1
|
Carella F, Prado P, García-March JR, Tena-Medialdea J, Melendreras EC, Porcellini A, Feola A. Measuring immunocompetence in the natural population and captive individuals of noble pen shell Pinna nobilis affected by Pinna nobilis Picornavirus (PnPV). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109664. [PMID: 38844186 DOI: 10.1016/j.fsi.2024.109664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Mass Mortality Events (MMEs) affecting the noble pen shell Pinna nobilis have been reported since 2016. In this work, we used an in vitro flow cytometric assay to evaluate phagocytosis, coupled with cytology and Electron Microscopy (TEM), to define animal immunocompetence following infection by P. nobilis Picornavirus (PnPV). The study was performed on 27 animals in July 2021 and May 2022 on two natural population from the Ebro Delta (Catalonia, Spain) and animals maintained in captivity at facilities in Valencia and Murcia Aquarium. Hemolymph was collected in the field and in captivity as a non-destructive sampling method. Based on dimension and internal complexity, flow cytometry identified three haemocyte types, distinguished in granulocytes, hyalinocytes and a third type, biggest in size and with high internal complexity and granularity. Those cells corresponded at ultrastructure to hemocytes with advanced phases of PnPV infection and related to cytopathic effect of the replicating virus displaying numerous Double Membrane Vesicles (DMVs) and cells corpse fusion. The results showed that pen shell in captivity had significantly lower Total Hemocyte Count (THC) compared with natural population of Alfacs Bay (mean number of 7-9 x 104 vs 2-5 x 105 cells/mL, respectively). FACS (Fluorescence-activated cell sorting) based phagocytosis analysis demonstrate that animals in captivity at IMEDMAR-UCV and Murcia Aquarium, had scarce or absent ability to phagocyte the two stimuli (Staphylococcus aureus and Zymosan A) (10,2 % ± 1,7 of positives) if compared with the natural population in Alfacs Bay (28,5 % ± 5,6 of positive). Ultrastructure images showed that PnPV itself can lead to an alteration of the hemocyte cytoskeleton, impairing the capabilities to perform an active phagocytosis and an efficient phagolysosome fusion.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy.
| | - Patricia Prado
- IMEDMAR-UCV, Universidad Católica de Valencia, 03710, Calpe, Alicante, Spain; Institut d'Estudis Professionals Aqüícoles i Ambientals de Catalunya (IEPAAC), 43540, La Ràpita, Tarragona, Spain
| | | | - José Tena-Medialdea
- IMEDMAR-UCV, Universidad Católica de Valencia, 03710, Calpe, Alicante, Spain
| | | | - Antonio Porcellini
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Via Cinthia Complesso di Monte Sant Angelo, Naples, Italy
| |
Collapse
|
2
|
Carella F, Prado P, De Vico G, Palić D, Villari G, García-March JR, Tena-Medialdea J, Cortés Melendreras E, Giménez-Casalduero F, Sigovini M, Aceto S. A widespread picornavirus affects the hemocytes of the noble pen shell ( Pinna nobilis), leading to its immunosuppression. Front Vet Sci 2023; 10:1273521. [PMID: 38164394 PMCID: PMC10758234 DOI: 10.3389/fvets.2023.1273521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The widespread mass mortality of the noble pen shell (Pinna nobilis) has occurred in several Mediterranean countries in the past 7 years. Single-stranded RNA viruses affecting immune cells and leading to immune dysfunction have been widely reported in human and animal species. Here, we present data linking P. nobilis mass mortality events (MMEs) to hemocyte picornavirus (PV) infection. This study was performed on specimens from wild and captive populations. Methods We sampled P. nobilis from two regions of Spain [Catalonia (24 animals) and Murcia (four animals)] and one region in Italy [Venice (6 animals)]. Each of them were analyzed using transmission electron microscopy (TEM) to describe the morphology and self-assembly of virions. Illumina sequencing coupled to qPCR was performed to describe the identified virus and part of its genome. Results and discussion In 100% of our samples, ultrastructure revealed the presence of a virus (20 nm diameter) capable of replicating within granulocytes and hyalinocytes, leading to the accumulation of complex vesicles of different dimensions within the cytoplasm. As the PV infection progressed, dead hemocytes, infectious exosomes, and budding of extracellular vesicles were visible, along with endocytic vesicles entering other cells. The THC (total hemocyte count) values observed in both captive (eight animals) (3.5 × 104-1.60 × 105 ml-1 cells) and wild animals (14 samples) (1.90-2.42 × 105 ml-1 cells) were lower than those reported before MMEs. Sequencing of P. nobilis (six animals) hemocyte cDNA libraries revealed the presence of two main sequences of Picornavirales, family Marnaviridae. The highest number of reads belonged to animals that exhibited active replication phases and abundant viral particles from transmission electron microscopy (TEM) observations. These sequences correspond to the genus Sogarnavirus-a picornavirus identified in the marine diatom Chaetoceros tenuissimus (named C. tenuissimus RNA virus type II). Real-time PCR performed on the two most abundant RNA viruses previously identified by in silico analysis revealed positive results only for sequences similar to the C. tenuissimus RNA virus. These results may not conclusively identify picornavirus in noble pen shell hemocytes; therefore, further study is required. Our findings suggest that picornavirus infection likely causes immunosuppression, making individuals prone to opportunistic infections, which is a potential cause for the MMEs observed in the Mediterranean.
Collapse
Affiliation(s)
- Francesca Carella
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Patricia Prado
- Institute of Agrifood Research and Technology (IRTA)-Sant Carles de la Ràpita, Tarragona, Spain
| | - Gionata De Vico
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Grazia Villari
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - José Rafael García-March
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | - José Tena-Medialdea
- Instituto de Investigación en Medio Ambiente y Ciencia Marina, Universidad Católica de Valencia, Calpe, Spain
| | | | - Francisca Giménez-Casalduero
- Department of Marine Science and Applied Biology, Research Marine Centre in Santa Pola (CIMAR), University of Alicante, Alicante, Spain
| | - Marco Sigovini
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Venice, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
3
|
Kim AH, Armah G, Dennis F, Wang L, Rodgers R, Droit L, Baldridge MT, Handley SA, Harris VC. Enteric virome negatively affects seroconversion following oral rotavirus vaccination in a longitudinally sampled cohort of Ghanaian infants. Cell Host Microbe 2021; 30:110-123.e5. [PMID: 34932985 PMCID: PMC8763403 DOI: 10.1016/j.chom.2021.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/22/2021] [Accepted: 11/29/2021] [Indexed: 01/04/2023]
Abstract
Rotavirus vaccines (RVVs) have substantially diminished mortality from severe rotavirus (RV) gastroenteritis but are significantly less effective in low- and middle-income countries (LMICs), limiting their life-saving potential. The etiology of RVV’s diminished effectiveness remains incompletely understood, but the enteric microbiota has been implicated in modulating immunity to RVVs. Here, we analyze the enteric microbiota in a longitudinal cohort of 122 Ghanaian infants, evaluated over the course of 3 Rotarix vaccinations between 6 and 15 weeks of age, to assess whether bacterial and viral populations are distinct between non-seroconverted and seroconverted infants. We identify bacterial taxa including Streptococcus and a poorly classified taxon in Enterobacteriaceae as positively correlating with seroconversion. In contrast, both bacteriophage diversity and detection of Enterovirus B and multiple novel cosaviruses are negatively associated with RVV seroconversion. These findings suggest that virome-RVV interference is an underappreciated cause of poor vaccine performance in LMICs. Longitudinal analysis of microbiota of Ghanaian infants receiving rotavirus vaccine Streptococcus and Enterobacteriaceae taxa positively associate with RVV seroconversion Enterovirus B, Cosavirus A, and phage richness negatively associate with RVV serostatus
Collapse
|
4
|
Guo Z, Zhao Y, Zhang Z, Li Y. Interleukin-10-Mediated Lymphopenia Caused by Acute Infection with Foot-and-Mouth Disease Virus in Mice. Viruses 2021; 13:v13122358. [PMID: 34960627 PMCID: PMC8708299 DOI: 10.3390/v13122358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/06/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Foot-and-mouth disease (FMD) is characterized by a pronounced lymphopenia that is associated with immune suppression. However, the mechanisms leading to lymphopenia remain unclear. In this study, the number of total CD4+, CD8+ T cells, B cells, and NK cells in the peripheral blood were dramatically reduced in C57BL/6 mice infected with foot-and-mouth disease virus (FMDV) serotype O, and it was noted that mice with severe clinical symptoms had expressively lower lymphocyte counts than mice with mild or without clinical symptoms, indicating that lymphopenia was associated with disease severity. A further analysis revealed that lymphocyte apoptosis and trafficking occurred after FMDV infection. In addition, coinhibitory molecules were upregulated in the expression of CD4+ and CD8+ T cells from FMDV-infected mice, including CTLA-4, LAG-3, 2B4, and TIGIT. Interestingly, the elevated IL-10 in the serum was correlated with the appearance of lymphopenia during FMDV infection but not IL-6, IL-2, IL-17, IL-18, IL-1β, TNF-α, IFN-α/β, TGF-β, and CXCL1. Knocking out IL-10 (IL-10-/-) mice or blocking IL-10/IL-10R signaling in vivo was able to prevent lymphopenia via downregulating apoptosis, trafficking, and the coinhibitory expression of lymphocytes in the peripheral blood, which contribute to enhance the survival of mice infected with FMDV. Our findings support that blocking IL-10/IL-10R signaling may represent a novel therapeutic approach for FMD.
Collapse
Affiliation(s)
- Zijing Guo
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (Z.G.); (Y.Z.)
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
| | - Yin Zhao
- State Key Laboratory on Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China; (Z.G.); (Y.Z.)
| | - Zhidong Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Y.L.)
| | - Yanmin Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (Z.Z.); (Y.L.); Tel.: +86-028-85528276 (Y.L.)
| |
Collapse
|
5
|
Lathe R, St Clair D. From conifers to cognition: Microbes, brain and behavior. GENES BRAIN AND BEHAVIOR 2020; 19:e12680. [PMID: 32515128 DOI: 10.1111/gbb.12680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
A diversity of bacteria, protozoans and viruses ("endozoites") were recently uncovered within healthy tissues including the human brain. By contrast, it was already recognized a century ago that healthy plants tissues contain abundant endogenous microbes ("endophytes"). Taking endophytes as an informative precedent, we overview the nature, prevalence, and role of endozoites in mammalian tissues, centrally focusing on the brain, concluding that endozoites are ubiquitous in diverse tissues. These passengers often remain subclinical, but they are not silent. We address their routes of entry, mechanisms of persistence, tissue specificity, and potential to cause long-term behavioral changes and/or immunosuppression in mammals, where rabies virus is the exemplar. We extend the discussion to Herpesviridae, Coronaviridae, and Toxoplasma, as well as to diverse bacteria and yeasts, and debate the advantages and disadvantages that endozoite infection might afford to the host and to the ecosystem. We provide a clinical perspective in which endozoites are implicated in neurodegenerative disease, anxiety/depression, and schizophrenia. We conclude that endozoites are instrumental in the delicate balance between health and disease, including age-related brain disease, and that endozoites have played an important role in the evolution of brain function and human behavior.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
6
|
Eschbaumer M, Stenfeldt C, Rekant SI, Pacheco JM, Hartwig EJ, Smoliga GR, Kenney MA, Golde WT, Rodriguez LL, Arzt J. Systemic immune response and virus persistence after foot-and-mouth disease virus infection of naïve cattle and cattle vaccinated with a homologous adenovirus-vectored vaccine. BMC Vet Res 2016; 12:205. [PMID: 27634113 PMCID: PMC5025598 DOI: 10.1186/s12917-016-0838-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022] Open
Abstract
Background In order to investigate host factors associated with the establishment of persistent foot-and-mouth disease virus (FMDV) infection, the systemic response to vaccination and challenge was studied in 47 steers. Eighteen steers that had received a recombinant FMDV A vaccine 2 weeks earlier and 29 non-vaccinated steers were challenged by intra-nasopharyngeal deposition of FMDV A24. For up to 35 days after challenge, host factors including complete blood counts with T lymphocyte subsets, type I/III interferon (IFN) activity, neutralizing and total FMDV-specific antibody titers in serum, as well as antibody-secreting cells (in 6 non-vaccinated animals) were characterized in the context of viral infection dynamics. Results Vaccination generally induced a strong antibody response. There was a transient peak of FMDV-specific serum IgM in non-vaccinated animals after challenge, while IgM levels in vaccinated animals did not increase further. Both groups had a lasting increase of specific IgG and neutralizing antibody after challenge. Substantial systemic IFN activity in non-vaccinated animals coincided with viremia, and no IFN or viremia was detected in vaccinated animals. After challenge, circulating lymphocytes decreased in non-vaccinated animals, coincident with viremia, IFN activity, and clinical disease, whereas lymphocyte and monocyte counts in vaccinated animals were unaffected by vaccination but transiently increased after challenge. The CD4+/CD8+ T cell ratio in non-vaccinated animals increased during acute infection, driven by an absolute decrease of CD8+ cells. Conclusions The incidence of FMDV persistence was 61.5 % in non-vaccinated and 54.5 % in vaccinated animals. Overall, the systemic factors examined were not associated with the FMDV carrier/non-carrier divergence; however, significant differences were identified between responses of non-vaccinated and vaccinated cattle. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0838-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Eschbaumer
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Carolina Stenfeldt
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Steven I Rekant
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.,Oak Ridge Institute for Science and Education, PIADC Research Participation Program, Oak Ridge, TN, USA
| | - Juan M Pacheco
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Ethan J Hartwig
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - George R Smoliga
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Mary A Kenney
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - William T Golde
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Luis L Rodriguez
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA
| | - Jonathan Arzt
- United States Department of Agriculture (USDA), Plum Island Animal Disease Center (PIADC), Foreign Animal Disease Research Unit (FADRU), Agricultural Research Service (ARS), P.O. Box 848, Greenport, NY, 11944, USA.
| |
Collapse
|
7
|
DA virus mutant H101 has altered CNS pathogenesis and causes immunosuppression. J Neuroimmunol 2014; 277:118-26. [PMID: 25468274 DOI: 10.1016/j.jneuroim.2014.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022]
Abstract
Viruses use various mechanisms to evade clearance by the host. Investigating how a few changes in the genome of a non-lethal virus can lead to altered disease, from survivable to immunosuppression/death, would provide valuable information into viral pathogenesis. The Daniels strain of Theiler's murine encephalomyelitis virus causes an asymptomatic infection or acute encephalitis followed by viral clearance. A mutant, H101, carries several alterations in the viral genome. H101 infection causes profound immunosuppression and death. Thus, a virus that is normally cleared by its natural host can become lethal due to just a few changes in the viral genome.
Collapse
|