1
|
Guo C, Lv X, Zhang Q, Yi L, Ren Y, Li Z, Yan J, Zheng S, Sun M, Liu S. CRKL but not CRKII contributes to hemin-induced erythroid differentiation of CML. J Cell Mol Med 2024; 28:e18308. [PMID: 38683131 PMCID: PMC11057422 DOI: 10.1111/jcmm.18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Destruction of erythropoiesis process leads to various diseases, including thrombocytopenia, anaemia, and leukaemia. miR-429-CT10 regulation of kinase-like (CRKL) axis involved in development, progression and metastasis of cancers. However, the exact role of miR-429-CRKL axis in leukaemic cell differentiation are still unknown. The current work aimed to uncover the effect of miR-429-CRKL axis on erythropoiesis. In the present study, CRKL upregulation was negatively correlated with miR-429 downregulation in both chronic myeloid leukaemia (CML) patient and CR patient samples. Moreover, CRKL expression level was significantly decreased while miR-429 expression level was increased during the erythroid differentiation of K562 cells following hemin treatment. Functional investigations revealed that overexpression and knockdown of CRKL was remarkably effective in suppressing and promoting hemin-induced erythroid differentiation of K562 cells, whereas, miR-429 exhibited opposite effects to CRKL. Mechanistically, miR-429 regulates erythroid differentiation of K562 cells by downregulating CRKL via selectively targeting CRKL-3'-untranslated region (UTR) through Raf/MEK/ERK pathway. Conversely, CRKII had no effect on erythroid differentiation of K562 cells. Taken together, our data demonstrated that CRKL (but not CRKII) and miR-429 contribute to development, progression and erythropoiesis of CML, miR-429-CRKL axis regulates erythropoiesis of K562 cells via Raf/MEK/ERK pathway, providing novel insights into effective diagnosis and therapy for CML patients.
Collapse
MESH Headings
- Humans
- 3' Untranslated Regions
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Cell Differentiation/drug effects
- Erythroid Cells/metabolism
- Erythroid Cells/drug effects
- Erythroid Cells/pathology
- Erythroid Cells/cytology
- Erythropoiesis/genetics
- Erythropoiesis/drug effects
- Gene Expression Regulation, Leukemic/drug effects
- Hemin/pharmacology
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- MAP Kinase Signaling System/drug effects
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Proto-Oncogene Proteins c-crk/metabolism
- Proto-Oncogene Proteins c-crk/genetics
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Xinxin Lv
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Qiuling Zhang
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Lina Yi
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Yingying Ren
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Zhaopeng Li
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical UniversityInstitute of Stem Cell Transplantation of Dalian Medical UniversityDalianLiaoningChina
| | - Shanliang Zheng
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Ming‐Zhong Sun
- Department of Biotechnology & Liaoning Key Laboratory of Cancer Stem Cell Research, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical SciencesDalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
2
|
Liu Y, Tang W, Yao F. USP53 Exerts Tumor-Promoting Effects in Triple-Negative Breast Cancer by Deubiquitinating CRKL. Cancers (Basel) 2023; 15:5033. [PMID: 37894400 PMCID: PMC10605207 DOI: 10.3390/cancers15205033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) ranks in the top five malignant tumors in terms of morbidity and mortality rates. Among BC subtypes, TNBC has a high recurrence rate and metastasis rate and the worst prognosis. However, the exact mechanism by which TNBC develops is unclear. Here, we show that the deubiquitinase USP53 contributes to tumor growth and metastasis in TNBC. USP53 is overexpressed in TNBC, and this phenotype is linked to a poor prognosis. Functionally, USP53 promotes TNBC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). More importantly, USP53 decreases the chemosensitivity of BC cells by enhancing v-crk sarcoma virus CT10 oncogene homologue (avian)-like (CRKL) expression. Mechanistically, USP53 directly binds CRKL to stabilize and deubiquitinate it, thereby preventing CRKL degradation. Overall, we discovered that USP53 deubiquitinates CRKL, encourages tumor development and metastasis, and reduces chemosensitivity in TNBC. These findings imply that USP53 might represent a new therapeutic target for the treatment of TNBC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Wei Tang
- Department of Pediartrics, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
3
|
Park T. Crk and CrkL as Therapeutic Targets for Cancer Treatment. Cells 2021; 10:cells10040739. [PMID: 33801580 PMCID: PMC8065463 DOI: 10.3390/cells10040739] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/03/2023] Open
Abstract
Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.
Collapse
Affiliation(s)
- Taeju Park
- Children's Mercy Research Institute, Children's Mercy Kansas City, Department of Pediatrics, University of Missouri Kansas City School of Medicine, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Guo C, Gao C, Lv X, Zhao D, Greenaway FT, Hao L, Tian Y, Liu S, Sun M. CRKL promotes hepatocarcinoma through enhancing glucose metabolism of cancer cells via activating PI3K/Akt. J Cell Mol Med 2021; 25:2714-2724. [PMID: 33523562 PMCID: PMC7933966 DOI: 10.1111/jcmm.16303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Abnormal glucose metabolism may contribute to cancer progression. As a member of the CRK (v-crk sarcoma virus CT10 oncogene homologue) adapter protein family, CRKL (CRK-like) associated with the development and progression of various tumours. However, the exact role and underlying mechanism of CRKL on energy metabolism remain unknown. In this study, we investigated the effect of CRKL on glucose metabolism of hepatocarcinoma cells. CRKL and PI3K were found to be overexpressed in both hepatocarcinoma cells and tissues; meanwhile, CRKL up-regulation was positively correlated with PI3K up-regulation. Functional investigations revealed that CRKL overexpression promoted glucose uptake, lactate production and glycogen synthesis of hepatocarcinoma cells by up-regulating glucose transporters 1 (GLUT1), hexokinase II (HKII) expression and down-regulating glycogen synthase kinase 3β (GSK3β) expression. Mechanistically, CRKL promoted glucose metabolism of hepatocarcinoma cells via enhancing the CRKL-PI3K/Akt-GLUT1/HKII-glucose uptake, CRKL-PI3K/Akt-HKII-glucose-lactate production and CRKL-PI3K/Akt-Gsk3β-glycogen synthesis. We demonstrate CRKL facilitates HCC malignancy via enhancing glucose uptake, lactate production and glycogen synthesis through PI3K/Akt pathway. It provides interesting fundamental clues to CRKL-related carcinogenesis through glucose metabolism and offers novel therapeutic strategies for hepatocarcinoma.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chao Gao
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
- Present address:
College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing)DaqingChina
| | - Xinxin Lv
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Dongting Zhao
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | | | - Lihong Hao
- Department of Histology and EmbryologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Yuxiang Tian
- Department of BiochemistryCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Shuqing Liu
- Department of BiochemistryCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Ming‐Zhong Sun
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
5
|
Majid A, Wang J, Nawaz M, Abdul S, Ayesha M, Guo C, Liu Q, Liu S, Sun MZ. miR-124-3p Suppresses the Invasiveness and Metastasis of Hepatocarcinoma Cells via Targeting CRKL. Front Mol Biosci 2020; 7:223. [PMID: 33094104 PMCID: PMC7522612 DOI: 10.3389/fmolb.2020.00223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Abnormal expressions of microRNAs are involved in growth and progression of human cancers including hepatocellular carcinoma (HCC). An adaptor protein CRKL plays a pivotal role in HCC growth, whereas miR-124-3p downregulation is associated with clinical stage and the poor survival of patients. However, the relationship between miR-124-3p and CRKL and the molecular mechanisms through which they regulate HCC metastasis remains unclear. In the current work, we explored miR-124-3p and its correlation with CRKL expression in HCC patient tissues. We found that miR-124-3p deficiency is inversely co-related with CRKL overexpression in tumorous tissues of HCC patients, which was also consistent in HCCLM3 and Huh7 HCC cell lines. Target validation data shows that miR-124-3p directly targets CRKL. The overexpression of miR-124-3p reverses the CRKL expression at both mRNA and protein levels and inhibits the cell development, migration, and invasion. Mechanistic investigations showed that CRKL downregulation suppresses the ERK pathway and EMT process, and concomitant decrease in invasion and metastasis of HCC cells. The expressions of key molecules in the ERK pathway such as RAF, MEK, ERK1/2, and pERK1/2 and key promoters of EMT such as N-cadherin and vimentin were downregulated, whereas E-cadherin, a key suppression indicator of EMT, was upregulated. MiR-124-3p-mediated CRKL suppression led to BAX/BCL-2 increase and C-JUN downregulation, which inhibited the cell proliferation and promoted the apoptosis in HCC cells. Collectively, our data illustrates that miR-124-3p acts as an important tumor-suppressive miRNA to suppress HCC carcinogenesis through targeting CRKL. The miR-124-3p-CRKL axial regulated pathway may offer valuable indications for cancer research, diagnosis, and treatment.
Collapse
Affiliation(s)
- Abbasi Majid
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jinxia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Muhammad Nawaz
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sattar Abdul
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Munawar Ayesha
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunmei Guo
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qinglong Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Wang J, Wang C, Li Q, Guo C, Sun W, Zhao D, Jiang S, Hao L, Tian Y, Liu S, Sun MZ. miR-429-CRKL axis regulates clear cell renal cell carcinoma malignant progression through SOS1/MEK/ERK/MMP2/MMP9 pathway. Biomed Pharmacother 2020; 127:110215. [PMID: 32413671 DOI: 10.1016/j.biopha.2020.110215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis and tumorigenesis of clear cell renal cell carcinoma (ccRCC) remain unclear. The deregulations of miR-429, a member of miR-200 family, and v-crk sarcoma virus CT10 oncogene homologue (avian)-like (CRKL), an adaptor protein of CRK family, are involved in the development, metastasis and prognosis of various cancers. Current study aimed to demonstrate the differential expressions of miR-429 and CRKL with their correlationship and molecular regulation mechanism in ccRCC malignancy. miR-429 and CRKL separately showed suppressing and promoting effects in ccRCC. Lower miR-429 expression and higher CRKL expression were negatively correlated in surgical cancerous tissues by promoting the advance of ccRCC. By binding to the 3'-UTR of CRKL, miR-429 reversely regulated CRKL for its functionalities in ccRCC cells. CRKL knockdown and overexpression separately decreased and increased the in vitro migration and invasion of 786-O cells, which were consistent with the influences of miR-429 overexpression and knockdown on 786-O through respectively downregulating and upregulating CRKL via SOS1/MEK/ERK/MMP2/MMP9 pathway. The enhancements of CRKL expression, migration and invasion abilities and SOS1/MEK/ ERK/MMP2/MMP9 activation induced by TGF-β stimulation in 786-O cells could be antagonized by miR-429 overexpression. Exogenous re-expression of CRKL abrogated miR-429 suppression on the migration and invasion of 786-O cells. Collectively, miR-429 deficiency negatively correlated with CRKL overexpression promoted the aggressiveness of cancer cells and advanced the clinical progression of ccRCC patients. miR-429-CRKL axial regulation provides new clues to the fundamental research, diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Jinxia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China; Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chengyi Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qian Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weibin Sun
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Dongting Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Sixiong Jiang
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Lihong Hao
- Department of Anatomy, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Yuxiang Tian
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
7
|
Guo C, Gao C, Zhao D, Li J, Wang J, Sun X, Liu Q, Hao L, Greenaway FT, Tian Y, Liu S, Sun MZ. A novel ETV6-miR-429-CRKL regulatory circuitry contributes to aggressiveness of hepatocellular carcinoma. J Exp Clin Cancer Res 2020; 39:70. [PMID: 32326970 PMCID: PMC7178969 DOI: 10.1186/s13046-020-01559-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/10/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Tumor metastasis is one of the main causes of the high mortality of hepatocellular carcinoma (HCC). E-Twenty Six variant gene 6 (ETV6) is a strong transcriptional repressor, associated with the development and progression of tumors. However, the exact role and underlying mechanism of ETV6 in HCC remain unclear. METHODS Western blotting, quantitative real-time PCR and immunohistochemistry were used to detect the expression levels of ETV6, CRKL (v-crk sarcoma virus CT10 oncogene homologue (avian)-like) and miR-429 in HCC tissues and cells; Transwell chamber and F-actin cytoskeleton staining assay to examine the effects of ETV6 and CRKL deregulation on the migration, invasion and cytoskeleton of HCC cells; Co-immunoprecipitation assay to determine the interaction between CRKL and ETV6; Chromatin immunoprecipitation assay to investigate the interaction between ETV6 and miR-429. RESULTS We established a novel ETV6-miR-429-CRKL regulatory circuitry contributes to HCC metastasis. ETV6 and CRKL were frequently increased, while miR-429 was downregulated in both hepatocarcinoma tissues and hepatocarcinoma cells. Moreover, ETV6 upregulation was positively correlated with CRKL upregulation, and two negative correlations were also established for ETV6 and CRKL upregulation with miR-429 downregulation in both hepatocarcinoma patients' tumorous tissues and hepatocarcinoma cells. Functional investigations revealed that overexpression and knockdown of ETV6 was remarkably effective in promoting and suppressing HCC cell migration, invasion, cytoskeleton F-actin expression and arrangement, whereas, CRKL overexpression exhibited similar effects to the overexpression of ETV6. Mechanistically, ETV6 negatively regulates miR-429 expression by directly binding to the promoter region of miR-429; miR-429 negatively regulates CRKL expression by selectively targeting CRKL-3'-UTR; ETV6 directly binds to CRKL and positively regulates its expression, which in turn CRKL positively regulates ETV6 expression. CONCLUSIONS Our data demonstrated that ETV6 promotes migration and invasion of HCC cells by directly binding to promoter region of miR-429 via modulating CRKL expression. The newly identified ETV6-miR-429-CRKL regulatory circuitry contributes to the aggressiveness of HCC, which provides new clues for fundamental research on diagnosis and treatment parameters for HCC.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Chao Gao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Dongting Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jiahui Li
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Jinxia Wang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xujuan Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qinlong Liu
- Department of General Surgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116044, China
| | - Lihong Hao
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Frederick T Greenaway
- Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| | - Yuxiang Tian
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shuqing Liu
- Department of Biochemistry, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
8
|
Bidirectional interaction of lncRNA AFAP1-AS1 and CRKL accelerates the proliferative and metastatic abilities of hepatocarcinoma cells. J Adv Res 2020; 24:121-130. [PMID: 32280542 PMCID: PMC7139140 DOI: 10.1016/j.jare.2020.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1), a long non-coding RNA transcribed from the antisense strand of protein coding gene AFAP1, has attracted attention in cancer research. Despite, its biological function and regulatory mechanism in hepatocellular carcinoma still unknown. The present study revealed AFAP1-AS1 mediated hepatocarcinoma progression through targeting CRKL. The bidirectional interaction of AFAP1-AS1 and oncogenic protein CRKL, and the deregulation of AFAP1-AS1 effects on Ras, MEK and c-Jun activities were investigated in depth. AFAP1-AS1 was upregulated in surgical tumorous tissues from hepatocarcinoma patients compared with the paired paracancerous non-tumor liver tissues, and in hepatocarcinoma Huh7, HCCLM3 and HepG2 cell lines compared with LO2, a normal liver cell line. AFAP1-AS1 knockdown noticeably suppressed the proliferative, migratory and invasive properties, and the epithelial-mesenchymal transition (EMT) process of HepG2 and HCCLM3 through upregulating E-cadherin and downregulating N-cadherin and vimentin. CRKL knockdown reduced AFAP1-AS1 expression levels in HepG2 and HCCLM3 cells. AFAP1-AS1 suppression impaired CRKL expression in HepG2 and HCCLM3. AFAP1-AS1 level change was positively correlated with the expression level changes of Ras, MEK and c-Jun in mediating the invasiveness of hepatocarcinoma cells. Current work demonstrated AFAP1-AS1 to be an applicable progression indicator of hepatocarcinoma. AFAP1-AS1 probably promotes the proliferation, EMT progression and metastasis of hepatocarcinoma cells via CRKL mediated Ras/MEK/c-Jun and cadherin/vimentin signaling pathways. AFAP1-AS1-CRKL bidirectional feedback signaling is worthy of further study on the monitoring, diagnosis and treatment of cancers.
Collapse
|
9
|
Aiello FB, Guszczynski T, Li W, Hixon JA, Jiang Q, Hodge DL, Massignan T, Di Lisio C, Merchant A, Procopio AD, Bonetto V, Durum SK. IL-7-induced phosphorylation of the adaptor Crk-like and other targets. Cell Signal 2018; 47:131-141. [PMID: 29581031 DOI: 10.1016/j.cellsig.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022]
Abstract
IL-7 is required for T cell differentiation and mature T cell homeostasis and promotes pro-B cell proliferation and survival. Tyrosine phosphorylation plays a central role in IL-7 signaling. We identified by two-dimensional electrophoresis followed by anti-phosphotyrosine immunoblotting and mass spectrometry sixteen tyrosine phosphorylated proteins from the IL-7-dependent cell line D1. IL-7 stimulation induced the phosphorylation of the proteins STI1, ATIC and hnRNPH, involved in pathways related to survival, proliferation and gene expression, respectively, and increased the phosphorylation of CrkL, a member of a family of adaptors including the highly homologous Crk isoforms CrkII and CrkI, important in multiple signaling pathways. We observed an increased phosphorylation of CrkL in murine pro-B cells and in murine and human T cells. In addition, IL-7 increased the association of CrkL with the transcription factor Stat5, essential for IL-7 pro-survival activity. The selective tyrosine kinase inhibitor Imatinib. counteracted the IL-7 pro-survival effect in D1 cells and decreased CrkL phosphorylation. These data suggested that CrkL could play a pro-survival role in IL-7-mediated signaling. We observed that pro-B cells also expressed, in addition to CrkL, the Crk isoforms CrkII and CrkI and therefore utilized pro-B cells conditionally deficient in all three to evaluate the role of these proteins. The observation that the IL-7 pro-survival effect was reduced in Crk/CrkL conditionally-deficient pro-B cells further pointed to a pro-survival role of these adaptors. To further evaluate the role of these proteins, gene expression studies were performed in Crk/CrkL conditionally-deficient pro-B cells. IL-7 decreased the transcription of the receptor LAIR1, which inhibits B cell proliferation, in a Crk/CrkL-dependent manner, suggesting that the Crk family of proteins may promote pro-B cell proliferation. Our data contribute to the understanding of IL-7 signaling and suggest the involvement of Crk family proteins in pathways promoting survival and proliferation.
Collapse
Affiliation(s)
- Francesca B Aiello
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Tad Guszczynski
- Molecular Targets Laboratory, FCRDC, Bldg 560, Frederick, MD 21702, USA.
| | - Wenqing Li
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Julie A Hixon
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Qiong Jiang
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| | - Deborah L Hodge
- Laboratory of Experimental Medicine, FCRDC, Bldg 560, Frederick, MD 21702, USA.
| | - Tania Massignan
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche M. Negri, via La Masa 19, 20156 Milano, Italy
| | - Chiara Di Lisio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, via dei Vestini, 66013 Chieti, Italy.
| | - Anand Merchant
- Center for Cancer Research, NIH, Bethesda, MD 20892, USA.
| | - Antonio D Procopio
- Department of Clinical and Medical Sciences, Marche Polytechnic University, via Tronto 10, 60100 Ancona, Italy.
| | - Valentina Bonetto
- Dulbecco Telethon Institute, IRCCS-Istituto di Ricerche Farmacologiche M. Negri, via La Masa 19, 20156 Milano, Italy.
| | - Scott K Durum
- Cancer and Inflammation Program, CCR, NCI, NIH, Bldg 560, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
miR-429 suppresses tumor migration and invasion by targeting CRKL in hepatocellular carcinoma via inhibiting Raf/MEK/ERK pathway and epithelial-mesenchymal transition. Sci Rep 2018; 8:2375. [PMID: 29403024 PMCID: PMC5799248 DOI: 10.1038/s41598-018-20258-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor metastasis is one of the main causes of hepatocellular carcinoma (HCC) high mortality. CRKL (v-crk sarcoma virus CT10 oncogene homologue (avian)-like) play important roles in tumor metastasis, however, the exact role and underlying mechanism of CRKL in HCC is still unknown. In our study, we demonstrated miR-429 negatively regulated CRKL expression via selectively binding to CRKL-3'-UTR at 3728-3735 bp site by post-transcriptionally mediating its functionality. Re-expression and silencing of miR-429 was remarkably effective in suppressing and promoting HepG2 cell migration and invasion in vitro. Knockdown or overexpression of CRKL exhibited similar effects as the overexpression or silencing of miR-429, whereas, CRKL overexpression (without the 3'-UTR) abrogated miR-429-induced inhibition on HepG2 migration and invasion. Moreover, miR-429-CRKL axis affected HepG2 migration and invasion potentials by regulating the adhesion ability, cytoskeleton F-actin expression and arrangement of HepG2. Furthermore, interference of Raf/MEK/ERK pathway and EMT contributed to miR-429-CRKL axis mediated metastasis inhibition. Nevertheless, miR-429 could not inhibit HepG2 proliferation through CRKL/c-Jun pathway. Taken together, our data demonstrated that miR-429 might function as an antimetastatic miRNA to regulate HCC metastasis by directly targeting CRKL via modulating Raf/MEK/ERK-EMT pathway. The newly identified miR-429-CRKL axis represents a novel potential therapeutic target for HCC treatment.
Collapse
|
11
|
CrkL meditates CCL20/CCR6-induced EMT in gastric cancer. Cytokine 2015; 76:163-169. [PMID: 26044596 DOI: 10.1016/j.cyto.2015.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND In recent years, Crk-like adapter protein (CrkL) has been identified as a key regulator in the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms underlying the CC chemokine receptor 6 (CCR6) and chemokine (C-C motif) ligand 20 (CCL20)-induced EMT in gastric cancer are still unclear. METHODS We conducted the immunohistochemistry and immunoblotting to detect the expression of CCR6 and CrkL in 90 cases of gastric cancer tissues and five kinds of cell lines. And then, gastric cancer cells were subjected to small interfering RNA (siRNA) treatment and in vitro assay. RESULTS Both CCR6 and CrkL were aberrantly expressed in gastric cancer specimens and closely correlated with differentiation of cell lines. The expression of CCR6 and CrkL was also significantly associated with metastasis, stage, and poor prognosis of gastric cancer. In addition, we validated CCL20 activated the expression of p-CrkL, p-Erk1/2, p-Akt, vimentin, N-cadherin and MMP2 in MGC803 cells in a dose-dependent manner. However, si-CrkL abrogated the CCL20-induced p-Erk1/2, vimentin, N-cadherin and MMP2 expression. Most importantly, the knockdown of CrkL decreased migration and invasion of MGC803 cells. CONCLUSIONS CrkL mediates CCL20/CCR6-induced EMT via Akt pathway, instead of Erk1/2 pathway in development of gastric cancer, which indicated CCL20/CCR6-CrkL-Erk1/2-EMT pathway may be targeted to antagonize the progression of gastric cancer.
Collapse
|
12
|
Shi J, Meng L, Sun MZ, Guo C, Sun X, Lin Q, Liu S. CRKL knockdown promotes in vitro proliferation, migration and invasion, in vivo tumor malignancy and lymph node metastasis of murine hepatocarcinoma Hca-P cells. Biomed Pharmacother 2015; 71:84-90. [PMID: 25960220 DOI: 10.1016/j.biopha.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/15/2015] [Indexed: 02/06/2023] Open
Abstract
Our previous study (Biomed Pharmacother 2015;69:11) demonstrated that the over-expression of CRKL, a chicken tumor virus number 10 regulator of kinase-like protein, suppresses in vitro proliferation, invasion and migration of murine hepatocarcinoma Hca-P cell, a murine HCC cell with lymph node metastatic (LNM) rate of ∼25%. In current work, we investigated the effects of CRKL knockdown on the in vitro cell proliferation, migration and invasion, and on the in vivo tumor malignancy and LNM rate and level for Hca-P cells. Western blotting assay indicated that CRKL was down-regulated by ∼90% in a monoclonal CrkL-shRNA-transfected Hca-P cells. Compared with Hca-P and unrelated-shRNA-transfected Hca-P cell, the in vitro proliferation, migration and invasion potentials were significantly enhanced following CRKL stable deregulation. CRKL knock-down significantly promoted the tumorigenicity malignancy, LNM rates and level of Hca-P-transplanted mice. Consistent with our previous work, it can be concluded CRKL plays an important role in hepatocarcinoma cell proliferation, invasion and migration as well hepatocarcinoma malignancy and metastasis. It functions as a potential tumor suppressor in hepatocarcinoma.
Collapse
Affiliation(s)
- Ji Shi
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China; Department of Pathology, The First Affiliated Hospital of China Medical University, Anshan Hospital, Liaoning 114012, China
| | - Longlong Meng
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| | - Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Xujuan Sun
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China; Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Qiuyue Lin
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China
| | - Shuqing Liu
- Department of Biochemistry, Dalian Medical University, Dalian 116044, China; Provincial Key Laboratory of Cell and Molecular Biology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
13
|
Crk-like adapter protein regulates CCL19/CCR7-mediated epithelial-to-mesenchymal transition via ERK signaling pathway in epithelial ovarian carcinomas. Med Oncol 2015; 32:47. [DOI: 10.1007/s12032-015-0494-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/23/2015] [Indexed: 01/11/2023]
|