoptosis, inflammation, and oxidative stress are the main players of NDDs and have critical roles in neurodegenerative processes. During the aforementioned inflammatory/apoptotic/oxidative stress procedures, the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway plays a crucial role. Considering the functional and structural aspects of the blood-brain barrier, drug delivery to the central nervous system is relatively challenging. Exosomes are nanoscale membrane-bound carriers that can be secreted by cells and carry several cargoes, including proteins, nucleic acids, lipids, and metabolites. Exosomes significantly take part in the intercellular communications due to their specific features including low immunogenicity, flexibility, and great tissue/cell penetration capabilities. Due to their ability to cross the blood-brain barrier, these nano-sized structures have been introduced as proper vehicles for central nervous system drug delivery by multiple studies. In the present systematic review, we highlight the potential therapeutic effects of exosomes in the context of NDDs and neurological diseases by targeting the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| |
Collapse
|
17
|
De Pascale M, Bissegger L, Tarantelli C, Beaufils F, Prescimone A, Mohamed Seid Hedad H, Kayali O, Orbegozo C, Raguž L, Schaefer T, Hebeisen P, Bertoni F, Wymann MP, Borsari C. Investigation of morpholine isosters for the development of a potent, selective and metabolically stable mTOR kinase inhibitor. Eur J Med Chem 2023; 248:115038. [PMID: 36634458 DOI: 10.1016/j.ejmech.2022.115038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/29/2022]
Abstract
Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.
Collapse
Affiliation(s)
- Martina De Pascale
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Lukas Bissegger
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Florent Beaufils
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Alessandro Prescimone
- University of Basel, Department of Chemistry, Mattenstrasse 24a, 4058, Basel, Switzerland
| | | | - Omar Kayali
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland
| | - Clara Orbegozo
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Luka Raguž
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Thorsten Schaefer
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Paul Hebeisen
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Via Francesco Chiesa 5, 6500, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Matthias P Wymann
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| | - Chiara Borsari
- University of Basel, Department of Biomedicine, Mattenstrasse 28, 4058, Basel, Switzerland.
| |
Collapse
|
18
|
Minchev D, Kazakova M, Sarafian V. Neuroinflammation and Autophagy in Parkinson's Disease-Novel Perspectives. Int J Mol Sci 2022; 23:ijms232314997. [PMID: 36499325 PMCID: PMC9735607 DOI: 10.3390/ijms232314997] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the accumulation of α-Synuclein aggregates and the degeneration of dopaminergic neurons in substantia nigra in the midbrain. Although the exact mechanisms of neuronal degeneration in PD remain largely elusive, various pathogenic factors, such as α-Synuclein cytotoxicity, mitochondrial dysfunction, oxidative stress, and pro-inflammatory factors, may significantly impair normal neuronal function and promote apoptosis. In this context, neuroinflammation and autophagy have emerged as crucial processes in PD that contribute to neuronal loss and disease development. They are regulated in a complex interconnected manner involving most of the known PD-associated genes. This review summarizes evidence of the implication of neuroinflammation and autophagy in PD and delineates the role of inflammatory factors and autophagy-related proteins in this complex condition. It also illustrates the particular significance of plasma and serum immune markers in PD and their potential to provide a personalized approach to diagnosis and treatment.
Collapse
Affiliation(s)
- Danail Minchev
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Correspondence:
| | - Maria Kazakova
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, 4000 Plovdiv, Bulgaria
| |
Collapse
|
19
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
20
|
Microtubule-affinity regulating kinase 4: A potential drug target for cancer therapy. Cell Signal 2022; 99:110434. [PMID: 35961526 DOI: 10.1016/j.cellsig.2022.110434] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
The human genome encodes more than 500 protein kinases that work by transferring the γ-phosphate group from ATP to serine, threonine, or tyrosine (Ser/Thr/Tyr) residues. Various kinases are associated with the onset of cancer and its further progression. The recent advancements in developing small-molecule kinase inhibitors to treat different cancer types have shown noticeable results in clinical therapies. Microtubule-affinity regulating kinase 4 (MARK-4) is a Ser/Thr protein kinase that relates structurally to AMPK/Snf1 subfamily of the CaMK kinases. The protein kinase modulates major signalling pathways such as NF-κB, mTOR and the Hippo-signalling pathway. MARK4 is associated with various cancer types due to its important role in regulating microtubule dynamics and subsequent cell division. Aberrant expression of MARK4 is linked with several pathologies such as cancer, Alzheimer's disease, obesity, etc. This review provides detailed information on structural aspects of MARK4 and its role in various signalling pathways related to cancer. Several therapeutic molecules were designed to inhibit the MARK4 activity from controlling associated diseases. The review further highlights kinase-targeted drug discovery and development in oncology and cancer therapies. Finally, we summarize the latest findings regarding the role of MARK4 in cancer, diabetes, and neurodegenerative disease path to provide a solid rationale for future investigation and therapeutic intervention.
Collapse
|
21
|
Wei W, Pan Y, Yang X, Chen Z, Heng Y, Yang B, Pu M, Zuo J, Lai Z, Tang Y, Xin W. The Emerging Role of the Interaction of Extracellular Vesicle and Autophagy-Novel Insights into Neurological Disorders. J Inflamm Res 2022; 15:3395-3407. [PMID: 35706531 PMCID: PMC9191200 DOI: 10.2147/jir.s362865] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic cells release different types of extracellular vesicles (EVs), including exosomes, apoptotic bodies and microvesicles. EVs carry proteins, lipids and nucleic acids specific to cells and cell states. Autophagy is an intracellular degradation process, which, along with EVs, can significantly affect the development and progression of neurological diseases and, therefore, has been the hotspot. Generally, EVs and autophagy are closely associated. EVs and autophagy can interact with each other. On the one hand, the level of autophagy in target cells is closely related to the secretion and transport of EVs. In another, the application of EVs provides a great opportunity for adjuvant treatment of neurological disorders, for which autophagy is an excellent target. EVs can release their cargos into target cells, which, in turn, regulate the autophagic level of target cells through autophagy-related proteins directly and the non-coding RNA, signal transducer and activator of transcription 3 (STAT3), phosphodiesterase enzyme (PDE) 1-B, etc. signaling pathways indirectly, thus regulating the development of related neurological disorders.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Yongli Pan
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurology, Weifang Medical University, Weifang, Shandong, People’s Republic of China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Zhonglun Chen
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yue Heng
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Bufan Yang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Mingjun Pu
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Jiacai Zuo
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Zhuhong Lai
- Department of Cardiology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Yufeng Tang
- Department of Neurology, Mianyang Central Hospital, Mianyang, Sichuan, People’s Republic of China
| | - Wenqiang Xin
- Department of Neurology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
22
|
Stapleton SE, Darlington AS, Minchom A, Pal A, Raynaud F, Wiseman T. Assessing cognitive toxicity in early phase trials - What are we missing? Psychooncology 2022; 31:405-415. [PMID: 34651364 DOI: 10.1002/pon.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Novel therapies, such as, small protein molecule inhibitors and immunotherapies are first tested clinically in Phase I trials. Moving on to later phase trials and ultimately standard practice. A key aim of these early clinical trials is to define a toxicity profile; however, the emphasis is often on safety. The concern is cognitive toxicity is poorly studied in this context and may be under-reported. The aim of this review is to map evidence of cognitive assessment, toxicity, and confounding factors within reports from Phase I trials and consider putative mechanisms of impairment aligned with mechanisms of novel therapies. METHODS A scoping review methodology was applied to the search of databases, including Embase, MEDLINE, Clinicaltrials.gov. A [keyword search was conducted, results screened for duplication then inclusion/exclusion criteria applied. Articles were further screened for relevance; data organised into categories and charted in a tabular format]. Evidence was collated and summarised into a narrative synthesis. RESULTS Despite the availability of robust ways to assess cognitive function, these are not routinely included in the conduct of early clinical trials. Reports of cognitive toxicity in early Phase I trials are limited and available evidence on this shows that a proportion of patients experience impaired cognitive function over the course of participating in a Phase I trial. Links are identified between the targeted action of some novel therapies and putative mechanisms of cognitive impairment. CONCLUSION The review provides rationale for research investigating cognitive function in this context. A study exploring the cognitive function of patients on Phase I trials and the feasibility of formally assessing this within early clinical trials is currently underway at the Royal Marsden.
Collapse
Affiliation(s)
- Sarah E Stapleton
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- University of Southampton, Southampton, UK
| | | | - Anna Minchom
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- Institute of Cancer Research, Sutton, UK
| | - Abhijit Pal
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- Institute of Cancer Research, Sutton, UK
| | - Florence Raynaud
- Royal Marsden Hospital Drug Development Unit, Sutton, UK
- Institute of Cancer Research, Sutton, UK
| | | |
Collapse
|
23
|
Oktelik FB, Yilmaz V, Turkoglu R, Akbayir E, Tuzun E, Deniz G, Cinar S. Expression of Akt1 and p-Akt1 in peripheral T cell subsets of multiple sclerosis patients. Acta Neurol Belg 2021; 121:1777-1782. [PMID: 33034831 DOI: 10.1007/s13760-020-01518-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis is an autoimmune disorder induced by the infiltration of autoreactive immune cells into the central nervous system. Akt/PKB signaling pathway is crucially involved in T cell development and survival. We aimed to determine whether Akt1 expression levels of regulatory T (Treg) cells are altered in MS and are associated with disease activity. Relapsing-remitting multiple sclerosis (RR-MS, n = 17) patients and healthy individuals (n = 20) were enrolled. Peripheral blood mononuclear cells were isolated and anti-CD3, -CD4, -CD8, -CD25, -CD127 monoclonal antibodies were used to identify the T cell subsets. After stimulation with phorbol myristate acetate/ionomycin, the Akt1 and phosphorylated-Akt1 (p-Akt1) levels of T cell subsets were detected with intracellular staining using flow cytometry. Total Akt1 and p-Akt1 expression levels were found to be suppressed in CD4+ T cell and Treg populations of RR-MS patients. Progression indices were positively correlated with Akt1 expression levels of Tregs indicating that the Akt pathway might partake in the progression of multiple sclerosis. Flow cytometry may effectively be used for the evaluation of the Akt pathway activity. Our findings suggest that the magnitude of suppression of the Akt pathway might serve as a biomarker for the prognosis of multiple sclerosis.
Collapse
Affiliation(s)
- Fatma Betul Oktelik
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Vakif Gureba C. Fatih, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuro Science, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ece Akbayir
- Department of Neuro Science, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Erdem Tuzun
- Department of Neuro Science, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Vakif Gureba C. Fatih, Istanbul, Turkey
| | - Suzan Cinar
- Department of Immunology, Istanbul University, Aziz Sancar Institute of Experimental Medicine, Vakif Gureba C. Fatih, Istanbul, Turkey.
| |
Collapse
|
24
|
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant Huntingtin Impairs Pancreatic β-cells by Recruiting IRS-2 and Disturbing the PI3K/AKT/FoxO1 Signaling Pathway in Huntington's Disease. J Mol Neurosci 2021; 71:2646-2658. [PMID: 34331233 DOI: 10.1007/s12031-021-01869-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 10/20/2022]
Abstract
Patients with Huntington's disease (HD) have an increased incidence of diabetes. However, the molecular mechanisms of pancreatic β-cell dysfunction have not been entirely clarified. Revealing the pathogenesis of diabetes can provide a novel understanding of the onset and progression of HD, as well as potential clues for the development of new therapeutics. Here, we demonstrated that the mouse pancreatic insulinoma cell line NIT-1 expressing N-terminal mutant huntingtin (mHTT) containing 160 polyglutamine (160Q cells) displayed lower cell proliferative ability than the cells expressing N-terminal wild-type HTT containing 20 polyglutamine (20Q cells). In addition, 160Q cells were more prone to apoptosis and exhibited deficient glucose-stimulated insulin expression and secretion. Furthermore, insulin signaling molecule insulin receptor substrate 2 (IRS-2) expression decreased and was recruited into mHTT aggregates. Consequently, glucose stimulation failed to activate the downstream molecule phosphatidylinositol-3 kinase (PI3K) in 160Q cells, leading to reduced phosphorylation levels of serine-threonine protein kinase AKT and forkhead box protein O1 (FoxO1). These data indicate that activation of the glucose-stimulated PI3K/AKT/FoxO1 signaling pathway is significantly blocked in pancreatic β-cells in HD. Importantly, insulin treatment inhibited the aggregation of mHTT and significantly improved the activation of PI3K/AKT/FoxO1 signaling in 160Q cells. These results suggest that the inhibition of the PI3K/AKT/FoxO1 pathway might be due to the recruitment of IRS-2 into mHTT aggregates in HD β-cells, ultimately contributing to the impairment of pancreatic β-cells. In conclusion, our work provides new insight into the underlying mechanisms of the high incidence of diabetes and abnormal glucose homeostasis in HD.
Collapse
Affiliation(s)
- Li Li
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong S.A.R., P.R. of China
| | - Yun Sun
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Yinong Zhang
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Weixi Wang
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China
| | - Cuifang Ye
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. of China.
| |
Collapse
|
25
|
El Sayed NS, Kandil EA, Ghoneum MH. Enhancement of Insulin/PI3K/Akt Signaling Pathway and Modulation of Gut Microbiome by Probiotics Fermentation Technology, a Kefir Grain Product, in Sporadic Alzheimer's Disease Model in Mice. Front Pharmacol 2021; 12:666502. [PMID: 34366841 PMCID: PMC8346028 DOI: 10.3389/fphar.2021.666502] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 02/04/2023] Open
Abstract
Sporadic Alzheimer's disease (AD) is the most common neurodegenerative disorder with cognitive dysfunction. Remarkably, alteration in the gut microbiome and resultant insulin resistance has been shown to be connected to metabolic syndrome, the crucial risk factor for AD, and also to be implicated in AD pathogenesis. Thus, this study, we assessed the efficiency of probiotics fermentation technology (PFT), a kefir product, in enhancing insulin signaling via modulation of gut microbiota to halt the development of AD. We also compared its effectiveness to that of pioglitazone, an insulin sensitizer that has been confirmed to substantially treat AD. AD was induced in mice by a single injection of intracerebroventricular streptozotocin (STZ; 3 mg/kg). PFT (100, 200, 400 mg/kg) and pioglitazone (30 mg/kg) were administered orally for 3 weeks. Behavioral tests were conducted to assess cognitive function, and hippocampal levels of acetylcholine (Ach) and β-amyloid (Aβ1-42) protein were assessed along with histological examination. Moreover, the expression of the insulin receptor, insulin degrading enzyme (IDE), and the phosphorylated forms of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), mammalian target of rapamycin (mTOR), and tau were detected. Furthermore, oxidative stress and inflammatory biomarkers were estimated. Treatment with PFT reversed STZ-induced neurodegeneration and cognitive impairment, enhanced hippocampal Ach levels, and reduced Aβ1-42 levels after restoration of IDE activity. PFT also improved insulin signaling, as evidenced by upregulation of insulin receptor expression and activation of PI3K/Akt signaling with subsequent suppression of GSK-3β and mTOR signaling, which result in the downregulation of hyperphosphorylated tau. Moreover, PFT significantly diminished oxidative stress and inflammation induced by STZ. These potential effects were parallel to those produced by pioglitazone. Therefore, PFT targets multiple mechanisms incorporated in the pathogenesis of AD and hence might be a beneficial therapy for AD.
Collapse
Affiliation(s)
| | - Esraa A. Kandil
- Department of Pharmacology and Toxicology, Cairo University, Cairo, Egypt
| | - Mamdooh H. Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
26
|
Vieira ÉLM, Martins FMA, Bellozi PMQ, Gonçalves AP, Siqueira JM, Gianetti A, Teixeira AL, de Oliveira ACP. PI3K, mTOR and GSK3 modulate cytokines' production in peripheral leukocyte in temporal lobe epilepsy. Neurosci Lett 2021; 756:135948. [PMID: 33979699 DOI: 10.1016/j.neulet.2021.135948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Epilepsy is a common pathological condition that predisposes individuals to seizures, as well as cognitive and emotional dysfunctions. Different studies have demonstrated that inflammation contributes to the pathophysiology of epilepsy. Indeed, seizures change the peripheral inflammatory pattern, which, in turn, could contribute to seizures. However, the cause of the altered production of peripheral inflammatory mediators is not known. The PI3K/mTOR/GSK3β pathway is important for different physiological and pharmacological phenomena. Therefore, in the present study, we tested the hypothesis that the PI3K/mTOR/GSK3β pathway is deregulated in immune cells from patients with epilepsy and contributes to the abnormal production of inflammatory mediators. METHODS Patients with temporal lobe epilepsy presenting hippocampal sclerosis and controls aged between 18 and 65 years-old were selected for this study. Peripheral blood was collected for the isolation of peripheral mononuclear blood cells (PBMC). Cells were pre-incubated with different PI3K, mTOR and GSK-3 inhibitors for 30 min and further stimulated with phytohaemaglutinin (PHA) or vehicle for 24 h. The supernatant was used to evaluate the production of IL-1β, IL-6, IL-10, TNF e IL-12p70. RESULTS Non-selective inhibition of PI3K, as well as inhibition of PI3Kγ and GSK-3, reduced the levels of TNF and IL-10 in PHA-stimulated cells from TLE individuals. This stimulus increased the production of IL-12p70 only in cells from TLE individuals, while the inhibition of PI3K and mTOR enhanced the production of this cytokine. On the other hand, inhibition of GSK3 reduced the PHA-induced production of IL-12p70. CONCLUSIONS Herein we demonstrated that the production of cytokines by immune cells from patients with TLE differs from non-epileptic patients. This differential regulation may be associated with the altered activity and responsiveness of intracellular molecules, such as PI3K, mTOR and GSK-3, which, in turn, might contribute to the inflammatory state that exists in epilepsy and its pathogenesis.
Collapse
Affiliation(s)
- Érica Leandro Marciano Vieira
- Centre for Addiction and Mental Health - CAMH, Toronto, Canada; Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flávia Mendes Amaral Martins
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Maria Quaglio Bellozi
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Molecular Biology Program, Universidade de Brasília, Brasília, DF, Brazil
| | - Ana Paula Gonçalves
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - José Maurício Siqueira
- Epilepsy Treatment Advanced Centre (NATE), Felício Rocho Hospital, Belo Horizonte, MG, Brazil
| | - Alexandre Gianetti
- Neuropsychiatry Unit, Neurology Division, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lúcio Teixeira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Texas Health Science Center at Houston, TX, United States; Instituto de Ensino e Pesquisa, Santa Casa BH, Belo Horizonte, Brazil
| | - Antônio Carlos Pinheiro de Oliveira
- Neuroscience Program, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
27
|
Peerzada MN, Hamel E, Bai R, Supuran CT, Azam A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol Ther 2021; 225:107860. [PMID: 33895188 DOI: 10.1016/j.pharmthera.2021.107860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Heterocyclic scaffolds are widely utilized for drug design by taking into account the molecular structure of therapeutic targets that are related to a broad spectrum of ailments, including tumors. Such compounds display various covalent and non-covalent interactions with the specific residues of the target proteins while causing their inhibition. There is a substantial number of heterocyclic compounds approved for cancer treatment, and these compounds function by interacting with different therapeutic targets involved in tumorogenesis. In this review, we trace and emphasize the privileged heterocyclic pharmacophores that have immense potency against several essential chemotherapeutic tumor targets: microtubules, kinases and carbonic anhydrases. Potent compounds currently undergoing pre-clinical and clinical studies have also been assessed for ascertaining the effective class of chemical scaffolds that have significant therapeutic potential against multiple malignancies. In addition, we also describe briefly the role of heterocyclic compounds in various chemotherapy regimens. The optimized molecular hybridization of delineated motifs may result in the discovery of more active anticancer therapeutics and circumvent the development of resistance by specific targets in the future.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Amir Azam
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
28
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT Signal Pathway: A Target of Natural Products in the Prevention and Treatment of Alzheimer's Disease and Parkinson's Disease. Front Pharmacol 2021; 12:648636. [PMID: 33935751 PMCID: PMC8082498 DOI: 10.3389/fphar.2021.648636] [Citation(s) in RCA: 251] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) and Parkinson’s disease (PD) are two typical neurodegenerative diseases that increased with aging. With the emergence of aging population, the health problem and economic burden caused by the two diseases also increase. Phosphatidylinositol 3-kinases/protein kinase B (PI3K/AKT) signaling pathway regulates signal transduction and biological processes such as cell proliferation, apoptosis and metabolism. According to reports, it regulates neurotoxicity and mediates the survival of neurons through different substrates such as forkhead box protein Os (FoxOs), glycogen synthase kinase-3β (GSK-3β), and caspase-9. Accumulating evidences indicate that some natural products can play a neuroprotective role by activating PI3K/AKT pathway, providing an effective resource for the discovery of potential therapeutic drugs. This article reviews the relationship between AKT signaling pathway and AD and PD, and discusses the potential natural products based on the PI3K/AKT signaling pathway to treat two diseases in recent years, hoping to provide guidance and reference for this field. Further development of Chinese herbal medicine is needed to treat these two diseases.
Collapse
Affiliation(s)
- Hui-Zhi Long
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China
| | - Li-Chen Gao
- Department of Pharmacy, Cancer Institute, Phase I Clinical Trial Centre, Changsha Central Hospital Affiliated to University of South China, School of Pharmacy, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
29
|
Belkacemi L, Zhong W, Darmani NA. Signal transduction pathways involved in dopamine D 2 receptor-evoked emesis in the least shrew (Cryptotis parva). Auton Neurosci 2021; 233:102807. [PMID: 33865060 DOI: 10.1016/j.autneu.2021.102807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
With its five receptor subtypes (D1-5), dopamine is implicated in a myriad of neurological illnesses. Dopamine D2 receptor-based agonist therapy evokes nausea and vomiting. The signaling mechanisms by which dopamine D2 receptors evoke vomiting remains unknown. Phosphatidylinositol 3-kinases (PI3K)- and protein kinase C (PKC)-related signaling cascades stimulate vomiting post-injection of various emetogens in emetically competent animals. This study investigated potential mechanisms involved in dopamine D2 receptor-mediated vomiting using least shrews. We found that vomiting evoked by the selective dopamine D2 receptor agonist quinpirole (2 mg/kg, i.p.) was significantly suppressed by: i) a dopamine D2 preferring antagonist, sulpiride (s.c.); ii) a selective PI3K inhibitor, LY294002 (i.p.); iii) a PKCαβII inhibitor, GF109203X (i.p.); and iv) a selective inhibitor of extracellular signal-regulated protein kinase1/2 (ERK1/2), U0126 (i.p.). Quinpirole-evoked c-fos immunofluorescence in the nucleus tractus solitarius (NTS) was suppressed by pretreatment with sulpiride (8 mg/kg, s.c.). Western blot analysis of shrew brainstem emetic loci protein lysates revealed a significant and time-dependent increase in phosphorylation of Akt (protein kinase B (PKB)) at Ser473 following a 30-min exposure to quinpirole (2 mg/kg, i.p.). Pretreatment with effective antiemetic doses of sulpiride, LY294002, GF109203X, or U0126 significantly reduced quinpirole-stimulated phosphorylation of emesis-associated proteins including p-85PI3K, mTOR (Ser2448/2481), PKCαβII (Thr638/641), ERK1/2 (Thr202/204), and Akt (Ser473). Our results substantiate the implication of PI3K/mTOR/Akt and PI3K/PKCαβII/ERK1/2/Akt signaling pathways in dopamine D2 receptor-mediated vomiting. Potential novel antiemetics targeting emetic proteins associated with these signaling cascades may offer enhanced potency and/or efficacy against emesis.
Collapse
Affiliation(s)
- Louiza Belkacemi
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
30
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
31
|
Role of BDNF-mTORC1 Signaling Pathway in Female Depression. Neural Plast 2021; 2021:6619515. [PMID: 33628219 PMCID: PMC7886502 DOI: 10.1155/2021/6619515] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Depression is a common psychological and mental disorder, characterized by low mood, slow thinking and low will, and even suicidal tendencies in severe cases. It imposes a huge mental and economic burden on patients and their families, and its prevention and treatment have become an urgent public health problem. It is worth noting that there is a significant gender difference in the incidence of depression. Studies have shown that females are far more likely to suffer from depression than males, confirming a close relationship between estrogen and the onset of depression. Moreover, recent studies suggest that the brain-derived neurotrophic factor- (BDNF-) mammalian target of rapamycin complex-1 (mTORC1) signaling pathway is a crucial target pathway for improving depression and mediates the rapid antidepressant-like effects of various antidepressants. However, it is not clear whether the BDNF-mTORC1 signaling pathway mediates the regulation of female depression and how to regulate female depression. Hence, we focused on the modulation of estrogen-BDNF-mTORC1 signaling in depression and its possible mechanisms in recent years.
Collapse
|
32
|
Borsari C, Keles E, Treyer A, De Pascale M, Hebeisen P, Hamburger M, Wymann MP. Second-generation tricyclic pyrimido-pyrrolo-oxazine mTOR inhibitor with predicted blood-brain barrier permeability. RSC Med Chem 2021; 12:579-583. [PMID: 34041490 PMCID: PMC8128076 DOI: 10.1039/d0md00408a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Highly selective mTOR inhibitors have been discovered through the exploration of the heteroaromatic ring engaging the binding affinity region in mTOR kinase. Compound 11 showed predicted BBB permeability in a MDCK-MDR1 permeability in vitro assay, being the first pyrimido-pyrrolo-oxazine with potential application in the treatment of neurological disorders. Here we present the first pyrimido-pyrrolo-oxazine-based mTOR kinase inhibitor (11) predicted to penetrate the blood brain barrier (BBB). Thus, 11 has a potential in treatments of neurological disorders.![]()
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| | - Paul Hebeisen
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland .,PIQUR Therapeutics AG Hochbergerstrasse 60 4057 Basel Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel Mattenstrasse 28 4058 Basel Switzerland
| |
Collapse
|
33
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
34
|
Borsari C, Keles E, Rageot D, Treyer A, Bohnacker T, Bissegger L, De Pascale M, Melone A, Sriramaratnam R, Beaufils F, Hamburger M, Hebeisen P, Löscher W, Fabbro D, Hillmann P, Wymann MP. 4-(Difluoromethyl)-5-(4-((3 R,5 S)-3,5-dimethylmorpholino)-6-(( R)-3-methylmorpholino)-1,3,5-triazin-2-yl)pyridin-2-amine (PQR626), a Potent, Orally Available, and Brain-Penetrant mTOR Inhibitor for the Treatment of Neurological Disorders. J Med Chem 2020; 63:13595-13617. [PMID: 33166139 DOI: 10.1021/acs.jmedchem.0c00620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Erhan Keles
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Denise Rageot
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Andrea Treyer
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Thomas Bohnacker
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Lukas Bissegger
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Martina De Pascale
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Anna Melone
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Rohitha Sriramaratnam
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Florent Beaufils
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias Hamburger
- Pharmaceutical Biology, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Paul Hebeisen
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany.,Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Petra Hillmann
- PIQUR Therapeutics AG, Hochbergerstrasse 60, 4057 Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| |
Collapse
|
35
|
Shang N, Zhang P, Wang S, Chen J, Fan R, Chen J, Huang T, Wang Y, Duncan J, Zhang L, Niu Q, Zhang Q. Aluminum-Induced Cognitive Impairment and PI3K/Akt/mTOR Signaling Pathway Involvement in Occupational Aluminum Workers. Neurotox Res 2020; 38:344-358. [PMID: 32506341 DOI: 10.1007/s12640-020-00230-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 01/17/2023]
Abstract
Epidemiological studies indicate that long-term occupational exposure to aluminum (Al) causes neurotoxicity and cognitive impairment. While the molecular underpinnings associated with workers' cognitive impairment is unclear, one mechanism may involve Al-induced PI3K/Akt/mTOR activation and neuronal cell death, which impairs learning and memory in rats. Here, we sought to determine whether PI3K/Akt/mTOR is also associated with cognitive impairment in Al-exposed occupational workers. Cognitive function was screened by Mini-Mental State Examination (MMSE) and Clock-Drawing Test (CDT), and serum Al and PI3K/Akt/mTOR-associated gene expression was quantified. A negative correlation between serum Al and scores of MMSE and CDT was found, which might relate with downregulation of PI3K/Akt/mTOR. To determine the role of the PI3K/Akt/mTOR pathway cognitive function, we treated zebrafish with Al and observed a profound impairment in learning and memory. Increased brain Al levels was associated with decreased expression of PI3K/Akt/mTOR in Al-exposed zebrafish. Finally, rapamycin, an mTOR inhibitor, was added to isolate the role of mTOR specifically in the Al exposed zebrafish. The results suggested that Al induces learning and memory deficits by downregulating PI3K, Akt, and mTOR1 expression and inducing neuronal cell death like rapamycin group. This study indicates that aluminum exposure can cause cognitive impairment through PI3K/Akt/mTOR pathway, with mTOR activity being a critical player involved in this mechanism. Future studies are necessary to further characterize the role of PI3K/Akt/mTOR1 signaling in Al-induced neurocognitive decline among Al occupational workers. These findings draw attention to Al risk exposure among occupational workers and the need to implement novel safety and protective measures to mitigate neurocognitive health risks in the Al industrial workspace.
Collapse
Affiliation(s)
- Nan Shang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Pharmacy, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ping Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shuo Wang
- Department of Physical and Chemical, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, 100021, China
| | - Jianping Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rong Fan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin Chen
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tao Huang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanhong Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jeremy Duncan
- Department of Physiology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qinli Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China. .,Department of Pathology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
36
|
Wang L, Xiong X, Zhang X, Ye Y, Jian Z, Gao W, Gu L. Sodium Tanshinone IIA Sulfonate Protects Against Cerebral Ischemia-reperfusion Injury by Inhibiting Autophagy and Inflammation. Neuroscience 2020; 441:46-57. [PMID: 32505745 DOI: 10.1016/j.neuroscience.2020.05.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Sodium tanshinone IIA sulfonate (STS) can protect against brain damage induced by stroke. However, the neural protection mechanism of STS remains unclear. We investigated whether STS performs its protective function by suppressing autophagy and inflammatory activity during brain injury. We established a transient middle cerebral artery occlusion and reperfusion (MCAO/R) model by blocking the left middle cerebral artery with a thread inserted through the internal carotid artery for 1 h, followed by reperfusion for 48 h either with or without STS and the autophagy inhibitor 3-methyladenine (3-MA). Neuroprotective effects were determined by evaluating infarction, brain edema, and neurological deficits. The numbers of microglia-derived macrophages, monocyte-derived microglia, T cells, and B cells in the brains were measured, based on the surface marker analyses of CD45, CD11b, B220, CD3, and CD4 using fluorescence-assisted cell sorting. STS (10, 20, 40 mg/kg) was able to significantly reduce infarct volumes, improve neurological deficits, and reduce brain water contents. STS treatment reduced neuroinflammation, as assessed by the infiltration of macrophages and neutrophils, corresponding with reduced numbers of macrophages, T cells, and B cells in ischemia/reperfusion (I/R) brains. In addition, STS treatment also attenuated the upregulation of autophagy associated proteins, such as LC3-II, Beclin-1 and Sirt 6, which was induced by MCAO. These results demonstrated that STS can provide remarkable protection against ischemic stroke, possibly via the inhibition of autophagy and inflammatory activity.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China.
| |
Collapse
|
37
|
Yang JR, Ren TT, Lan R, Qin XY. Tea polyphenols attenuate staurosporine-induced cytotoxicity and apoptosis by modulating BDNF-TrkB/Akt and Erk1/2 signaling axis in hippocampal neurons. IBRO Rep 2020; 8:115-121. [PMID: 32373755 PMCID: PMC7193097 DOI: 10.1016/j.ibror.2020.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/09/2020] [Indexed: 01/18/2023] Open
Abstract
Tea polyphenols (TP) are the major ingredients in tea beverages that display health-benefits including anti-oxidation, anti-inflammation, anti-aging, attenuating blood pressure and deflating. In this study, we investigated the neuroprotective effects of TP to attenuate staurosporine (STS)-induced cytotoxicity. Rat hippocampal neurons were isolated, cultured and incubated with STS to induce neurite collapse and apoptosis, however, the medication of TP eliminated these adverse effects and maintained the morphology of neurons. STS decreased the expression of pro-BDNF, downregulated the TrkB/Akt/Bcl-2 signaling axis and promoted the activation of Erk1/2 and caspase-3. In contrast, TP rescued the expression of pro-BDNF and antagonistically restored the biochemistry of aforementioned signaling effectors. Consistently, the activity of TP can be attenuated by the inhibition of TrkB or Akt by small chemicals K252a and LY294002. Therefore, BDNF-TrkB and Akt signaling axis is essential for TP-mediated neuroprotective effects. In summary, TP showed beneficial effects to protect neurons from exogenous insults such as STS-induced neural cytotoxicity and cell death.
Collapse
Key Words
- EC, (-)-epicatechin
- ECG, (-)-epigallocatechin
- EGC, (-)-epicatechin-3-gallate
- EGCG, (-)-epigallocatechin-3-gallate
- Erk1/2
- K252a
- LDH, Lactate dehydrogenase
- LY, LY294002
- LY294002
- MAP2
- MAP2, microtubule associated protein 2
- PD98059
- STS, staurosporine
- Staurosporine
- TP, tea polyphenols
- TUNEL, terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling
Collapse
Affiliation(s)
- Jian-Rong Yang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.,Department of Hepatobiliary Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Teng-Teng Ren
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Rongfeng Lan
- Department of Cell Biology & Medical Genetics, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xiao-Yan Qin
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
38
|
Identification and functional analysis of specific MS risk miRNAs and their target genes. Mult Scler Relat Disord 2020; 41:102044. [PMID: 32179484 DOI: 10.1016/j.msard.2020.102044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND It has been widely acknowledged that abnormal expression of microRNAs (miRNAs) may lead to the occurrence and development of MS through regulating target genes. Currently, only few studies have comprehensively evaluated the function and relationship between MS-related miRNAs and their target genes. METHODS Differentially expressed miRNAs in MS patients' serum and plasma were selected by reviewing numerous literatures manually. Then, thousands of target genes were screened by several online databases, of which 899 MS-related genes were further identified. Gene ontology, protein-protein interaction and KEGG pathway analysis were used to determine high-risk pathways and MS risk genes. Transcriptomic datasets from GEO was analyzed to evaluate these risk genes. RESULTS 28 MS-related miRNAs were extracted. MiR-30e, miR-93, miR-155 were identified as the most crucial miRNAs through targeting hub genes: PIK3CA, PIK3R1, PIK3R2 and MAPK8. Seven immune pathways were screened out according to KEGG pathway analysis. Six transcriptomic datasets were used to evaluate results, and PIK3CA was differentially expressed in MS patients compared with healthy donors. CONCLUSIONS According to our research, MS-related miRNAs and their target genes of MS were identified and comprehensively evaluated. This work may provide a new insight for discovering pathogenesis and possible biomarkers of MS in future studies.
Collapse
|
39
|
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin Attenuates Huntington's Disease through Activation of GLP-1 Receptor/PI3K/Akt/BDNF Pathway in 3-Nitropropionic Acid Rat Model. Neurotherapeutics 2020; 17:252-268. [PMID: 31728850 PMCID: PMC7007456 DOI: 10.1007/s13311-019-00805-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vildagliptin (Vilda), a dipeptidyl peptidase-4 (DPP-4) inhibitor, has been highlighted as a promising therapeutic agent for neurodegenerative diseases as Alzheimer's and Parkinson's diseases. Vilda's effect is mostly linked to PI3K/Akt signaling in CNS. Moreover, PI3K/Akt activation reportedly enhanced survival and dampened progression of Huntington's disease (HD). However, Vilda's role in HD is yet to be elucidated. Thus, the aim of the study is to uncover the potentiality of Vilda in HD and unfold its link with PI3K/Akt pathway in 3-nitropropionic acid (3NP) rat model. Rats were randomly assigned into 4 groups; group 1 received saline, whereas, groups 2, 3 and 4 received 3NP (10 mg/kg/day; i.p.) for 14 days, concomitantly with Vilda (5 mg/kg/day; p.o.) in groups 3 and 4, and wortmannin (WM), a PI3K inhibitor, (15 μg/kg/day; i.v.) in group 4. Vilda improved cognitive and motor perturbations induced by 3NP, as confirmed by striatal histopathological specimens and immunohistochemical examination of GFAP. The molecular signaling of Vilda was estimated by elevation of GLP-1 level and protein expressions of survival proteins; p85/p55 (pY458/199)-PI3K, pS473-Akt. Together, it boosted striatal neurotrophic factors and receptor; pS133-CREB, BDNF, pY515-TrKB, which subsequently maintained mitochondrial integrity, as indicated by enhancing both SDH and COX activities, and the redox modulators; Sirt1, Nrf2. Such neuroprotection restored imbalance of neurotransmitters through increasing GABA and suppressing glutamate as well PDE10A. These effects were reversed by WM pre-administration. In conclusion, Vilda purveyed significant anti-Huntington effect which may be mediated, at least in part, via activation of GLP-1/PI3K/Akt pathway in 3NP rat model.
Collapse
Affiliation(s)
- Noha H Sayed
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Nevine Fathy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt.
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Governorate, Giza, Egypt
| |
Collapse
|
40
|
Arafeh R, Samuels Y. PIK3CA in cancer: The past 30 years. Semin Cancer Biol 2019; 59:36-49. [DOI: 10.1016/j.semcancer.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/08/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
|
41
|
Barros Ribeiro da Silva V, Porcionatto M, Toledo Ribas V. The Rise of Molecules Able To Regenerate the Central Nervous System. J Med Chem 2019; 63:490-511. [PMID: 31518122 DOI: 10.1021/acs.jmedchem.9b00863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injury to the adult central nervous system (CNS) usually leads to permanent deficits of cognitive, sensory, and/or motor functions. The failure of axonal regeneration in the damaged CNS limits functional recovery. The lack of information concerning the biological mechanism of axonal regeneration and its complexity has delayed the process of drug discovery for many years compared to other drug classes. Starting in the early 2000s, the ability of many molecules to stimulate axonal regrowth was evaluated through automated screening techniques; many hits and some new mechanisms involved in axonal regeneration were identified. In this Perspective, we discuss the rise of the CNS regenerative drugs, the main biological techniques used to test these drug candidates, some of the most important screens performed so far, and the main challenges following the identification of a drug that is able to induce axonal regeneration in vivo.
Collapse
Affiliation(s)
| | - Marimélia Porcionatto
- Universidade Federal de São Paulo , Escola Paulista de Medicina, Laboratório de Neurobiologia Molecular, Departmento de Bioquímica , Rua Pedro de Toledo, 669 - third floor, 04039-032 São Paulo , São Paolo , Brazil
| | - Vinicius Toledo Ribas
- Universidade Federal de Minas Gerais , Instituto de Ciências Biológicas, Departamento de Morfologia, Laboratório de Neurobiologia Av. Antônio Carlos, 6627, room O3-245 , - Campus Pampulha, 31270-901 , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
42
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
43
|
Chung YP, Yen CC, Tang FC, Lee KI, Liu SH, Wu CC, Hsieh SS, Su CC, Kuo CY, Chen YW. Methylmercury exposure induces ROS/Akt inactivation-triggered endoplasmic reticulum stress-regulated neuronal cell apoptosis. Toxicology 2019; 425:152245. [PMID: 31330229 DOI: 10.1016/j.tox.2019.152245] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Epidemiological studies have positively linked mercury exposure and neurodegenerative diseases (ND). Methylmercury (MeHg), an organic form of mercury, is a ubiquitous and potent environmental neurotoxicant that easily crosses the blood-brain barrier and causes irreversible injury to the central nervous system (CNS). However, the molecular mechanisms underlying MeHg-induced neurotoxicity remain unclear. Here, the present study found that Neuro-2a cells underwent apoptosis in response to MeHg (1-5 μM), which was accompanied by increased phosphatidylserine (PS) exposure on the outer cellular membrane leaflets, caspase-3 activity, and the activation of caspase cascades and poly (ADP-ribose) polymerase (PARP). Exposure of Neuro-2a cells to MeHg also triggered endoplasmic reticulum (ER) stress, which was identified via several key molecules (including: glucose-regulated protein (GRP)78, GRP94, C/EBP homologous protein (CHOP) X-box binding protein(XBP)-1, protein kinase R-like ER kinase (PERK), eukaryotic initiation factor 2α (eIF2α), inositol-requiring enzyme(IRE)-1, activation transcription factor(AFT)4, and ATF6. Transfection with GRP78-, GRP94-, CHOP-, and XBP-1-specific small interfering (si)RNA significantly suppressed the expression of these proteins, and attenuated cytotoxicity and caspase-12, -7, and -3 activation in MeHg-exposed cells. Furthermore, MeHg dramatically decreased Akt phosphorylation, and the overexpression of activation of Akt1 (myr-Akt1) could significantly prevent MeHg-induced Akt inactivation, as well as apoptotic and ER stress-related signals. Pretreatment with the antioxidant N-acetylcysteine (NAC) effectively prevented MeHg-induced neuronal cell reactive oxygen species (ROS) generation, apoptotic and ER stress-related signals, and Akt inactivation. Collectively, these results indicate that MeHg exerts its cytotoxicity in neurons by inducing ROS-mediated Akt inactivation up-regulated ER stress, which induces apoptosis and ultimately leads to cell death.
Collapse
Affiliation(s)
- Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan; Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Cheng-Chieh Yen
- Department of Occupational Safety and Health, College of Health Care and Management, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Feng-Cheng Tang
- Department of Occupational Medicine, Changhua Christian Hospital, Changhua County, 500, Taiwan; Department of Leisure Services Management, Chaoyang University of Technology, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, 427, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Shang-Shu Hsieh
- Department of Emergency, Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung, 427, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Chun-Ying Kuo
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County 500, Taiwan
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
44
|
Hou K, Xu D, Li F, Chen S, Li Y. The progress of neuronal autophagy in cerebral ischemia stroke: Mechanisms, roles and research methods. J Neurol Sci 2019; 400:72-82. [PMID: 30904689 DOI: 10.1016/j.jns.2019.03.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/25/2019] [Accepted: 03/15/2019] [Indexed: 12/26/2022]
Abstract
There is increasing evidence indicating that autophagy may be a new target in the treatment of ischemic stroke. Moderate autophagy can clear damaged organelles, thereby protecting cells against various injuries. However, long-term excessive autophagy brings redundant degradation of cell contents, leading to cell death and eventually serious damage to tissues and organs. A number of different animal models of ischemic brain injury shows that autophagy is activated and involved in the regulation of neuronal death during ischemic brain injury. This article summarizes the role of autophagy, its underlying regulators and mechanisms in ischemic neuronal injury. We briefly introduce the relationship between apoptosis and autophagy and give a summary of research methods and modulators of autophagy.
Collapse
Affiliation(s)
- Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Shijie Chen
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
45
|
Takimoto M. Multidisciplinary Roles of LRRFIP1/GCF2 in Human Biological Systems and Diseases. Cells 2019; 8:cells8020108. [PMID: 30709060 PMCID: PMC6406849 DOI: 10.3390/cells8020108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/27/2019] [Indexed: 01/28/2023] Open
Abstract
Leucine Rich Repeat of Flightless-1 Interacting Protein 1/GC-binding factor 2 (LRRFIP1/GCF2) cDNA was cloned for a transcriptional repressor GCF2, which bound sequence-specifically to a GC-rich element of epidermal growth factor receptor (EGFR) gene and repressed its promotor. LRRFIP1/GCF2 was also cloned as a double stranded RNA (dsRNA)-binding protein to trans-activation responsive region (TAR) RNA of Human Immunodeficiency Virus-1 (HIV-1), termed as TAR RNA interacting protein (TRIP), and as a binding protein to the Leucine Rich Repeat (LRR) of Flightless-1(Fli-1), termed as Flightless-1 LRR associated protein 1 (FLAP1) and LRR domain of Flightless-1 interacting Protein 1 (LRRFIP1). Subsequent functional studies have revealed that LRRFIP1/GCF2 played multiple roles in the regulation of diverse biological systems and processes, such as in immune response to microorganisms and auto-immunity, remodeling of cytoskeletal system, signal transduction pathways, and transcriptional regulations of genes. Dysregulations of LRRFIP1/GCF2 have been implicated in the causes of several experimental and clinico-pathological states and the responses to them, such as autoimmune diseases, excitotoxicity after stroke, thrombosis formation, inflammation and obesity, the wound healing process, and in cancers. LRRFIP1/GCF2 is a bioregulator in multidisciplinary systems of the human body and its dysregulation can cause diverse human diseases.
Collapse
Affiliation(s)
- Masato Takimoto
- Institute for Genetic Medicine, Hokkaido University, Hokkaido 060-0815, Japan.
| |
Collapse
|
46
|
Mueed Z, Tandon P, Maurya SK, Deval R, Kamal MA, Poddar NK. Tau and mTOR: The Hotspots for Multifarious Diseases in Alzheimer's Development. Front Neurosci 2019; 12:1017. [PMID: 30686983 PMCID: PMC6335350 DOI: 10.3389/fnins.2018.01017] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022] Open
Abstract
The hyperphosphorylation of tau protein and the overexpression of mTOR are considered to be the driving force behind Aβ plaques and Neurofibrillay Tangles (NFT's), hallmarks of Alzheimer's disease (AD). It is now evident that miscellaneous diseases such as Diabetes, Autoimmune diseases, Cancer, etc. are correlated with AD. Therefore, we reviewed the literature on the causes of AD and investigated the association of tau and mTOR with other diseases. We have discussed the role of insulin deficiency in diabetes, activated microglial cells, and dysfunction of blood-brain barrier (BBB) in Autoimmune diseases, Presenilin 1 in skin cancer, increased reactive species in mitochondrial dysfunction and deregulated Cyclins/CDKs in promoting AD pathogenesis. We have also discussed the possible therapeutics for AD such as GSK3 inactivation therapy, Rechaperoning therapy, Immunotherapy, Hormonal therapy, Metal chelators, Cell cycle therapy, γ-secretase modulators, and Cholinesterase and BACE 1-inhibitors which are thought to serve a major role in combating pathological changes coupled with AD. Recent research about the relationship between mTOR and aging and hepatic Aβ degradation offers possible targets to effectively target AD. Future prospects of AD aims at developing novel drugs and modulators that can potentially improve cell to cell signaling, prevent Aβ plaques formation, promote better release of neurotransmitters and prevent hyperphosphorylation of tau.
Collapse
Affiliation(s)
- Zeba Mueed
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Pallavi Tandon
- Department of Biotechnology, Invertis University, Bareilly, India
| | | | - Ravi Deval
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Mohammad A Kamal
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia.,Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | | |
Collapse
|
47
|
Zhao Y, Wang Q, Wang Y, Li J, Lu G, Liu Z. Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model. Environ Health Prev Med 2019; 24:4. [PMID: 30611190 PMCID: PMC6320634 DOI: 10.1186/s12199-018-0757-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/18/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Parkinson's disease is a neurodegenerative disorder, and recent studies suggested that oxidative stress contributes to the degeneration of dopamine cell in Parkinson's disease. Glutamine also has a positive role in reducing oxidative stress damage. In this study, we hypothesized that glutamine offers protection against oxidative stress injury in 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease cell model. METHODS MPP+ was used to induce PD models in PC12 cells and classified into control, M0 (MPP+), G0 (glutamine), and M0+G0 groups. CCK-8 and AO/EB staining assays were used to examine cell proliferation and apoptosis, respectively. Western blotting was applied to examine the protein expression of PI3K, P-Akt, Akt, P-mTOR, and mTOR. RESULTS We showed that glutamine suppressed cytotoxicity induced by MPP+ in PC12 cells. MPP+ decreased the superoxide dismutase and glutathione peroxidase activity and increased the malondialdehyde content, which were restored by glutamine. Moreover, MPP+ increased the expression of PI3K, P-Akt, Akt, P-mTOR, and mTOR, which were inhibited by glutamine. And the antioxidant capacity of glutamine on PC12 cells could be improved by LY294002 and inhibited by IGF-1. CONCLUSION These results suggest that glutamine strengthens the antioxidant capacity in PC12 cells induced by MPP+ through inhibiting the activation of the PI3K/Akt signaling pathway. The effects of glutamine should be investigated and the protective mechanism of glutamine in PD must be explored in future studies.
Collapse
Affiliation(s)
- Yingqian Zhao
- Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, China
- College of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Qindu District, Xianyang, China
| | - Qiang Wang
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Qindu District, Xianyang, Shaanxi China
| | - Yuan Wang
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Qindu District, Xianyang, Shaanxi China
| | - Jie Li
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Qindu District, Xianyang, Shaanxi China
| | - Gang Lu
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Qindu District, Xianyang, Shaanxi China
| | - Zhibin Liu
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Qindu District, Xianyang, Shaanxi China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Qindu District, Xianyang, Shaanxi China
| |
Collapse
|
48
|
Chen Y, Zheng X, Wang Y, Song J. Effect of PI3K/Akt/mTOR signaling pathway on JNK3 in Parkinsonian rats. Exp Ther Med 2018; 17:1771-1775. [PMID: 30783448 PMCID: PMC6364142 DOI: 10.3892/etm.2018.7120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/16/2018] [Indexed: 12/21/2022] Open
Abstract
Effect of PI3K/Akt/mTOR signaling pathway on the expression of JNK3 in Parkinsonian rats was investigated. A total of 200 rats were used for Parkinson's disease (PD) modeling and 180 models were successfully established. Rats were randomly divided into four groups including A, B, C, and D, 45 in each group. Group A was control group and no inhibitor was given. Group B was given PI3K inhibitor LY294002. Group C was given rapamycin inhibitor rapamycin; and group D was given inhibitor LY294002 and inhibitor rapamycin. JNK3 mRNA expression was detected by RT-qPCR and expression of p-mTOR protein and JNK3 protein was detected by western blot analysis. Expression level of JNK3 mRNA and protein in groups C and D was significantly lower than that in group B (P<0.01). Expression level of JNK3 mRNA and protein in group D was significantly lower than that in group C (P<0.01). Relative expression level of p-mTOR protein in groups C and D was significantly lower than that in group B (P<0.01). Relative expression level of JNK3 protein in group D was significantly lower than that in group C (P<0.01). Pearson's correlation analysis showed that expression of JNK3 mRNA was positively correlated with the expression of JNK3 protein and Pearson's correlation coefficient was 0.98 (P<0.01). There was also a positive correlation between the expression of JNK3 mRNA and the expression of p-mTOR protein and Pearson's correlation coefficient was 0.95 (P<0.01). Expression of JNK3 protein was positively correlated with the expression of p-mTOR protein, and the Pearson's correlation coefficient was 0.93 (P<0.01). Inhibition of PI3K/Akt/mTOR signaling pathway is negatively correlated with the expression of JNK3. Inhibition of PI3K-Akt-mTOR signaling pathway leads to a decrease in the expression of JNK3, which protects dopaminergic neurons and improves PD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Xiaozhen Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Ying Wang
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Junjie Song
- Department of Anesthesiology, The First Affiliated Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
49
|
Torrealba N, Rodriguez-Berriguete G, Fraile B, Olmedilla G, Martínez-Onsurbe P, Sánchez-Chapado M, Paniagua R, Royuela M. PI3K pathway and Bcl-2 family. Clinicopathological features in prostate cancer. Aging Male 2018; 21:211-222. [PMID: 29316844 DOI: 10.1080/13685538.2018.1424130] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathways and Bcl-2 family play a central role in prostate cancer (PC). The aim was to determine influence in the biochemical progression in PC. To evaluate the association between clinic pathological and immunohistochemical variables, Spearman's test was performed. Log-rank test and Kaplan-Meier curves were used for survival comparisons. To explore the correlation of the studied immunohistochemical parameters and the established prognostic variables with biochemical progression, univariate and multivariate Cox proportional Hazard regression analyses were performed. Spearman analysis showed correlation between stroma expression and tumor expression of PI3K with biochemical progression (p = .009, p = .004), respectively, and tumor immunohistochemical score with biochemical progression (p = .051). In the multivariate Cox regression model, only PI3K was retained as independent predictors of biochemical progression. In stroma expression, PI3K is (HR 0.172, 95% CI 0.065-0.452, p = .000); tumor expression, PI3K is (HR 0.087, 95% CI 0.026-0.293, p = .000), and tumor immunohistochemical score (HR 0.382, 95% CI 0.209-0.697 p = .002). Our results suggest a role for prostatic expression of PI3K was prognostic markers for PC. PI3K/AKT/mTOR and Bcl-2 family are becoming an important therapeutic target and predictive biomarkers of onset and progression of PC.
Collapse
Affiliation(s)
- Norelia Torrealba
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | | | - Benito Fraile
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - Gabriel Olmedilla
- b Department of Pathology , University of Alcalá , Alcalá de Henares , Spain
| | | | | | - Ricardo Paniagua
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| | - Mar Royuela
- a Department of Biomedicine and Biotechnology , University of Alcalá , Alcalá de Henares , Spain
| |
Collapse
|
50
|
El-Marasy SA, Abdel-Rahman RF, Abd-Elsalam RM. Neuroprotective effect of vildagliptin against cerebral ischemia in rats. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1133-1145. [PMID: 30022232 DOI: 10.1007/s00210-018-1537-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/11/2018] [Indexed: 12/30/2022]
Abstract
Stroke is the leading cause of death worldwide. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a class of anti-diabetic drugs for treatment of type-2 diabetes mellitus. The aim of this study is to evaluate the possible neuroprotective effect of a dipeptidyl peptidase-4 inhibitor, vildagliptin, independent of its anti-diabetic properties in non-diabetic rats subjected to cerebral ischemia. Anesthetized Wistar rats were subjected to either left middle cerebral artery occlusion (MCAO) or sham operation followed by reperfusion after 30 min of MCAO. The other three groups were orally administered vildagliptin at 3 dose levels (2.5, 5, 10 mg/kg) for 3 successive weeks before subjected to left focal cerebral ischemia/reperfusion and till the end of the study. Neurological deficit scores and motor activity were assessed 24 h following reperfusion. Forty-eight hours following reperfusion, rats were euthanized and their left brain hemispheres were harvested and used in biochemical, histopathological, and immunohistochemical investigations. Vildagliptin pretreatment improved neurological deficit score, locomotor activity, and motor coordination in MCAO rats. Moreover, vildagliptin reduced malondialdehyde (MDA), elevated reduced glutathione (GSH), phosphotylinosital 3 kinase (PI3K), phosphoryated of protein kinase B (p-AKT), and mechanistic target of rapamycin (mTOR) brain contents in addition to reducing protein expression of caspase-3. Also, vildagliptin showed a dose-dependent attenuation in neuronal cell loss and histopathological alterations in MCAO rats. This study proves that vildagliptin exerted a neuroprotective effect in a dose-dependent manner as shown in the attenuation of the infarct area, neuronal cell loss, and histopathological damage in MCAO rats, which may be mediated by attenuating neuronal and motor deficits, its antioxidant property, activation of the PI3K/AKT/mTOR pathway, and its anti-apoptotic effect.
Collapse
Affiliation(s)
- Salma A El-Marasy
- Department of Pharmacology, National Research Centre, Giza, 12622, Egypt.
| | | | - Reham M Abd-Elsalam
- Department of Pathology, Faculty of Veterinary medicine, Cairo University, Giza, Egypt
| |
Collapse
|