1
|
Gillani R, Seong BKA, Crowdis J, Conway JR, Dharia NV, Alimohamed S, Haas BJ, Han K, Park J, Dietlein F, He MX, Imamovic A, Ma C, Bassik MC, Boehm JS, Vazquez F, Gusev A, Liu D, Janeway KA, McFarland JM, Stegmaier K, Van Allen EM. Gene Fusions Create Partner and Collateral Dependencies Essential to Cancer Cell Survival. Cancer Res 2021; 81:3971-3984. [PMID: 34099491 PMCID: PMC8338889 DOI: 10.1158/0008-5472.can-21-0791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/26/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023]
Abstract
Gene fusions frequently result from rearrangements in cancer genomes. In many instances, gene fusions play an important role in oncogenesis; in other instances, they are thought to be passenger events. Although regulatory element rearrangements and copy number alterations resulting from these structural variants are known to lead to transcriptional dysregulation across cancers, the extent to which these events result in functional dependencies with an impact on cancer cell survival is variable. Here we used CRISPR-Cas9 dependency screens to evaluate the fitness impact of 3,277 fusions across 645 cell lines from the Cancer Dependency Map. We found that 35% of cell lines harbored either a fusion partner dependency or a collateral dependency on a gene within the same topologically associating domain as a fusion partner. Fusion-associated dependencies revealed numerous novel oncogenic drivers and clinically translatable alterations. Broadly, fusions can result in partner and collateral dependencies that have biological and clinical relevance across cancer types. SIGNIFICANCE: This study provides insights into how fusions contribute to fitness in different cancer contexts beyond partner-gene activation events, identifying partner and collateral dependencies that may have direct implications for clinical care.
Collapse
Affiliation(s)
- Riaz Gillani
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Boston, Massachusetts
| | - Bo Kyung A. Seong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Jett Crowdis
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jake R. Conway
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Neekesh V. Dharia
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Boston, Massachusetts
| | - Saif Alimohamed
- Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Brian J. Haas
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jihye Park
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Felix Dietlein
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Meng Xiao He
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Alma Imamovic
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Clement Ma
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael C. Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California.,Program in Cancer Biology, Stanford University School of Medicine, Stanford, California.,Program in Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California
| | - Jesse S. Boehm
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - David Liu
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katherine A. Janeway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Boston, Massachusetts
| | | | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Boston Children's Hospital, Boston, Massachusetts
| | - Eliezer M. Van Allen
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Corresponding Author: Eliezer M. Van Allen, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215. Phone: 617-632-6656; E-mail:
| |
Collapse
|
2
|
Tang S, Hao Y, Yuan Y, Liu R, Chen Q. Role of fibroblast growth factor receptor 4 in cancer. Cancer Sci 2018; 109:3024-3031. [PMID: 30070748 PMCID: PMC6172014 DOI: 10.1111/cas.13759] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptors (FGFR) play a significant role in both embryonic development and in adults. Upon binding with ligands, FGFR signaling is activated and triggers various downstream signal cascades that are implicated in diverse biological processes. Aberrant regulations of FGFR signaling are detected in numerous cancers. Although FGFR4 was discovered later than other FGFR, information on the involvement of FGFR4 in cancers has significantly increased in recent years. In this review, the recent findings in FGFR4 structure, signaling transduction, physiological function, aberrant regulations, and effects in cancers as well as its potential applications as an anticancer therapeutic target are summarized.
Collapse
Affiliation(s)
- Shuya Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yilong Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Perera TP, Jovcheva E, Mevellec L, Vialard J, De Lange D, Verhulst T, Paulussen C, Van De Ven K, King P, Freyne E, Rees DC, Squires M, Saxty G, Page M, Murray CW, Gilissen R, Ward G, Thompson NT, Newell DR, Cheng N, Xie L, Yang J, Platero SJ, Karkera JD, Moy C, Angibaud P, Laquerre S, Lorenzi MV. Discovery and Pharmacological Characterization of JNJ-42756493 (Erdafitinib), a Functionally Selective Small-Molecule FGFR Family Inhibitor. Mol Cancer Ther 2017; 16:1010-1020. [DOI: 10.1158/1535-7163.mct-16-0589] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/28/2016] [Accepted: 03/15/2017] [Indexed: 11/16/2022]
|
4
|
Xie X, Wang Z, Chen F, Yuan Y, Wang J, Liu R, Chen Q. Roles of FGFR in oral carcinogenesis. Cell Prolif 2017; 49:261-9. [PMID: 27218663 DOI: 10.1111/cpr.12260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play essential roles in organ development during the embryonic period, and regulate tissue repair in adults. Accumulating evidence suggests that alterations in FGFR signalling are involved in diverse types of cancer. In this review, we focus on aberrant regulation of FGFRs in pathogenesis of oral squamous cell carcinoma (OSCC), including altered expression and subcellular location, aberrant isoform splicing and mutations. We also provide an overview of oncogenic roles of each FGFR and its downstream signalling pathways in regulating OSCC cell proliferation and metastasis. Finally, we discuss potential application of FGFRs as anti-cancer targets in the preclinical environment and in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
5
|
Kim SM, Kim H, Yun MR, Kang HN, Pyo KH, Park HJ, Lee JM, Choi HM, Ellinghaus P, Ocker M, Paik S, Kim HR, Cho BC. Activation of the Met kinase confers acquired drug resistance in FGFR-targeted lung cancer therapy. Oncogenesis 2016; 5:e241. [PMID: 27429073 PMCID: PMC5399172 DOI: 10.1038/oncsis.2016.48] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 12/11/2022] Open
Abstract
Aberrant fibroblast growth factor receptor (FGFR) activation/expression is a common feature in lung cancer (LC). In this study, we evaluated the antitumor activity of and the mechanisms underlying acquired resistance to two potent selective FGFR inhibitors, AZD4547 and BAY116387, in LC cell lines. The antitumor activity of AZD4547 and BAY1163877 was screened in 24 LC cell lines, including 5 with FGFR1 amplification. Two cell lines containing FGFR1 amplifications, H1581 and DMS114, were sensitive to FGFR inhibitors (IC50<250 nm). Clones of FGFR1-amplified H1581 cells resistant to AZD4547 or BAY116387 (H1581AR and H1581BR cells, respectively) were established. Receptor tyrosine kinase (RTK) array and immunoblotting analyses showed strong overexpression and activation of Met in H1581AR/BR cells, compared with that in the parental cells. Gene set enrichment analysis against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed that cytokine-cytokine receptor interaction pathways were significantly enriched in H1581AR/BR cells, with Met contributing significantly to the core enrichment. Genomic DNA quantitative PCR and fluorescent in situ hybridization analyses showed MET amplification in H1581AR, but not in H1581BR, cells. Met amplification drives acquired resistance to AZD4547 in H1581AR cells by activating ErbB3. Combination treatment with FGFR inhibitors and an anaplastic lymphoma kinase (ALK)/Met inhibitor, crizotinib, or Met-specific short interfering RNA (siRNA) synergistically inhibited cell proliferation in both H1581AR and H1581BR cells. Conversely, ectopic expression of Met in H1581 cells conferred resistance to AZD4547 and BAY1163877. Acquired resistance to FGFR inhibitors not only altered cellular morphology, but also promoted migration and invasion of resistant clones, in part by inducing epithelial-to-mesenchymal transition. Taken together, our data suggest that Met activation is sufficient to bypass dependency on FGFR signaling. Concurrent inhibition of the Met and FGFR pathways may have synergistic clinical benefits when targeting FGFR-dependent LC.
Collapse
Affiliation(s)
- S-M Kim
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H Kim
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - M R Yun
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H N Kang
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - K-H Pyo
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H J Park
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - J M Lee
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - H M Choi
- JE-UK Institute for Cancer Research, JEUK Co., Ltd., Gumi, Kyungbuk, Korea
| | - P Ellinghaus
- Bayer Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - M Ocker
- Bayer Pharma AG, Global Drug Discovery, Wuppertal, Germany
| | - S Paik
- Division of Pathology NSABP, Pittsburgh, PA, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - H R Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - B C Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Li J, Wei Z, Li H, Dang Q, Zhang Z, Wang L, Gao W, Zhang P, Yang D, Liu J, Sun Y, Gao W. Clinicopathological significance of fibroblast growth factor 1 in non–small cell lung cancer. Hum Pathol 2015; 46:1821-8. [DOI: 10.1016/j.humpath.2015.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/25/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022]
|
7
|
Lo AKF, Dawson CW, Young LS, Ko CW, Hau PM, Lo KW. Activation of the FGFR1 signalling pathway by the Epstein-Barr virus-encoded LMP1 promotes aerobic glycolysis and transformation of human nasopharyngeal epithelial cells. J Pathol 2015; 237:238-48. [PMID: 26096068 DOI: 10.1002/path.4575] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/22/2022]
Abstract
Non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signalling pathways which collectively promote cell proliferation, transformation, angiogenesis, and invasiveness, as well as modulation of energy metabolism. In this study, we report that LMP1 increases cellular uptake of glucose and glutamine, enhances LDHA activity and lactate production, but reduces pyruvate kinase activity and pyruvate concentrations. LMP1 also increases the phosphorylation of PKM2, LDHA, and FGFR1, as well as the expression of PDHK1, FGFR1, c-Myc, and HIF-1α, regardless of oxygen availability. Collectively, these findings suggest that LMP1 promotes aerobic glycolysis. With respect to FGFR1 signalling, LMP1 not only increases FGFR1 expression, but also up-regulates FGF2, leading to constitutive activation of the FGFR1 signalling pathway. Furthermore, two inhibitors of FGFR1 (PD161570 and SU5402) attenuate LMP1-mediated aerobic glycolysis, cellular transformation (proliferation and anchorage-independent growth), cell migration, and invasion in nasopharyngeal epithelial cells, identifying FGFR1 signalling as a key pathway in LMP1-mediated growth transformation. Immunohistochemical staining revealed that high levels of phosphorylated FGFR1 are common in primary NPC specimens and that this correlated with the expression of LMP1. In addition, FGFR1 inhibitors suppress cell proliferation and anchorage-independent growth of NPC cells. Our current findings demonstrate that LMP1-mediated FGFR1 activation contributes to aerobic glycolysis and transformation of epithelial cells, thereby implicating FGF2/FGFR1 signalling activation in the EBV-driven pathogenesis of NPC.
Collapse
Affiliation(s)
- Angela Kwok-Fung Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.,Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | - Christopher W Dawson
- Cancer Research UK Cancer Centre, School of Cancer Sciences, University of Birmingham, Vincent Drive, Edgbaston, Birmingham, UK
| | | | - Chuen-Wai Ko
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Pok-Man Hau
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Kwok-Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory in Oncology in South China and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1457] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
9
|
Park JS, Lee JS, Kim EY, Jung JY, Kim SK, Chang J, Kim DJ, Lee CY, Jung I, Kim JH, Kim HR, Moon YW, Kim HS, Cho BC, Shim HS. The frequency and impact of FGFR1 amplification on clinical outcomes in Korean patients with small cell lung cancer. Lung Cancer 2015; 88:325-31. [PMID: 25819384 DOI: 10.1016/j.lungcan.2015.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/22/2015] [Accepted: 03/01/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Fibroblast growth factor receptor 1 (FGFR1) plays a critical role in many human cancers. We tried to identify the frequency of FGFR1 amplifications among Korean patients with small cell lung cancer (SCLC). Additionally, we examined the clinical significance of FGFR1 amplifications for overall survival (OS) and progression-free survival (PFS) among SCLC patients who received standard chemotherapies. MATERIALS AND METHODS Tumor tissues from 158 Korean patients diagnosed with SCLC from September 2009 to February 2013 were collected and analyzed using an FGFR1 FISH assay with a probe that hybridized to chromosome region 8p12-8p11.23 (Abbott Molecular, Abbott Park, IL). RESULTS AND CONCLUSION FGFR1 amplification was detected in three patients (1.9%) harboring extensive disease (ED). A multivariate analysis showed that among the patients with ED, FGFR1 amplification was associated with shorter disease-free survival to first-line chemotherapy with etoposide plus cisplatin or carboplatin (hazard ratio [HR]=7.1; 95% confidence interval [CI]=2.0-25.4; P=0.003). The median overall survival time of the patients with ED was 8.2 and 10.2 months among patients with and without FGFR1 amplification, respectively (P=0.37). Although FGFR1 amplification is rare in SCLC compared to non-small cell lung cancer or other malignancies with squamous histology, it is associated with poor survival following standard chemotherapy in SCLC. Further studies in large cohorts of patients with SCLC are needed to verify these results. Our results imply that FGFR1 may be a potential therapeutic target in SCLC and it could be confirmed in a clinical trial.
Collapse
Affiliation(s)
- Ji Soo Park
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Seok Lee
- Department of Pathology, Dongguk University College of Medicine, Dongguk University Ilsan Hospital, Goyang, South Korea; Department of Medicine, Graduate School of Yonsei University, South Korea
| | - Eun Young Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ye Jung
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Se Kyu Kim
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Joon Chang
- Division of Pulmonology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Dae Joon Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Inkyung Jung
- Department of Biostatistics, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hang Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Wha Moon
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Song Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Kumarakulasinghe NB, van Zanwijk N, Soo RA. Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC). Respirology 2015; 20:370-8. [PMID: 25689095 DOI: 10.1111/resp.12490] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Historically, patients with advanced stage non-small cell lung cancer (NSCLC) were treated with chemotherapy alone, but a therapeutic plateau has been reached. Advances in the understanding of molecular genetics have led to the recognition of multiple molecularly distinct subsets of NSCLC. This in turn has led to the development of rationally directed molecular targeted therapy, leading to improved clinical outcomes. Tumour genotyping for EGFR mutations and ALK rearrangement has meant chemotherapy is no longer given automatically as first-line treatment but reserved for when patients do not have a 'druggable' driver oncogene. In this review, we will address the current status of clinically relevant driver mutations and emerging new molecular subsets in lung adenocarcinoma and squamous cell carcinoma, and the role of targeted therapy and mechanisms of acquired resistance to targeted therapy.
Collapse
|
11
|
Rothschild SI. Clinical potential of nintedanib for the second-line treatment of advanced non-small-cell lung cancer: current evidence. LUNG CANCER-TARGETS AND THERAPY 2014; 5:51-57. [PMID: 28210142 PMCID: PMC5217508 DOI: 10.2147/lctt.s49490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The therapeutic landscape in non-small-cell lung cancer (NSCLC) is changing. The description of molecular alterations leading to NSCLC carcinogenesis and progression (so-called oncogenic driver mutations) and the development of targeted agents interfering with the tumor-promoting intracellular signaling pathways have improved the outcome for many patients with advanced/metastatic NSCLC. However, many patients with stage IV NSCLC do not have one of the targetable predictive biomarkers, and are therefore in need of classical chemotherapy. This especially applies to squamous cell cancer. A platinum-based doublet chemotherapy is the standard of care for patients with stage IV NSCLC. As second-line therapies, docetaxel, pemetrexed, and the EGFR tyrosine-kinase inhibitor erlotinib have demonstrated benefit in Phase III randomized trials. Recently, the addition of the angiokinase inhibitor nintedanib to docetaxel has proven efficacious, and is a new treatment option in the second-line setting. Preclinical and clinical data of nintedanib for the treatment of lung cancer patients are reviewed here.
Collapse
Affiliation(s)
- Sacha I Rothschild
- Department of Internal Medicine, Medical Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer 2013; 83:83-9. [PMID: 24183471 DOI: 10.1016/j.lungcan.2013.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/09/2013] [Accepted: 10/05/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVES FGFR1 amplifications are common in squamous cell carcinoma and rare in adenocarcinoma of the lung, but have not been investigated in brain metastases of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS We performed fluorescent in situ hybridization (FISH) for FGFR1 and immunohistochemistry for pAKT, PI3K, HIF1a and Ki67 in 175 NSCLC brain metastases and 11 matched primary tumors. ALK gene rearrangement status was available from a previous study. We performed statistical correlations of clinical, histopathological and molecular data. RESULTS FGFR1 amplifications were found in a total of 30/175 (17%) brain metastases: 4/21 (19%) squamous cell carcinomas, 20/130 (15.3%) adenocarcinomas, 2/12 (16.6%) adenosquamous carcinomas, 4/9 (44.4%) large cell carcinomas and 0/3 neuroendocrine large cell carcinoma. FGFR1 gene status was identical between primary tumors and brain metastases in 9/11 evaluable cases. In 2/11 cases (1 adenosquamous and 1 large cell carcinoma), FGFR1 amplifications were present only in the brain metastasis and not in the primary tumor. Furthermore, we found a significant positive correlation of ALK and FGFR1 gene amplification status in brain metastases (p<0.001, Chi square test). Patients with high-level FGFR1 amplifications had significantly higher number of visceral metastases (p<0.001, Chi square test). CONCLUSION Our findings argue for an enrichment of FGFR1 amplifications in brain metastases of adenocarcinomas (where they were 5-fold more frequent than reported for primary tumors) and possibly also of other non-squamous carcinomas, but not in squamous cell carcinomas of the lung. These results may be relevant for targeted therapy and prophylaxis of NSCLC brain metastases.
Collapse
|