1
|
Romanishin A, Vasilev A, Khasanshin E, Evtekhov A, Pusynin E, Rubina K, Kakotkin V, Agapov M, Semina E. Oncolytic viral therapy for gliomas: Advances in the mechanisms and approaches to delivery. Virology 2024; 593:110033. [PMID: 38442508 DOI: 10.1016/j.virol.2024.110033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Glioma is a diverse category of tumors originating from glial cells encompasses various subtypes, based on the specific type of glial cells involved. The most aggressive is glioblastoma multiforme (GBM), which stands as the predominant primary malignant tumor within the central nervous system in adults. Despite the application of treatment strategy, the median survival rate for GBM patients still hovers around 15 months. Oncolytic viruses (OVs) are artificially engineered viruses designed to selectively target and induce apoptosis in cancer cells. While clinical trials have demonstrated encouraging results with intratumoral OV injections for some cancers, applying this approach to GBM presents unique challenges. Here we elaborate on current trends in oncolytic viral therapy and their delivery methods. We delve into the various methods of delivering OVs for therapy, exploring their respective advantages and disadvantages and discussing how selecting the optimal delivery method can enhance the efficacy of this innovative treatment approach.
Collapse
Affiliation(s)
- A Romanishin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia.
| | - A Vasilev
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - E Khasanshin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - A Evtekhov
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - E Pusynin
- Kaliningrad Regional Hospital, Kaliningrad, 236016, Russia
| | - K Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - V Kakotkin
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia
| | - M Agapov
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| | - E Semina
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, 236041, Russia; Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991, Moscow, Russia
| |
Collapse
|
2
|
Varnamkhasti TJ, Jafarzadeh M, Sadeghizadeh M, Aghili M. Radiosensitizing effect of dendrosomal nanoformulation of curcumin on cancer cells. Pharmacol Rep 2022; 74:718-735. [PMID: 35819593 DOI: 10.1007/s43440-022-00383-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Curcumin was found to possess numerous pharmacological activities in clinical research, however, its biological effects together with radiation are yet to be addressed. The present study investigated whether the combined treatment of dendrosomal nanoformulation of curcumin (DNC) and gamma radiation can enhance the radiosensitivity of U87MG and MDA-MB-231 cell lines. METHODS U87MG and MDA-MB-231 cell lines were exposed to 2 Gray (Gy) and 10 μM DNC determined by MTT assay, then subjected to clonogenic assay, cell cycle assay, and flow cytometric apoptosis analysis. Acridine Orange/Ethidium Bromide (AO/EB) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) stained cells were used to study morphologic changes. The expression evaluation of putative cell cycle genes, i.e., P53, P21, CCND1, and CCNB1 was carried out by RT-qPCR. RESULTS Our findings indicated that the combined treatment with DNC and radiation might cooperatively augment the efficacy of ionizing radiation in the cancer cells and notably decrease the survival and viability of the cells in a time- and concentration-dependent manner. In addition to a synergistic effect deducted by sensitizer enhancement ratio (SER) assessment, co-treatment resulted in greater apoptotic cells than the individual treatments. Further experiments then indicated that DNC could effectively induce G2/M phase cell cycle arrest and apoptosis following irradiation. Conformably, there was a decrement of CCND1 and CCNB1 expression, and an increment of P53, P21 expression. CONCLUSIONS The data implied that DNC as a radiosensitizer can enhance the lethal effect of ionizing radiation on cancer cells which could be a promising adjuvant therapy in clinical treatments.
Collapse
Affiliation(s)
- Tahereh Jalali Varnamkhasti
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Meisam Jafarzadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, School of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran.
| | - Mahdi Aghili
- Radiation Oncology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, P.O. Box 13145-158, Tehran, Iran.
| |
Collapse
|
3
|
ÇAĞLAR HO. Identification of Genes Related to DNA Repair Mechanism in Glioblastoma by Bioinformatics Methods. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.30934/kusbed.1003777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective: Aberrant expression of genes involved in DNA repair mechanisms (DRM) have been associated with radiation sensitivity of glioblastoma (GBM) cells. Identification of genes in DRM through bioinformatics methods may help identify potential novel therapeutic targets that can be used in GBM treatment. This study aims to identify genes that play a role in DRM in GBM using bioinformatics methods.
Methods: Genes associated with DRM were identified using the “Reactome” and “KEGG” databases. The mRNA expression profiles of DRM related genes were analyzed in the GEO GDS1813 and GDS2853 datasets including GBM tumor samples using the "Orange Canvas" software. Genetic changes of genes were identified in GBM TCGA cases using the cBioPortal database. The GEPIA2 was used to show the effect of altered expression profiles of these genes on patient survival.
Results: The mRNA expression profiles of ERCC6, FAN1, MBD4, PARP1 and UNG genes were found to be altered in GBM tumors. Mutations and copy number alterations for the identified genes were observed in TCGA GBM cases. The overall survival and disease-free survival of TCGA GBM patients were not significantly different between high and low expression groups.
Conclusion: ERCC6, PARP1 and UNG genes identified in the current study may be potential therapeutic targets that can increase the efficacy of radiotherapy in GBM in case of their suppression.
Collapse
|
4
|
Morás AM, Henn JG, Steffens Reinhardt L, Lenz G, Moura DJ. Recent developments in drug delivery strategies for targeting DNA damage response in glioblastoma. Life Sci 2021; 287:120128. [PMID: 34774874 DOI: 10.1016/j.lfs.2021.120128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma is the most frequent and malignant brain tumor. The median survival for this disease is approximately 15 months, and despite all the available treatment strategies employed, it remains an incurable disease. Preclinical and clinical research have shown that the resistance process related to DNA damage repair pathways, glioma stem cells, blood-brain barrier selectivity, and dose-limiting toxicity of systemic treatment leads to poor clinical outcomes. In this context, the advent of drug delivery systems associated with localized treatment seems to be a promising and versatile alternative to overcome the failure of the current treatment approaches. In order to bypass therapeutic tumor resistance mechanisms, more effective combinatorial therapies should be identified, such as the use of cytotoxic drugs combined with the inhibition of DNA damage response (DDR)-related targets. Additionally, critical reasoning about the delivery approach and administration route in brain tumors treatment innovation is essential. The outcomes of future experimental studies regarding the association of delivery systems, alternative treatment routes, and DDR targets are expected to lead to the development of refined therapeutic interventions. Novel therapeutic approaches could improve the life's quality of glioblastoma patients and increase their survival rate.
Collapse
Affiliation(s)
- A M Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - J G Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - L Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| | - G Lenz
- Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - D J Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, (UFCSPA), Porto Alegre, Brazil.
| |
Collapse
|
5
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Radiosensitizing Effect of Bromelain Using Tumor Mice Model via Ki-67 and PARP-1 Inhibition. Integr Cancer Ther 2021; 20:15347354211060369. [PMID: 34825602 PMCID: PMC8649096 DOI: 10.1177/15347354211060369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent reports have shown that bromelain (BL), a pineapple extract, acts as an adjuvant therapy in cancer treatment and prevention of carcinogenesis. The present study was designed to investigate the possible mechanisms by which BL could radiosensitize tumor cells in vitro and in a mouse tumor model. BL has shown a significant reduction in the viability of the radioresistant human breast carcinoma (MCF-7) cell line using cell proliferation assay. The in vivo study was designed using the Ehrlich model in female albino mice, treated with BL (6 mg/kg b. wt., intraperitoneal, once daily for 10 days) 1 hour before exposure to a fractionated dose of gamma radiation (5 Gy, 1 Gy for 5 subsequent days). The radiosensitizing effect of BL was evident in terms of a significant reduction in tumor volume, poly ADP ribose polymerase-1 (PARP-1), the proliferation marker Ki-67 and nuclear factor kappa activated B cells (NF-κB) with a significant elevation in the reactive oxygen species (ROS) content and lipid peroxidation (LPO) in tumor cells. The present findings offer a novel insight into the radiosensitizing effect of BL and its potential application in the radiotherapy course.
Collapse
Affiliation(s)
- Mai H Mekkawy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Raghavapudi H, Singroul P, Kohila V. Brain Tumor Causes, Symptoms, Diagnosis and Radiotherapy Treatment. Curr Med Imaging 2021; 17:931-942. [PMID: 33573575 DOI: 10.2174/1573405617666210126160206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/22/2022]
Abstract
The strategy used for the treatment of given brain cancer is critical in determining the post effects and survival. An oncological diagnosis of tumor evaluates a range of parameters such as shape, size, volume, location and neurological complexity that define the symptomatic severity. The evaluation determines a suitable treatment approach chosen from a range of options such as surgery, chemotherapy, hormone therapy, radiation therapy and other targeted therapies. Often, a combination of such therapies is applied to achieve superior results. Radiotherapy serves as a better treatment strategy because of a higher survival rate. It offers the flexibility of synergy with other treatment strategies and fewer side effects on organs at risk. This review presents a radiobiological perspective in the treatment of brain tumor. The cause, symptoms, diagnosis, treatment, post-treatment effects and the framework involved in its elimination are summarized.
Collapse
Affiliation(s)
- Haarika Raghavapudi
- Department of Biotechnology, National Institute of Technology Warangal, Warangal -506004, Telangana, India
| | - Pankaj Singroul
- Department of Biotechnology, National Institute of Technology Warangal, Warangal -506004, Telangana, India
| | - V Kohila
- Department of Biotechnology, National Institute of Technology Warangal, Warangal -506004, Telangana, India
| |
Collapse
|
7
|
Chien JCY, Badr CE, Lai CP. Multiplexed bioluminescence-mediated tracking of DNA double-strand break repairs in vitro and in vivo. Nat Protoc 2021; 16:3933-3953. [PMID: 34163064 PMCID: PMC9124064 DOI: 10.1038/s41596-021-00564-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The dynamics of DNA double-strand break (DSB) repairs including homology-directed repair and nonhomologous end joining play an important role in diseases and therapies. However, investigating DSB repair is typically a low-throughput and cross-sectional process, requiring disruption of cells and organisms for subsequent nuclease-, sequencing- or reporter-based assays. In this protocol, we provide instructions for establishing a bioluminescent repair reporter system using engineered Gaussia and Vargula luciferases for noninvasive tracking of homology-directed repair and nonhomologous end joining, respectively, induced by SceI meganuclease, SpCas9 or SpCas9 D10A nickase-mediated editing. We also describe complementation with orthogonal DSB repair assays and omics analyses to validate the reporter readouts. The bioluminescent repair reporter system provides longitudinal and rapid readout (~seconds per sample) to accurately and efficiently measure the efficacy of genome-editing tools and small-molecule modulators on DSB repair. This protocol takes ~2-4 weeks to establish, and as little as 2 h to complete the assay. The entire bioluminescent repair reporter procedure can be performed by one person with standard molecular biology expertise and equipment. However, orthogonal DNA repair assays would require a specialized facility that performs Sanger sequencing or next-generation sequencing.
Collapse
Affiliation(s)
| | - Christian E. Badr
- Department of Neurology, Massachusetts General Hospital, Boston MA, United States,Neuroscience Program, Harvard Medical School, Boston MA, United States,To whom correspondence should be addressed: Christian E. Badr, Tel: 1-617-643-3485; Fax: 1-617-724-1537; ; Charles P. Lai, Tel: 886-2-2366-8204; Fax: 886-2-2362-0200; . C.E.B and C.P.L contributed equally to this work
| | - Charles P. Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan,To whom correspondence should be addressed: Christian E. Badr, Tel: 1-617-643-3485; Fax: 1-617-724-1537; ; Charles P. Lai, Tel: 886-2-2366-8204; Fax: 886-2-2362-0200; . C.E.B and C.P.L contributed equally to this work
| |
Collapse
|
8
|
Ferrari B, Roda E, Priori EC, De Luca F, Facoetti A, Ravera M, Brandalise F, Locatelli CA, Rossi P, Bottone MG. A New Platinum-Based Prodrug Candidate for Chemotherapy and Its Synergistic Effect With Hadrontherapy: Novel Strategy to Treat Glioblastoma. Front Neurosci 2021; 15:589906. [PMID: 33828444 PMCID: PMC8019820 DOI: 10.3389/fnins.2021.589906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common tumor of the central nervous system. Current therapies, often associated with severe side effects, are inefficacious to contrast the GBM relapsing forms. In trying to overcome these drawbacks, (OC-6-44)-acetatodiamminedichlorido(2-(2-propynyl)octanoato)platinum(IV), also called Pt(IV)Ac-POA, has been recently synthesized. This new prodrug bearing as axial ligand (2-propynyl)octanoic acid (POA), a histone deacetylase inhibitor, has a higher activity due to (i) its high cellular accumulation by virtue of its high lipophilicity and (ii) the inhibition of histone deacetylase, which leads to the increased exposure of nuclear DNA, permitting higher platination and promoting cancer cell death. In the present study, we investigated the effects induced by Pt(IV)Ac-POA and its potential antitumor activity in human U251 glioblastoma cell line using a battery of complementary techniques, i.e., flow cytometry, immunocytochemistry, TEM, and Western blotting analyses. In addition, the synergistic effect of Pt(IV)Ac-POA associated with the innovative oncological hadrontherapy with carbon ions was investigated, with the aim to identify the most efficient anticancer treatment combination. Our in vitro data demonstrated that Pt(IV)Ac-POA is able to induce cell death, through different pathways, at concentrations lower than those tested for other platinum analogs. In particular, an enduring Pt(IV)Ac-POA antitumor effect, persisting in long-term treatment, was demonstrated. Interestingly, this effect was further amplified by the combined exposure to carbon ion radiation. In conclusion, Pt(IV)Ac-POA represents a promising prodrug to be incorporated into the treatment regimen for GBM. Moreover, the synergistic efficacy of the combined protocol using chemotherapeutic Pt(IV)Ac-POA followed by carbon ion radiation may represent a promising approach, which may overcome some typical limitations of conventional therapeutic protocols for GBM treatment.
Collapse
Affiliation(s)
- Beatrice Ferrari
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Elisa Roda
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Erica Cecilia Priori
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Fabrizio De Luca
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Angelica Facoetti
- National Center of Oncological Hadrontherapy (Fondazione CNAO), Pavia, Italy
| | - Mauro Ravera
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Federico Brandalise
- Department of Fundamental Neurosciences (NEUFO), University of Geneva, Geneva, Switzerland
| | - Carlo Alessandro Locatelli
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | - Maria Grazia Bottone
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
9
|
Wang Q, Xie C, Xi S, Qian F, Peng X, Huang J, Tang F. Radioprotective Effect of Flavonoids on Ionizing Radiation-Induced Brain Damage. Molecules 2020; 25:5719. [PMID: 33287417 PMCID: PMC7730479 DOI: 10.3390/molecules25235719] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/27/2023] Open
Abstract
Patients receiving brain radiotherapy may suffer acute or chronic side effects. Ionizing radiation induces the production of intracellular reactive oxygen species and pro-inflammatory cytokines in the central nervous system, leading to brain damage. Complementary Chinese herbal medicine therapy may reduce radiotherapy-induced side effects. Flavonoids are a class of natural products which can be extracted from Chinese herbal medicine and have been shown to have neuroprotective and radioprotective properties. Flavonoids are effective antioxidants and can also inhibit regulatory enzymes or transcription factors important for controlling inflammatory mediators, affect oxidative stress through interaction with DNA and enhance genomic stability. In this paper, radiation-induced brain damage and the relevant molecular mechanism were summarized. The radio-neuro-protective effect of flavonoids, i.e., antioxidant, anti-inflammatory and maintaining genomic stability, were then reviewed. We concluded that flavonoids treatment may be a promising complementary therapy to prevent radiotherapy-induced brain pathophysiological changes and cognitive impairment.
Collapse
Affiliation(s)
- Qinqi Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Chenghao Xie
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Shijun Xi
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China;
| | - Xiaochun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.W.); (C.X.); (S.X.)
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Jiangrong Huang
- Department of Integrative Medicine, School of Health Sciences, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 1 CREATE Way #04-01, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|
10
|
Narayanan V, Julius K, Mbogo J. Long-term follow-up of lateral ventricular central neurocytoma treated with subtotal resection followed by concurrent chemoradiotherapy and add on chemotherapy - Case report from a Tertiary Kenyan Cancer Hospital. Surg Neurol Int 2020; 11:272. [PMID: 33033634 PMCID: PMC7538959 DOI: 10.25259/sni_389_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/20/2020] [Indexed: 11/06/2022] Open
Abstract
Background: Central neurocytomas are rare, mostly benign neuroectodermal tumors of the central nervous system typically located within the lateral and third ventricles of cerebrum. No consensus guidelines for the management of central neurocytoma available due to the rarity of the disease. Case Description: We report a case of right ventricular central neurocytoma of a 28-year-old lady who had a subtotal resection and ventriculoperitoneal shunting. Postoperatively, she was treated with concomitant chemotherapy with oral temozolomide and radiotherapy, followed by add-on chemotherapy with same drug. Imaging, microscopic evaluation, treatment modalities, and outcome of treatment are presented. Conclusion: Subtotal resection of tumor through transcallosal approach and ventriculoperitoneal shunt was performed. Imaging done 2 weeks postsurgery confirmed residual disease. Concurrent chemoradiotherapy (54 Gy in 30 fractions +Oral Temozolomide 75 mg/m2 daily), followed by six cycles of 5-day chemotherapy with temozolomide (150 mg/m2 in Cycle 1, and 175 mg/m2 in subsequent cycles) at 28-day intervals, was given. No major toxicities encountered. Follow-up scan after 36 months showed complete remission.
Collapse
Affiliation(s)
| | - Kiboi Julius
- Chair, Department of Surgery, University of Nairobi, Nairobi, Kenya
| | - James Mbogo
- Department of Clinical Oncology, HCG-Cancer Care Kenya
| |
Collapse
|
11
|
Paillas S, Then CK, Kilgas S, Ruan JL, Thompson J, Elliott A, Smart S, Kiltie AE. The Histone Deacetylase Inhibitor Romidepsin Spares Normal Tissues While Acting as an Effective Radiosensitizer in Bladder Tumors in Vivo. Int J Radiat Oncol Biol Phys 2020; 107:212-221. [PMID: 31987970 PMCID: PMC7181176 DOI: 10.1016/j.ijrobp.2020.01.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE Muscle-invasive bladder cancer has a 40% to 60% 5-year survival rate with radical treatment by surgical removal of the bladder or radiation therapy-based bladder preservation techniques, including concurrent chemoradiation. Elderly patients cannot tolerate current chemoradiation therapy regimens and often receive only radiation therapy, which is less effective. We urgently need effective chemotherapy agents for use with radiation therapy combinations that are nontoxic to normal tissues and tolerated by elderly patients. METHODS AND MATERIALS We have identified histone deacetylase (HDAC) inhibitors as promising agents to study. Pan-HDAC inhibition, using panobinostat, is a good strategy for radiosensitization, but more selective agents may be more useful radiosensitizers in a clinical setting, resulting in fewer systemic side effects. Herein, we study the HDAC class I-selective agent romidepsin, which we predict to have fewer off-target effects than panobinostat while maintaining an effective level of tumor radiosensitization. RESULTS In vitro effects of romidepsin were assessed by clonogenic assay and showed that romidepsin was effective in the nanomolar range in different bladder cancer cells and radiosensitized these cells. The radiosensitizing effect of romidepsin was confirmed in vivo using superficial xenografts. The drug/irradiation combination treatment resulted in significant tumor growth delay but did not increase the severity of acute (3.75 days) intestinal normal tissue toxicity or late toxicity at 29 weeks. Moreover, we showed that romidepsin treatment impaired both homologous recombination and nonhomologous end joining DNA repair pathways, suggesting that the disruption of DNA repair pathways caused by romidepsin is a key mechanism for its radiosensitizing effect in bladder cancer cells. CONCLUSIONS This study demonstrates that romidepsin is an effective radiosensitizer in vitro and in vivo and does not increase the acute and late toxicity after ionizing radiation. Romidepsin is already in clinical use for the cutaneous T-cell lymphoma, but a phase 1 clinical trial of romidepsin as a radiosensitizer could be considered in muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Salome Paillas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Chee K Then
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Susan Kilgas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Jia-Ling Ruan
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - James Thompson
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Amy Elliott
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Sean Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom
| | - Anne E Kiltie
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, United Kingdom.
| |
Collapse
|
12
|
Zhao L, Li R, Qiu JZ, Yu JB, Cao Y, Yuan RT. YY1-mediated PTEN dephosphorylation antagonizes IR-induced DNA repair contributing to tongue squamous cell carcinoma radiosensitization. Mol Cell Probes 2020; 53:101577. [PMID: 32334006 DOI: 10.1016/j.mcp.2020.101577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Ionizing radiation (IR) confers a survival advantage in tongue squamous cell carcinoma (TSCC), however, IR resistance limits its efficacy. Although Yin Yang 1 (YY1) has been reported to play a role in genotoxic drug resistance by accelerating DNA repair, its role in TSCC radioresistance remains unclear. In this study, we examined YY1 mRNA and protein expression in human tongue cancer samples using qRT-PCR and western blotting, respectively. DNA array data identified YY1 mRNA expression in IR sensitivity or resistance cell lines and tissues. Tongue carcinoma primary cells and CAL27 cells with YY1 stably overexpressed or knocked-down were exposed to IR and evaluated for cell proliferation and apoptosis by CCK8-assay and caspase-3 assay, respectively. We also examined DNA damage- or repair-related indicators, such as YY1, p-H2AX, nuclear PTEN, p-PTEN, and Rad51 through Western blot analysis. Additionally, we explored the mechanism of IR-induced PTEN nuclear translocation by introducing a series of PTEN phosphorylation site mutations and co-IP assay. We observed that YY1 mRNA and protein are highly expressed in TSCC tissues, which was correlated with worse overall survival. Moreover, higher expression of YY1 and Rad51 was observed in radioresistant cells and tissues, overexpression of YY1 led to IR resistance in TSCC cells, whereas YY1 knockdown sensitized TSCC cells to IR. The underlying mechanism showed that the overexpression of YY1 upregulated nuclear PTEN and Rad51 expression, which is essential for DNA repair. IR upregulated YY1, nuclear PTEN, and Rad51; thus, knockdown of YY1 completely blocked IR-induced upregulation of nuclear PTEN/Rad51. IR upregulated PTEN phosphorylation, and mutation of the phosphorylation site of Ser380 nearly completely blocked IR-induced PTEN nuclear translocation. Furthermore, the phosphatase PP2A negatively regulated pS380-PTEN, and knockdown of YY1 completely blocked IR-induced pS380-PTEN through PP2A. In conclusion, knockdown of YY1 enhanced TSCC radiosensitivity through PP2A-mediated dephosphorylation of PTEN Ser380; thus, antagonizing the IR-induced nuclear PTEN/Rad51 axis and targeting YY1 may reverse IR resistance in TSCC.
Collapse
Affiliation(s)
- Lu Zhao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Ran Li
- Department of Oral and Maxillo-facial Surgery, Weifang Medical University Affiliated Qingdao Stomatological Hospital, #17 Dexian Road, Qingdao, 266000, PR China
| | - Jian-Zhong Qiu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Jiang-Bo Yu
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Yang Cao
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China
| | - Rong-Tao Yuan
- Center of Oral Medicine, Qingdao Municipal Hospital, #5 Donghai Middle Road, Qingdao, 266000, PR China; School of Stomatology, Qingdao University, #19 JiangSu Road, Qingdao, 266000, PR China.
| |
Collapse
|
13
|
Redirecting extracellular proteases to molecularly guide radiosensitizing drugs to tumors. Biomaterials 2020; 248:120032. [PMID: 32304937 DOI: 10.1016/j.biomaterials.2020.120032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
Patients with advanced cancers are treated with combined radiotherapy and chemotherapy, however curability is poor and treatment side effects severe. Drugs sensitizing tumors to radiotherapy have been developed to improve cell kill, but tumor specificity remains challenging. To achieve tumor selectivity of small molecule radiosensitizers, we tested as a strategy active tumor targeting using peptide-based drug conjugates. We attached an inhibitor of the DNA damage response to antibody or cell penetrating peptides. Antibody drug conjugates honed in on tumor overexpressed cell surface receptors with high specificity but lacked efficacy when conjugated to the DNA damage checkpoint kinase inhibitor AZD7762. As an alternative approach, we synthesized activatable cell penetrating peptide scaffolds that accumulated within tumors based on matrix metalloproteinase cleavage. While matrix metalloproteinases are integral to tumor progression, they have proven therapeutically elusive. We harnessed these pro-tumorigenic extracellular proteases to spatially guide radiosensitizer drug delivery using cleavable activatable cell penetrating peptides. Here, we tested the potential of these two drug delivery platforms targeting distinct tumor compartments in combination with radiotherapy and demonstrate the advantages of protease triggered cell penetrating peptide scaffolds over antibody drug conjugates to deliver small molecule amine radiosensitizers.
Collapse
|
14
|
Johnson MO, Kirkpatrick JP, Patel MP, Desjardins A, Randazzo DM, Friedman HS, Ashley DM, Peters KB. The role of chemotherapy in the treatment of central neurocytoma. CNS Oncol 2019; 8:CNS41. [PMID: 31686534 PMCID: PMC6880304 DOI: 10.2217/cns-2019-0012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Central neurocytoma (CN) is a rare WHO grade II central nervous system (CNS) tumor. This is an update on chemotherapeutic agents used in its treatment. Patients & methods: An institutional review board-approved, chart review of patients seen at our institution resulted in a single case treated with chemotherapy and is herein included. We proceeded with a comprehensive literature review. Results: We identified 18 citations, representing 39 cases of adult and pediatric CN treated with chemotherapy. With the addition of our single case, the total number of recurrent CN patients treated with temozolomide (TMZ) is nine. Conclusion: There exists marked heterogeneity in chemotherapy used to treat CN. TMZ is incorporated into treatment regimens in the setting of tumor recurrence: its role merits further study.
Collapse
Affiliation(s)
- Margaret O Johnson
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - John P Kirkpatrick
- Radiation Oncology, The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Mallika P Patel
- Department of Pharmacy, Duke University Hospital, Durham, NC ;27710, USA
| | - Annick Desjardins
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - Dina M Randazzo
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - Henry S Friedman
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| | - Katherine B Peters
- Department of Neurosurgery, Duke University Hospital, Durham, NC 27710, USA
| |
Collapse
|
15
|
Hingorani DV, Doan MK, Camargo MF, Aguilera J, Song SM, Pizzo D, Scanderbeg DJ, Cohen EEW, Lowy AM, Adams SR, Advani SJ. Precision Chemoradiotherapy for HER2 Tumors Using Antibody Conjugates of an Auristatin Derivative with Reduced Cell Permeability. Mol Cancer Ther 2019; 19:157-167. [PMID: 31597712 DOI: 10.1158/1535-7163.mct-18-1302] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/07/2019] [Accepted: 09/30/2019] [Indexed: 01/30/2023]
Abstract
The most successful therapeutic strategies for locally advanced cancers continue to combine decades-old classical radiosensitizing chemotherapies with radiotherapy. Molecular targeted radiosensitizers offer the potential to improve the therapeutic ratio by increasing tumor-specific kill while minimizing drug delivery and toxicity to surrounding normal tissue. Auristatins are a potent class of anti-tubulins that sensitize cells to ionizing radiation damage and are chemically amenable to antibody conjugation. To achieve tumor-selective radiosensitization, we synthesized and tested anti-HER2 antibody-drug conjugates of two auristatin derivatives with ionizing radiation. Monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) were attached to the anti-HER2 antibodies trastuzumab and pertuzumab through a cleavable linker. While MMAE is cell permeable, MMAF has limited cell permeability as free drug resulting in diminished cytotoxicity and radiosensitization. However, when attached to trastuzumab or pertuzumab, MMAF was as efficacious as MMAE in blocking HER2-expressing tumor cells in G2-M. Moreover, MMAF anti-HER2 conjugates selectively killed and radiosensitized HER2-rich tumor cells. Importantly, when conjugated to targeting antibody, MMAF had the advantage of decreased bystander and off-target effects compared with MMAE. In murine xenograft models, MMAF anti-HER2 antibody conjugates had less drug accumulated in the normal tissue surrounding tumors compared with MMAE. Therapeutically, systemically injected MMAF anti-HER2 conjugates combined with focal ionizing radiation increased tumor control and improved survival of mice with HER2-rich tumor xenografts. In summary, our results demonstrate the potential of cell-impermeable radiosensitizing warheads to improve the therapeutic ratio of radiotherapy by leveraging antibody-drug conjugate technology.
Collapse
Affiliation(s)
- Dina V Hingorani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Matthew K Doan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Maria F Camargo
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Joseph Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Seung M Song
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Daniel J Scanderbeg
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Ezra E W Cohen
- Division of Hematology and Oncology, Department of Medicine, University of California San Diego, La Jolla, California
- University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Andrew M Lowy
- University of California San Diego, Moores Cancer Center, La Jolla, California
- Division of Surgical Oncology, Department of Surgery, University of California San Diego, La Jolla, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
- University of California San Diego, Moores Cancer Center, La Jolla, California
| |
Collapse
|
16
|
Epsilon-Globin HBE1 Enhances Radiotherapy Resistance by Down-Regulating BCL11A in Colorectal Cancer Cells. Cancers (Basel) 2019; 11:cancers11040498. [PMID: 30965648 PMCID: PMC6521047 DOI: 10.3390/cancers11040498] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/28/2022] Open
Abstract
Resistance to radiotherapy is considered an important obstacle in the treatment of colorectal cancer. However, the mechanisms that enable tumor cells to tolerate the effects of radiation remain unclear. Moreover, radiotherapy causes accumulated mutations in transcription factors, which can lead to changes in gene expression and radiosensitivity. This phenomenon reduces the effectiveness of radiation therapy towards cancer cells. In the present study, radiation-resistant (RR) cancer cells were established by sequential radiation exposure, and hemoglobin subunit epsilon 1 (HBE1) was identified as a candidate radiation resistance-associated protein based on RNA-sequencing analysis. Then, compared to radiosensitive (RS) cell lines, the overexpression of HBE1 in RR cell lines was used to measure various forms of radiation-induced cellular damage. Consequently, HBE1-overexpressing cell lines were found to exhibit decreased radiation-induced intracellular reactive oxygen species (ROS) production and cell mortality. Conversely, HBE1 deficiency in RR cell lines increased intracellular ROS production, G2/M arrest, and apoptosis, and decreased clonogenic survival rate. These effects were reversed by the ROS scavenger N-acetyl cysteine. Moreover, HBE1 overexpression was found to attenuate radiation-induced endoplasmic reticulum stress and apoptosis via an inositol-requiring enzyme 1(IRE1)-Jun amino-terminal kinase (JNK) signaling pathway. In addition, increased HBE1 expression induced by γ-irradiation in RS cells attenuated expression of the transcriptional regulator BCL11A, whereas its depletion in RR cells increased BCL11A expression. Collectively, these observations indicate that the expression of HBE1 during radiotherapy might potentiate the survival of radiation-exposed colorectal cancer cells.
Collapse
|
17
|
McKenzie LD, LeClair JW, Miller KN, Strong AD, Chan HL, Oates EL, Ligon KL, Brennan CW, Chheda MG. CHD4 regulates the DNA damage response and RAD51 expression in glioblastoma. Sci Rep 2019; 9:4444. [PMID: 30872624 PMCID: PMC6418088 DOI: 10.1038/s41598-019-40327-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 01/28/2019] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is a lethal brain tumour. Despite therapy with surgery, radiation, and alkylating chemotherapy, most people have recurrence within 6 months and die within 2 years. A major reason for recurrence is resistance to DNA damage. Here, we demonstrate that CHD4, an ATPase and member of the nucleosome remodelling and deactetylase (NuRD) complex, drives a component of this resistance. CHD4 is overexpressed in GBM specimens and cell lines. Based on The Cancer Genome Atlas and Rembrandt datasets, CHD4 expression is associated with poor prognosis in patients. While it has been known in other cancers that CHD4 goes to sites of DNA damage, we found CHD4 also regulates expression of RAD51, an essential component of the homologous recombination machinery, which repairs DNA damage. Correspondingly, CHD4 suppression results in defective DNA damage response in GBM cells. These findings demonstrate a mechanism by which CHD4 promotes GBM cell survival after DNA damaging treatments. Additionally, we found that CHD4 suppression, even in the absence of extrinsic treatment, cumulatively increases DNA damage. Lastly, we found that CHD4 is dispensable for normal human astrocyte survival. Since standard GBM treatments like radiation and temozolomide chemotherapy create DNA damage, these findings suggest an important resistance mechanism that has therapeutic implications.
Collapse
Affiliation(s)
- Lisa D McKenzie
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John W LeClair
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kayla N Miller
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Averey D Strong
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hilda L Chan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Edward L Oates
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston Children's Hospital, and Dana Farber Cancer Institute, Boston, MA, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Milan G Chheda
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
The radiotherapy-sensitization effect of cantharidin: Mechanisms involving cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair. Pancreatology 2018; 18:822-832. [PMID: 30201439 DOI: 10.1016/j.pan.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cantharidin is an inhibitor of protein phosphatase 2 A (PP2A), and has been frequently used in clinical practice. In our previous study, we proved that cantharidin could arrest cell cycle in G2/M phase. Since cells at G2/M phase are sensitive to radiotherapy, in the present study, we investigated the radiotherapy-sesitization effect of cantharidin and the potential mechanisms involved. METHODS Cell growth was determined by MTT assay. Cell cycle was evaluated by flow cytometry. DNA damage was visualized by phospho-Histone H2A.X staining. Expression of mRNA was tested by microarray assay and real-time PCR. Clinical information and RNA-Seq expression data were derived from The Cancer Genome Atlas (TCGA) pancreatic cancer cohort. Survival analysis was obtained by Kaplan-Meier estimates. RESULTS Cantharidin strengthened the growth inhibition effect of irradiation. Cantharidin drove pancreatic cancer cells out of quiescent G0/G1 phase and arrested cell cycle in G2/M phase. As a result, cantharidin strengthened DNA damage which was induced by irradiation. Moreover, cantharidin repressed expressions of several genes participating in DNA damage repair, including UBE2T, RPA1, GTF2HH5, LIG1, POLD3, RMI2, XRCC1, PRKDC, FANC1, FAAP100, RAD50, RAD51D, RAD51B and DMC1, through JNK, ERK, PKC, p38 and/or NF-κB pathway dependent manners. Among these genes, worse overall survival for pancreatic cancer patients were associated with high mRNA expressions of POLD3, RMI2, PRKDC, FANC1, RAD50 and RAD51B, all of which could be down-regulated by cantharidin. CONCLUSION Cantharidin can sensitize pancreatic cancer cells to radiotherapy. Multiple mechanisms, including cell cycle regulation, enhanced DNA damage, and inhibited DNA damage repair, may be involved.
Collapse
|
19
|
Lanman TA, Compton JN, Carroll KT, Hirshman BR, Ali MA, Lochte B, Carter B, Chen CC. Survival patterns of oligoastrocytoma patients: A surveillance, epidemiology and end results (SEER) based analysis. INTERDISCIPLINARY NEUROSURGERY 2018. [DOI: 10.1016/j.inat.2017.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
20
|
Abstract
Ligase IV and XRCC4 genes, important molecules in the nonhomologous end-joining pathway for repairing DNA double-strand breaks, may play crucial roles in carcinogenesis. To detect their effects on the risk of human glioma, their gene expression differences between 110 human glioma tissues and 50 healthy brain tissues were determined using quantitative real-time PCR. Furthermore, two tagging single nucleotide polymorphisms (SNPs) in ligase IV and four SNPs in XRCC4 genes were genotyped in 317 glioma patients and 352 healthy controls. The association of glioma and ligase IV/XRCC4 was evaluated using methods for SNP, haplotype, and gene-gene interaction analysis. Compared with those in normal brain tissues, the relative gene expression levels of ligase IV and XRCC4 were significantly downregulated in glioma tissue (P=0.0017 and 0.0006, respectively). Single SNP analysis indicated that only rs10131 in ligase IV remained significantly associated with glioma (P=0.0036) after 10 000 permutation tests. Haplotype analysis showed that the haplotype profiles of ligase IV and XRCC4 were significantly different between glioma patients and healthy controls (P=0.004 and 3.13E-6, respectively). Finally, the gene-gene interaction analysis suggested that the three-locus model (rs1805388, rs10131, and rs2075685) was the best model for ligase IV and XRCC4 to have interaction effects on the risk of glioma. In conclusion, both ligase IV and XRCC4 may act in concert to modulate the development of glioma.
Collapse
|
21
|
Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, Zhang Q, Huang JX, Wu ZD, Sun XC, Dai SB. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett 2016; 13:949-954. [PMID: 28356983 DOI: 10.3892/ol.2016.5515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the radiosensitization effect of triciribine (TCN) on human esophageal squamous cell carcinoma (ESCC) in normoxia or hypoxia and its mechanism. The cytotoxicity and radiosensitization mechanism of TCN were investigated by Cell Counting Kit 8, clonogenic assay, flow cytometry, western blotting (WB) and immunofluorescence staining of phospho-histone H2A.X, Ser139 (γ-H2AX) in ESCC in vitro, while the protein expression levels of AKT, phosphorylated (p)-AKT, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) were evaluated by WB in vivo. The cytotoxicity of TCN was dose dependent. Upon exposure to TCN, ESCC cells in hypoxia treated with 4-Gy radiotherapy exhibited an evidently higher apoptotic rate than cells subjected to other treatments. TCN could significantly inhibit the protein expression of p-AKT, HIF-1α and VEGF in vitro and in vivo. The present results suggested that TCN can effectively inhibit AKT, p-AKT, HIF-1α and VEGF, thus conferring radiosensitivity to ESCC in vitro and vivo. TCN is considered as an adjuvant in radiotherapy of ESCC in clinical application.
Collapse
Affiliation(s)
- Qing Guo
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China; Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Jia He
- Department of Radiotherapy, People's Hospital of Jiangyin, Wuxi, Jiangsu 214400, P.R. China
| | - Feng Shen
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China; Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xi Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chi Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qu Zhang
- Department of Radiotherapy, Hubei Cancer Hospital, Wuhan, Hubei 430079, P.R. China
| | - Jun-Xing Huang
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Zheng-Dong Wu
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xin-Chen Sun
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Sheng-Bin Dai
- Department of Oncology, People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
22
|
Bigdeli B, Goliaei B, Masoudi-Khoram N, Jooyan N, Nikoofar A, Rouhani M, Haghparast A, Mamashli F. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol Appl Pharmacol 2016; 313:180-194. [DOI: 10.1016/j.taap.2016.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/09/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
|
23
|
Adams SR, Yang HC, Savariar EN, Aguilera J, Crisp JL, Jones KA, Whitney MA, Lippman SM, Cohen EEW, Tsien RY, Advani SJ. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat Commun 2016; 7:13019. [PMID: 27698471 PMCID: PMC5059467 DOI: 10.1038/ncomms13019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. Drugs that sensitize tumour cells to ionizing radiation are prized because they can overcome resistance to radiotherapy. Here, the authors show that anti-tubulin drugs conjugated to cetuximab or trastuzumab can radiosensitize EGFR- or HER2-expressing tumors by increasing DNA damage and cell death due to ionizing radiation.
Collapse
Affiliation(s)
- Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Howard C Yang
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Elamprakash N Savariar
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Joe Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jessica L Crisp
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Karra A Jones
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | - Michael A Whitney
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Scott M Lippman
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| | - Ezra E W Cohen
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| | - Roger Y Tsien
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| |
Collapse
|
24
|
Quan JJ, Song JN, Qu JQ. PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance. Tumour Biol 2015; 36:8617-24. [PMID: 26040766 DOI: 10.1007/s13277-015-3554-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/11/2015] [Indexed: 02/03/2023] Open
Abstract
Poly(ADP-ribose) polymerase 3 (PARP3), a critical player in cellular response to DNA double-strand breaks (DSBs), plays an essential role in the maintenance of genome integrity. However, the role of PARP3 in tumorigenesis especially in glioblastoma remains largely unknown. In the present study, we found that the mRNA and protein levels of PARP3 were upregulated in primary glioblastoma tissues. Knockdown of PARP3 expression by lentivirus-based shRNA decreased cell glioblastoma proliferation and inhibited tumor growth in vivo by using a xenograft mouse model. Furthermore, we found that silencing the expression of PARP3 resulted in a synergistic radiosensitizing effect when combined with radiotherapy in glioblastoma cell lines. At the molecular level, we found that PARP3 interacted with FoxM1 to enhance its transcriptional activity and conferred glioblastoma cell radioresistance. Thus, our data suggest that PARP3 could be a therapeutic target to overcome radioresistance in glioblastoma.
Collapse
Affiliation(s)
- Jun-Jie Quan
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi, 710004, People's Republic of China
| | - Jin-Ning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi, 710061, People's Republic of China.
| | - Jian-Qiang Qu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shanxi, 710004, People's Republic of China
| |
Collapse
|
25
|
Shen Y, Li J, Nitta M, Futalan D, Steed T, Treiber JM, Taich Z, Stevens D, Wykosky J, Chen HZ, Carter BS, Becher OJ, Kennedy R, Esashi F, Sarkaria JN, Furnari FB, Cavenee WK, Desai A, Chen CC. Orthogonal targeting of EGFRvIII expressing glioblastomas through simultaneous EGFR and PLK1 inhibition. Oncotarget 2015; 6:11751-67. [PMID: 26059434 PMCID: PMC4494902 DOI: 10.18632/oncotarget.3996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 04/20/2015] [Indexed: 11/25/2022] Open
Abstract
We identified a synthetic lethality between PLK1 silencing and the expression of an oncogenic Epidermal Growth Factor Receptor, EGFRvIII. PLK1 promoted homologous recombination (HR), mitigating EGFRvIII induced oncogenic stress resulting from DNA damage accumulation. Accordingly, PLK1 inhibition enhanced the cytotoxic effects of the DNA damaging agent, temozolomide (TMZ). This effect was significantly more pronounced in an Ink4a/Arf(-/-) EGFRvIII glioblastoma model relative to an Ink4a/Arf(-/-) PDGF-β model. The tumoricidal and TMZ-sensitizing effects of BI2536 were uniformly observed across Ink4a/Arf(-/-) EGFRvIII glioblastoma clones that acquired independent resistance mechanisms to EGFR inhibitors, suggesting these resistant clones retain oncogenic stress that required PLK1 compensation. Although BI2536 significantly augmented the anti-neoplastic effect of EGFR inhibitors in the Ink4a/Arf(-/-) EGFRvIII model, durable response was not achieved until TMZ was added. Our results suggest that optimal therapeutic effect against glioblastomas requires a "multi-orthogonal" combination tailored to the molecular physiology associated with the target cancer genome.
Collapse
Affiliation(s)
- Ying Shen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Masayuki Nitta
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Diahnn Futalan
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Tyler Steed
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey M. Treiber
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Zack Taich
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Deanna Stevens
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Jill Wykosky
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bob S. Carter
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Oren J. Becher
- Departments of Pediatrics and Pathology, Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Richard Kennedy
- Centre for Cancer Research and Cell Biology, Queen's University of Belfast, Belfast, UK
| | - Fumiko Esashi
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Frank B. Furnari
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Webster K. Cavenee
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Arshad Desai
- San Diego Branch, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA, USA
| | - Clark C. Chen
- Center for Theoretical and Applied Neuro-Oncology, Moores Cancer Center, Division of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Yang JA, Liu BH, Shao LM, Guo ZT, Yang Q, Wu LQ, Ji BW, Zhu XN, Zhang SQ, Li CJ, Chen QX. LRIG1 enhances the radiosensitivity of radioresistant human glioblastoma U251 cells via attenuation of the EGFR/Akt signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:3580-3590. [PMID: 26097540 PMCID: PMC4466927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
The radiotherapy as a local and regional modality is widely applied in treatment of glioma, but most glioblastomas are commonly resistant to irradiation treatment. It remains challengeable to seek out efficient strategies to conquer the resistance of human glioblastoma cells to radiotherapy. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a newly discovered tumor suppressor which involved in regulation of chemosensitivity in various human cancer cells. In the present study, we established a radioresistant U251 cell line (U251R) to investigate the role of LRIG1 in regulation of radiosensitivity in human glioblastoma cells. Significantly decreased expression level of LRIG1 and enhanced expression of EGFR and phosphorylated Akt were detected in U251R cells compared with the parental U251 cells. U251R cells exhibited an advantage in colony formation ability, which accompanied by remarkably reduced X-ray-induced γ-H2AX foci formation and cell apoptosis. LRIG1 overexpression significantly inhibited the colony formation ability of U251R cells and obviously enhanced X-ray-inducedγ-H2AX foci formation and cell apoptosis. In addition, up-regulated expression of LRIG1 suppressed the expression level of EGFR and phosphorylated Akt protein. Our results demonstrated that LRIG1 expression was related to the radiosensitivity of human glioblastoma cells and may play an important role in the regulation of cellular radiosensitivity of human glioblastoma cells through the EGFR/Akt signaling pathway.
Collapse
Affiliation(s)
- Ji-An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Bao-Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Ling-Min Shao
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Zhen-Tao Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Qian Yang
- Department of Nephrology, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Li-Quan Wu
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Bao-Wei Ji
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Xiao-Nan Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Shen-Qi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Cheng-Jun Li
- Department of Oncology, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| | - Qian-Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University Wuhan 430060, Hubei, P. R. China
| |
Collapse
|
27
|
Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization. Biochem Biophys Res Commun 2015; 460:198-204. [PMID: 25770423 DOI: 10.1016/j.bbrc.2015.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/03/2015] [Indexed: 01/24/2023]
Abstract
Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocation and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation.
Collapse
|
28
|
Allione A, Guarrera S, Russo A, Ricceri F, Purohit R, Pagnani A, Rosa F, Polidoro S, Voglino F, Matullo G. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes. Mutat Res 2013; 751-752:49-54. [PMID: 24004570 DOI: 10.1016/j.mrfmmm.2013.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 02/08/2023]
Abstract
Inter-individual differences in DNA repair capacity (DRC) may lead to genome instability and, consequently, modulate individual cancer risk. Among the different DNA repair pathways, nucleotide excision repair (NER) is one of the most versatile, as it can eliminate a wide range of helix-distorting DNA lesions caused by ultraviolet light irradiation and chemical mutagens. We performed a genotype-phenotype correlation study in 122 healthy subjects in order to assess if any associations exist between phenotypic profiles of NER and DNA repair gene single nucleotide polymorphisms (SNPs). Individuals were genotyped for 768 SNPs with a custom Illumina Golden Gate Assay, and peripheral blood mononuclear cells (PBMCs) of the same subjects were tested for a NER comet assay to measure DRC after challenging cells by benzo(a)pyrene diolepoxide (BPDE). We observed a large inter-individual variability of NER capacity, with women showing a statistically significant lower DRC (mean ± SD: 6.68 ± 4.76; p = 0.004) than men (mean ± SD: 8.89 ± 5.20). Moreover, DRC was significantly lower in individuals carrying a variant allele for the ERCC4 rs1800124 non-synonymous SNP (nsSNP) (p = 0.006) and significantly higher in subjects with the variant allele of MBD4 rs2005618 SNP (p = 0.008), in linkage disequilibrium (r(2) = 0.908) with rs10342 nsSNP. Traditional in silico docking approaches on protein-DNA and protein-protein interaction showed that Gly875 variant in ERCC4 (rs1800124) decreases the DNA-protein interaction and that Ser273 and Thr273 variants in MBD4 (rs10342) indicate complete loss of protein-DNA interactions. Our results showed that NER inter-individual capacity can be modulated by cross-talk activity involving nsSNPs in ERCC4 and MBD4 genes, and they suggested to better investigate SNP effect on cancer risk and response to chemo- and radiotherapies.
Collapse
|
29
|
Concurrent and adjuvant temozolomide-based chemoradiotherapy schedules for glioblastoma. Strahlenther Onkol 2013; 189:926-31. [DOI: 10.1007/s00066-013-0410-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/17/2013] [Indexed: 10/26/2022]
|
30
|
Raleigh DR, Haas-Kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 2013; 9:219-33. [PMID: 23414472 DOI: 10.2217/fon.12.185] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular reaction to genomic instability includes a network of signal transduction pathways collectively referred to as the DNA damage response (DDR). Activated by a variety of DNA lesions, the DDR orchestrates cell cycle arrest and DNA repair, and initiates apoptosis in instances where damage cannot be repaired. As such, disruption of the DDR increases the prevalence of DNA damage secondary to incomplete repair, and in doing so, enhances radiation-induced cytotoxicity. This article describes the molecular agents and their targets within DDR pathways that sensitize cells to radiation. Moreover, it reviews the therapeutic implications of these compounds, provides an overview of relevant clinical trials and offers a viewpoint on the evolution of the field in the years to come.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
31
|
Therapeutic and radiosensitizing effects of armillaridin on human esophageal cancer cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:459271. [PMID: 23864890 PMCID: PMC3707235 DOI: 10.1155/2013/459271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/01/2013] [Accepted: 06/02/2013] [Indexed: 01/22/2023]
Abstract
Background. Armillaridin (AM) is isolated from Armillaria mellea. We examined the anticancer activity and radiosensitizing effect on human esophageal cancer cells. Methods. Human squamous cell carcinoma (CE81T/VGH and TE-2) and adenocarcinoma (BE-3 and SKGT-4) cell lines were cultured. The MTT assay was used for cell viability. The cell cycle was analyzed using propidium iodide staining. Mitochondrial transmembrane potential was measured by DiOC6(3) staining. The colony formation assay was performed for estimation of the radiation surviving fraction. Human CE81T/VGH xenografts were established for evaluation of therapeutic activity in vivo. Results. AM inhibited the viability of four human esophageal cancer cell lines with an estimated concentration of 50% inhibition (IC50) which was 3.4–6.9 μM. AM induced a hypoploid cell population and morphological alterations typical of apoptosis in cells. This apoptosis induction was accompanied by a reduction of mitochondrial transmembrane potential. AM accumulated cell cycle at G2/M phase and enhanced the radiosensitivity in CE81T/VGH cells. In vivo, AM inhibited the growth of CE81T/VGH xenografts without significant impact on body weight and white blood cell counts. Conclusion. Armillaridin could inhibit growth and enhance radiosensitivity of human esophageal cancer cells. There might be potential to integrate AM with radiotherapy for esophageal cancer treatment.
Collapse
|
32
|
Waters JD, Rose B, Gonda DD, Scanderbeg DJ, Russell M, Alksne JF, Murphy K, Carter BS, Lawson J, Chen CC. Immediate post-operative brachytherapy prior to irradiation and temozolomide for newly diagnosed glioblastoma. J Neurooncol 2013; 113:467-77. [PMID: 23673513 DOI: 10.1007/s11060-013-1139-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
Abstract
To determine whether immediate post-operative brachytherapy can be safely applied to newly diagnosed glioblastomas to retard tumor progression prior to initiation of external beam radiation therapy (EBRT) and temozolomide. Between 1996 and 2011, eleven patients underwent implantation of GliaSite (n = 9) or MammoSite (n = 2) at the time of surgical resection. Brachytherapy was carried out on post-operative day 2-3, with 45-60 Gy delivered to a 1 cm margin. All patients underwent subsequent standard radiation/temozolomide treatment 4-5 weeks post-irradiation. There were no wound related complications. Toxicity was observed in two patients (2/11 or 18 %), including one post-operative seizure and one case of cerebral edema that resolved after a course of steroid treatment. Immediate post-operative and pre-irradiation/temozolomide magnetic resonance imaging assessment was available for 9 of the 11 patients. Two of these nine patients (22 %) developed new regions of contrast enhancement prior to irradiation/temozolomide. This compares favorably to historical data where 53 % of patient suffer such tumor progression. While there was a trend toward improved 6 month progression free survival in the brachytherapy/temozolomide/radiation treated patients, the overall survival of these patients were comparable to historical controls. This case series demonstrates the safety of immediate post-operative brachytherapy when applied prior to EBRT and temozolomide in the treatment of newly diagnosed glioblastomas.
Collapse
Affiliation(s)
- J Dawn Waters
- Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, University of California, San Diego, 3855 Health Science Drive #0987, La Jolla, CA 92093-0987, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhao P, Zou P, Zhao L, Yan W, Kang C, Jiang T, You Y. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility. BMC Cancer 2013; 13:234. [PMID: 23663450 PMCID: PMC3655843 DOI: 10.1186/1471-2407-13-234] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 05/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. Methods We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. Results In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. Conclusions These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
MA ZHIKUN, YAO GUOLIANG, ZHOU BO, FAN YONGGANG, GAO SHEGAN, FENG XIAOSHAN. The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo. Mol Med Rep 2012; 6:897-903. [DOI: 10.3892/mmr.2012.999] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/16/2012] [Indexed: 11/06/2022] Open
|