1
|
Kopp L, Garner M, Priest K. Rhabdomyosarcoma in a Rabbit. Top Companion Anim Med 2024; 61:100892. [PMID: 38972503 DOI: 10.1016/j.tcam.2024.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
A geriatric Holland Lop rabbit presented for acute lameness. A pathologic fracture of the right distal femur associated with a pleomorphic rhabdomyosarcoma was diagnosed, and staging radiographs showed no overt metastasis upon initial presentation. The limb was amputated and submitted for microscopic examination. Immunohistochemical evaluation revealed the neoplastic cells were positive for desmin and MyoD1, and negative for cytokeratin AE1/AE3, CD204, IBA-1, and SMA. Gross, histologic, and immunohistochemical evaluation confirmed a diagnosis of pleomorphic rhabdomyosarcoma. The patient died 396 days after amputation, and a post-mortem examination showed metastatic sarcoma to multiple organs.
Collapse
Affiliation(s)
- Logan Kopp
- Priest Lake Veterinary Hospital, 2445 Morris Gentry Blvd, Nashville, TN 37013, USA.
| | - Michael Garner
- Northwest ZooPath, 654 West Main Street, Monroe, WA 98272, USA
| | - Kara Priest
- Idexx Laboratories, 1 Idexx Dr, Westbrook, ME 04092, USA
| |
Collapse
|
2
|
Jain A, Meher R, Khurana N. Alveolar Rhabdomyosarcoma of the Temporal Region with Metastatic Cervical Lymph Node. Indian J Otolaryngol Head Neck Surg 2024; 76:1075-1079. [PMID: 38440594 PMCID: PMC10908913 DOI: 10.1007/s12070-023-04120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 03/06/2024] Open
Abstract
Introduction: Paediatric rhabdomyosarcoma most commonly occurs in the head and neck region. Its treatment is complex, including multi-drug chemotherapy, surgery and radiotherapy. Case report: Here, we report a case of alveolar rhabdomyosarcoma of the temporal region with a metastatic cervical lymph node, in a 15-year-old girl, and its management. The patient received ne-adjuvant chemotherapy, followed by surgery and post operative radiotherapy. Literature was also reviewed for the various treatment modalities for these rare tumours. Discussion: Rhabdomyosarcoma of the temporal region has rarely been reported in the literature. Due to the rarity of these tumours, there are difficulties in creating standardized therapeutic protocols. However, multimodality treatment, including chemotherapy, surgery and radiotherapy, has been shown to improve the overall survival rate.
Collapse
Affiliation(s)
- Avani Jain
- Department of ENT, ESIC Medical College and Hospital, Faridabad, India
| | - Ravi Meher
- Department of ENT, Maulana Azad Medical College, New Delhi, India
| | - Nita Khurana
- Department of Pathology, Maulana Azad Medical College, New Delhi, India
| |
Collapse
|
3
|
La Ferlita A, Sp N, Goryunova M, Nigita G, Pollock RE, Croce CM, Beane JD. Small Non-Coding RNAs in Soft-Tissue Sarcomas: State of the Art and Future Directions. Mol Cancer Res 2023; 21:511-524. [PMID: 37052491 PMCID: PMC10238653 DOI: 10.1158/1541-7786.mcr-22-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors that arise from connective tissue and can occur anywhere in the body. Among the plethora of over 50 different STS types, liposarcoma (LPS) is one of the most common. The subtypes of STS are characterized by distinct differences in tumor biology that drive responses to pharmacologic therapy and disparate oncologic outcomes. Small non-coding RNAs (sncRNA) are a heterogeneous class of regulatory RNAs involved in the regulation of gene expression by targeting mRNAs. Among the several types of sncRNAs, miRNAs and tRNA-derived ncRNAs are the most studied in the context of tumor biology, and we are learning more about the role of these molecules as important regulators of STS tumorigenesis and differentiation. However, challenges remain in translating these findings and no biomarkers or therapeutic approaches targeting sncRNAs have been developed for clinical use. In this review, we summarize the current landscape of sncRNAs in the context of STS with an emphasis on LPS, including the role of sncRNAs in the tumorigenesis and differentiation of these rare malignancies and their potential as novel biomarkers and therapeutic targets. Finally, we provide an appraisal of published studies and outline future directions to study sncRNAs in STS, including tRNA-derived ncRNAs.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Selective BH3 mimetics synergize with BET inhibition to induce mitochondrial apoptosis in rhabdomyosarcoma cells. Neoplasia 2021; 24:109-119. [PMID: 34959030 PMCID: PMC8718565 DOI: 10.1016/j.neo.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Co-inhibition of BET proteins and anti-apoptotic BCL-2 proteins induces apoptosis in RMS. JQ1 and BH3-mimetics synergistically induce cell death in RMS. Cell death is caspase-dependent and displays hallmarks of intrinsic apoptosis. JQ1/A-1331852-mediated apoptosis is dependent on BIM and NOXA. JQ1/S638450-mediated apoptosis is dependent on BIM but not NOXA.
BH3 mimetics are promising novel anticancer therapeutics. By selectively inhibiting BCL-2, BCL-xL, or MCL-1 (i.e. ABT-199, A-1331852, S63845) they shift the balance of pro- and anti-apoptotic proteins in favor of apoptosis. As Bromodomain and Extra Terminal (BET) protein inhibitors promote pro-apoptotic rebalancing, we evaluated the potential of the BET inhibitor JQ1 in combination with ABT-199, A-1331852 or S63845 in rhabdomyosarcoma (RMS) cells. The strongest synergistic interaction was identified for JQ1/A-1331852 and JQ1/S63845 co-treatment, which reduced cell viability and long-term clonogenic survival. Mechanistic studies revealed that JQ1 upregulated BIM and NOXA accompanied by downregulation of BCL-xL, promoting pro-apoptotic rebalancing of BCL-2 proteins. JQ1/A-1331852 and JQ1/S63845 co-treatment enhanced this pro-apoptotic rebalancing and triggered BAK- and BAX-dependent apoptosis since a) genetic silencing of BIM, BAK or BAX, b) inhibition of caspase activity with zVAD.fmk and c) overexpression of BCL-2 all rescued JQ1/A-1331852- and JQ1/S63845-induced cell death. Interestingly, NOXA played a different role in both treatments, as genetic silencing of NOXA significantly rescued from JQ1/A-1331852-mediated apoptosis but not from JQ1/S63845-mediated apoptosis. In summary, JQ1/A-1331852 and JQ1/S63845 co-treatment represent new promising therapeutic strategies to synergistically trigger mitochondrial apoptosis in RMS.
Collapse
|
5
|
Generali M, Satheesha S, Bode PK, Wanner D, Schäfer BW, Casanova EA. High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12091373. [PMID: 34573355 PMCID: PMC8469567 DOI: 10.3390/genes12091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Fusion-positive RMS (FPRMS), expressing the PAX3/7-FOXO1, has a worse prognosis compared to the more common fusion-negative RMS (FNRMS). Although several studies reported hierarchical organization for FNRMS with the identification of cancer stem cells, the cellular organization of FPRMS is not yet clear. In this study we investigated the expression of key stem cell markers, developed a sphere assay, and investigated the seven most common FPRMS cell lines for subpopulations of tumor propagating cancer stem-like cells, also called cancer stem cells (CSCs). Moreover, loss- and gain-of-functions of the stem cell genes SOX2, OCT4, and NANOG were investigated in the same cells. Single-cell clonal analysis was performed in vitro as well as in vivo. We found that no stable CSC subpopulation could be enriched in FPRMS. Unlike depletion of PAX3-FOXO1, neither overexpression nor siRNA-mediated downregulation of SOX2, OCT4, and NANOG affected physiology of RMS cells. Every single subclone-derived cell clone initiated tumor growth in mice, despite displaying considerable heterogeneity in gene expression. FPRMS appears to contain a high frequency of tumor propagating stem-like cells, which could explain their higher propensity for metastasis and relapse. Their dependency on PAX3-FOXO1 activity reinforces the importance of the fusion protein as the key therapeutic target.
Collapse
Affiliation(s)
- Melanie Generali
- Center for Therapy Development and Good Manufacturing Practice, Institute for Regenerative Medicine (IREM), University of Zurich, 8044 Zurich, Switzerland; (M.G.); (D.W.)
| | - Sampoorna Satheesha
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Peter K. Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Debora Wanner
- Center for Therapy Development and Good Manufacturing Practice, Institute for Regenerative Medicine (IREM), University of Zurich, 8044 Zurich, Switzerland; (M.G.); (D.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
- Correspondence: (B.W.S.); (E.A.C.); Tel.: +41-44-266-7553 (B.W.S.); +41-44-255-1976 (E.A.C.)
| | - Elisa A. Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: (B.W.S.); (E.A.C.); Tel.: +41-44-266-7553 (B.W.S.); +41-44-255-1976 (E.A.C.)
| |
Collapse
|
6
|
HER Tyrosine Kinase Family and Rhabdomyosarcoma: Role in Onset and Targeted Therapy. Cells 2021; 10:cells10071808. [PMID: 34359977 PMCID: PMC8305095 DOI: 10.3390/cells10071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are tumors of the skeletal muscle lineage. Two main features allow for distinction between subtypes: morphology and presence/absence of a translocation between the PAX3 (or PAX7) and FOXO1 genes. The two main subtypes are fusion-positive alveolar RMS (ARMS) and fusion-negative embryonal RMS (ERMS). This review will focus on the role of receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) family that is comprised EGFR itself, HER2, HER3 and HER4 in RMS onset and the potential therapeutic targeting of receptor tyrosine kinases. EGFR is highly expressed by ERMS tumors and cell lines, in some cases contributing to tumor growth. If not mutated, HER2 is not directly involved in control of RMS cell growth but can be expressed at significant levels. A minority of ERMS carries a HER2 mutation with driving activity on tumor growth. HER3 is frequently overexpressed by RMS and can play a role in the residual myogenic differentiation ability and in resistance to signaling-directed therapy. HER family members could be exploited for therapeutic approaches in two ways: blocking the HER member (playing a driving role for tumor growth with antibodies or inhibitors) and targeting expressed HER members to vehiculate toxins or immune effectors.
Collapse
|
7
|
Population-based survival of pediatric rhabdomyosarcoma of the head and neck over four decades. Int J Pediatr Otorhinolaryngol 2021; 142:110599. [PMID: 33422992 DOI: 10.1016/j.ijporl.2020.110599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/26/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Clinical trials have reported increases in the survival of pediatric rhabdomyosarcoma (RMS) from 25% in 1970 to 73% in 2001. The purpose of this study was to examine whether survival of pediatric patients with RMS of the head and neck improved at the US population level. METHODS A population-based cohort of patients with rhabdomyosarcoma of the head and neck aged 0-19 years in the Surveillance, Epidemiology, and End Results (SEER) registry from 1973 to 2013 was queried. The cumulative incidence competing risks (CICR) method was used to estimate risk and survival trends. RESULTS 718 cases were identified for analysis. Survival rates at 1-, 5-, and 10-years after diagnosis were 91.2%, 73.2%, and 69.4% respectively. Survival rates at 1 year after diagnosis increased from 82.6% to 93.1% during the study period. In the subdistributional hazard analysis, there was a significantly improved disease-specific risk of death in the first year after diagnosis. Overall risk of death did not improve significantly. Favorable prognostic factors included age <10 years at diagnosis, smaller tumor size, absence of distant metastasis, localized tumors, earlier stage at presentation, grossly complete surgical resection, and embryonal or botryoid histology. CONCLUSIONS Disease-specific survival in the first year following diagnosis improved, but the change in overall survival at the population level was not statistically significant. These findings should be interpreted in light of the inclusion of patients with distant metastasis at diagnosis, who have poor prognoses, together with the limited statistical power afforded in studies of rare diseases.
Collapse
|
8
|
Manzella G, Schreck LD, Breunis WB, Molenaar J, Merks H, Barr FG, Sun W, Römmele M, Zhang L, Tchinda J, Ngo QA, Bode P, Delattre O, Surdez D, Rekhi B, Niggli FK, Schäfer BW, Wachtel M. Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and AKT sensitivity. Nat Commun 2020; 11:4629. [PMID: 32934208 PMCID: PMC7492191 DOI: 10.1038/s41467-020-18388-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer therapy is currently shifting from broadly used cytotoxic drugs to patient-specific precision therapies. Druggable driver oncogenes, identified by molecular analyses, are present in only a subset of patients. Functional profiling of primary tumor cells could circumvent these limitations, but suitable platforms are unavailable for most cancer entities. Here, we describe an in vitro drug profiling platform for rhabdomyosarcoma (RMS), using a living biobank composed of twenty RMS patient-derived xenografts (PDX) for high-throughput drug testing. Optimized in vitro conditions preserve phenotypic and molecular characteristics of primary PDX cells and are compatible with propagation of cells directly isolated from patient tumors. Besides a heterogeneous spectrum of responses of largely patient-specific vulnerabilities, profiling with a large drug library reveals a strong sensitivity towards AKT inhibitors in a subgroup of RMS. Overall, our study highlights the feasibility of in vitro drug profiling of primary RMS for patient-specific treatment selection in a co-clinical setting. Patient-specific precision medicine approaches are important for future cancer therapies. Here, the authors show that functional drug profiling with Rhabdomyosarcoma cells isolated from PDX and primary patient tumors uncovers patient-specific vulnerabilities.
Collapse
Affiliation(s)
- Gabriele Manzella
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Leonie D Schreck
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Willemijn B Breunis
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland.,Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Jan Molenaar
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Hans Merks
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Wenyue Sun
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michaela Römmele
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Luduo Zhang
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Joelle Tchinda
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Quy A Ngo
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Peter Bode
- University Hospital Zurich, Institute of Surgical Pathology, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland
| | - Olivier Delattre
- France INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Didier Surdez
- France INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Bharat Rekhi
- Tata Memorial Hospital, Department of Pathology, Dr E.B. road, Parel, Mumbai, 400012, India
| | - Felix K Niggli
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Beat W Schäfer
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland.
| | - Marco Wachtel
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| |
Collapse
|
9
|
Alcon C, Manzano-Muñoz A, Prada E, Mora J, Soriano A, Guillén G, Gallego S, Roma J, Samitier J, Villanueva A, Montero J. Sequential combinations of chemotherapeutic agents with BH3 mimetics to treat rhabdomyosarcoma and avoid resistance. Cell Death Dis 2020; 11:634. [PMID: 32801295 PMCID: PMC7429859 DOI: 10.1038/s41419-020-02887-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/30/2023]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood and adolescence. Refractory/relapsed RMS patients present a bad prognosis that combined with the lack of specific biomarkers impairs the development of new therapies. Here, we utilize dynamic BH3 profiling (DBP), a functional predictive biomarker that measures net changes in mitochondrial apoptotic signaling, to identify anti-apoptotic adaptations upon treatment. We employ this information to guide the use of BH3 mimetics to specifically inhibit BCL-2 pro-survival proteins, defeat resistance and avoid relapse. Indeed, we found that BH3 mimetics that selectively target anti-apoptotic BCL-xL and MCL-1, synergistically enhance the effect of clinically used chemotherapeutic agents vincristine and doxorubicin in RMS cells. We validated this strategy in vivo using a RMS patient-derived xenograft model and observed a reduction in tumor growth with a tendency to stabilization with the sequential combination of vincristine and the MCL-1 inhibitor S63845. We identified the molecular mechanism by which RMS cells acquire resistance to vincristine: an enhanced binding of BID and BAK to MCL-1 after drug exposure, which is suppressed by subsequently adding S63845. Our findings validate the use of DBP as a functional assay to predict treatment effectiveness in RMS and provide a rationale for combining BH3 mimetics with chemotherapeutic agents to avoid tumor resistance, improve treatment efficiency, and decrease undesired secondary effects.
Collapse
Affiliation(s)
- Clara Alcon
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Estela Prada
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
- Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, 08950, Esplugues de Llobregat, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, 08950, Esplugues de Llobregat, Spain
- Department of Haematology and Oncology, Hospital Sant Joan de Déu Barcelona, 08950, Esplugues de Llobregat, Spain
| | - Aroa Soriano
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Gabriela Guillén
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
- Department of Surgery, Universitat Autònoma de Barcelona (UAB), 08193, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), 08035, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona (UB), 08028, Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029, Madrid, Spain
| | - Alberto Villanueva
- Program against Cancer Therapeutic Resistance (ProCURE), IDIBELL, Catalan Institute of Oncology, l'Hospitalet del Llobregat, 08907, Barcelona, Spain
- Xenopat S.L., Business Bioincubator, Bellvitge Health Science Campus, l'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Joan Montero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
10
|
Marques JG, Gryder BE, Pavlovic B, Chung Y, Ngo QA, Frommelt F, Gstaiger M, Song Y, Benischke K, Laubscher D, Wachtel M, Khan J, Schäfer BW. NuRD subunit CHD4 regulates super-enhancer accessibility in rhabdomyosarcoma and represents a general tumor dependency. eLife 2020; 9:54993. [PMID: 32744500 PMCID: PMC7438112 DOI: 10.7554/elife.54993] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The NuRD complex subunit CHD4 is essential for fusion-positive rhabdomyosarcoma (FP-RMS) survival, but the mechanisms underlying this dependency are not understood. Here, a NuRD-specific CRISPR screen demonstrates that FP-RMS is particularly sensitive to CHD4 amongst the NuRD members. Mechanistically, NuRD complex containing CHD4 localizes to super-enhancers where CHD4 generates a chromatin architecture permissive for the binding of the tumor driver and fusion protein PAX3-FOXO1, allowing downstream transcription of its oncogenic program. Moreover, CHD4 depletion removes HDAC2 from the chromatin, leading to an increase and spread of histone acetylation, and prevents the positioning of RNA Polymerase 2 at promoters impeding transcription initiation. Strikingly, analysis of genome-wide cancer dependency databases identifies CHD4 as a general cancer vulnerability. Our findings describe CHD4, a classically defined repressor, as positive regulator of transcription and super-enhancer accessibility as well as establish this remodeler as an unexpected broad tumor susceptibility and promising drug target for cancer therapy.
Collapse
Affiliation(s)
- Joana G Marques
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Blaz Pavlovic
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Yeonjoo Chung
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Fabian Frommelt
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Matthias Gstaiger
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Young Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Katharina Benischke
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Dominik Laubscher
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|
11
|
Almacellas-Rabaiget O, Monaco P, Huertas-Martinez J, García-Monclús S, Chicón-Bosch M, Maqueda-Marcos S, Fabra-Heredia I, Herrero-Martín D, Rello-Varona S, de Alava E, López-Alemany R, Giangrande PH, Tirado OM. LOXL2 promotes oncogenic progression in alveolar rhabdomyosarcoma independently of its catalytic activity. Cancer Lett 2020; 474:1-14. [PMID: 31911079 DOI: 10.1016/j.canlet.2019.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/21/2019] [Indexed: 12/25/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue malignancy in childhood and adolescence. Patients with the most aggressive histological variant have an unfavorable prognosis due to a high metastasis incidence. Lysyl oxidase-like 2 (LOXL2) is a lysyl oxidase, member of a family of extracellular matrix (ECM) crosslinking enzymes that recently have emerged as important regulators of tumor progression and metastasis. We report that LOXL2 is overexpressed in RMS, suggesting a potential role for LOXL2 in RMS oncogenic progression. Consistently, transient and stable LOXL2 knockdown decreased cell migratory and invasive capabilities in two ARMS cell lines. Furthermore, introduction of LOXL2 in RMS non-expressing cells using wild type or mutated (catalytically inactive) constructs resulted in increased cell migration, cell invasion and number and incidence of spontaneous lung metastasis in vivo, independently of its catalytic activity. To further study the molecular mechanism associated with LOXL2 expression, a pull-down assay on LOXL2-transfected cells was performed and analyzed by mass spectrometry. The intermediated filament protein vimentin was validated as a LOXL2-interactor. Thus, our results suggest an oncogenic role of LOXL2 in RMS by regulating cytoskeleton dynamics and cell motility capabilities.
Collapse
Affiliation(s)
- Olga Almacellas-Rabaiget
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Paola Monaco
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Juan Huertas-Martinez
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia García-Monclús
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Chicón-Bosch
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Susana Maqueda-Marcos
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabel Fabra-Heredia
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - David Herrero-Martín
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Santiago Rello-Varona
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Enrique de Alava
- CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain; Laboratory of Molecular Pathology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Roser López-Alemany
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Paloma H Giangrande
- Department of Internal Medicine, Molecular and Cellular Biology Program, Abboud Cardiovascular Research Center, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Oscar M Tirado
- Sarcoma Research Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBERONC, Carlos III Institute of Health (ISCIII), Madrid, Spain; Institut Català D'Oncologia (ICO), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
12
|
Pal A, Chiu HY, Taneja R. Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Redox Biol 2019; 25:101124. [PMID: 30709791 PMCID: PMC6859585 DOI: 10.1016/j.redox.2019.101124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma accounting for 5-8% of malignant tumours in children and adolescents. Children with high risk disease have poor prognosis. Anti-RMS therapies include surgery, radiation and combination chemotherapy. While these strategies improved survival rates, they have plateaued since 1990s as drugs that target differentiation and self-renewal of tumours cells have not been identified. Moreover, prevailing treatments are aggressive with drug resistance and metastasis causing failure of several treatment regimes. Significant advances have been made recently in understanding the genetic and epigenetic landscape in RMS. These studies have identified novel diagnostic and prognostic markers and opened new avenues for treatment. An important target identified in high throughput drug screening studies is reactive oxygen species (ROS). Indeed, many drugs in clinical trials for RMS impact tumour progression through ROS. In light of such emerging evidence, we discuss recent findings highlighting key pathways, epigenetic alterations and their impacts on ROS that form the basis of developing novel molecularly targeted therapies in RMS. Such targeted therapies in combination with conventional therapy could reduce adverse side effects in young survivors and lead to a decline in long-term morbidity.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
13
|
Cancer Vaccines Co-Targeting HER2/Neu and IGF1R. Cancers (Basel) 2019; 11:cancers11040517. [PMID: 30979001 PMCID: PMC6520928 DOI: 10.3390/cancers11040517] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022] Open
Abstract
(1) Background: Human epidermal growth factor receptor 2 (HER2)/neu-driven carcinogenesis is delayed by preventive vaccines able to elicit autochthonous antibodies against HER2/neu. Since cooperation between different receptor tyrosine kinases (RTKs) can occur in human as well as in experimental tumors, we investigated the set-up of DNA and cell vaccines to elicit an antibody response co-targeting two RTKs: HER2/neu and the Insulin-like Growth Factor Receptor-1 (IGF1R). (2) Methods: Plasmid vectors carrying the murine optimized IGF1R sequence or the human IGF1R isoform were used as electroporated DNA vaccines. IGF1R plasmids were transfected in allogeneic HER2/neu-positive IL12-producing murine cancer cells to obtain adjuvanted cell vaccines co-expressing HER2/neu and IGF1R. Vaccination was administered in the preneoplastic stage to mice prone to develop HER2/neu-driven, IGF1R-dependent rhabdomyosarcoma. (3) Results: Electroporated DNA vaccines for murine IGF1R did not elicit anti-mIGF1R antibodies, even when combined with Treg-depletion and/or IL12, while DNA vaccines carrying the human IGF1R elicited antibodies recognizing only the human IGF1R isoform. Cell vaccines co-expressing HER2/neu and murine or human IGF1R succeeded in eliciting antibodies recognizing the murine IGF1R isoform. Cell vaccines co-targeting HER2/neu and murine IGF1R induced the highest level of anti-IGF1R antibodies and nearly significantly delayed the onset of spontaneous rhabdomyosarcomas. (4) Conclusions: Multi-engineered adjuvanted cancer cell vaccines can break the tolerance towards a highly tolerized RTK, such as IGF1R. Cell vaccines co-targeting HER2/neu and IGF1R elicited low levels of specific antibodies that slightly delayed onset of HER2/neu-driven, IGF1R-dependent tumors.
Collapse
|
14
|
Xu N, Hua Z, Ba G, Zhang S, Liu Z, Thiele CJ, Li Z. The anti-tumor growth effect of a novel agent DMAMCL in rhabdomyosarcoma in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:118. [PMID: 30850026 PMCID: PMC6408795 DOI: 10.1186/s13046-019-1107-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children with poor survival. New treatment approaches are urgently needed to improve treatment efficacy in RMS patients. DMAMCL is a novel agent from Asteraceae family that has been tested in phase I clinical trials in adult glioma in Australia. METHODS Five RMS cell lines (RD, RH18, RH28, RH30 and RH41) were used. The in vitro anti-tumor effect of DMAMCL, alone or in combination with VCR or Epirubicin, was studied using MTS assay or IncuCyte-Zoom cell confluency assay, and further validated by xenograft-mouse model in vivo. Changes in caspase-3/7 activity, cell-cycle progression and generation of ROS after DMAMCL treatment were investigated. Bim mRNA expression was measured by RT-qPCR, and protein expressions of Bim and phosphorylated-NF-κB(p65) by Western blotting. Small interfering RNAs (siRNA) of Bim were used to study the role of Bim in DMAMCL-induced cell death. RESULTS In vitro, DMAMCL treatment induced a dose-dependent increase in cell death that could be blocked by pan-caspase-inhibitor-Z-VAD-fmk in five RMS cell lines. The percent of cells in SubG1 phase and activities of caspase-3/7 increased after DMAMCL treatment; The combination of DMAMCL with VCR or Epirubicin significantly increased cell death compared to each reagent alone. In vivo, DMAMCL(75 mg/kg or 100 mg/kg) inhibited tumor growth and prolonged survival of mice bearing xenograft RMS tumors (RD, RH18, RH30, RH41). Compared to treatment with DMAMCL or VCR, a combination of two reagents caused significant inhibition of tumor growth (RD, RH41), even after treatment termination. The expression of Bim increased at protein level after DMAMCL treatment both in vitro and in vivo. The expression of p-NF-κB(p65) had a transient increase and the generation of ROS increased after DMAMCL treatment in vitro. Transfection of Bim siRNA into RMS cells blocked the DMAMCL-induced increase of Bim and partially attenuated the DMAMCL-induced cell death. CONCLUSION DMAMCL had an anti-tumor growth effect in vitro and in vivo that potentially mediated by Bim, NF-κB pathway and ROS. A combination of DMAMCL with chemotherapeutic drugs significantly increased the treatment efficacy. Our study supports further clinical evaluation of DMAMCL in combination with conventional chemotherapy.
Collapse
Affiliation(s)
- Ning Xu
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongyan Hua
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Gen Ba
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Simeng Zhang
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhihui Liu
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carol J Thiele
- Cellular & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhijie Li
- Liaoning Key Laboratory of Research and Application of Animal Models for Environmental and Metabolic Diseases, Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
15
|
De Giovanni C, Nanni P, Landuzzi L, Ianzano ML, Nicoletti G, Croci S, Palladini A, Lollini PL. Immune targeting of autocrine IGF2 hampers rhabdomyosarcoma growth and metastasis. BMC Cancer 2019; 19:126. [PMID: 30732578 PMCID: PMC6367747 DOI: 10.1186/s12885-019-5339-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 01/31/2019] [Indexed: 11/18/2022] Open
Abstract
Background Insulin-like Growth Factor Receptor-1 (IGF1R) system sustains the genesis of rhabdomyosarcoma through IGF2 autocrine overexpression. While several IGF1R-targeted strategies have been investigated to interphere with rhabdomyosarcoma growth, no attempt to neutralize IGF2 has been reported. We therefore studied the possibility to hamper rhabdomyosarcoma growth with passive and active immune approaches targeting IGF2. Methods A murine model developing IGF2-overexpressing pelvic rhabdomyosarcoma, along with IGF2-independent salivary carcinoma, was used to investigate the efficacy and specificity of passive anti-IGFs antibody treatment. Active vaccinations with electroporated DNA plasmids encoding murine or human IGF2 were performed to elicit autochthonous anti-IGF2 antibodies. Vaccinated mice received the intravenous injection of rhabdomyosarcoma cells to study the effects of anti-IGF2 antibodies against developing metastases. Results Passive administration of antibodies neutralizing IGFs delayed the onset of IGF2-overexpressing rhabdomyosarcoma but not of IGF2-independent salivary carcinoma. A DNA vaccine against murine IGF2 did not elicit antibodies, even when combined with Treg-depletion, while a DNA vaccine encoding the human IGF2 gene elicited antibodies crossreacting with murine IGF2. Mice with anti-IGF2 antibodies were partially protected against the metastatic growth of IGF2-addicted rhabdomyosarcoma cells. Conclusions Immune targeting of autocrine IGF2 inhibited rhabdomyosarcoma genesis and metastatic growth.
Collapse
Affiliation(s)
- Carla De Giovanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Lorena Landuzzi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefania Croci
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy.,Present address: Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS, Reggio Emilia, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Viale Filopanti 22, I-40126, Bologna, Italy.
| |
Collapse
|
16
|
Tarnowski M, Tkacz M, Kopytko P, Bujak J, Piotrowska K, Pawlik A. Trichostatin A Inhibits Rhabdomyosarcoma Proliferation and Induces Differentiation through MyomiR Reactivation. Folia Biol (Praha) 2019; 65:43-52. [PMID: 31171081 DOI: 10.14712/fb2019065010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumour of soft tissues, occurring mainly in children and young adults. RMS cells derive from muscle cells, which due to mutations and epigenetic modifications have lost their ability to differentiate. Epigenetic modifications regulate expression of genes responsible for cell proliferation, maturation, differentiation and apoptosis. HDAC inhibitors suppress histone acetylation; therefore, they are a promising tool used in cancer therapy. Trichostatin A (TsA) is a pan-inhibitor of HDAC. In our study, we investigated the effect of TsA on RMS cell biology. Our findings strongly suggest that TsA inhibits RMS cell proliferation, induces cell apoptosis, and reactivates tumour cell differentiation. TsA up-regulates miR-27b expression, which is involved in the process of myogenesis. Moreover, TsA increases susceptibility of RMS cells to routinely used chemotherapeutics. In conclusion, TsA exhibits anti-cancer properties, triggers differentiation, and thereby can complement an existing spectrum of chemotherapeutics used in RMS therapy.
Collapse
Affiliation(s)
- M Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - M Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - P Kopytko
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - J Bujak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - K Piotrowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
17
|
Wolff DW, Lee MH, Jothi M, Mal M, Li F, Mal AK. Camptothecin exhibits topoisomerase1-independent KMT1A suppression and myogenic differentiation in alveolar rhabdomyosarcoma cells. Oncotarget 2018; 9:25796-25807. [PMID: 29899822 PMCID: PMC5995248 DOI: 10.18632/oncotarget.25376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is an aggressive subtype of the most common soft tissue cancer in children. A hallmark of aRMS tumors is incomplete myogenic differentiation despite expression of master myogenic regulators such as MyoD. We previously reported that histone methyltransferase KMT1A suppresses MyoD function to maintain an undifferentiated state in aRMS cells, and that loss of KMT1A is sufficient to induce differentiation and suppress malignant phenotypes in these cells. Here, we develop a chemical compound screening approach using MyoD-responsive luciferase reporter myoblast cells to identify compounds that alleviate suppression of MyoD-mediated differentiation by KMT1A. A screen of pharmacological compounds yielded the topoisomerase I (TOP1) poison camptothecin (CPT) as the strongest hit in our assay system. Furthermore, treatment of aRMS cells with clinically relevant CPT derivative irinotecan restores MyoD function, and myogenic differentiation in vitro and in a xenograft model. This differentiated phenotype was associated with downregulation of the KMT1A protein. Remarkably, loss of KMT1A in CPT-treated cells occurs independently of its well-known anti-TOP1 mechanism. We further demonstrate that CPT can directly inhibit KMT1A activity in vitro. Collectively, these findings uncover a novel function of CPT that downregulates KMT1A independently of CPT-mediated TOP1 inhibition and permits differentiation of aRMS cells.
Collapse
Affiliation(s)
- David W. Wolff
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Min-Hyung Lee
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mathivanan Jothi
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Current address: Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, KA 560029, India
| | - Munmun Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Fengzhi Li
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Asoke K. Mal
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
18
|
Kerin Ú, Wolohan C, Cooke K. Rhabdomyosarcoma: an overview and nursing considerations. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2018; 27:328-332. [PMID: 29561665 DOI: 10.12968/bjon.2018.27.6.328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This article aims to provide nurses with a clinical overview of rhabdomyosarcoma, a rare type of soft tissue sarcoma. The causes, clinical features, pathophysiology, diagnostic process, prognosis and treatment will be explored. Some of the main nursing considerations for rhabdomyosarcoma patients will be discussed in light of current treatment recommendations.
Collapse
Affiliation(s)
- Úna Kerin
- Lecturer in Adult Nursing, School of Nursing and Midwifery, Birmingham City University
| | - Colleen Wolohan
- Lecturer in Adult Nursing, School of Nursing and Midwifery, Birmingham City University
| | - Karen Cooke
- Doctoral Researcher, School of Biosciences, University of Birmingham
| |
Collapse
|
19
|
The tyrosine kinase inhibitor crizotinib does not have clinically meaningful activity in heavily pre-treated patients with advanced alveolar rhabdomyosarcoma with FOXO rearrangement: European Organisation for Research and Treatment of Cancer phase 2 trial 90101 'CREATE'. Eur J Cancer 2018; 94:156-167. [PMID: 29567632 DOI: 10.1016/j.ejca.2018.02.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alveolar rhabdomyosarcomas (ARMSs) can harbour MET and anaplastic lymphoma kinase (ALK) alterations. We prospectively assessed crizotinib in patients with advanced/metastatic ARMS. METHODS Eligible patients with a central diagnosis of ARMS received oral crizotinib 250 mg twice daily. Patients were attributed to MET/ALK+ or MET/ALK- subcohorts by assessing the presence or absence of the forkhead box O1 (FOXO1; a marker of MET upregulation) and/or ALK gene rearrangement. The primary end-point was the objective response rate (ORR). Secondary end-points included duration of response (DOR), disease control rate (DCR), progression-free survival (PFS), progression-free rate (PFR), overall survival (OS) and safety. FINDINGS Nineteen of 20 consenting patients had centrally confirmed ARMS. Molecular assessment revealed rearrangement of FOXO1 in 17 tumours and ALK in none. Thirteen eligible patients were treated, but only eight were evaluable for the primary end-point because of the observed aggressiveness of the disease. Among seven evaluable MET+/ALK- patients, only one achieved a confirmed partial response (ORR: 14.3%; 95% confidence interval [CI]: 0.3-57.8) with a DOR of 52 d. Further MET+/ALK- efficacy end-points were DCR: 14.3% (95% CI: 0.3-57.8), median PFS: 1.3 months (95% CI: 0.5-1.5) and median OS: 5.6 months (95% CI: 0.7-7.0). The remaining MET+/ALK- and MET-/ALK- patients had early progression as best response. Common treatment-related adverse events were fatigue (5/13 [38.5%]), nausea (4/13 [30.8%]), anorexia (4/13 [30.8%]), vomiting (2/13 [15.4%]) and constipation (2/13 [15.4%]). All 13 treated patients died early because of progressive disease. INTERPRETATION Crizotinib is well tolerated but lacks clinically meaningful activity as a single agent in patients with advanced metastatic ARMS. Assessing single agents in aggressive, chemotherapy-refractory ARMS is challenging, and future trials should explore established chemotherapy ± investigational compounds in earlier lines of treatment. CLINICAL TRIAL NUMBER EORTC 90101, ClinicalTrials.gov NCT01524926.
Collapse
|
20
|
Minas TZ, Surdez D, Javaheri T, Tanaka M, Howarth M, Kang HJ, Han J, Han ZY, Sax B, Kream BE, Hong SH, Çelik H, Tirode F, Tuckermann J, Toretsky JA, Kenner L, Kovar H, Lee S, Sweet-Cordero EA, Nakamura T, Moriggl R, Delattre O, Üren A. Combined experience of six independent laboratories attempting to create an Ewing sarcoma mouse model. Oncotarget 2018; 8:34141-34163. [PMID: 27191748 PMCID: PMC5470957 DOI: 10.18632/oncotarget.9388] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma (ES) involves a tumor-specific chromosomal translocation that produces the EWS-FLI1 protein, which is required for the growth of ES cells both in vitro and in vivo. However, an EWS-FLI1-driven transgenic mouse model is not currently available. Here, we present data from six independent laboratories seeking an alternative approach to express EWS-FLI1 in different murine tissues. We used the Runx2, Col1a2.3, Col1a3.6, Prx1, CAG, Nse, NEFL, Dermo1, P0, Sox9 and Osterix promoters to target EWS-FLI1 or Cre expression. Additional approaches included the induction of an endogenous chromosomal translocation, in utero knock-in, and the injection of Cre-expressing adenovirus to induce EWS-FLI1 expression locally in multiple lineages. Most models resulted in embryonic lethality or developmental defects. EWS-FLI1-induced apoptosis, promoter leakiness, the lack of potential cofactors, and the difficulty of expressing EWS-FLI1 in specific sites were considered the primary reasons for the failed attempts to create a transgenic mouse model of ES.
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Didier Surdez
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | | | - Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Michelle Howarth
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Hong-Jun Kang
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Zhi-Yan Han
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Barbara Sax
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Barbara E Kream
- Department of Medicine, and Genetics and Genome Sciences, University of Connecticut Health Science Center, Farmington, CT, United States of America
| | - Sung-Hyeok Hong
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Franck Tirode
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), University of Ulm, Ulm, Germany
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria.,Department of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine, Vienna, Austria
| | - Heinrich Kovar
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria.,Children´s Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Sean Lee
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States of America
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria.,Medical University of Vienna, Vienna, Austria
| | - Olivier Delattre
- Genetics and Biology of Cancers Unit, Institut Curie Research Center, PSL Research University, Île-de-France, Paris, France.,INSERM U830, Institut Curie Research Center, Île-de-France, Paris, France.,Unité de génétique somatique, Institut Curie, Île-de-France, Paris, France
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
21
|
Dräger J, Simon-Keller K, Pukrop T, Klemm F, Wilting J, Sticht C, Dittmann K, Schulz M, Leuschner I, Marx A, Hahn H. LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma. Oncotarget 2018; 8:3259-3273. [PMID: 27965462 PMCID: PMC5356880 DOI: 10.18632/oncotarget.13887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas β-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS.
Collapse
Affiliation(s)
- Julia Dräger
- Department of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Tobias Pukrop
- Clinic for Internal Medicine III, Hematology and Medical Oncology, University Regensburg, Regensburg 93053, Germany.,Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Florian Klemm
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatic and Statistic, Medical Faculty Mannheim, Mannheim 68167, Germany
| | - Kai Dittmann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Matthias Schulz
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center, Göttingen 37073, Germany
| |
Collapse
|
22
|
BCL-xL-selective BH3 mimetic sensitizes rhabdomyosarcoma cells to chemotherapeutics by activation of the mitochondrial pathway of apoptosis. Cancer Lett 2018; 412:131-142. [DOI: 10.1016/j.canlet.2017.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
|
23
|
Spalteholz M, Gulow J. Pleomorphic rhabdomyosarcoma infiltrating thoracic spine in a 59-year-old female patient: Case report. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2017; 6:Doc11. [PMID: 28868225 PMCID: PMC5525316 DOI: 10.3205/iprs000113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhabdomyosarcoma (RMS) represents a malignant tumor of skeletal muscle cells arising from rhabdomyoblasts. RMS represents the most common soft tissue sarcoma in children. In adults it is uncommon and accounts for less than 1% of all malignant solid tumors. While treatment protocols are well known for children, there is no standardized regimen in adults. This is one reason, why the outcome in adults is worse than in children. We present the case of a 59-year-old female patient with pleomorphic rhabdomyosarcoma (PRMS) infiltrating the thoracic spine. Multimodality treatment was performed including en-bloc resection, adjuvant multidrug chemotherapy and radiation beam therapy. The patient was tumor free and had no relapse within 6 month follow-up.
Collapse
Affiliation(s)
| | - Jens Gulow
- Department of Spine Surgery, Helios Park-Klinikum, Leipzig, Germany
| |
Collapse
|
24
|
El Demellawy D, McGowan-Jordan J, de Nanassy J, Chernetsova E, Nasr A. Update on molecular findings in rhabdomyosarcoma. Pathology 2017; 49:238-246. [PMID: 28256213 DOI: 10.1016/j.pathol.2016.12.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumour in children and adolescents. Histologically RMS resembles developing fetal striated skeletal muscle. RMS is stratified into different histological subtypes which appear to influence management plans and patient outcome. Importantly, molecular classification of RMS seems to more accurately capture the true biology and clinical course and prognosis of RMS to guide therapeutic decisions. The identification of PAX-FOXO1 fusion status in RMS is one of the most important updates in the risk stratification of RMS. There are several genes close to PAX that are frequently altered including the RAS family, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. As with most paediatric blue round cell tumours and sarcomas, chemotherapy is the key regimen for RMS therapy. Currently there are no direct inhibitors against PAX-FOXO1 fusion oncoproteins and targeting epigenetic cofactors is limited to clinical trials. Failure of therapy in RMS is usually related to drug resistance and metastatic disease. Through this review we have highlighted most of the molecular aspects in RMS and have attempted to correlate with RMS classification, treatment and prognosis.
Collapse
Affiliation(s)
- Dina El Demellawy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada.
| | - Jean McGowan-Jordan
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Genetics, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Joseph de Nanassy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada
| | | | - Ahmed Nasr
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
25
|
Zhou WY, Zheng H, Du XL, Yang JL. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biol Med 2016; 13:260-8. [PMID: 27458533 PMCID: PMC4944539 DOI: 10.20892/j.issn.2095-3941.2015.0102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research.
Collapse
Affiliation(s)
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300061, China
| | | |
Collapse
|
26
|
Casini N, Forte IM, Mastrogiovanni G, Pentimalli F, Angelucci A, Festuccia C, Tomei V, Ceccherini E, Di Marzo D, Schenone S, Botta M, Giordano A, Indovina P. SRC family kinase (SFK) inhibition reduces rhabdomyosarcoma cell growth in vitro and in vivo and triggers p38 MAP kinase-mediated differentiation. Oncotarget 2016; 6:12421-35. [PMID: 25762618 PMCID: PMC4494948 DOI: 10.18632/oncotarget.3043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/07/2015] [Indexed: 01/08/2023] Open
Abstract
Recent data suggest that SRC family kinases (SFKs) could represent potential therapeutic targets for rhabdomyosarcoma (RMS), the most common soft-tissue sarcoma in children. Here, we assessed the effect of a recently developed selective SFK inhibitor (a pyrazolo[3,4-d]pyrimidine derivative, called SI221) on RMS cell lines. SI221, which showed to be mainly effective against the SFK member YES, significantly reduced cell viability and induced apoptosis, without affecting non-tumor cells, such as primary human skin fibroblasts and differentiated C2C12 cells. Moreover, SI221 decreased in vitro cell migration and invasion and reduced tumor growth in a RMS xenograft model. SFK inhibition also induced muscle differentiation in RMS cells by affecting the NOTCH3 receptor-p38 mitogen-activated protein kinase (MAPK) axis, which regulates the balance between proliferation and differentiation. Overall, our findings suggest that SFK inhibition, besides reducing RMS cell growth and invasive potential, could also represent a differentiation therapeutic strategy for RMS.
Collapse
Affiliation(s)
- Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Iris Maria Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Gianmarco Mastrogiovanni
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Tomei
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Elisa Ceccherini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Domenico Di Marzo
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy
| | | | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy.,Oncology Research Center of Mercogliano (CROM), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| | - Paola Indovina
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, USA
| |
Collapse
|
27
|
Mondì V, Piersigilli F, Salvatori G, Auriti C. The Skin as an Early Expression of Malignancies in the Neonatal Age: A Review of the Literature and a Case Series. BIOMED RESEARCH INTERNATIONAL 2015; 2015:809406. [PMID: 26798643 PMCID: PMC4698537 DOI: 10.1155/2015/809406] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/15/2015] [Accepted: 11/29/2015] [Indexed: 12/13/2022]
Abstract
Skin lesions are a frequent finding in childhood, from infancy throughout adolescence. They can arise from many conditions, including infections and inflammation. Most neonatal rashes are benign and self-limiting and require no treatment. Other conditions may be an expression of malignancy or may be a marker for other abnormalities, such as neural tube defects. Therefore, skin lesions require an extensive evaluation and close follow-up to ensure the best possible outcome. This paper briefly reviews the main tumor types presenting with cutaneous involvement in neonates, followed by the description of some patients admitted to our Neonatal Intensive Care Unit with an early skin expression of malignancies.
Collapse
Affiliation(s)
- Vito Mondì
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Fiammetta Piersigilli
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Guglielmo Salvatori
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Cinzia Auriti
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
28
|
Abstract
Sarcomas are rare malignant tumors affecting all age groups. They are typically classified according to their resemblance to corresponding normal tissue. Their heterogeneous features, for example, in terms of disease-driving genetic aberrations and body location, complicate both disease classification and development of novel treatment regimens. Many years of failure of improved patient outcome in clinical trials has led to the conclusion that novel targeted therapies are likely needed in combination with current multimodality regimens. Sarcomas have not, in contrast to the common carcinomas, been the subject of larger systematic studies on how tumor behavior relates to characteristics of the tumor microenvironment. There is consequently an urgent need for identifying suitable molecular targets, not only in tumor cells but also in the tumor microenvironment. This review discusses preclinical and clinical data about potential molecular targets in sarcomas. Studies on targeted therapies involving the tumor microenvironment are prioritized. A greater understanding of the biological context is expected to facilitate more successful design of future clinical trials in sarcoma.
Collapse
Affiliation(s)
- Monika Ehnman
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
29
|
Landuzzi L, Ianzano ML, Nicoletti G, Palladini A, Grosso V, Ranieri D, Dall'Ora M, Raschi E, Laranga R, Gambarotti M, Picci P, De Giovanni C, Nanni P, Lollini PL. Genetic prevention of lymphoma in p53 knockout mice allows the early development of p53-related sarcomas. Oncotarget 2015; 5:11924-38. [PMID: 25426555 PMCID: PMC4322986 DOI: 10.18632/oncotarget.2650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 10/27/2014] [Indexed: 11/25/2022] Open
Abstract
Homozygous knockout of p53 in mice leads to early mortality from lymphoma, with almost complete penetrance, thus hampering studies of other tumor histotypes related to p53 alterations. To avoid lymphoma development, we crossed p53 knockout mice (BALB-p53 mice) with alymphocytic BALB/c Rag2−/−;Il2rg−/− (RGKO) mice. We compared the tumor spectrum of homozygous (BALB-p53−/−) and heterozygous (BALB-p53+/−) mice with alymphocytic mice (RGKO-p53−/− and RGKO-p53+/−). Lymphoma incidence in BALB-p53−/− mice exceeded 80%, whereas in RGKO-p53−/− it was strongly reduced. The prevalent tumor of RGKO-p53−/− mice was hemangiosarcoma (incidence over 65% in both sexes, mean latency 18 weeks), other tumors included soft tissue sarcomas (incidence ~10%), lung and mammary carcinomas. Tumor spectrum changes occurred also in p53 heterozygotes, in which lymphomas are relatively rare (~20%). RGKO-p53+/− had an increased incidence of hemangiosarcomas, reaching ~30%, and females had an increased incidence of osteosarcomas, reaching ~20%. Osteosarcomas shared with the corresponding human tumors the involvement of limbs and a high metastatic ability, mainly to the lungs. Specific alterations in the expression of p53-related genes (p16Ink4a, p19Arf, p15Ink4b, p21Cip1) were observed. Genetic prevention of lymphoma in p53 knockout mice led to new models of sarcoma development, available for studies on hemangiosarcoma and osteosarcoma onset and metastatization.
Collapse
Affiliation(s)
- Lorena Landuzzi
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Bologna, Italy. PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Marianna L Ianzano
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Giordano Nicoletti
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Bologna, Italy. PROMETEO Laboratory, STB, RIT Department, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Arianna Palladini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Valentina Grosso
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Dario Ranieri
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Massimiliano Dall'Ora
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Elena Raschi
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Roberta Laranga
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Marco Gambarotti
- Anatomy and Pathological Histology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Piero Picci
- Laboratory of Experimental Oncology, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Carla De Giovanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Patrizia Nanni
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| | - Pier-Luigi Lollini
- Laboratory of Immunology and Biology of Metastasis, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna Italy
| |
Collapse
|
30
|
Kwak Y, Cho H, Hur W, Sim T. Antitumor Effects and Mechanisms of AZD4547 on FGFR2-Deregulated Endometrial Cancer Cells. Mol Cancer Ther 2015; 14:2292-302. [PMID: 26294741 DOI: 10.1158/1535-7163.mct-15-0032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/03/2015] [Indexed: 11/16/2022]
Abstract
Uncontrolled activation of FGFRs induces the progression of various cancers. It was recently reported that FGFR2-activating mutants are implicated in about 12% of endometrial carcinomas. AZD4547, a potent pan-FGFR inhibitor, is currently being evaluated in clinical trials for several FGFR-driven cancers. However, AZD4547 has not been examined yet against FGFR2 mutant-driven endometrial cancers. Thus, we evaluated the activity of AZD4547 against four different endometrial cancer cells, including AN3-CA, MFE296, MFE280, and HEC1A, where all but HEC1A cells express distinctive FGFR2 mutations. We found that AZD4547 exhibits potent antiproliferative activity (EC50 = 31 nmol/L) against AN3-CA cells harboring FGFR2-K310R/N550K mutant. Analysis using a phospho-kinase array revealed that AZD4547 blocks FGFR2 downstream signaling, such as p38, ERK1/2, JNK, p70S6K, and PLCγ. Moreover, oral administration of AZD4547 (30 mg/kg, every day) remarkably delayed tumor growth in a mouse xenograft model of AN3-CA cells. Unbiased reporter gene assay showed that AZD4547 antagonizes the aFGF-induced activation of several transcription factors, including EGR1, ELK-1/SRF, AP-1, and NFκB. Genome-wide transcriptome analysis revealed that AZD4547 perturbs a number of transcriptions, and EGR1 was identified as one of the major targets of AZD4547. The significance of the FGFR2-EGR1 axis in endometrial cancer progression has not been reported. In addition, using kinome-wide inhibition profiling analysis, we first identified potential new target kinases of AZD4547, including MAP4K3, MAP4K5, IRR, RET, and FLT3. Our study demonstrated that AZD4547 exhibits its therapeutic activity against endometrial cancer cells by perturbing various regulatory mechanisms related to FGFR signaling.
Collapse
Affiliation(s)
- Yeonui Kwak
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Hanna Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea
| | - Wooyoung Hur
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea
| | - Taebo Sim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seongbuk-gu, Seoul, Republic of Korea. Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, Republic of Korea.
| |
Collapse
|
31
|
Gulino R, Forte S, Parenti R, Memeo L, Gulisano M. MicroRNA and pediatric tumors: Future perspectives. Acta Histochem 2015; 117:339-54. [PMID: 25765112 DOI: 10.1016/j.acthis.2015.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/02/2015] [Accepted: 02/10/2015] [Indexed: 12/20/2022]
Abstract
A better understanding of pediatric tumor biology is needed to allow the development of less toxic and more efficient therapies, as well as to provide novel reliable biomarkers for diagnosis and risk stratification. The emerging role of microRNAs in controlling key pathways implicated in tumorigenesis makes their use in diagnostics a powerful novel tool for the early detection, risk assessment and prognosis, as well as for the development of innovative anticancer therapies. This perspective would be more urgent for the clinical management of pediatric cancer. In this review, we focus on the involvement of microRNAs in the biology of the main childhood tumors, describe their clinical significance and discuss their potential use as novel therapeutic tools and targets.
Collapse
Affiliation(s)
- Rosario Gulino
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy.
| | - Stefano Forte
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| | - Lorenzo Memeo
- IOM Ricerca s.r.l., Via Penninazzo 11, 95029 Viagrande, Italy
| | - Massimo Gulisano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 64, 95127 Catania, Italy
| |
Collapse
|
32
|
Olanich ME, Sun W, Hewitt SM, Abdullaev Z, Pack SD, Barr FG. CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma. Clin Cancer Res 2015; 21:4947-59. [PMID: 25810375 DOI: 10.1158/1078-0432.ccr-14-2955] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 12/26/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and includes a PAX3- or PAX7-FOXO1 fusion-positive subtype. Amplification of chromosomal region 12q13-q14, which contains the CDK4 proto-oncogene, was identified in an aggressive subset of fusion-positive RMS. CDK4/6 inhibitors have antiproliferative activity in CDK4-amplified liposarcoma and neuroblastoma, suggesting CDK4/6 inhibition as a potential therapeutic strategy in fusion-positive RMS. EXPERIMENTAL DESIGN We examined the biologic consequences of CDK4 knockdown, CDK4 overexpression, and pharmacologic CDK4/6 inhibition by LEE011 in fusion-positive RMS cell lines and xenografts. RESULTS Knockdown of CDK4 abrogated proliferation and transformation of 12q13-14-amplified and nonamplified fusion-positive RMS cells via G1-phase cell-cycle arrest. This arrest was mediated by reduced RB phosphorylation and E2F-responsive gene expression. Significant differences in E2F target expression, cell-cycle distribution, proliferation, or transformation were not observed in RMS cells overexpressing CDK4. Treatment with LEE011 phenocopied CDK4 knockdown, decreasing viability, RB phosphorylation, and E2F-responsive gene expression and inducing G1-phase cell-cycle arrest. Although all fusion-positive cell lines showed sensitivity to CDK4/6 inhibition, there was diminished sensitivity associated with CDK4 amplification and overexpression. This variable responsiveness to LEE011 was recapitulated in xenograft models of CDK4-amplified and nonamplified fusion-positive RMS. CONCLUSIONS Our data demonstrate that CDK4 is necessary but overexpression is not sufficient for RB-E2F-mediated G1-phase cell-cycle progression, proliferation, and transformation in fusion-positive RMS. Our studies indicate that LEE011 is active in the setting of fusion-positive RMS and suggest that low CDK4-expressing fusion-positive tumors may be particularly susceptible to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Mary E Olanich
- Cancer Molecular Pathology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Wenyue Sun
- Cancer Molecular Pathology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Stephen M Hewitt
- Tissue Array Research Program and Applied Molecular Pathology Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Zied Abdullaev
- Chromosome Pathology Unit, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Svetlana D Pack
- Chromosome Pathology Unit, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Frederic G Barr
- Cancer Molecular Pathology Section, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
33
|
Rhabdomyosarcoma of the head and neck in children. Contemp Oncol (Pozn) 2015; 19:98-107. [PMID: 26034386 PMCID: PMC4444444 DOI: 10.5114/wo.2015.49158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 02/04/2014] [Accepted: 06/09/2014] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft tissue sarcoma in children. It is localized in the head and neck region in 40% of cases. Treatment of RMS is complex, including multi-drug chemotherapy, radiotherapy and surgery. The progress that has been accomplished in oncology in recent decades significantly improved outcomes. The 5-year survival rate raised from 25% in 1970 to 73% in 2001, according to IRS-IV data. The outcome is influenced by primary tumor localization, clinical staging, histological tumor type and age at the moment of diagnosis. The relatively rare incidence of these tumors resulted in difficulties in creating more standardized therapeutic protocols. Comparison of outcomes in large patients groups led to an increase in the number of patients with complete remission. Although survival rates of RMS patients have improved, searching for new therapeutic modalities and substances is still essential to improve outcomes in cases of more advanced stages and unfavorable tumor localizations.
Collapse
|
34
|
microRNAs and Soft Tissue Sarcomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 889:179-99. [DOI: 10.1007/978-3-319-23730-5_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed) 2015; 20:37-77. [PMID: 25553440 DOI: 10.2741/4298] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade non-coding RNAs have emerged as importance regulators of gene expression. In particular, microRNAs are a class of small RNAs of ∼ 22 nucleotides that repress gene expression through a post-transcriptional mechanism. MicroRNAs have been shown to be involved in a broader range of biological processes, both physiological and pathological, including myogenesis, adaptation to exercise and various myopathies. The purpose of this review is to provide a comprehensive summary of what is currently known about the role of microRNAs in skeletal muscle health and disease.
Collapse
Affiliation(s)
- Tyler J Kirby
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Thomas Chaillou
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA, 2Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
36
|
Ianzano ML, Croci S, Nicoletti G, Palladini A, Landuzzi L, Grosso V, Ranieri D, Dall'Ora M, Santeramo I, Urbini M, De Giovanni C, Lollini PL, Nanni P. Tumor suppressor genes promote rhabdomyosarcoma progression in p53 heterozygous, HER-2/neu transgenic mice. Oncotarget 2014; 5:108-19. [PMID: 24334679 PMCID: PMC3960193 DOI: 10.18632/oncotarget.1171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human sarcomas arise suddenly, thus preempting the study of preneoplastic and early neoplastic lesions. To explore the natural history of these tumors we studied male mice carrying a heterozygous deletion of p53 and an activated HER-2/neu transgene (BALB-p53Neu mice), that develop urethral rhabdomyosarcomas with nearly full penetrance and early onset (4 months of age). Among genes prominently upregulated in preneoplastic tissue, and more highly expressed in tumors, we found the insulin-like growth factor 2 (Igf2) and tumor suppressors, p19Arf and p21Cip1. In urethral tissues of male mice p53 was less expressed than in female mice, whereas HER-2/neu was more expressed, a combination not found in other skeletal muscles of the same mice that could contribute to the anatomic and sexual specificity of BALB-p53Neu rhabdomyosarcoma. Upregulation of p19Arf and p21Cip1 was additively determined by HER-2/neu activation and by p53 inactivation. Silencing of p19Arf or p21Cip1 in rhabdomyosarcoma cell lines can inhibit cell growth and motility, thus suggesting that these genes can contribute to growth autonomy and malignancy of tumor cells. In vivo injection of gene-silenced cells highlighted selective variations in organ-specific metastatic ability, indicating that overexpression of p19Arf and p21Cip1 controlled both tumor cell-intrinsic properties and microenvironmental interactions. The onset of pelvic rhabdomyosarcoma in BALB-p53Neu male mice is triggered by the coincidental overexpression of HER-2/neu and hypoexpression of the residual p53 allele, that foster p53 loss, Igf2 autocriny and overexpression of p19Arf and p21Cip1, a phenotype that could provide novel potential targets for cancer prevention and therapy.
Collapse
Affiliation(s)
- Marianna L Ianzano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Liu CX, Li XY, Li CF, Chen YZ, Cui XB, Hu JM, Li F. Compound HRAS/PIK3CA mutations in Chinese patients with alveolar rhabdomyosarcomas. Asian Pac J Cancer Prev 2014; 15:1771-4. [PMID: 24641407 DOI: 10.7314/apjcp.2014.15.4.1771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The rhabdomyosarcoma (RMS) is the most common type of soft tissue tumor in children and adolescents; yet only a few screens for oncogenic mutations have been conducted for RMS. To identify novel mutations and potential therapeutic targets, we conducted a high-throughput Sequenom mass spectrometry-based analysis of 238 known mutations in 19 oncogenes in 17 primary formalin-fixed paraffin-embedded RMS tissue samples and two RMS cell lines. Mutations were detected in 31.6% (6 of 19) of the RMS specimens. Specifically, mutations in the NRAS gene were found in 27.3% (3 of 11) of embryonal RMS cases, while mutations in NRAS, HRAS, and PIK3CA genes were identified in 37.5% (3 of 8) of alveolar RMS (ARMS) cases; moreover, PIK3CA mutations were found in 25% (2 of 8) of ARMS specimens. The results demonstrate that tumor profiling in archival tissue samples is a useful tool for identifying diagnostic markers and potential therapeutic targets and suggests that these HRAS/ PIK3CA mutations play a critical role in the genesis of RMS.
Collapse
Affiliation(s)
- Chun-Xia Liu
- Department of Pathology, Shihezi University School of Medicine, Shihezi, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
38
|
Berkholz J, Kuzyniak W, Hoepfner M, Munz B. Overexpression of the skNAC gene in human rhabdomyosarcoma cells enhances their differentiation potential and inhibits tumor cell growth and spreading. Clin Exp Metastasis 2014; 31:869-79. [PMID: 25209525 DOI: 10.1007/s10585-014-9676-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/13/2014] [Indexed: 02/02/2023]
Abstract
Skeletal and heart muscle-specific variant of the alpha subunit of nascent polypeptide complex (skNAC) is exclusively present in striated muscle cells. During skeletal muscle cell differentiation, skNAC expression is strongly induced, suggesting that the protein might be a regulator of the differentiation process. Rhabdomyosarcoma is a tumor of skeletal muscle origin. Since there is a strong inverse correlation between rhabdomyosarcoma cell differentiation status and metastatic potential, we analyzed skNAC expression patterns in a set of rhabdomyosarcoma cell lines: Whereas RD/12 and RD/18 cells showed a marked induction of skNAC gene expression upon the induction of differentiation-similarly as the one seen in nontransformed myoblasts-skNAC was not induced in CCA or Rh30 cells. Overexpressing skNAC in CCA and Rh30 cells led to a reduction in cell cycle progression and cell proliferation accompanied by an upregulation of specific myogenic differentiation markers, such as Myogenin or Myosin Heavy Chain. Furthermore, in contrast to vector-transfected controls, a high percentage of the cells formed long, Myosin Heavy Chain-positive, multinucleate myotubes. Consistently, soft agar assays revealed a drop in the metastatic potential of skNAC-overexpressing cells. Taken together, these data indicate that reconstitution of skNAC expression can enhance the differentiation potential of rhabdomyosarcoma cells and reduces their metastatic potential, a finding which might have important therapeutic implications.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | |
Collapse
|
39
|
Fujiwara T, Kunisada T, Takeda K, Uotani K, Yoshida A, Ochiya T, Ozaki T. MicroRNAs in soft tissue sarcomas: overview of the accumulating evidence and importance as novel biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:592868. [PMID: 25165708 PMCID: PMC4139009 DOI: 10.1155/2014/592868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 12/11/2022]
Abstract
Sarcomas are distinctly heterogeneous tumors and a variety of subtypes have been described. Although several diagnostic explorations in the past three decades, such as identification of chromosomal translocation, have greatly improved the diagnosis of soft tissue sarcomas, the unsolved issues, including the limited useful biomarkers, remain. Emerging reports on miRNAs in soft tissue sarcomas have provided clues to solving these problems. Evidence of circulating miRNAs in patients with soft tissue sarcomas and healthy individuals has been accumulated and is accelerating their potential to develop into clinical applications. Moreover, miRNAs that function as novel prognostic factors have been identified, thereby facilitating their use in miRNA-targeted therapy. In this review, we provide an overview of the current knowledge on miRNA deregulation in soft tissue sarcomas, and discuss their potential as novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 7008558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 7008558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 7008558, Japan
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Ken Takeda
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 7008558, Japan
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Koji Uotani
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 7008558, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 1040045, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 7008558, Japan
| |
Collapse
|
40
|
Egas-Bejar D, Huh WW. Rhabdomyosarcoma in adolescent and young adult patients: current perspectives. ADOLESCENT HEALTH MEDICINE AND THERAPEUTICS 2014; 5:115-25. [PMID: 24966711 PMCID: PMC4069040 DOI: 10.2147/ahmt.s44582] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhabdomyosarcoma (RMS), a malignant tumor of mesenchymal origin, is the third most common extracranial malignant solid tumor in children and adolescents. However, in adults, RMS represents <1% of all solid tumor malignancies. The embryonal and alveolar histologic variants are more commonly seen in pediatric patients, while the pleomorphic variant is rare in children and seen more often in adults. Advances in the research of the embryonal and alveolar variants have improved our understanding of certain genes and biologic pathways that are involved in RMS, but much less is known for the other variants. Multimodality therapy that includes surgery and chemotherapy with or without radiation therapy is the mainstay of treatment for RMS. Improvements in the risk stratification of the pediatric patients based on presurgical (primary tumor site, tumor size, regional lymph node involvement, presence of metastasis) and postsurgical parameters (completeness of resection or presence of residual disease or metastasis) has allowed for the treatment assignment of patients in different studies and therapeutic trials, leading to increases in 5-year survival from 25%–70% over the past 40 years. However, for adult patients, in great part due to rarity of the disease and the lack of consensus on optimal treatment, clinical outcome is still poor. Many factors have been implicated for the differing outcomes between pediatric RMS versus adult RMS, such as the lack of standardized treatment protocols for adult RMS patients and the increased prevalence of advanced presentations. Now that there are increased numbers of survivors, we can appreciate the sequelae from therapy in these patients, such as bone growth abnormalities, endocrinopathies, and infertility. Improvements in risk stratification have led to clinical trials using lower doses of chemotherapy or radiation therapy with the intention of decreasing the incidence of side effects without compromising survival outcome.
Collapse
Affiliation(s)
- Daniela Egas-Bejar
- Division of Pediatrics, The Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Winston W Huh
- Division of Pediatrics, The Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Faggi F, Mitola S, Sorci G, Riuzzi F, Donato R, Codenotti S, Poliani PL, Cominelli M, Vescovi R, Rossi S, Calza S, Colombi M, Penna F, Costelli P, Perini I, Sampaolesi M, Monti E, Fanzani A. Phosphocaveolin-1 enforces tumor growth and chemoresistance in rhabdomyosarcoma. PLoS One 2014; 9:e84618. [PMID: 24427291 PMCID: PMC3888403 DOI: 10.1371/journal.pone.0084618] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 11/15/2013] [Indexed: 12/24/2022] Open
Abstract
Caveolin-1 (Cav-1) can ambiguously behave as either tumor suppressor or oncogene depending on its phosphorylation state and the type of cancer. In this study we show that Cav-1 was phosphorylated on tyrosine 14 (pCav-1) by Src-kinase family members in various human cell lines and primary mouse cultures of rhabdomyosarcoma (RMS), the most frequent soft-tissue sarcoma affecting childhood. Cav-1 overexpression in the human embryonal RD or alveolar RH30 cells yielded increased pCav-1 levels and reinforced the phosphorylation state of either ERK or AKT kinase, respectively, in turn enhancing in vitro cell proliferation, migration, invasiveness and chemoresistance. In contrast, reducing the pCav-1 levels by administration of a Src-kinase inhibitor or through targeted Cav-1 silencing counteracted the malignant in vitro phenotype of RMS cells. Consistent with these results, xenotransplantation of Cav-1 overexpressing RD cells into nude mice resulted in substantial tumor growth in comparison to control cells. Taken together, these data point to pCav-1 as an important and therapeutically valuable target for overcoming the progression and multidrug resistance of RMS.
Collapse
Affiliation(s)
- Fiorella Faggi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Guglielmo Sorci
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Rosario Donato
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Raffaella Vescovi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefania Rossi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Penna
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Paola Costelli
- Department of Experimental Medicine and Oncology, University of Torino, Torino, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Ilaria Perini
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
| | - Maurilio Sampaolesi
- Stem Cell Research Institute, University Hospital Gasthuisberg, Leuven, Belgium
- Human Anatomy Section, University of Pavia, Pavia, Italy
- Interuniversity Institute of Myology (IIM), Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Interuniversity Institute of Myology (IIM), Italy
- * E-mail:
| |
Collapse
|
42
|
Jothi M, Mal M, Keller C, Mal AK. Small molecule inhibition of PAX3-FOXO1 through AKT activation suppresses malignant phenotypes of alveolar rhabdomyosarcoma. Mol Cancer Ther 2013; 12:2663-74. [PMID: 24107448 DOI: 10.1158/1535-7163.mct-13-0277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alveolar rhabdomyosarcoma comprises a rare highly malignant tumor presumed to be associated with skeletal muscle lineage in children. The hallmark of the majority of alveolar rhabdomyosarcoma is a chromosomal translocation that generates the PAX3-FOXO1 fusion protein, which is an oncogenic transcription factor responsible for the development of the malignant phenotype of this tumor. Alveolar rhabdomyosarcoma cells are dependent on the oncogenic activity of PAX3-FOXO1, and its expression status in alveolar rhabdomyosarcoma tumors correlates with worst patient outcome, suggesting that blocking this activity of PAX3-FOXO1 may be an attractive therapeutic strategy against this fusion-positive disease. In this study, we screened small molecule chemical libraries for inhibitors of PAX3-FOXO1 transcriptional activity using a cell-based readout system. We identified the Sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCA) inhibitor thapsigargin as an effective inhibitor of PAX3-FOXO1. Subsequent experiments in alveolar rhabdomyosarcoma cells showed that activation of AKT by thapsigargin inhibited PAX3-FOXO1 activity via phosphorylation. Moreover, this AKT activation appears to be associated with the effects of thapsigargin on intracellular calcium levels. Furthermore, thapsigargin inhibited the binding of PAX3-FOXO1 to target genes and subsequently promoted its proteasomal degradation. In addition, thapsigargin treatment decreases the growth and invasive capacity of alveolar rhabdomyosarcoma cells while inducing apoptosis in vitro. Finally, thapsigargin can suppress the growth of an alveolar rhabdomyosarcoma xenograft tumor in vivo. These data reveal that thapsigargin-induced activation of AKT is an effective mechanism to inhibit PAX3-FOXO1 and a potential agent for targeted therapy against alveolar rhabdomyosarcoma.
Collapse
Affiliation(s)
- Mathivanan Jothi
- Corresponding Author: Asoke K. Mal, Department of Cell Stress Biology, BLSC-L3-319 Roswell Park Cancer Institute Elm and Carlton Streets, Buffalo, NY 14263.
| | | | | | | |
Collapse
|
43
|
Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med 2013; 64:95-105. [PMID: 23872025 PMCID: PMC4867469 DOI: 10.1016/j.freeradbiomed.2013.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important players in the regulation of gene expression, being involved in most biological processes examined to date. The proposal that miRNAs are primarily involved in the stress response of the cell makes miRNAs ideally suited to mediate the response of skeletal muscle to changes in contractile activity. Although the field is still in its infancy, the studies presented in this review highlight the promise that miRNAs will have an important role in mediating the response and adaptation of skeletal muscle to various modes of exercise. The roles of miRNAs in satellite cell biology, muscle regeneration, and various myopathies are also discussed.
Collapse
Affiliation(s)
- Tyler J. Kirby
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
| | - John J. McCarthy
- Department of Physiology, University of Kentucky Lexington, KY 40516-0298
- Center for Muscle Biology, University of Kentucky Lexington, KY 40516-0298
| |
Collapse
|
44
|
Renshaw J, Taylor KR, Bishop R, Valenti M, De Haven Brandon A, Gowan S, Eccles SA, Ruddle RR, Johnson LD, Raynaud FI, Selfe JL, Thway K, Pietsch T, Pearson AD, Shipley J. Dual blockade of the PI3K/AKT/mTOR (AZD8055) and RAS/MEK/ERK (AZD6244) pathways synergistically inhibits rhabdomyosarcoma cell growth in vitro and in vivo. Clin Cancer Res 2013; 19:5940-51. [PMID: 23918606 DOI: 10.1158/1078-0432.ccr-13-0850] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To provide rationale for using phosphoinositide 3-kinase (PI3K) and/or mitogen-activated protein kinase (MAPK) pathway inhibitors to treat rhabdomyosarcomas, a major cause of pediatric and adolescent cancer deaths. EXPERIMENTAL DESIGN The prevalence of PI3K/MAPK pathway activation in rhabdomyosarcoma clinical samples was assessed using immunohistochemistry. Compensatory signaling and cross-talk between PI3K/MAPK pathways was determined in rhabdomyosarcoma cell lines following p110α short hairpin RNA-mediated depletion. Pharmacologic inhibition of reprogrammed signaling in stable p110α knockdown lines was used to determine the target-inhibition profile inducing maximal growth inhibition. The in vitro and in vivo efficacy of inhibitors of TORC1/2 (AZD8055), MEK (AZD6244), and P13K/mTOR (NVP-BEZ235) was evaluated alone and in pairwise combinations. RESULTS PI3K pathway activation was seen in 82.5% rhabdomyosarcomas with coactivated MAPK in 36% and 46% of alveolar and embryonal subtypes, respectively. p110α knockdown in cell lines over the short and long term was associated with compensatory expression of other p110 isoforms, activation of the MAPK pathway, and cross-talk to reactivate the PI3K pathway. Combinations of PI3K pathway and MAP-ERK kinase (MEK) inhibitors synergistically inhibited cell growth in vitro. Treatment of RD cells with AZD8055 plus AZD6244 blocked reciprocal pathway activation, as evidenced by reduced AKT/ERK/S6 phosphorylation. In vivo, the synergistic effect on growth and changes in pharmacodynamic biomarkers was recapitulated using the AZD8055/AZD6244 combination but not NVP-BEZ235/AZD6244. Pharmacokinetic analysis provided evidence of drug-drug interaction with both combinations. CONCLUSIONS Dual PI3K/MAPK pathway activation and compensatory signaling in both rhabdomyosarcoma subtypes predict a lack of clinical efficacy for single agents targeting either pathway, supporting a therapeutic strategy combining a TORC1/2 with a MEK inhibitor.
Collapse
Affiliation(s)
- Jane Renshaw
- Authors' Affiliations: Divisions of Clinical Studies, Cancer Therapeutics, and Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey; Histopathology Department, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom; and Department of Neuropathology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fanzani A, Monti E, Donato R, Sorci G. Muscular dystrophies share pathogenetic mechanisms with muscle sarcomas. Trends Mol Med 2013; 19:546-54. [PMID: 23890422 DOI: 10.1016/j.molmed.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/27/2022]
Abstract
Several lines of recent evidence have opened a new debate on the mechanisms underlying the genesis of rhabdomyosarcoma, a pediatric soft tissue tumor with a widespread expression of muscle-specific markers. In particular, it is increasingly evident that the loss of skeletal muscle integrity observed in some mouse models of muscular dystrophy can favor rhabdomyosarcoma formation. This is especially true in old age. Here, we review these experimental findings and focus on the main molecular and cellular events that can dictate the tumorigenic process in dystrophic muscle, such as the loss of structural or regulatory proteins with tumor suppressor activity, the impaired DNA damage response due to oxidative stress, the chronic inflammation and the conflicting signals arising within the degenerated muscle niche.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Molecular and Translational Medicine and Interuniversity Institute of Myology (IIM), University of Brescia, Viale Europa 11, Brescia, 25123, Italy.
| | | | | | | |
Collapse
|
46
|
Hu Q, Yuan Y, Wang C. Structural and functional studies of FKHR-PAX3, a reciprocal fusion gene of the t(2;13) chromosomal translocation in alveolar rhabdomyosarcoma. PLoS One 2013; 8:e68065. [PMID: 23799156 PMCID: PMC3683129 DOI: 10.1371/journal.pone.0068065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/23/2013] [Indexed: 12/14/2022] Open
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer of skeletal muscle. More than 70% of ARMS tumors carry balanced t(2;13) chromosomal translocation that leads to the production of two novel fusion genes, PAX3-FKHR and FKHR-PAX3. While the PAX3-FKHR gene has been intensely studied, the reciprocal FKHR-PAX3 gene has rarely been described. We report here the cloning and functional characterization of the FKHR-PAX3 gene as the first step towards a better understanding of its potential impact on ARMS biology. From RH30 ARMS cells, we detected and isolated three versions of FKHR-PAX3 cDNAs whose C-terminal sequences corresponded to PAX3c, PAX3d, and PAX3e isoforms. Unlike the nuclear-specific localization of PAX3-FKHR, the reciprocal FKHR-PAX3 proteins stayed predominantly in the cytoplasm. FKHR-PAX3 potently inhibited myogenesis in both non-transformed myoblast cells and ARMS cells. We showed that FKHR-PAX3 was not a classic oncogene but could act as a facilitator in oncogenic pathways by stabilizing PAX3-FKHR expression, enhancing cell proliferation, clonogenicity, anchorage-independent growth, and matrix adhesion in vitro, and accelerating the onset of tumor formation in xenograft mouse model in vivo. In addition to these pro-oncogenic behaviors, FKHR-PAX3 also negatively affected cell migration and invasion in vitro and lung metastasis in vivo. Taken together, these functional characteristics suggested that FKHR-PAX3 might have a critical role in the early stage of ARMS development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Adhesion
- Cell Differentiation
- Cell Movement
- Cell Proliferation
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 2/genetics
- Forkhead Box Protein O1
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Male
- Mice
- Mice, Nude
- Molecular Sequence Data
- Muscle Neoplasms/genetics
- Muscle Neoplasms/metabolism
- Muscle Neoplasms/pathology
- Myoblasts/metabolism
- NIH 3T3 Cells
- Neoplasm Transplantation
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- PAX3 Transcription Factor
- Paired Box Transcription Factors/genetics
- Paired Box Transcription Factors/metabolism
- Protein Transport
- Rhabdomyosarcoma, Alveolar/genetics
- Rhabdomyosarcoma, Alveolar/metabolism
- Rhabdomyosarcoma, Alveolar/secondary
- Transcriptional Activation
- Translocation, Genetic
Collapse
Affiliation(s)
- Qiande Hu
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Yewen Yuan
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chiayeng Wang
- Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
47
|
Too much AKT turns PAX3-FKHR dead: a prospect of novel therapeutic strategy for alveolar rhabdomyosarcoma. Oncotarget 2013; 3:1064-5. [PMID: 23165483 PMCID: PMC3717958 DOI: 10.18632/oncotarget.713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
48
|
Olanich ME, Barr FG. A call to ARMS: targeting the PAX3-FOXO1 gene in alveolar rhabdomyosarcoma. Expert Opin Ther Targets 2013; 17:607-23. [PMID: 23432728 DOI: 10.1517/14728222.2013.772136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Expression of fusion oncoproteins generated by recurrent chromosomal translocations represents a major tumorigenic mechanism characteristic of multiple cancers, including one-third of all sarcomas. Oncogenic fusion genes provide novel targets for therapeutic intervention. The PAX3-FOXO1 oncoprotein in alveolar rhabdomyosarcoma (ARMS) is presented as a paradigm to examine therapeutic strategies for targeting sarcoma-associated fusion genes. AREAS COVERED This review discusses the role of PAX3-FOXO1 in ARMS tumors. Besides evaluating various approaches to molecularly target PAX3-FOXO1 itself, this review highlights therapeutically attractive downstream genes activated by PAX3-FOXO1. EXPERT OPINION Oncogenic fusion proteins represent desirable therapeutic targets because their expression is specific to tumor cells, but these fusions generally characterize rare malignancies. Full development and testing of potential drugs targeted to these fusions are complicated by the small numbers of patients in these disease categories. Although efforts to develop targeted therapies against fusion proteins should continue, molecular targets that are applicable to a broader tumor landscape should be pursued. A shift of the traditional paradigm to view therapeutic intervention as target-specific rather than tumor-specific will help to circumvent the challenges posed by rare tumors and maximize the possibility of developing successful new treatments for patients with these rare translocation-associated sarcomas.
Collapse
Affiliation(s)
- Mary E Olanich
- National Institutes of Health, National Cancer Institute, Center for Cancer Research, Laboratory of Pathology , Bethesda, MD 20892, USA
| | | |
Collapse
|
49
|
Gil-Benso R, San-Miguel T, Callaghan RC, Bataller-Calatayud A, Caballero J, Pellín-Carcelén A, Donat J, Navarro S, Peris T, Cerdá-Nicolás M, López-Ginés C. Chromosomal and genetic changes produced in tumoral progression of embryonal rhabdomyosarcoma. Histopathology 2013; 62:816-9. [DOI: 10.1111/his.12064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R Gil-Benso
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | - T San-Miguel
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | - R C Callaghan
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | - A Bataller-Calatayud
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | - J Caballero
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | - A Pellín-Carcelén
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | - J Donat
- Department of Paediatrics; Clinic Hospital of València; València; Spain
| | | | - T Peris
- Department of Pathology; Medical School; Universitat de València; València; Spain
| | | | - C López-Ginés
- Department of Pathology; Medical School; Universitat de València; València; Spain
| |
Collapse
|
50
|
Epigenetic deregulation of microRNAs in rhabdomyosarcoma and neuroblastoma and translational perspectives. Int J Mol Sci 2012; 13:16554-79. [PMID: 23443118 PMCID: PMC3546707 DOI: 10.3390/ijms131216554] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022] Open
Abstract
Gene expression control mediated by microRNAs and epigenetic remodeling of chromatin are interconnected processes often involved in feedback regulatory loops, which strictly guide proper tissue differentiation during embryonal development. Altered expression of microRNAs is one of the mechanisms leading to pathologic conditions, such as cancer. Several lines of evidence pointed to epigenetic alterations as responsible for aberrant microRNA expression in human cancers. Rhabdomyosarcoma and neuroblastoma are pediatric cancers derived from cells presenting features of skeletal muscle and neuronal precursors, respectively, blocked at different stages of differentiation. Consistently, tumor cells express tissue markers of origin but are unable to terminally differentiate. Several microRNAs playing a key role during tissue differentiation are often epigenetically downregulated in rhabdomyosarcoma and neuroblastoma and behave as tumor suppressors when re-expressed. Recently, inhibition of epigenetic modulators in adult tumors has provided encouraging results causing re-expression of anti-tumor master gene pathways. Thus, a similar approach could be used to correct the aberrant epigenetic regulation of microRNAs in rhabdomyosarcoma and neuroblastoma. The present review highlights the current insights on epigenetically deregulated microRNAs in rhabdomyosarcoma and neuroblastoma and their role in tumorigenesis and developmental pathways. The translational clinical implications and challenges regarding modulation of epigenetic chromatin remodeling/microRNAs interconnections are also discussed.
Collapse
|